101
|
Li S, Sengupta D, Chien S. Vascular tissue engineering: from in vitro to in situ. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2013; 6:61-76. [PMID: 24151038 DOI: 10.1002/wsbm.1246] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 08/26/2013] [Accepted: 08/30/2013] [Indexed: 01/02/2023]
Abstract
Blood vessels transport blood to deliver oxygen and nutrients. Vascular diseases such as atherosclerosis may result in obstruction of blood vessels and tissue ischemia. These conditions require blood vessel replacement to restore blood flow at the macrocirculatory level, and angiogenesis is critical for tissue regeneration and remodeling at the microcirculatory level. Vascular tissue engineering has focused on addressing these two major challenges. We provide a systematic review on various approaches for vascular graft tissue engineering. To create blood vessel substitutes, bioengineers and clinicians have explored technologies in cell engineering, materials science, stem cell biology, and medicine. The scaffolds for vascular grafts can be made from native matrix, synthetic polymers, or other biological materials. Besides endothelial cells, smooth muscle cells, and fibroblasts, expandable cells types such as adult stem cells, pluripotent stem cells, and reprogrammed cells have also been used for vascular tissue engineering. Cell-seeded functional tissue-engineered vascular grafts can be constructed in bioreactors in vitro. Alternatively, an autologous vascular graft can be generated in vivo by harvesting the capsule layer formed around a rod implanted in soft tissues. To overcome the scalability issue and make the grafts available off-the-shelf, nonthrombogenic vascular grafts have been engineered that rely on the host cells to regenerate blood vessels in situ. The rapid progress in the field of vascular tissue engineering has led to exciting preclinical and clinical trials. The advancement of micro-/nanotechnology and stem cell engineering, together with in-depth understanding of vascular regeneration mechanisms, will enable the development of new strategies for innovative therapies.
Collapse
Affiliation(s)
- Song Li
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
| | | | | |
Collapse
|
102
|
Janairo RRR, Zhu Y, Chen T, Li S. Mucin covalently bonded to microfibers improves the patency of vascular grafts. Tissue Eng Part A 2013; 20:285-93. [PMID: 23962121 DOI: 10.1089/ten.tea.2013.0060] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Due to high incidence of vascular bypass procedures, an unmet need for suitable vessel replacements exists, especially for small-diameter (<6 mm) vascular grafts. Here, we developed a novel, bilayered, synthetic vascular graft of 1-mm diameter that consisted of a microfibrous luminal layer and a nanofibrous outer layer, which was tailored to possess the same mechanical property as native arteries. We then chemically modified the scaffold with mucin, a glycoprotein lubricant on the surface of epithelial tissues, by either passive adsorption or covalent bonding using the di-amino-poly(ethylene glycol) linker to microfibers. Under static and physiological flow conditions, conjugated mucin was more stable than adsorbed mucin on the surfaces. Mucin could slightly inhibit blood clotting, and mucin coating suppressed platelet adhesion on microfibrous scaffolds. In the rat common carotid artery anastomosis model, grafts with conjugated mucin, but not adsorbed mucin, exhibited excellent patency and higher cell infiltration into the graft walls. Mucin, which can be easily obtained from autologous sources, offers a novel method for improving the hemocompatibility and surface lubrication of vascular grafts and many other implants.
Collapse
|
103
|
Seliktar D, Dikovsky D, Napadensky E. Bioprinting and Tissue Engineering: Recent Advances and Future Perspectives. Isr J Chem 2013. [DOI: 10.1002/ijch.201300084] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
104
|
|
105
|
Tosun Z, McFetridge PS. Improved recellularization of ex vivo vascular scaffolds using directed transport gradients to modulate ECM remodeling. Biotechnol Bioeng 2013; 110:2035-45. [PMID: 23613430 PMCID: PMC4438987 DOI: 10.1002/bit.24934] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 12/16/2012] [Accepted: 12/18/2012] [Indexed: 01/09/2023]
Abstract
The regeneration of functional, clinically viable, tissues from acellular ex vivo tissues has been problematic largely due to poor nutrient transport conditions that limit cell migration and integration. Compounding these issues are subcellular pore sizes that necessarily requires extracellular matrix (ECM) remodeling in order for cells to migrate and regenerate the tissue. The aim of the present work was to create a directed growth environment that allows cells to fully populate an ex vivo-derived vascular scaffold and maintain viability over extended periods. Three different culture conditions using single (one nutrient source) or dual perfusion bioreactor systems (two nutrients sources) were designed to assess the effect of pressure and nutrient gradients under either low (50/30 mmHg) or high (120/80) relative pressure conditions. Human myofibroblasts were seeded to the ablumenal periphery of an ex vivo-derived vascular scaffold using a collagen/hydrogel cell delivery system. After 30 days culture, total cell density was consistent between groups; however, significant variation was noted in cell distribution and construct mechanics as a result of differing perfusion conditions. The most aggressive transport gradient was developed by the single perfusion low-pressure circuits and resulted in a higher proportion of cells migrating across the scaffold toward the vessel lumen (nutrient source). These investigations illustrate the influence of directed nutrient gradients where precisely controlled perfusion conditions significantly affects cell migration, distribution and function, resulting in pronounced effects on construct mechanics during early remodeling events.
