101
|
Lim KY, Henderson JT, Neu CP. Cell and tissue deformation measurements: texture correlation with third-order approximation of displacement gradients. J Biomech 2013; 46:2490-6. [PMID: 23992835 DOI: 10.1016/j.jbiomech.2013.07.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Revised: 06/30/2013] [Accepted: 07/04/2013] [Indexed: 01/16/2023]
Abstract
Cells remarkably are capable of large deformations during motility and when subjected to mechanical force. Measurement of mechanical deformation (i.e. displacements, strain) is critical to understand functional changes in cells and biological tissues following disease, and to elucidate basic relationships between applied force and cellular biosynthesis. Microscopy-based imaging modalities provide the ability to noninvasively visualize small cell or tissue structures and track their motion over time, often using two-dimensional (2D) digital image (texture) correlation algorithms. For the measurement of complex and nonlinear motion in cells and tissues, implementation of texture correlation algorithms with high order approximations of displacement mapping terms are needed to minimize error. Here, we extend a texture correlation algorithm with up to third-order approximation of displacement mapping terms for the measurement of cell and tissue deformation. We additionally investigate relationships between measurement error and image texture, defined by subset entropy. Displacement measurement error is significantly reduced when the order of displacement mapping terms in the texture correlation algorithm matches or exceeds the order of the deformation observed. Displacement measurement error is also inversely proportional to subset entropy, with well-defined cell and tissue structures leading to high entropy and low error. For cell and tissue studies where complex or nonlinear displacements are expected, texture correlation algorithms with high order terms are required to best characterize the observed deformation.
Collapse
Affiliation(s)
- Kai Y Lim
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | | | | |
Collapse
|
102
|
Chen J, Irianto J, Inamdar S, Pravincumar P, Lee DA, Bader DL, Knight MM. Cell mechanics, structure, and function are regulated by the stiffness of the three-dimensional microenvironment. Biophys J 2013; 103:1188-97. [PMID: 22995491 DOI: 10.1016/j.bpj.2012.07.054] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 07/06/2012] [Accepted: 07/27/2012] [Indexed: 11/17/2022] Open
Abstract
This study adopts a combined computational and experimental approach to determine the mechanical, structural, and metabolic properties of isolated chondrocytes cultured within three-dimensional hydrogels. A series of linear elastic and hyperelastic finite-element models demonstrated that chondrocytes cultured for 24 h in gels for which the relaxation modulus is <5 kPa exhibit a cellular Young's modulus of ∼5 kPa. This is notably greater than that reported for isolated chondrocytes in suspension. The increase in cell modulus occurs over a 24-h period and is associated with an increase in the organization of the cortical actin cytoskeleton, which is known to regulate cell mechanics. However, there was a reduction in chromatin condensation, suggesting that changes in the nucleus mechanics may not be involved. Comparison of cells in 1% and 3% agarose showed that cells in the stiffer gels rapidly develop a higher Young's modulus of ∼20 kPa, sixfold greater than that observed in the softer gels. This was associated with higher levels of actin organization and chromatin condensation, but only after 24 h in culture. Further studies revealed that cells in stiffer gels synthesize less extracellular matrix over a 28-day culture period. Hence, this study demonstrates that the properties of the three-dimensional microenvironment regulate the mechanical, structural, and metabolic properties of living cells.
Collapse
Affiliation(s)
- J Chen
- Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
103
|
Rebelo LM, de Sousa JS, Mendes Filho J, Radmacher M. Comparison of the viscoelastic properties of cells from different kidney cancer phenotypes measured with atomic force microscopy. NANOTECHNOLOGY 2013; 24:055102. [PMID: 23324556 DOI: 10.1088/0957-4484/24/5/055102] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The viscoelastic properties of human kidney cell lines from different tumor types (carcinoma (A-498) and adenocarcinoma (ACHN)) are compared to a non-tumorigenic cell line (RC-124). Our methodology is based on the mapping of viscoelastic properties (elasticity modulus E and apparent viscosity η) over the surface of tens of individual cells with atomic force microscopy (AFM). The viscoelastic properties are averaged over datasets as large as 15000 data points per cell line. We also propose a model to estimate the apparent viscosity of soft materials using the hysteresis observed in conventional AFM deflection-displacement curves, without any modification to the standard AFM apparatus. The comparison of the three cell lines show that the non-tumorigenic cells are less deformable and more viscous than cancerous cells, and that cancer cell lines have distinctive viscoelastic properties. In particular, we obtained that E(RC-124) > E(A-498) > E(ACHN) and η(RC-124) > η(A-498) > η(ACHN).
Collapse
Affiliation(s)
- L M Rebelo
- Departamento de Física, Universidade Federal do Ceará, Caixa Postal 6030, 60455-760 Fortaleza, Ceará, Brazil
| | | | | | | |
Collapse
|
104
|
Cao S, Wang J, Li D, Chen D. Ecological and social modeling for migration and adhesion pattern of a benthic diatom. Ecol Modell 2013. [DOI: 10.1016/j.ecolmodel.2012.11.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
105
|
Khalilian M, Valojerdi MR, Navidbakhsh M, Chizari M, Eftekhari-Yazdi P. Estimating zona pellucida hardness under microinjection to assess oocyte/embryo quality: Analytical and experimental studies. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/abb.2013.45089] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
106
|
Tang X, Wen Q, Kuhlenschmidt TB, Kuhlenschmidt MS, Janmey PA, Saif TA. Attenuation of cell mechanosensitivity in colon cancer cells during in vitro metastasis. PLoS One 2012; 7:e50443. [PMID: 23226284 PMCID: PMC3511581 DOI: 10.1371/journal.pone.0050443] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 10/22/2012] [Indexed: 02/07/2023] Open
Abstract
Human colon carcinoma (HCT-8) cells show a stable transition from low to high metastatic state when cultured on appropriately soft substrates (21 kPa). Initially epithelial (E) in nature, the HCT-8 cells become rounded (R) after seven days of culture on soft substrate. R cells show a number of metastatic hallmarks [1]. Here, we use gradient stiffness substrates, a bio-MEMS force sensor, and Coulter counter assays to study mechanosensitivity and adhesion of E and R cells. We find that HCT-8 cells lose mechanosensitivity as they undergo E-to-R transition. HCT-8 R cells' stiffness, spread area, proliferation and migration become insensitive to substrate stiffness in contrast to their epithelial counterpart. They are softer, proliferative and migratory on all substrates. R cells show negligible cell-cell homotypic adhesion, as well as non-specific cell-substrate adhesion. Consequently they show the same spread area on all substrates in contrast to E cells. Taken together, these results indicate that R cells acquire autonomy and anchorage independence, and are thus potentially more invasive than E cells. To the best of our knowledge, this is the first report of quantitative data relating changes in cancer cell adhesion and stiffness during the expression of an in vitro metastasis-like phenotype.
Collapse
Affiliation(s)
- Xin Tang
- Department of Mechanical Science and Engineering, College of Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Qi Wen
- Departments of Physiology, Physics, and Bioengineering, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Theresa B. Kuhlenschmidt
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Mark S. Kuhlenschmidt
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Paul A. Janmey
- Departments of Physiology, Physics, and Bioengineering, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Taher A. Saif
- Department of Mechanical Science and Engineering, College of Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Micro and Nanotechnology Laboratory (MNTL), University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| |
Collapse
|
107
|
Smith JP, Barbati AC, Santana SM, Gleghorn JP, Kirby BJ. Microfluidic transport in microdevices for rare cell capture. Electrophoresis 2012; 33:3133-42. [PMID: 23065634 DOI: 10.1002/elps.201200263] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 07/11/2012] [Accepted: 07/12/2012] [Indexed: 12/11/2022]
Abstract
The isolation and capture of rare cells is a problem uniquely suited to microfluidic devices, in which geometries on the cellular length scale can be engineered and a wide range of chemical functionalizations can be implemented. The performance of such devices is primarily affected by the chemical interaction between the cell and the capture surface and the mechanics of cell-surface collision and adhesion. As rare cell-capture technology has been summarized elsewhere (E. D. Pratt et al., Chem. Eng. Sci. 2011, 66, 1508-1522), this article focuses on the fundamental adhesion and transport mechanisms in rare cell-capture microdevices, and explores modern device design strategies in a transport context. The biorheology and engineering parameters of cell adhesion are defined; adhesion models and reaction kinetics briefly reviewed. Transport at the microscale, including diffusion and steric interactions that result in cell motion across streamlines, is discussed. The review concludes by discussing design strategies with a focus on leveraging the underlying transport phenomena to maximize device performance.