Collapse
Affiliation(s)
- Zehra Tosun
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Drive, Biomedical Sciences Building, JG-56, Gainesville, FL 32611, USA
| | | |
Collapse
|
106
|
Abstract
Vascular occlusion remains the leading cause of death in Western countries, despite advances made in balloon angioplasty and conventional surgical intervention. Vascular surgery, such as CABG surgery, arteriovenous shunts, and the treatment of congenital anomalies of the coronary artery and pulmonary tracts, requires biologically responsive vascular substitutes. Autografts, particularly saphenous vein and internal mammary artery, are the gold-standard grafts used to treat vascular occlusions. Prosthetic grafts have been developed as alternatives to autografts, but their low patency owing to short-term and intermediate-term thrombosis still limits their clinical application. Advances in vascular tissue engineering technology-such as self-assembling cell sheets, as well as scaffold-guided and decellularized-matrix approaches-promise to produce responsive, living conduits with properties similar to those of native tissue. Over the past decade, vascular tissue engineering has become one of the fastest-growing areas of research, and is now showing some success in the clinic.
Collapse
Affiliation(s)
- Dawit G Seifu
- Laboratory for Biomaterials and Bioengineering, Department of Min-Met-Materials Engineering and Quebec University Hospital Center, Laval University, Quebec City, QC G1V 0A6, Canada
| | | | | | | |
Collapse
|
107
|
Wang X, Cooper S. Adhesion of endothelial cells and endothelial progenitor cells on peptide-linked polymers in shear flow. Tissue Eng Part A 2013; 19:1113-21. [PMID: 23167808 PMCID: PMC3609637 DOI: 10.1089/ten.tea.2011.0653] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 11/16/2012] [Indexed: 11/12/2022] Open
Abstract
The initial adhesion of human umbilical vein endothelial cells (HUVECs), cord blood endothelial colony-forming cells (ECFCs), and human blood outgrowth endothelial cells (HBOECs) was studied under radial flow conditions. The surface of a variable shear-rate device was either coated with polymer films or covered by synthetic fibers. Spin-coating was applied to produce smooth polymer films, while fibrous scaffolds were generated by electrospinning. The polymer was composed of hexyl methacrylate, methyl methacrylate, poly(ethylene glycol) methacrylate (PEGMA), and CGRGDS peptide. The peptide was incorporated into the polymer system by coupling to an acrylate-PEG-N-hydroxysuccinimide comonomer. A shear-rate-dependent increase of the attached cells with time was observed with all cell types. The adhesion of ECs increased on RGD-linked polymer surfaces compared to polymers without adhesive peptides. The number of attached ECFCs and HBOECs are significantly higher than that of HUVECs within the entire shear-rate range and surfaces examined, especially on RGD-linked polymers at low shear rates. Their superior adhesion ability of endothelial progenitor cells under flow conditions suggests they are a promising source for in vivo seeding of vascular grafts and shows the potential to be used for self-endothelialized implants.
Collapse
Affiliation(s)
- Xin Wang
- Department of Chemical and Biomolecular Engineering, Ohio State University, Columbus, Ohio 43210, USA.
| | | |
Collapse
|
108
|
Liu H, Ding X, Bi Y, Gong X, Li X, Zhou G, Fan Y. In Vitro Evaluation of Combined Sulfated Silk Fibroin Scaffolds for Vascular Cell Growth. Macromol Biosci 2013; 13:755-66. [DOI: 10.1002/mabi.201200470] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 02/23/2013] [Indexed: 01/15/2023]
|
109
|
Portalska KJ, Chamberlain MD, Lo C, van Blitterswijk C, Sefton MV, de Boer J. Collagen modules forin situdelivery of mesenchymal stromal cell-derived endothelial cells for improved angiogenesis. J Tissue Eng Regen Med 2013; 10:363-73. [DOI: 10.1002/term.1738] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2012] [Revised: 01/23/2013] [Accepted: 01/30/2013] [Indexed: 02/02/2023]
Affiliation(s)
- Karolina Janeczek Portalska
- MIRA Institute for Biomedical Technology and Technical Medicine; University of Twente; Enschede The Netherlands
| | - M. Dean Chamberlain
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Ontario Canada
| | - Chuen Lo
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Ontario Canada
| | - Clemens van Blitterswijk
- MIRA Institute for Biomedical Technology and Technical Medicine; University of Twente; Enschede The Netherlands
| | - Michael V Sefton
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Ontario Canada
| | - Jan de Boer
- MIRA Institute for Biomedical Technology and Technical Medicine; University of Twente; Enschede The Netherlands
| |
Collapse
|
110
|
Bosworth LA, Turner LA, Cartmell SH. State of the art composites comprising electrospun fibres coupled with hydrogels: a review. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2013. [DOI: 10.1016/j.nano.2012.10.008] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
111
|
Ghezzi CE, Risse PA, Marelli B, Muja N, Barralet JE, Martin JG, Nazhat SN. An airway smooth muscle cell niche under physiological pulsatile flow culture using a tubular dense collagen construct. Biomaterials 2013; 34:1954-66. [DOI: 10.1016/j.biomaterials.2012.11.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 11/15/2012] [Indexed: 12/31/2022]
|
112
|
Abstract
INTRODUCTION Organ failure and tissue loss are challenging health issues due to widespread injury, the lack of organs for transplantation and limitations of conventional artificial implants. The field of tissue engineering aims to provide alternative living substitutes that restore, maintain or improve tissue function. AREAS COVERED In this paper, a wide range of porous scaffolds are reviewed, with an emphasis on phase-separation techniques that generate advantageous nanofibrous 3D scaffolds for stem cell-based tissue engineering applications. In addition, methods for presentation and delivery of bioactive molecules to mimic the properties of stem cell niches are summarized. Recent progress in using these bioinstructive scaffolds to support stem cell differentiation and tissue regeneration is also presented. EXPERT OPINION Stem cells have great clinical potential because of their capability to differentiate into multiple cell types. Biomaterials have served as artificial extracellular environments to regulate stem cell behavior. Biomaterials with various physical, mechanical and chemical properties can be designed to control stem cell development for regeneration. CONCLUSION The research at the interface of stem cell biology and biomaterials has made and will continue to make exciting advances in tissue engineering.
Collapse
Affiliation(s)
- Zhanpeng Zhang
- Department of Biomedical Engineering, Ann Arbor, MI 48109-1078, USA
| | | | | |
Collapse
|
113
|
Madhavan K, Elliott WH, Bonani W, Monnet E, Tan W. Mechanical and biocompatible characterizations of a readily available multilayer vascular graft. J Biomed Mater Res B Appl Biomater 2012; 101:506-19. [PMID: 23165922 DOI: 10.1002/jbm.b.32851] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Revised: 07/31/2012] [Accepted: 09/25/2012] [Indexed: 01/24/2023]
Abstract
There is always a considerable clinical need for vascular grafts. Considering the availability, physical and mechanical properties, and regenerative potential, we have developed and characterized readily available, strong, and compliant multilayer grafts that support cell culture and ingrowth. The grafts were made from heterogeneous materials and structures, including a thin, dense, nanofibrous core composed of poly-ε-caprolactone (PCL), and a thick, porous, hydrogel sleeve composed of genipin-crosslinked collagen-chitosan (GCC). Because the difference in physicochemical properties between PCL and GCC caused layer separation, the layer adhesion was identified as a determinant to graft property and integrity under physiological conditions. Thus, strategies to modify the layer interface, including increasing porosity of the PCL surface, decreasing hydrophobicity, and increasing interlayer crosslinking, were developed. Results from microscopic images showed that increasing PCL porosity was characterized by improved layer adhesion. The resultant graft was characterized by high compliance (4.5%), and desired permeability (528 mL/cm(2)/min), burst strength (695 mmHg), and suture strength (2.38 N) for readily grafting. Results also showed that PCL mainly contributed to the graft mechanical properties, whereas GCC reduced the water permeability. In addition to their complementary contributions to physical and mechanical properties, the distinct graft layers also provided layer-specific structures for seeding and culture of vascular endothelial and smooth muscle cells in vitro. Acellular graft constructs were readily used to replace abdominal aorta of rabbits, resulting in rapid cell ingrowth and flow reperfusion. The multilayer constructs capable of sustaining physiological conditions and promoting cellular activities could serve as a platform for future development of regenerative vascular grafts.
Collapse
Affiliation(s)
- Krishna Madhavan
- Department of Mechanical Engineering, University of Colorado at Boulder, Boulder, Colorado, USA
| | | | | | | | | |
Collapse
|
114
|
Couet F, Mantovani D. Perspectives on the advanced control of bioreactors for functional vascular tissue engineering in vitro. Expert Rev Med Devices 2012; 9:233-9. [PMID: 22702253 DOI: 10.1586/erd.12.15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tissue engineering aims to produce tissues using cells and materials. The action of designing tissues involves observing the process of growth to understand its underlying mechanisms. It requires manipulation of the critical parameters for cell growth and remodeling to produce structured tissues and functional organs. Tissue engineers face the challenge of orchestrating the signals in a cell's microenvironment to efficiently grow an anisotropic and hierarchical tissue. It can be performed in vivo through the design of bioactive scaffolds and manipulation of biological signals using growth factors. It can also be performed in vitro in a controlled environment called the bioreactor. This article addresses the matter of finding the optimal dynamic sequence of culture conditions in a bioreactor for the maturation of tissues. Artificial intelligence and optimal control are accelerating technologies towards an understanding of tissue regeneration. The particular example of the functional engineering of small-diameter blood vessels has been chosen to illustrate this idea.
Collapse
Affiliation(s)
- Frédéric Couet
- Laboratory for Biomaterials and Bioengineering, Department of Min-Met-Materials Engineering and University Hospital Research Center, Laval University, Québec City, QC, G1V 0A6, Canada
| | | |
Collapse
|
115
|
Sun S, Chamsaz EA, Joy A. Photoinduced Polymer Chain Scission of Alkoxyphenacyl Based Polycarbonates. ACS Macro Lett 2012; 1:1184-1188. [PMID: 35607192 DOI: 10.1021/mz3002947] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We report the design and development of a new class of alkoxyphenacyl based photodegradable polycarbonates. These polymers incorporate the photoactive moiety in the backbone and, when irradiated at 300 nm, undergo controlled chain scission. Micropatterned thin films of these polymers were fabricated by photolithographic techniques. The use of these photodegradable polymers for controlled release applications was demonstrated by the release of Nile Red from polymeric nanoparticles. In addition, these polymers are mechanically robust, thermally stable, and hydrolytically degradable.