Collapse
Affiliation(s)
- James P Smith
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
| | | | | | | | | |
Collapse
|
108
|
Rafat M, Rotenstein LS, Hu JL, Auguste DT. Engineered endothelial cell adhesion via VCAM1 and E-selectin antibody-presenting alginate hydrogels. Acta Biomater 2012; 8:2697-703. [PMID: 22504076 DOI: 10.1016/j.actbio.2012.04.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 03/14/2012] [Accepted: 04/04/2012] [Indexed: 11/19/2022]
Abstract
Materials that adhere to the endothelial cell (EC) lining of blood vessels may be useful for treating vascular injury. Cell adhesion molecules (CAMs), such as endothelial leukocyte adhesion molecule-1 (E-selectin) and vascular cell adhesion molecule-1 (VCAM1), modulate EC-leukocyte interactions. In this study, we mimicked cell-cell interactions by seeding cells on alginate hydrogels modified with antibodies against E-selectin and VCAM1, which are upregulated during inflammation. ECs were activated with interleukin-1α to increase CAM expression and subsequently seeded onto hydrogels. The strength of cell adhesion onto gels was assessed via a centrifugation assay. Strong, cooperative EC adhesion was observed on hydrogels presenting a 1:1 ratio of anti-VCAM1:anti-E-selectin. Cell adhesion was stronger on dual functionalized gels than on gels modified with anti-VCAM1, anti-E-selectin or the arginine-glycine-aspartic acid (RGD) peptide alone. Anti-VCAM1:anti-E-selectin-modified hydrogels may be engineered to adhere the endothelium cooperatively.
Collapse
Affiliation(s)
- Marjan Rafat
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | | | | | | |
Collapse
|
109
|
Montresor A, Toffali L, Constantin G, Laudanna C. Chemokines and the signaling modules regulating integrin affinity. Front Immunol 2012; 3:127. [PMID: 22654882 PMCID: PMC3360201 DOI: 10.3389/fimmu.2012.00127] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 05/03/2012] [Indexed: 01/05/2023] Open
Abstract
Integrin-mediated adhesion is a general concept referring to a series of adhesive phenomena including tethering–rolling, affinity, valency, and binding stabilization altogether controlling cell avidity (adhesiveness) for the substrate. Arrest chemokines modulate each aspect of integrin activation, although integrin affinity regulation has been recognized as the prominent event in rapid leukocyte arrest induced by chemokines. A variety of inside-out and outside-in signaling mechanisms have been related to the process of integrin-mediated adhesion in different cellular models, but only few of them have been clearly contextualized to rapid integrin affinity modulation by arrest chemokines in primary leukocytes. Complex signaling processes triggered by arrest chemokines and controlling leukocyte integrin activation have been described for ras-related rap and for rho-related small GTPases. We summarize the role of rap and rho small GTPases in the regulation of rapid integrin affinity in primary leukocytes and provide a modular view of these pro-adhesive signaling events. A potential, albeit still speculative, mechanism of rho-mediated regulation of cytoskeletal proteins controlling the last step of integrin activation is also discussed. We also discuss data suggesting a functional integration between the rho- and rap-modules of integrin activation. Finally we examine the universality of signaling mechanisms regulating integrin triggering by arrest chemokines.
Collapse
Affiliation(s)
- Alessio Montresor
- Division of General Pathology, Department of Pathology, University of Verona Verona, Italy
| | | | | | | |
Collapse
|
110
|
Nanostructured material surfaces--preparation, effect on cellular behavior, and potential biomedical applications: a review. Int J Artif Organs 2012; 34:963-85. [PMID: 22161281 DOI: 10.5301/ijao.5000012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2011] [Indexed: 12/14/2022]
Abstract
Nanostructures play important roles in vivo, where nanoscaled features of extracellular matrix (ECM) components influence cell behavior and resultant tissue formation. This review summarizes some of the recent developments in fostering new concepts and approaches to nanofabrication, such as top-down and bottom-up and combinations of the two. As in vitro investigations demonstrate that man-made nanotopography can be used to control cell reactions to a material surface, its potential application in implant design and tissue engineering becomes increasingly evident. Therefore, we present recent progress in directing cell fate in the field of cell mechanics, which has grown rapidly over the last few years, and in various tissue-engineering applications. The main focus is on the initial responses of cells to nanostructured surfaces and subsequent influences on cellular functions. Specific examples are also given to illustrate the potential nanostructures may have for biomedical applications and regenerative medicine.
Collapse
|
111
|
Johnson J, Niehaus A, Nichols S, Lee D, Koepsel J, Anderson D, Lannutti J. Electrospun PCL in Vitro: a Microstructural Basis for Mechanical Property Changes. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 20:467-81. [DOI: 10.1163/156856209x416485] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Jed Johnson
- a Department of Materials Science and Engineering, The Ohio State University, College of Engineering, Columbus, OH 43210-1179, USA
| | - Andy Niehaus
- b Department of Veterinary Clinical Science, The Ohio State University, College of Veterinary Medicine, Columbus, OH 43210, USA
| | - Sylvain Nichols
- c Department of Veterinary Clinical Science, The Ohio State University, College of Veterinary Medicine, Columbus, OH 43210, USA
| | - David Lee
- d Department of Materials Science and Engineering, The Ohio State University, College of Engineering, Columbus, OH 43210-1179, USA
| | - Justin Koepsel
- e Department of Materials Science and Engineering, The Ohio State University, College of Engineering, Columbus, OH 43210-1179, USA
| | - David Anderson
- f Department of Veterinary Clinical Science, The Ohio State University, College of Veterinary Medicine, Columbus, OH 43210, USA
| | - John Lannutti
- g Department of Materials Science and Engineering, The Ohio State University, College of Engineering, Columbus, OH 43210-1179, USA
| |
Collapse
|
112
|
Ketene AN, Roberts PC, Shea AA, Schmelz EM, Agah M. Actin filaments play a primary role for structural integrity and viscoelastic response in cells. Integr Biol (Camb) 2012; 4:540-9. [DOI: 10.1039/c2ib00168c] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Alperen N. Ketene
- Department of Mechanical Engineering, 100 Randolph Hall, Blacksburg, VA, USA. Fax: +1-540-231-3362; Tel: +1-540-231-4180
| | - Paul C. Roberts
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Corporate Research Center, Building 23 (ILSB), 1981 Kraft Drive (0913), Blacksburg, VA 24061, USA. Fax: +1-540-231-3414; Tel: +1-540-231-7949
| | - Amanda A. Shea
- Department of Human Nutrition Food & Exercise, Corporate Research Center, Building 23 (ILSB) 1981 Kraft Drive (0913), Blacksburg, VA 24061, USA. Fax: +1-540-231-5522; Tel: +1-540-231-0099
| | - Eva M. Schmelz
- Department of Human Nutrition Food & Exercise, Corporate Research Center, Building 23 (ILSB) 1981 Kraft Drive, Blacksburg, VA 24061, USA. Fax: +1-540-231-5522; Tel: +1-540-231-3649
| | - Masoud Agah
- VT MEMS Laboratory, The Bradley Department of Electrical and Computer Engineering, 469 Whittemore Hall, Blacksburg, VA 24061, USA. Fax: +1-540-231-3362; Tel: +1-540-231-2653
| |
Collapse
|
113
|
George UZ, Stéphanou A, Madzvamuse A. Mathematical modelling and numerical simulations of actin dynamics in the eukaryotic cell. J Math Biol 2012; 66:547-93. [DOI: 10.1007/s00285-012-0521-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 12/02/2011] [Indexed: 11/28/2022]
|
114
|
Zimmer CC, Shi L, Shih Y, Li J, Jin L, Lo S, Liu G. F-Actin reassembly during focal adhesion impacts single cell mechanics and nanoscale membrane structure. Sci China Chem 2012. [DOI: 10.1007/s11426-012-4535-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
115
|
Silva DCN, Jovino CN, Silva CAL, Fernandes HP, Filho MM, Lucena SC, Costa AMDN, Cesar CL, Barjas-Castro ML, Santos BS, Fontes A. Optical tweezers as a new biomedical tool to measure zeta potential of stored red blood cells. PLoS One 2012; 7:e31778. [PMID: 22363729 PMCID: PMC3283675 DOI: 10.1371/journal.pone.0031778] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 01/18/2012] [Indexed: 11/18/2022] Open
Abstract
During storage, red blood cells (RBCs) for transfusion purposes suffer progressive deterioration. Sialylated glycoproteins of the RBC membrane are responsible for a negatively charged surface which creates a repulsive electrical zeta potential. These charges help prevent the interaction between RBCs and other cells, and especially among each RBCs. Reports in the literature have stated that RBCs sialylated glycoproteins can be sensitive to enzymes released by leukocyte degranulation. Thus, the aim of this study was, by using an optical tweezers as a biomedical tool, to measure the zeta potential in standard RBCs units and in leukocyte reduced RBC units (collected in CPD-SAGM) during storage. Optical tweezers is a sensitive tool that uses light for measuring cell biophysical properties which are important for clinical and research purposes. This is the first study to analyze RBCs membrane charges during storage. In addition, we herein also measured the elasticity of RBCs also collected in CPD-SAGM. In conclusion, the zeta potential decreased 42% and cells were 134% less deformable at the end of storage. The zeta potential from leukodepleted units had a similar profile when compared to units stored without leukoreduction, indicating that leukocyte lyses were not responsible for the zeta potential decay. Flow cytometry measurements of reactive oxygen species suggested that this decay is due to membrane oxidative damages. These results show that measurements of zeta potentials provide new insights about RBCs storage lesion for transfusion purposes.