Collapse
Affiliation(s)
- Shuangyi Sun
- Department of Polymer Science, The University of Akron, Akron, Ohio
44325, United States
| | - Elaheh A. Chamsaz
- Department of Polymer Science, The University of Akron, Akron, Ohio
44325, United States
| | - Abraham Joy
- Department of Polymer Science, The University of Akron, Akron, Ohio
44325, United States
| |
Collapse
|
116
|
Marelli B, Achilli M, Alessandrino A, Freddi G, Tanzi MC, Farè S, Mantovani D. Collagen-reinforced electrospun silk fibroin tubular construct as small calibre vascular graft. Macromol Biosci 2012; 12:1566-74. [PMID: 23060093 DOI: 10.1002/mabi.201200195] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 08/05/2012] [Indexed: 11/07/2022]
Abstract
None of the replacements proposed in the literature for small-calibre blood vessels (SCBV) fully satisfies the stringent requirements that these grafts have to fulfil. Here, an electrospun silk fibroin tubular construct is hybridized with type I collagen gel to produce a biomimetic SCBV graft with physiologically relevant compliance and burst pressure and optimal cytocompatibility. The hybridization of the two polymers results in the formation of a nanofibrillar hydrated matrix, where the collagen gel enhances the mechanical properties of the SF tubular construct and improves the early response of the material to in vitro cell adhesion and proliferation.
Collapse
Affiliation(s)
- Benedetto Marelli
- BioMatLab, Bioengineering Department, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milano, Italy
| | | | | | | | | | | | | |
Collapse
|
117
|
Tissue engineered vascular grafts--preclinical aspects. Int J Cardiol 2012; 167:1091-100. [PMID: 23040078 DOI: 10.1016/j.ijcard.2012.09.069] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 06/01/2012] [Accepted: 09/14/2012] [Indexed: 11/23/2022]
Abstract
Tissue engineering enables the development of fully biological vascular substitutes that restore, maintain and improve tissue function in a manner identical to natural host tissue. However the development of the appropriate preclinical evaluation techniques for the generation of fully functional tissue-engineered vascular graft (TEVG) is required to establish their safety for use in clinical trials and to test clinical effectiveness. This review gives an insight on the various preclinical studies performed in the area of tissue engineered vascular grafts highlighting the different strategies used with respect to cells and scaffolds, typical animal models used and the major in vivo evaluation studies that have been carried out. The review emphasizes the combined effort of engineers, biologists and clinicians which can take this clinical research to new heights of regenerative therapy.
Collapse
|
118
|
Cui X, Boland T, D'Lima DD, Lotz MK. Thermal inkjet printing in tissue engineering and regenerative medicine. ACTA ACUST UNITED AC 2012; 6:149-55. [PMID: 22436025 DOI: 10.2174/187221112800672949] [Citation(s) in RCA: 285] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 03/03/2012] [Accepted: 03/05/2012] [Indexed: 02/07/2023]
Abstract
With the advantages of high throughput, digital control, and highly accurate placement of cells and biomaterial scaffold to the desired 2D and 3D locations, bioprinting has great potential to develop promising approaches in translational medicine and organ replacement. The most recent advances in organ and tissue bioprinting based on the thermal inkjet printing technology are described in this review. Bioprinting has no or little side effect to the printed mammalian cells and it can conveniently combine with gene transfection or drug delivery to the ejected living systems during the precise placement for tissue construction. With layer-by-layer assembly, 3D tissues with complex structures can be printed using scanned CT or MRI images. Vascular or nerve systems can be enabled simultaneously during the organ construction with digital control. Therefore, bioprinting is the only solution to solve this critical issue in thick and complex tissues fabrication with vascular system. Collectively, bioprinting based on thermal inkjet has great potential and broad applications in tissue engineering and regenerative medicine. This review article introduces some important patents related to bioprinting of living systems and the applications of bioprinting in tissue engineering field.
Collapse
Affiliation(s)
- Xiaofeng Cui
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | | | | | |
Collapse
|
119
|
Szöke K, Brinchmann JE. Concise review: therapeutic potential of adipose tissue-derived angiogenic cells. Stem Cells Transl Med 2012. [PMID: 23197872 DOI: 10.5966/sctm.2012-0069] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Inadequate blood supply to tissues is a leading cause of morbidity and mortality today. Ischemic symptoms caused by obstruction of arterioles and capillaries are currently not treatable by vessel replacement or dilatation procedures. Therapeutic angiogenesis, the treatment of tissue ischemia by promoting the proliferation of new blood vessels, has recently emerged as one of the most promising therapies. Neovascularization is most often attempted by introduction of angiogenic cells from different sources. Emerging evidence suggests that adipose tissue (AT) is an excellent reservoir of autologous cells with angiogenic potential. AT yields two cell populations of importance for neovascularization: AT-derived mesenchymal stromal cells, which likely act predominantly as pericytes, and AT-derived endothelial cells (ECs). In this concise review we discuss different physiological aspects of neovascularization, briefly present cells isolated from the blood and bone marrow with EC properties, and then discuss isolation and cell culture strategies, phenotype, functional capabilities, and possible therapeutic applications of angiogenic cells obtained from AT.
Collapse
|
120
|
Yu J, Wang A, Tang Z, Henry J, Li-Ping Lee B, Zhu Y, Yuan F, Huang F, Li S. The effect of stromal cell-derived factor-1α/heparin coating of biodegradable vascular grafts on the recruitment of both endothelial and smooth muscle progenitor cells for accelerated regeneration. Biomaterials 2012; 33:8062-74. [PMID: 22884813 DOI: 10.1016/j.biomaterials.2012.07.042] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 07/21/2012] [Indexed: 12/21/2022]
Abstract
Small-diameter synthetic vascular grafts have high failure rate and tissue-engineered blood vessels are limited by the scalability. Here we engineered bioactive materials for in situ vascular tissue engineering, which recruits two types of endogenous progenitor cells for the regeneration of blood vessels. Heparin was conjugated to microfibrous vascular grafts to suppress thrombogenic responses, and stromal cell-derived factor-1α (SDF-1α) was immobilized onto heparin to recruit endogenous progenitor cells. Heparin-bound SDF-1α was more stable than adsorbed SDF-1α under both static and flow conditions. Microfibrous grafts were implanted in rats by anastomosis to test the functional performance. Heparin coating improved the short-term patency, and immobilized SDF-1α further improved the long-term patency. SDF-1α effectively recruited endothelial progenitor cells (EPCs) to the luminal surface of the grafts, which differentiated into endothelial cells (ECs) and accelerated endothelialization. More interestingly, SDF-1α increased the recruitment of smooth muscle progenitor cells (SMPCs) to the grafts, and SMPCs differentiated into smooth muscle cells (SMCs) in vivo and in vitro. Consistently, SDF-1α-immobilized grafts had significantly higher elastic modulus. This work demonstrates the feasibility of simultaneously recruiting progenitor cells of ECs and SMCs for in situ blood vessel regeneration. This in situ tissue engineering approach will have broad applications in regenerative medicine.
Collapse
Affiliation(s)
- Jian Yu
- Department of Bioengineering, University of California, Berkeley, CA 94720-1762, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
121
|
Wang F, Li Z, Guan J. Fabrication of mesenchymal stem cells-integrated vascular constructs mimicking multiple properties of the native blood vessels. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 24:769-83. [PMID: 23594067 DOI: 10.1080/09205063.2012.712029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mesenchymal stem cells (MSCs)-populated small diameter (6 mm) vascular constructs were fabricated. The constructs mimicked the native vessels in multiple levels, i.e. having similar structure and morphology to that of the extracellular matrix in the native blood vessels; recapitulating mechanical properties such as compliance and burst pressure of the native blood vessels; simulating the highly cellularized nature of the native blood vessels; and having an antithrombogenic lumen. The constructs were fabricated by simultaneously assembling poly(ester carbonate urethane) urea nanofibers and MSCs in an electrical field. The nanofibers had a diameter similar to that of the collagen and elastin fibers in the native blood vessels. MSCs were distributed evenly in the constructs. The constructs were highly cellularized when the cell loading density was exceeded 6 million/ml. The vascular constructs were strong and flexible with breaking strains of 144-202%, tensile strengths of 0.80-1.29 MPa, compliances of 13.23-21.96 × 10(-4 )mmHg(-1), stiffness indexes of 7.3-9.8, and burst pressures greater than 1700 mmHg. These mechanical properties were similar to those of the native blood vessels. In vitro platelet deposition experiments showed that platelet adhesion was remarkably decreased in the MSCs-populated constructs compared to that in the construct without MSCs. An increase in MSC density in the constructs further decreased platelet adhesion. When cultured in a spinner flask, MSCs maintained their mitochondria viability and cell number during a two-week culture period, as confirmed by MTT and dsDNA assays. These vascular constructs may hold the potential to regenerate functional small diameter vessels for cardiovascular tissue repair.
Collapse
Affiliation(s)
- Feng Wang
- Department of Materials Science and Engineering, The Ohio State University, 2041 College Road, Columbus, OH 43210, USA
| | | | | |
Collapse
|
122
|
Bland E, Dréau D, Burg KJL. Overcoming hypoxia to improve tissue-engineering approaches to regenerative medicine. J Tissue Eng Regen Med 2012; 7:505-14. [PMID: 22761177 DOI: 10.1002/term.540] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 08/11/2011] [Accepted: 11/03/2011] [Indexed: 12/23/2022]
Abstract
The current clinical successes of tissue engineering are limited primarily to low-metabolism, acellular, pre-vascularized or thin tissues. Mass transport has been identified as the primary culprit, limiting the delivery of nutrients (such as oxygen and glucose) and removal of wastes, from tissues deep within a cellular scaffold. While strategies to develop sufficient vasculature to overcome hypoxia in vitro are promising, inconsistencies between the in vitro and the in vivo environments may still negate the effectiveness of large-volume tissue-engineered scaffolds. While a common theme in tissue engineering is to maximize oxygen supply, studies suggest that moderate oxygenation of cellular scaffolds during in vitro conditioning is preferable to high oxygen levels. Aiming for moderate oxygen values to prevent hypoxia while still promoting angiogenesis may be obtained by tailoring in vitro culture conditions to the oxygen environment the scaffold will experience upon implantation. This review discusses the causes and effects of tissue-engineering hypoxia and the optimization of oxygenation for the minimization of in vivo hypoxia.