Collapse
Affiliation(s)
- Diego C. N. Silva
- Departamento de Biofísica e Radiobiologia, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Cauêh N. Jovino
- Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Carlos A. L. Silva
- Departamento de Biofísica e Radiobiologia, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Heloise P. Fernandes
- Hematology and Transfusion Center, Universidade Estadual de Campinas, INCTS-Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas, São Paulo, Brazil
| | - Milton M. Filho
- Departamento de Biofísica e Radiobiologia, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | | | | | - Carlos L. Cesar
- Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Maria L. Barjas-Castro
- Hematology and Transfusion Center, Universidade Estadual de Campinas, INCTS-Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas, São Paulo, Brazil
| | - Beate S. Santos
- Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Adriana Fontes
- Departamento de Biofísica e Radiobiologia, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
- * E-mail:
| |
Collapse
|
116
|
The effects of cancer progression on the viscoelasticity of ovarian cell cytoskeleton structures. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2012; 8:93-102. [DOI: 10.1016/j.nano.2011.05.012] [Citation(s) in RCA: 157] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 04/13/2011] [Accepted: 05/19/2011] [Indexed: 01/17/2023]
|
117
|
|
118
|
OREL VALERIYE, DZYATKOVSKAYA NATALIYAN, DANKO MICHAILI, ROMANOV ANDRIYV, MEL'NIK YURII, GRINEVICH YURIA, MARTYNENKO SVETLANAV. SPATIAL AND MECHANOEMISSION CHAOS OF MECHANICALLY DEFORMED TUMOR CELLS. J MECH MED BIOL 2011. [DOI: 10.1142/s0219519404000886] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The development and spreading of tumor process is accompanied by changes in nonlinear (chaotic) dynamics of mechanochemical interaction process in the group of cells. Taking into consideration spatial irregularity and heterogeneity of internal structures of tumor cells, we suggested that treatment by mechanically deformed (MD) syngeneic tumor cells (STC) would be accompanied by changed influence on malignant growth. The objective of this work was to compare spatial, mechanoemission (ME) chaos of MD STC of carcinoma Lewis and melanoma B16 and their malignant growth. MD STC preparation included the aseptic removal of the animal tumor, lyophilization and next mechanical deformation in the microvibratory mill. The suspension of non-deformed or MD STC was injected intraperitoneally. Morphological, morphometric and mechanoemission studies used for estimate of spatial chaos and heterogeneity structure in tumor cells and blood. For Lewis carcinoma the reduction of spatial and ME chaos of cells is accompanied by regression in tumor growth and metastasis. For melanoma B16 the decrease of spatial chaos and the increase of ME chaos in cells is accompanied by initiation of tumor growth and metastasis. These results illustrated equivalent tendencies in chaos changing in spatial and ME chaos for carcinoma Lewis, while opposite tendencies were observed for melanoma B16. Blood ME of mice with melanoma B16 have greater ME chaos in comparison with animals with Lewis carcinoma. This confirmed that the concept of deterministic chaos is hierarchical for the host during cancer process. Results of comparative analysis between spatial, mechanoemission chaos of MD STC and malignant growth could be useful for gain a better understanding relationship of nonlinear biomechanical processes to tumor cells.
Collapse
Affiliation(s)
- VALERIY E. OREL
- Physics-Technical Laboratory, Institute of Oncology, 33/43 Lomonosov str., Kiev, 03022, Ukraine
| | | | - MICHAIL I. DANKO
- Physics-Technical Laboratory, Institute of Oncology, 33/43 Lomonosov str., Kiev, 03022, Ukraine
| | - ANDRIY V. ROMANOV
- Physics-Technical Laboratory, Institute of Oncology, 33/43 Lomonosov str., Kiev, 03022, Ukraine
| | - YURI I. MEL'NIK
- Physics-Technical Laboratory, Institute of Oncology, 33/43 Lomonosov str., Kiev, 03022, Ukraine
| | - YURI A. GRINEVICH
- Clinical Immunology Laboratory, Institute of Oncology, 33/43 Lomonosov str., Kiev, 03022, Ukraine
| | - SVETLANA V. MARTYNENKO
- Clinical Immunology Laboratory, Institute of Oncology, 33/43 Lomonosov str., Kiev, 03022, Ukraine
| |
Collapse
|
119
|
OREL VALERIYE, GRINEVICH YURIA, DZYATKOVSKAYA NATALIYAN, DANKO MICHAILI, ROMANOV ANDRIYV, MEL'NIK YURII, MARTYNENKO SVETLANAV. SPATIAL AND MECHANOEMISSION CHAOS OF MECHANICALLY DEFORMED TUMOR CELLS. J MECH MED BIOL 2011. [DOI: 10.1142/s0219519403000806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The development and spend of the tumor process is accompanied by changes in non-linear (chaotic) dynamics of mechanochemical interaction process in the group of cells. Taking into consideration spatial irregularity and heterogeneity of internal structures of tumor cells, we suggested that treatment by mechanically deformed (MD) syngeneic tumor cells (STC) would be accompanied by changed influence on malignant growth. The objective of this work was to compare spatial, mechanoemission (ME) chaos of MD STC of carcinoma Lewis and melanoma B16 and their malignant growth. MD STC preparation included the aseptic removal of the animal tumor, lyophilization and next mechanical deformation in the microvibratory mill. The suspension of non-deformed or MD STC was injected intraperitoneally. Morphological, morphometric and mechanoemission studies were used for the estimate of spatial chaos and heterogeneity structure in tumor cells and blood. For Lewis carcinoma, the reduction of spatial and ME chaos of cells is accompanied by regression in tumor growth and metastasis. For melanoma B16, the decrease of spatial chaos and the increase of ME chaos in cells are accompanied by the initiation of tumor growth and metastasis. These results illustrated equivalent tendencies in chaos changing in spatial and ME chaos for carcinoma Lewis, while opposite tendencies were observed for melanoma B16. Blood ME of mice with melanoma B16 have greater ME chaos in comparison with animals with Lewis carcinoma. This confirmed that the concept of deterministic chaos is hierarchical for the host during cancer process. Results of comparative analysis between spatial, mechanoemission chaos of MD STC and malignant growth could be useful to gain a better understanding relationship of non-linear biomechanical processes to tumor cells.