Collapse
Affiliation(s)
- Erik Bland
- Department of Bioengineering, Clemson University, SC 29634, USA
| | | | | |
Collapse
|
123
|
Vascular tissue engineering: the next generation. Trends Mol Med 2012; 18:394-404. [DOI: 10.1016/j.molmed.2012.04.013] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 04/29/2012] [Accepted: 04/30/2012] [Indexed: 12/19/2022]
|
124
|
Michalska M, Kaplińska K, Mirowski M, Bodek A, Bodek KH. Evaluation of the use of fibrin and microcrystalline chitosan membranes as carriers for transforming growth factor beta-1. J Appl Polym Sci 2012. [DOI: 10.1002/app.37634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
125
|
Ghezzi CE, Marelli B, Muja N, Nazhat SN. Immediate production of a tubular dense collagen construct with bioinspired mechanical properties. Acta Biomater 2012; 8:1813-25. [PMID: 22326787 DOI: 10.1016/j.actbio.2012.01.025] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 01/18/2012] [Accepted: 01/20/2012] [Indexed: 11/29/2022]
Abstract
The intrinsic complexity of tissues and organs demands tissue engineering approaches that extend beyond planar constructs currently in clinical use. However, the engineering of cylindrical or tubular tissue constructs with a hollow lumen presents significant challenges arising from geometrical and architectural considerations required to tailor biomaterials for tissue and organ repair. Type I collagen is an ideal scaffolding material due to its outstanding biocompatibility and high processability. However, the highly hydrated nature of collagen hydrogels results in their lack of mechanical properties and instability, as well as extensive cell-mediated contraction, which must be overcome to achieve process control. Herein, tubular dense collagen constructs (TDCCs) were produced simply and rapidly (in less than 1h) by circumferentially wrapping plastically compressed dense collagen gel sheets around a cylindrical support. The effects of collagen source, i.e. rat-tail tendon and bovine dermis-derived acid solubilized collagen, and concentration on TDCC properties were investigated through morphological, mechanical and chemical characterizations. Both tensile strength and apparent modulus correlated strongly with physiologically relevant collagen gel fibrillar densities. The clinical potential of TDCC as a tubular tissue substitute was demonstrated mechanically, through circumferential tensile properties, theoretical burst pressure, which ranged from 1225 to 1574 mm Hg, compliance values of between 8.3% to 14.2% per 100mm Hg and suture retention strength in the range of 116-151 grams-force, which were compatible with surgical procedures. Moreover, NIH/3T3 fibroblast viability and uniform distribution within the construct wall were confirmed up to day 7 in culture. TDCCs with fibrillar densities equivalent to native tissues can be readily engineered in various dimensions with tunable morphological and mechanical properties, which can be easily handled for use as tissue models and adapted to clinical needs.
Collapse
Affiliation(s)
- Chiara E Ghezzi
- Department of Mining and Materials Engineering, McGill University, Montréal, Quebec, Canada
| | | | | | | |
Collapse
|
126
|
deBotton G, Oren T. Analytical and numerical analyses of the micromechanics of soft fibrous connective tissues. Biomech Model Mechanobiol 2012; 12:151-66. [DOI: 10.1007/s10237-012-0388-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Accepted: 03/06/2012] [Indexed: 01/05/2023]
|
127
|
Patel D, Vandromme SE, Reid ME, Taite LJ. Synergistic Activity of αvβ3 Integrins and the Elastin Binding Protein Enhance Cell-Matrix Interactions on Bioactive Hydrogel Surfaces. Biomacromolecules 2012; 13:1420-8. [DOI: 10.1021/bm300144y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Dhaval Patel
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia 30332-0100, United States
| | - Susan E. Vandromme
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia 30332-0100, United States
| | - Michael E. Reid
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia 30332-0100, United States
| | - Lakeshia J. Taite
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia 30332-0100, United States
| |
Collapse
|
128
|
Rathore A, Cleary M, Naito Y, Rocco K, Breuer C. Development of tissue engineered vascular grafts and application of nanomedicine. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2012; 4:257-72. [DOI: 10.1002/wnan.1166] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
129
|
Janairo RRR, Henry JJD, Lee BLP, Hashi CK, Derugin N, Lee R, Li S. Heparin-Modified Small-Diameter Nanofibrous Vascular Grafts. IEEE Trans Nanobioscience 2012; 11:22-7. [DOI: 10.1109/tnb.2012.2188926] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
130
|
Yuan B, Jin Y, Sun Y, Wang D, Sun J, Wang Z, Zhang W, Jiang X. A strategy for depositing different types of cells in three dimensions to mimic tubular structures in tissues. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2012; 24:890-6. [PMID: 22403828 DOI: 10.1002/adma.201104589] [Citation(s) in RCA: 167] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The fabrication of tubular structures, with multiple cell types forming different layers of the tube walls, is described using a stress-induced rolling membrane (SIRM). Cell orientation inside the tubes can also be controlled by topographical contact guidance. These layered tubes precisely mimic blood vessels and many other tubular structures, suggesting that they may be of great use in tissue engineering.