Collapse
Affiliation(s)
- VALERIY E. OREL
- Physics-Technical laboratory, 33/43 Lomonosov str., Kiev, 03022, Ukraine
| | - YURI A. GRINEVICH
- Clinical Immunology Laboratory Institute of Oncology, 33/43 Lomonosov str., Kiev, 03022, Ukraine
| | | | - MICHAIL I. DANKO
- Physics-Technical laboratory, 33/43 Lomonosov str., Kiev, 03022, Ukraine
| | - ANDRIY V. ROMANOV
- Physics-Technical laboratory, 33/43 Lomonosov str., Kiev, 03022, Ukraine
| | - YURI I. MEL'NIK
- Physics-Technical laboratory, 33/43 Lomonosov str., Kiev, 03022, Ukraine
| | - SVETLANA V. MARTYNENKO
- Clinical Immunology Laboratory Institute of Oncology, 33/43 Lomonosov str., Kiev, 03022, Ukraine
| |
Collapse
|
120
|
Salib IG, Kolmakov GV, Bucior BJ, Peleg O, Kröger M, Savin T, Vogel V, Matyjaszewski K, Balazs AC. Using mesoscopic models to design strong and tough biomimetic polymer networks. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:13796-13805. [PMID: 21977962 DOI: 10.1021/la202760z] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Using computational modeling, we investigate the mechanical properties of polymeric materials composed of coiled chains, or "globules", which encompass a folded secondary structure and are cross-linked by labile bonds to form a macroscopic network. In the presence of an applied force, the globules can unfold into linear chains and thereby dissipate energy as the network is deformed; the latter attribute can contribute to the toughness of the material. Our goal is to determine how to tailor the labile intra- and intermolecular bonds within the network to produce material exhibiting both toughness and strength. Herein, we use the lattice spring model (LSM) to simulate the globules and the cross-linked network. We also utilize our modified Hierarchical Bell model (MHBM) to simulate the rupture and reforming of N parallel bonds. By applying a tensile deformation, we demonstrate that the mechanical properties of the system are sensitive to the values of N(in) and N(out), the respective values of N for the intra- and intermolecular bonds. We find that the strength of the material is mainly controlled by the value of N(out), with the higher value of N(out) providing a stronger material. We also find that, if N(in) is smaller than N(out), the globules can unfold under the tensile load before the sample fractures and, in this manner, can increase the ductility of the sample. Our results provide effective strategies for exploiting relatively weak, labile interactions (e.g., hydrogen bonding or the thiol/disulfide exchange reaction) in both the intra- and intermolecular bonds to tailor the macroscopic performance of the materials.
Collapse
Affiliation(s)
- Isaac G Salib
- Chemical Engineering Department, University of Pittsburgh, Pennsylvania 15261, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
121
|
Pogoda K, Jaczewska J, Wiltowska-Zuber J, Klymenko O, Zuber K, Fornal M, Lekka M. Depth-sensing analysis of cytoskeleton organization based on AFM data. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2011; 41:79-87. [PMID: 22038077 DOI: 10.1007/s00249-011-0761-9] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2011] [Revised: 09/30/2011] [Accepted: 10/11/2011] [Indexed: 01/13/2023]
Abstract
Atomic force microscopy is a common technique used to determine the elastic properties of living cells. It furnishes the relative Young's modulus, which is typically determined for indentation depths within the range 300-500 nm. Here, we present the results of depth-sensing analysis of the mechanical properties of living fibroblasts measured under physiological conditions. Distributions of the Young's moduli were obtained for all studied cells and for every cell. The results show that for small indentation depths, histograms of the relative values of the Young's modulus described the regions rich in the network of actin filaments. For large indentation depths, the overall stiffness of a whole cell was obtained, which was accompanied by a decrease of the modulus value. In conclusion, the results enable us to describe the non-homogeneity of the cell cytoskeleton, particularly, its contribution linked to actin filaments located beneath the cell membrane. Preliminary results showing a potential application to improve the detection of cancerous cells, have been presented for melanoma cell lines.
Collapse
Affiliation(s)
- Katarzyna Pogoda
- The Henryk Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, Kraków, Poland
| | | | | | | | | | | | | |
Collapse
|
122
|
Zheng X, Cheung LSL, Schroeder JA, Jiang L, Zohar Y. Cell receptor and surface ligand density effects on dynamic states of adhering circulating tumor cells. LAB ON A CHIP 2011; 11:3431-9. [PMID: 21853194 PMCID: PMC6765388 DOI: 10.1039/c1lc20455f] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Dynamic states of cancer cells moving under shear flow in an antibody-functionalized microchannel are investigated experimentally and theoretically. The cell motion is analyzed with the aid of a simplified physical model featuring a receptor-coated rigid sphere moving above a solid surface with immobilized ligands. The motion of the sphere is described by the Langevin equation accounting for the hydrodynamic loadings, gravitational force, receptor-ligand bindings, and thermal fluctuations; the receptor-ligand bonds are modeled as linear springs. Depending on the applied shear flow rate, three dynamic states of cell motion have been identified: (i) free motion, (ii) rolling adhesion, and (iii) firm adhesion. Of particular interest is the fraction of captured circulating tumor cells, defined as the capture ratio, via specific receptor-ligand bonds. The cell capture ratio decreases with increasing shear flow rate with a characteristic rate. Based on both experimental and theoretical results, the characteristic flow rate increases monotonically with increasing either cell-receptor or surface-ligand density within certain ranges. Utilizing it as a scaling parameter, flow-rate dependent capture ratios for various cell-surface combinations collapse onto a single curve described by an exponential formula.
Collapse
Affiliation(s)
- Xiangjun Zheng
- Department of Aerospace and Mechanical Engineering, the University of Arizona, Tucson, AZ, USA
| | - Luthur Siu Lun Cheung
- Department of Aerospace and Mechanical Engineering, the University of Arizona, Tucson, AZ, USA
| | - Joyce A. Schroeder
- Department of Molecular and Cellular Biology, the University of Arizona, Tucson, AZ, USA
- Arizona Cancer Center, the University of Arizona, Tucson, AZ, USA
- BIO5 Innstitute, the University of Arizona, Tucson, AZ, USA
| | - Linan Jiang
- Department of Aerospace and Mechanical Engineering, the University of Arizona, Tucson, AZ, USA
- College of Optical Science, the University of Arizona, Tucson, AZ, USA
| | - Yitshak Zohar
- Department of Aerospace and Mechanical Engineering, the University of Arizona, Tucson, AZ, USA
- Arizona Cancer Center, the University of Arizona, Tucson, AZ, USA
- BIO5 Innstitute, the University of Arizona, Tucson, AZ, USA
- Department of Biomedical Engineering, the University of Arizona, Tucson, AZ, USA
| |
Collapse
|
123
|
Abstract
Early detection and treatment of disease is the most important component of a favorable prognosis. Biomedical researchers have thus invested tremendous effort in improving imaging techniques and treatment methods. Over the past decade, concepts and tools derived from nanotechnology have been applied to overcome the problems of conventional techniques for advanced diagnosis and therapy. In particular, advances in nanoparticle technology have created new paradigms for theranostics, which is defined as the combination of therapeutic and diagnostic agents within a single platform. In this Account, we examine the potential advantages and opportunities afforded by magnetic nanoparticles as platform materials for theranostics. We begin with a brief overview of relevant magnetic parameters, such as saturation magnetization, coercivity, and magnetocrystalline anisotropy. Understanding the interplay of these parameters is critical for optimizing magnetic characteristics needed for effective imaging and therapeutics, which include magnetic resonance imaging (MRI) relaxivity, heat emission, and attractive forces. We then discuss approaches to constructing an MRI nanoparticle contrast agent with high sensitivity. We further introduce a new design concept for a fault-free contrast agent, which is a T1 and T2 dual mode hybrid. Important capabilities of magnetic nanoparticles are the external controllability of magnetic heat generation and magnetic attractive forces for the transportation and movement of biological objects. We show that these functions can be utilized not only for therapeutic hyperthermia of cancer but also for controlled release of cancer drugs through the application of an external magnetic field. Additionally, the use of magnetic nanoparticles to drive mechanical forces is demonstrated to be useful for molecular-level cell signaling and for controlling the ultimate fate of the cell. Finally, we show that targeted imaging and therapy are made possible by attaching a variety of imaging and therapeutic components. These added components include therapeutic genes (small interfering RNA, or siRNA), cancer-specific ligands, and optical reporting dyes. The wide range of accessible features of magnetic nanoparticles underscores their potential as the most promising platform material available for theranostics.