Collapse
Affiliation(s)
- Bo Yuan
- National Center for NanoScience and Technology China, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
131
|
Fioretta ES, Fledderus JO, Burakowska-Meise EA, Baaijens FPT, Verhaar MC, Bouten CVC. Polymer-based Scaffold Designs For In Situ Vascular Tissue Engineering: Controlling Recruitment and Differentiation Behavior of Endothelial Colony Forming Cells. Macromol Biosci 2012; 12:577-90. [DOI: 10.1002/mabi.201100315] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 10/08/2011] [Indexed: 01/22/2023]
|
132
|
Couet F, Meghezi S, Mantovani D. Fetal development, mechanobiology and optimal control processes can improve vascular tissue regeneration in bioreactors: an integrative review. Med Eng Phys 2011; 34:269-78. [PMID: 22133487 DOI: 10.1016/j.medengphy.2011.10.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 10/20/2011] [Accepted: 10/21/2011] [Indexed: 11/30/2022]
Abstract
Vascular tissue engineering aims to regenerate blood vessels to replace diseased arteries for cardiovascular patients. With the scaffold-based approach, cells are seeded on a scaffold showing specific properties and are expected to proliferate and self-organize into a functional vascular tissue. Bioreactors can significantly contribute to this objective by providing a suitable environment for the maturation of the tissue engineered blood vessel. It is recognized from the mechanotransduction principles that mechanical stimuli can influence the protein synthesis of the extra-cellular matrix thus leading to maturation and organization of the tissues. Up to date, no bioreactor is especially conceived to take advantage of the mechanobiology and optimize the construct maturation through an advanced control strategy. In this review, experimental strategies in the field of vascular tissue engineering are detailed, and a new approach inspired by fetal development, mechanobiology and optimal control paradigms is proposed. In this new approach, the culture conditions (i.e. flow, circumferential strain, pressure frequency, and others) are supposed to dynamically evolve to match the maturity of vascular constructs and maximize the efficiency of the regeneration process. Moreover, this approach allows the investigation of the mechanisms of growth, remodeling and mechanotransduction during the culture.
Collapse
Affiliation(s)
- Frédéric Couet
- Department of Materials Engineering & Research Centre, Quebec University Hospital, Laval University, Quebec City, Canada
| | | | | |
Collapse
|
133
|
Chung S, King MW. Design concepts and strategies for tissue engineering scaffolds. Biotechnol Appl Biochem 2011; 58:423-38. [PMID: 22172105 DOI: 10.1002/bab.60] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 09/23/2011] [Indexed: 12/11/2022]
Abstract
In the emerging field of tissue engineering and regenerative medicine, new viable and functional tissue is fabricated from living cells cultured on an artificial matrix in a simulated biological environment. It is evident that the specific requirements for the three main components, cells, scaffold materials, and the culture environment, are very different, depending on the type of cells and the organ-specific application. Identifying the variables within each of these components is a complex and challenging assignment, but there do exist general requirements for designing and fabricating tissue engineering scaffolds. Therefore, this review explores one of the three main components, namely, the key concepts, important parameters, and required characteristics related to the development and evaluation of tissue engineering scaffolds. An array of different design strategies will be discussed, which include mimicking the extra cellular matrix, responding to the need for mass transport, predicting the structural architecture, ensuring adequate initial mechanical integrity, modifying the surface chemistry and topography to provide cell signaling, and anticipating the material selection so as to predict the required rate of bioresorption. In addition, this review considers the major challenge of achieving adequate vascularization in tissue engineering constructs, without which no three-dimensional thick tissue such as the heart, liver, and kidney can remain viable.
Collapse
Affiliation(s)
- Sangwon Chung
- Fiber and Polymer Science, Department of Textile Engineering, Chemistry and Science, North Carolina State University, Raleigh, NC 27695-8301, USA
| | | |
Collapse
|
134
|
Ruel J, Lachance G. Mathematical modeling and experimental testing of three bioreactor configurations based on windkessel models. Heart Int 2011; 5:e1. [PMID: 21977286 PMCID: PMC3184706 DOI: 10.4081/hi.2010.e1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Revised: 12/30/2009] [Accepted: 01/04/2010] [Indexed: 11/25/2022] Open
Abstract
This paper presents an experimental study of three bioreactor configurations. The bioreactor is intended to be used for the development of tissue-engineered heart valve substitutes. Therefore it must be able to reproduce physiological flow and pressure waveforms accurately. A detailed analysis of three bioreactor arrangements is presented using mathematical models based on the windkessel (WK) approach. First, a review of the many applications of this approach in medical studies enhances its fundamental nature and its usefulness. Then the models are developed with reference to the actual components of the bioreactor. This study emphasizes different conflicting issues arising in the design process of a bioreactor for biomedical purposes, where an optimization process is essential to reach a compromise satisfying all conditions. Two important aspects are the need for a simple system providing ease of use and long-term sterility, opposed to the need for an advanced (thus more complex) architecture capable of a more accurate reproduction of the physiological environment. Three classic WK architectures are analyzed, and experimental results enhance the advantages and limitations of each one.