Collapse
Affiliation(s)
- Dongwon Yoo
- Department of Chemistry, Yonsei University, Seoul 120-749, Korea
| | - Jae-Hyun Lee
- Department of Chemistry, Yonsei University, Seoul 120-749, Korea
| | - Tae-Hyun Shin
- Department of Chemistry, Yonsei University, Seoul 120-749, Korea
| | - Jinwoo Cheon
- Department of Chemistry, Yonsei University, Seoul 120-749, Korea
| |
Collapse
|
124
|
Yan WW, Cai B, Liu Y, Fu BM. Effects of wall shear stress and its gradient on tumor cell adhesion in curved microvessels. Biomech Model Mechanobiol 2011; 11:641-53. [PMID: 21818636 DOI: 10.1007/s10237-011-0339-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Accepted: 07/14/2011] [Indexed: 11/25/2022]
Abstract
Tumor cell adhesion to vessel walls in the microcirculation is one critical step in cancer metastasis. In this paper, the hypothesis that tumor cells prefer to adhere at the microvessels with localized shear stresses and their gradients, such as in the curved microvessels, was examined both experimentally and computationally. Our in vivo experiments were performed on the microvessels (post-capillary venules, 30-50 μm diameter) of rat mesentery. A straight or curved microvessel was cannulated and perfused with tumor cells by a glass micropipette at a velocity of ~1mm/s. At less than 10 min after perfusion, there was a significant difference in cell adhesion to the straight and curved vessel walls. In 60 min, the averaged adhesion rate in the curved vessels (n = 14) was ~1.5-fold of that in the straight vessels (n = 19). In 51 curved segments, 45% of cell adhesion was initiated at the inner side, 25% at outer side, and 30% at both sides of the curved vessels. To investigate the mechanical mechanism by which tumor cells prefer adhering at curved sites, we performed a computational study, in which the fluid dynamics was carried out by the lattice Boltzmann method , and the tumor cell dynamics was governed by the Newton's law of translation and rotation. A modified adhesive dynamics model that included the influence of wall shear stress/gradient on the association/dissociation rates of tumor cell adhesion was proposed, in which the positive wall shear stress/gradient jump would enhance tumor cell adhesion while the negative wall shear stress/gradient jump would weaken tumor cell adhesion. It was found that the wall shear stress/gradient, over a threshold, had significant contribution to tumor cell adhesion by activating or inactivating cell adhesion molecules. Our results elucidated why the tumor cell adhesion prefers to occur at the positive curvature of curved microvessels with very low Reynolds number (in the order of 10(-2)) laminar flow.
Collapse
Affiliation(s)
- W W Yan
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | | | | | | |
Collapse
|
125
|
Gemp IM, Carthew RW, Hilgenfeldt S. Cadherin-dependent cell morphology in an epithelium: constructing a quantitative dynamical model. PLoS Comput Biol 2011; 7:e1002115. [PMID: 21814505 PMCID: PMC3140965 DOI: 10.1371/journal.pcbi.1002115] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Accepted: 05/23/2011] [Indexed: 01/22/2023] Open
Abstract
Cells in the Drosophila retina have well-defined morphologies that are attained during tissue morphogenesis. We present a computer simulation of the epithelial tissue in which the global interfacial energy between cells is minimized. Experimental data for both normal cells and mutant cells either lacking or misexpressing the adhesion protein N-cadherin can be explained by a simple model incorporating salient features of morphogenesis that include the timing of N-cadherin expression in cells and its temporal relationship to the remodeling of cell-cell contacts. The simulations reproduce the geometries of wild-type and mutant cells, distinguish features of cadherin dynamics, and emphasize the importance of adhesion protein biogenesis and its timing with respect to cell remodeling. The simulations also indicate that N-cadherin protein is recycled from inactive interfaces to active interfaces, thereby modulating adhesion strengths between cells. Tissues are intricate, heterogeneous systems, consisting of individual cells whose shapes and relative positions are of great importance to the tissue's function, as well as to its formation during morphogenesis. To make progress in our understanding of the formation of organs, their malfunction, and their therapeutic replacement in regenerative medicine, it is crucial to elucidate the connection between shape and function. We have developed a quantitative mechanical model of an epithelial tissue, the retina of Drosophila, and compare the modeling results with experimental data. The model successfully predicts shape changes induced by different expression levels of cell-cell adhesion molecules. Furthermore, the model gives new insight into the changes a tissue undergoes during morphogenesis. Comparing simulations and experiments, we are able to accept or reject different hypotheses about morphogenetic dynamics. In this way, we can identify the time course of adhesion molecule synthesis and of cell-cell contact, as well as gain new insight into the regulation of adhesion strength. Given the prominent role of adhesion in wound healing, cancer research, and many other fields, our fundamental work introduces a novel modeling tool of universal applicability and importance.
Collapse
Affiliation(s)
- Ian M. Gemp
- Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, Illinois, United States of America
| | - Richard W. Carthew
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Sascha Hilgenfeldt
- Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- * E-mail:
| |
Collapse
|
126
|
Jackson VC, Dewilde S, Albo AG, Lis K, Corpillo D, Canepa B. The activity of aminoacyl-tRNA synthetase-interacting multi-functional protein 1 (AIMP1) on endothelial cells is mediated by the assembly of a cytoskeletal protein complex. J Cell Biochem 2011; 112:1857-68. [DOI: 10.1002/jcb.23104] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
127
|
Gao H, Qian J, Chen B. Probing mechanical principles of focal contacts in cell-matrix adhesion with a coupled stochastic-elastic modelling framework. J R Soc Interface 2011; 8:1217-32. [PMID: 21632610 DOI: 10.1098/rsif.2011.0157] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Cell-matrix adhesion depends on the collective behaviours of clusters of receptor-ligand bonds called focal contacts between cell and extracellular matrix. While the behaviour of a single molecular bond is governed by statistical mechanics at the molecular scale, continuum mechanics should be valid at a larger scale. This paper presents an overview of a series of recent theoretical studies aimed at probing the basic mechanical principles of focal contacts in cell-matrix adhesion via stochastic-elastic models in which stochastic descriptions of molecular bonds and elastic descriptions of interfacial traction-separation are unified in a single modelling framework. The intention here is to illustrate these principles using simple analytical and numerical models. The aim of the discussions is to provide possible clues to the following questions: why does the size of focal adhesions (FAs) fall into a narrow range around the micrometre scale? How can cells sense and respond to substrates of varied stiffness via FAs? How do the magnitude and orientation of mechanical forces affect the binding dynamics of FAs? The effects of cluster size, cell-matrix elastic modulus, loading direction and cytoskeletal pretension on the lifetime of FA clusters have been investigated by theoretical arguments as well as Monte Carlo numerical simulations, with results showing that intermediate adhesion size, stiff substrate, cytoskeleton stiffening, low-angle pulling and moderate cytoskeletal pretension are factors that contribute to stable FAs. From a mechanistic point of view, these results provide possible explanations for a wide range of experimental observations and suggest multiple mechanisms by which cells can actively control adhesion and de-adhesion via cytoskeletal contractile machinery in response to mechanical properties of their surroundings.
Collapse
Affiliation(s)
- Huajian Gao
- School of Engineering, Brown University, Providence, RI 02912, USA.
| | | | | |
Collapse
|
128
|
Bahcheli D, Hay V, Nadeau JL, Piccirillo CA. Transfer of cell membrane components via trogocytosis occurs in CD4+ Foxp3+ CD25+ regulatory T-cell contact-dependent suppression. Autoimmunity 2011; 44:607-15. [PMID: 21604971 DOI: 10.3109/08916934.2011.571730] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
A key component of the immune system is its ability to establish and maintain peripheral tolerance. Naturally occurring CD4+ CD25+ Foxp3+ regulatory T (nTreg) cells represent an important means by which this is accomplished, through their potent ability to suppress the actions of both CD4+ and CD8+ effector (Teff) cells in vitro and in vivo. We hypothesized that direct contact between nTreg and Teff cells is sufficient for nTreg cell-contact suppression. We first show that nTreg cell suppression is independent of APCs and their derived co-stimulatory signals. We then used a two-colour, lipid dye labelling and quantification approach to formally demonstrate that nTreg cells specifically form cell conjugates with responding T (Tresp) cells only under TCR activating conditions. Strikingly, activated CD4+ nTreg cells undergo progressive trogocytosis, a process by which membrane fragments are transferred from one cell subset to another, with Tresp cells more readily than Teff cells. These results are the first to show that nTreg cell cognate interactions with Tresp cells leads to trogocytosis between the cells, and the first to relate the degree of trogocytosis with the level of nTreg-mediated suppression.
Collapse
Affiliation(s)
- D Bahcheli
- Department of Microbiology and Immunology, FOCIS Center of Excellence, McGill University and Research Institute of the McGill University Health Center, Montreal, Que., Canada H3G 1A4
| | | | | | | |
Collapse
|
129
|
Hong JK, Madihally SV. Next generation of electrosprayed fibers for tissue regeneration. TISSUE ENGINEERING. PART B, REVIEWS 2011; 17:125-42. [PMID: 21210761 PMCID: PMC3062468 DOI: 10.1089/ten.teb.2010.0552] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Accepted: 01/06/2011] [Indexed: 11/12/2022]
Abstract
Electrospinning is a widely established polymer-processing technology that allows generation of fibers (in nanometer to micrometer size) that can be collected to form nonwoven structures. By choosing suitable process parameters and appropriate solvent systems, fiber size can be controlled. Since the technology allows the possibility of tailoring the mechanical properties and biological properties, there has been a significant effort to adapt the technology in tissue regeneration and drug delivery. This review focuses on recent developments in adapting this technology for tissue regeneration applications. In particular, different configurations of nozzles and collector plates are summarized from the view of cell seeding and distribution. Further developments in obtaining thick layers of tissues and thin layered membranes are discussed. Recent advances in porous structure spatial architecture parameters such as pore size, fiber size, fiber stiffness, and matrix turnover are summarized. In addition, possibility of developing simple three-dimensional models using electrosprayed fibers that can be utilized in routine cell culture studies is described.
Collapse
Affiliation(s)
- Jong Kyu Hong
- School of Chemical Engineering, Oklahoma State University, Stillwater, Oklahoma, USA
| | | |
Collapse
|
130
|
Schillers H, Wälte M, Urbanova K, Oberleithner H. Real-time monitoring of cell elasticity reveals oscillating myosin activity. Biophys J 2011; 99:3639-46. [PMID: 21112288 DOI: 10.1016/j.bpj.2010.09.048] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 08/30/2010] [Accepted: 09/22/2010] [Indexed: 10/18/2022] Open
Abstract
The cytoskeleton is the physical and biochemical interface for a large variety of cellular processes. Its complex regulation machinery is involved upstream and downstream in various signaling pathways. The cytoskeleton determines the mechanical properties of a cell. Thus, cell elasticity could serve as a parameter reflecting the behavior of the system rather than reflecting the specific properties of isolated components. In this study, we used atomic force microscopy to perform real-time monitoring of cell elasticity unveiling cytoskeletal dynamics of living bronchial epithelial cells. In resting cells, we found a periodic activity of the cytoskeleton. Amplitude and frequency of this spontaneous oscillation were strongly affected by intracellular calcium. Experiments reveal that basal cell elasticity and superimposed elasticity oscillations are caused by the collective action of myosin motor proteins. We characterized the cell as a mechanically multilayered structure, and followed cytoskeletal dynamics in the different layers with high time resolution. In conclusion, the collective activities of the myosin motor proteins define overall mechanical cell dynamics, reflecting specific changes of the chemical and mechanical environment.
Collapse
Affiliation(s)
- Hermann Schillers
- Institute of Physiology II, University of Münster, Münster, Germany.
| | | | | | | |
Collapse
|
131
|
A novel method for assessing adherent single-cell stiffness in tension: design and testing of a substrate-based live cell functional imaging device. Biomed Microdevices 2010; 13:291-301. [DOI: 10.1007/s10544-010-9493-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
132
|
Soft matrices suppress cooperative behaviors among receptor-ligand bonds in cell adhesion. PLoS One 2010; 5:e12342. [PMID: 20808789 PMCID: PMC2925891 DOI: 10.1371/journal.pone.0012342] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2010] [Accepted: 07/30/2010] [Indexed: 12/31/2022] Open
Abstract
The fact that biological tissues are stable over prolonged periods of time while individual receptor-ligand bonds only have limited lifetime underscores the critical importance of cooperative behaviors of multiple molecular bonds, in particular the competition between the rate of rupture of closed bonds (death rate) and the rate of rebinding of open bonds (birth rate) in a bond cluster. We have recently shown that soft matrices can greatly increase the death rate in a bond cluster by inducing severe stress concentration near the adhesion edges. In the present paper, we report a more striking effect that, irrespective of stress concentration, soft matrices also suppress the birth rate in a bond cluster by increasing the local separation distance between open bonds. This is shown by theoretical analysis as well as Monte Carlo simulations based on a stochastic-elasticity model in which stochastic descriptions of molecular bonds and elastic descriptions of interfacial force/separation are unified in a single modeling framework. Our findings not only are important for understanding the role of elastic matrices in cell adhesion, but also have general implications on adhesion between soft materials.
Collapse
|
133
|
On the correlation between continuum mechanics entities and cell activity in biological soft tissues: Assessment of three possible criteria for cell-controlled fibre reorientation in collagen gels and collagenous tissues. J Theor Biol 2010; 264:66-76. [DOI: 10.1016/j.jtbi.2009.12.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Revised: 12/22/2009] [Accepted: 12/24/2009] [Indexed: 11/17/2022]
|
134
|
Dumbauld DW, Shin H, Gallant ND, Michael KE, Radhakrishna H, García AJ. Contractility modulates cell adhesion strengthening through focal adhesion kinase and assembly of vinculin-containing focal adhesions. J Cell Physiol 2010; 223:746-56. [PMID: 20205236 DOI: 10.1002/jcp.22084] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Actin-myosin contractility modulates focal adhesion assembly, stress fiber formation, and cell migration. We analyzed the contributions of contractility to fibroblast adhesion strengthening using a hydrodynamic adhesion assay and micropatterned substrates to control cell shape and adhesive area. Serum addition resulted in adhesion strengthening to levels 30-40% higher than serum-free cultures. Inhibition of myosin light chain kinase or Rho-kinase blocked phosphorylation of myosin light chain to similar extents and eliminated the serum-induced enhancements in strengthening. Blebbistatin-induced inhibition of myosin II reduced serum-induced adhesion strength to similar levels as those obtained by blocking myosin light chain phosphorylation. Reductions in adhesion strengthening by inhibitors of contractility correlated with loss of vinculin and talin from focal adhesions without changes in integrin binding. In vinculin-null cells, inhibition of contractility did not alter adhesive force, whereas controls displayed a 20% reduction in adhesion strength, indicating that the effects of contractility on adhesive force are vinculin-dependent. Furthermore, in cells expressing FAK, inhibitors of contractility reduced serum-induced adhesion strengthening as well as eliminated focal adhesion assembly. In contrast, in the absence of FAK, these inhibitors did not alter adhesion strength or focal adhesion assembly. These results indicate that contractility modulates adhesion strengthening via FAK-dependent, vinculin-containing focal adhesion assembly.
Collapse
Affiliation(s)
- David W Dumbauld
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0363, USA
| | | | | | | | | | | |
Collapse
|
135
|
Norton KA, Wininger M, Bhanot G, Ganesan S, Barnard N, Shinbrot T. A 2D mechanistic model of breast ductal carcinoma in situ (DCIS) morphology and progression. J Theor Biol 2010; 263:393-406. [PMID: 20006623 PMCID: PMC2839055 DOI: 10.1016/j.jtbi.2009.11.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Revised: 11/24/2009] [Accepted: 11/28/2009] [Indexed: 02/07/2023]
Abstract
Ductal carcinoma in situ (DCIS) of the breast is a non-invasive tumor in which cells proliferate abnormally, but remain confined within a duct. Although four distinguishable DCIS morphologies are recognized, the mechanisms that generate these different morphological classes remain unclear, and consequently the prognostic strength of DCIS classification is not strong. To improve the understanding of the relation between morphology and time course, we have developed a 2D in silico particle model of the growth of DCIS within a single breast duct. This model considers mechanical effects such as cellular adhesion and intra-ductal pressure, and biological features including proliferation, apoptosis, necrosis, and cell polarity. Using this model, we find that different regions of parameter space generate distinct morphological subtypes of DCIS, so elucidating the relation between morphology and time course. Furthermore, we find that tumors with similar architectures may in fact be produced through different mechanisms, and we propose future work to further disentangle the mechanisms involved in DCIS progression.
Collapse
Affiliation(s)
- Kerri-Ann Norton
- BioMaPS Institute, Rutgers University, Piscataway, NJ 08854, USA.
| | | | | | | | | | | |
Collapse
|
136
|
Kirmizis D, Logothetidis S. Atomic force microscopy probing in the measurement of cell mechanics. Int J Nanomedicine 2010; 5:137-45. [PMID: 20463929 PMCID: PMC2865008 DOI: 10.2147/ijn.s5787] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2010] [Indexed: 11/23/2022] Open
Abstract
Atomic force microscope (AFM) has been used incrementally over the last decade in cell biology. Beyond its usefulness in high resolution imaging, AFM also has unique capabilities for probing the viscoelastic properties of living cells in culture and, even more, mapping the spatial distribution of cell mechanical properties, providing thus an indirect indicator of the structure and function of the underlying cytoskeleton and cell organelles. AFM measurements have boosted our understanding of cell mechanics in normal and diseased states and provide future potential in the study of disease pathophysiology and in the establishment of novel diagnostic and treatment options.
Collapse
Affiliation(s)
- Dimitrios Kirmizis
- Department of Physics, Laboratory for Thin Films-Nanosystems and Nanometrology, Aristotle University, Thessaloniki, Greece.
| | | |
Collapse
|
137
|
Thermally-triggered gelation of PLGA dispersions: Towards an injectable colloidal cell delivery system. J Colloid Interface Sci 2010; 344:61-9. [DOI: 10.1016/j.jcis.2009.12.030] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Revised: 12/12/2009] [Accepted: 12/15/2009] [Indexed: 11/18/2022]
|
138
|
Berntsen P, Park CY, Rothen-Rutishauser B, Tsuda A, Sager TM, Molina RM, Donaghey TC, Alencar AM, Kasahara DI, Ericsson T, Millet EJ, Swenson J, Tschumperlin DJ, Butler JP, Brain JD, Fredberg JJ, Gehr P, Zhou EH. Biomechanical effects of environmental and engineered particles on human airway smooth muscle cells. J R Soc Interface 2010; 7 Suppl 3:S331-40. [PMID: 20356875 DOI: 10.1098/rsif.2010.0068.focus] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The past decade has seen significant increases in combustion-generated ambient particles, which contain a nanosized fraction (less than 100 nm), and even greater increases have occurred in engineered nanoparticles (NPs) propelled by the booming nanotechnology industry. Although inhalation of these particulates has become a public health concern, human health effects and mechanisms of action for NPs are not well understood. Focusing on the human airway smooth muscle cell, here we show that the cellular mechanical function is altered by particulate exposure in a manner that is dependent upon particle material, size and dose. We used Alamar Blue assay to measure cell viability and optical magnetic twisting cytometry to measure cell stiffness and agonist-induced contractility. The eight particle species fell into four categories, based on their respective effect on cell viability and on mechanical function. Cell viability was impaired and cell contractility was decreased by (i) zinc oxide (40-100 nm and less than 44 microm) and copper(II) oxide (less than 50 nm); cell contractility was decreased by (ii) fluorescent polystyrene spheres (40 nm), increased by (iii) welding fumes and unchanged by (iv) diesel exhaust particles, titanium dioxide (25 nm) and copper(II) oxide (less than 5 microm), although in none of these cases was cell viability impaired. Treatment with hydrogen peroxide up to 500 microM did not alter viability or cell mechanics, suggesting that the particle effects are unlikely to be mediated by particle-generated reactive oxygen species. Our results highlight the susceptibility of cellular mechanical function to particulate exposures and suggest that direct exposure of the airway smooth muscle cells to particulates may initiate or aggravate respiratory diseases.
Collapse
Affiliation(s)
- P Berntsen
- Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard School of Public Health, 665 Huntington Avenue, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
139
|
Yan WW, Liu Y, Fu BM. Effects of curvature and cell–cell interaction on cell adhesion in microvessels. Biomech Model Mechanobiol 2010; 9:629-40. [DOI: 10.1007/s10237-010-0202-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Accepted: 02/23/2010] [Indexed: 10/19/2022]
|
140
|
A computational biomimetic study of cell crawling. Biomech Model Mechanobiol 2010; 9:573-81. [DOI: 10.1007/s10237-010-0198-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Accepted: 01/25/2010] [Indexed: 01/08/2023]
|
141
|
Molecular Biomechanics: The Molecular Basis of How Forces Regulate Cellular Function. Cell Mol Bioeng 2010; 3:91-105. [PMID: 20700472 DOI: 10.1007/s12195-010-0109-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Recent advances have led to the emergence of molecular biomechanics as an essential element of modern biology. These efforts focus on theoretical and experimental studies of the mechanics of proteins and nucleic acids, and the understanding of the molecular mechanisms of stress transmission, mechanosensing and mechanotransduction in living cells. In particular, single-molecule biomechanics studies of proteins and DNA, and mechanochemical coupling in biomolecular motors have demonstrated the critical importance of molecular mechanics as a new frontier in bioengineering and life sciences. To stimulate a more systematic study of the basic issues in molecular biomechanics, and attract a broader range of researchers to enter this emerging field, here we discuss its significance and relevance, describe the important issues to be addressed and the most critical questions to be answered, summarize both experimental and theoretical/computational challenges, and identify some short-term and long-term goals for the field. The needs to train young researchers in molecular biomechanics with a broader knowledge base, and to bridge and integrate molecular, subcellular and cellular level studies of biomechanics are articulated.
Collapse
|
142
|
Ma Y, Wang J, Liang S, Dong C, Du Q. Application of Population Dynamics to Study Heterotypic Cell Aggregations in the Near-Wall Region of a Shear Flow. Cell Mol Bioeng 2010; 3:3-19. [PMID: 20428326 DOI: 10.1007/s12195-010-0114-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Our research focused on the polymorphonuclear neutrophils (PMNs) tethering to the vascular endothelial cells (EC) and the subsequent melanoma cell emboli formation in a shear flow, an important process of tumor cell extravasation from the circulation during metastasis. We applied population balance model based on Smoluchowski coagulation equation to study the heterotypic aggregation between PMNs and melanoma cells in the near-wall region of an in vitro parallel-plate flow chamber, which simulates in vivo cell-substrate adhesion from the vasculatures by combining mathematical modeling and numerical simulations with experimental observations. To the best of our knowledge, a multiscale near-wall aggregation model was developed, for the first time, which incorporated the effects of both cell deformation and general ratios of heterotypic cells on the cell aggregation process. Quantitative agreement was found between numerical predictions and in vitro experiments. The effects of factors, including: intrinsic binding molecule properties, near-wall heterotypic cell concentrations, and cell deformations on the coagulation process, are discussed. Several parameter identification approaches are proposed and validated which, in turn, demonstrate the importance of the reaction coefficient and the critical bond number on the aggregation process.
Collapse
Affiliation(s)
- Yanping Ma
- Department of Mathematics, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | |
Collapse
|
143
|
Abstract
Acoustic sensors probe the response of a thin layer to the mechanical displacement associated with an acoustic wave. Acoustic measurements provide two simultaneous time-resolved signals; one signal is related to the velocity or frequency of the acoustic wave and is mainly a function of adsorbed mass, while the second signal, related to the oscillation amplitude, is associated with energy dissipation and is a function of the viscoelastic properties of the adsorbed layer. The methods described in this chapter explore the relationship between the acoustic measurements of adsorbed liposomes and the mechanical properties of the lipid bilayer. This is carried out using a well-characterized model system consisting of liposomes prepared from an unsaturated phospholipid and a range of mole fractions of cholesterol. Real-time acoustic measurements are shown to be sensitive to changes in the liposome cholesterol content, regardless of the mode of attachment of the liposome to the device surface. This sensitivity is not due to changes in the density of the bilayer, or to changes in the extent of liposome-surface interactions, thus leaving the mechanical properties of the bilayer as the feature that is probably being measured. Some mechanisms by which the acoustic response could be generated are suggested in this chapter.
Collapse
|
144
|
Liu P, Zhang YW, Yu H, Zhang X, Cheng QH, Lu C, Bonfield W. Spreading of an anchorage-dependent cell on a selectively ligand-coated substrate mediated by receptor-ligand binding. J Biomed Mater Res A 2009; 91:806-13. [DOI: 10.1002/jbm.a.32258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
145
|
Jiang FX, Yurke B, Schloss RS, Firestein BL, Langrana NA. The relationship between fibroblast growth and the dynamic stiffnesses of a DNA crosslinked hydrogel. Biomaterials 2009; 31:1199-212. [PMID: 19931905 DOI: 10.1016/j.biomaterials.2009.10.050] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Accepted: 10/25/2009] [Indexed: 01/16/2023]
Abstract
The microenvironment of cells is dynamic and undergoes remodeling with time. This is evident in development, aging, pathological processes, and at tissue-biomaterial interfaces. But in contrast, the majority of the biomimetic materials have static properties. Here, we show that a previously developed DNA crosslinked hydrogel circumvents the need of environmental factors and undergoes controlled stiffness change via DNA delivery, a feasible approach to initiate property changes in vivo, different from previous attempts. Two types of fibroblasts, L929 and GFP, were subject to the alterations in substrate rigidity presented in the hydrogels. Our results show that exogenous DNA does not cause appreciable cell shape change. Cells do respond to mechanical alterations as demonstrated in the cell projection area and polarity (e.g., Soft vs. Soft-->Medium), and the responses vary depending on magnitude (e.g., Soft-->Medium vs. Soft-->Stiff) and range of stiffness changes (e.g., Soft-->Medium vs. Medium-->Stiff). The two types of fibroblasts share specific responses in common (e.g., Soft-->Medium), while differ in others (e.g., Medium-->Stiff). For each cell type, the projection area and polarity respond differently. This approach provides insight into pathology (e.g., cancer) and tissue functioning, and assists in designing biomaterials with controlled dynamic stiffness by choosing the range and magnitude of stiffness change.
Collapse
Affiliation(s)
- Frank X Jiang
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | | | | | | | | |
Collapse
|
146
|
Mahowald J, Arcizet D, Heinrich D. Impact of external stimuli and cell micro-architecture on intracellular transport states. Chemphyschem 2009; 10:1559-66. [PMID: 19507205 DOI: 10.1002/cphc.200900226] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A living cell is a complex out-of-equilibrium system, in which a great variety of biochemical and physical processes have to be coordinated to ensure viability. We investigate properties of intracellular transport in single cells of the amoeba Dictyostelium discoideum, a relevant model organism due to its cytoskeleton simplicity. In the cells, vesicles undergo two types of motion: directed transport, driven by molecular motors on filaments, or thermal diffusion in a crowded active medium. We present results obtained with our recently developed TRAnSpORT algorithm, which performs a high-resolution temporal analysis of the track of endosomal superparamagnetic particles and splits intracellular transport into different motion states. It results in a two-state model, distinguishing active and passive transport phenomena. We can extract the precise effect of cellular micro- and nanoarchitecture on endosomal transport by disturbing the cytoskeleton through the use of depolymerizing drugs (Benomyl for microtubules, and Latrunculin A for F-actin). Further, we investigate how cytoskeleton filaments act together in order to maintain cell integrity, by applying external mechanical force on the magnetic particle and influencing its motion.
Collapse
Affiliation(s)
- Jean Mahowald
- Fakultät für Physik, Ludwig-Maximilians Universität and Center for NanoSciences, Geschwister-Scholl-Platz 1, 80539 München, Germany
| | | | | |
Collapse
|
147
|
Carson AE, Barker TH. Emerging concepts in engineering extracellular matrix variants for directing cell phenotype. Regen Med 2009; 4:593-600. [PMID: 19580407 DOI: 10.2217/rme.09.30] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Directing specific, complex cell behaviors, such as differentiation, in response to biomaterials for regenerative medicine applications is, at present, a mostly unrealized goal. To date, current technological advances have been inspired by the reductionist point of view, focused on developing simple and merely adequate environments that facilitate simple cellular adhesion. However, even if extracellular matrix (ECM)-derived peptides, such as Arg-Gly-Asp (RGD), have largely demonstrated their utility in supporting cell adhesion, their lack of biological specificity is simply not optimal for controlling more integrated processes, such as cell differentiation. These more complex cellular processes require specific integrin-signaling scaffolds and presumably synergistic integrin and growth factor-receptor signaling. This article will introduce some current efforts to engineer ECM variants that incorporate additional levels of complexity for directing greater integrin specificity and synergistic ECM growth factor signaling toward directing cell phenotype.
Collapse
Affiliation(s)
- Ashley E Carson
- The Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, GA 30332-0535, USA
| | | |
Collapse
|
148
|
Kaul-Ghanekar R, Singh S, Mamgain H, Jalota-Badhwar A, Paknikar KM, Chattopadhyay S. Tumor suppressor protein SMAR1 modulates the roughness of cell surface: combined AFM and SEM study. BMC Cancer 2009; 9:350. [PMID: 19799771 PMCID: PMC2765988 DOI: 10.1186/1471-2407-9-350] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Accepted: 10/02/2009] [Indexed: 12/28/2022] Open
Abstract
Background Imaging tools such as scanning electron microscope (SEM) and atomic force microscope (AFM) can be used to produce high-resolution topographic images of biomedical specimens and hence are well suited for imaging alterations in cell morphology. We have studied the correlation of SMAR1 expression with cell surface smoothness in cell lines as well as in different grades of human breast cancer and mouse tumor sections. Methods We validated knockdown and overexpression of SMAR1 using RT-PCR as well as Western blotting in human embryonic kidney (HEK) 293, human breast cancer (MCF-7) and mouse melanoma (B16F1) cell lines. The samples were then processed for cell surface roughness studies using atomic force microscopy (AFM) and scanning electron microscopy (SEM). The same samples were used for microarray analysis as well. Tumors sections from control and SMAR1 treated mice as well as tissues sections from different grades of human breast cancer on poly L-lysine coated slides were used for AFM and SEM studies. Results Tumor sections from mice injected with melanoma cells showed pronounced surface roughness. In contrast, tumor sections obtained from nude mice that were first injected with melanoma cells followed by repeated injections of SMAR1-P44 peptide, exhibited relatively smoother surface profile. Interestingly, human breast cancer tissue sections that showed reduced SMAR1 expression exhibited increased surface roughness compared to the adjacent normal breast tissue. Our AFM data establishes that treatment of cells with SMAR1-P44 results into increase in cytoskeletal volume that is supported by comparative gene expression data showing an increase in the expression of specific cytoskeletal proteins compared to the control cells. Altogether, these findings indicate that tumor suppressor function of SMAR1 might be exhibited through smoothening of cell surface by regulating expression of cell surface proteins. Conclusion Tumor suppressor protein SMAR1 might be used as a phenotypic differentiation marker between cancerous and non-cancerous cells.
Collapse
|
149
|
Shinbrot T, Chun Y, Caicedo-Carvajal C, Foty R. Cellular morphogenesis in silico. Biophys J 2009; 97:958-67. [PMID: 19686642 PMCID: PMC2726306 DOI: 10.1016/j.bpj.2009.05.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Revised: 05/09/2009] [Accepted: 05/13/2009] [Indexed: 10/20/2022] Open
Abstract
We describe a model that simulates spherical cells of different types that can migrate and interact either attractively or repulsively. We find that both expected morphologies and previously unreported patterns spontaneously self-assemble. Among the newly discovered patterns are a segmented state of alternating discs, and a "shish-kebab" state, in which one cell type forms a ring around a second type. We show that these unique states result from cellular attraction that increases with distance (e.g., as membranes stretch viscoelastically), and would not be seen in traditional, e.g., molecular, potentials that diminish with distance. Most of the states found computationally have been observed in vitro, and it remains to be established what role these self-assembled states may play in in vivo morphogenesis.
Collapse
Affiliation(s)
- Troy Shinbrot
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey 08854, USA.
| | | | | | | |
Collapse
|
150
|
Pelling AE, Veraitch FS, Chu CPK, Mason C, Horton MA. Mechanical dynamics of single cells during early apoptosis. ACTA ACUST UNITED AC 2009; 66:409-22. [PMID: 19492400 DOI: 10.1002/cm.20391] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dynamic mechanical properties of cells are becoming recognized as indicators and regulators of physiological processes such as differentiation, malignant phenotypes and mitosis. A key process in development and homeostasis is apoptosis and whilst the molecular control over this pathway is well studied, little is known about the mechanical consequences of cell death. Here, we study the caspase-dependent mechanical kinetics of single cells during early apoptosis initiated with the general protein-kinase inhibitor staurosporine. This results in internal remodelling of the cytoskeleton and nucleus which is reflected in dynamic changes in the mechanical properties of the cell. Utilizing simultaneous confocal and atomic force microscopy (AFM), we measured distinct mechanical dynamics in the instantaneous cellular Young's Modulus and longer timescale viscous deformation. This allowed us to visualize time-dependent nuclear and cytoskeletal control of force dissipation with fluorescent fusion proteins throughout the cell. This work reveals that the cell death program not only orchestrates biochemical dynamics but also controls the mechanical breakdown of the cell. Importantly, the consequences of mechanical disregulation during apoptosis may be a contributing factor to several human pathologies through the poorly timed release of dead cells and cell debris.
Collapse
Affiliation(s)
- Andrew E Pelling
- Centre for Nanomedicine, The London Centre for Nanotechnology, University College London, London, United Kingdom.
| | | | | | | | | |
Collapse
|