Collapse
Affiliation(s)
- Jean Ruel
- Department of Mechanical Engineering, Laval University, Québec, QC, Canada
| | | |
Collapse
|
135
|
Allen R, Wang Y. Rapid Self-Assembly of Tubular Arterial Media Layer from Smooth Muscle Cells in Transient Fibrin Gel. JOURNAL OF TISSUE SCIENCE & ENGINEERING 2011; 10. [PMID: 23087841 DOI: 10.4172/2157-7552.1000105e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND: Tissue engineered blood vessels could address the large clinical need for small caliber vascular grafts. Self-assembly approaches that employ transient scaffolds to form tissues from only cells and secreted matrix could form completely autologous vascular grafts that rapidly remodel and integrate with host tissue in vivo. The objective of this study was to develop a simple and rapid method to self-assemble vascular cells into vascular grafts. HYPOTHESIS: We hypothesized that entrapment in rapidly degrading fibrin gels could facilitate self-assembly of vascular smooth muscle cells into a tubular tissue comprised mainly of SMCs and secreted matrix. METHODS: Baboon SMCs were entrapped in fibrin around a silicone tube and cultured for 14 days without fibrinolysis inhibitor. Spontaneous delamination from the inner tube allowed for simple isolation of constructs with forceps. RESULTS: Engineered tissues are tubular, handleable, and highly cellular, with substantial collagen deposition. Fibrin is largely degraded within 14 days. Tensile elastic modulus of ring segments is 36.2 kPa and 1.60 MPa for the toe and heel regions of the stress-strain relation, respectively. CONCLUSION: Fibrin entrapment without fibrinolysis inhibitor can facilitate rapid self-assembly of SMCs into tubular tissues. Future work will focus on mechanical conditioning and co-culture with vascular endothelial cells to improve mechanical strength and impart antithrombogenicity.
Collapse
Affiliation(s)
- Robert Allen
- Department of Bioengineering and Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15213
| | | |
Collapse
|
136
|
Millon LE, Padavan DT, Hamilton AM, Boughner DR, Wan W. Exploring cell compatibility of a fibronectin-functionalized physically crosslinked poly(vinyl alcohol) hydrogel. J Biomed Mater Res B Appl Biomater 2011; 100:1-10. [PMID: 21998037 DOI: 10.1002/jbm.b.31860] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Revised: 02/24/2011] [Accepted: 03/09/2011] [Indexed: 11/09/2022]
Abstract
Physically crosslinked poly(vinyl alcohol) (PVA) hydrogels prepared using a low-temperature thermally cycled process have tunable mechanical properties that fall within the range of soft tissues, including cardiovascular tissue. An approach to render it hemocompatible is by endothelization, but its hydrophilic nature is not conducive to cell adhesion and spreading. We investigated the functionalization reaction of this class of PVA hydrogel with fibronectin (FN) for adhesion and spreading of primary porcine radial artery cells and vascular endothelial cells. These are cells relevant to small-diameter vascular graft development. FN functionalization was achieved using a multistep reaction, but the activation step involving carbonyl diimidazole normally required for chemically crosslinked PVA was found to be unnecessary. The reaction resulted in an increase in the elastic modulus of the PVA hydrogel but is still well within the range of cardiovascular tissue. Confocal microscopy confirmed the adhesion and spreading of both cell types on the PVA-FN surfaces, whereas cells failed to adhere to the PVA control. This is a first step toward an alternative for the realization of a synthetic replacement small-diameter vascular graft.
Collapse
|
137
|
Vascular Wall Engineering Via Femtosecond Laser Ablation: Scaffolds with Self-Containing Smooth Muscle Cell Populations. Ann Biomed Eng 2011; 39:3031-41. [DOI: 10.1007/s10439-011-0417-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 09/20/2011] [Indexed: 11/26/2022]
|
138
|
Zhou J, Lim SH, Chiu JJ. Epigenetic Regulation of Vascular Endothelial Biology/Pathobiology and Response to Fluid Shear Stress. Cell Mol Bioeng 2011. [DOI: 10.1007/s12195-011-0199-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
139
|
Affiliation(s)
| | - Jeffrey J.D. Henry
- Department of Bioengineering, University of California, Berkeley, California 94720;
| |
Collapse
|
140
|
Liu H, Li X, Niu X, Zhou G, Li P, Fan Y. Improved Hemocompatibility and Endothelialization of Vascular Grafts by Covalent Immobilization of Sulfated Silk Fibroin on Poly(lactic-co-glycolic acid) Scaffolds. Biomacromolecules 2011; 12:2914-24. [DOI: 10.1021/bm200479f] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Haifeng Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, People’s Republic of China
| | - Xiaoming Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, People’s Republic of China
| | - Xufeng Niu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, People’s Republic of China
| | - Gang Zhou
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, People’s Republic of China
| | - Ping Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, People’s Republic of China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, People’s Republic of China
| |
Collapse
|
141
|
Rayatpisheh S, Poon YF, Cao Y, Feng J, Chan V, Chan-Park MB. Aligned 3D human aortic smooth muscle tissue via layer by layer technique inside microchannels with novel combination of collagen and oxidized alginate hydrogel. J Biomed Mater Res A 2011; 98:235-44. [DOI: 10.1002/jbm.a.33085] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 02/13/2011] [Accepted: 02/14/2011] [Indexed: 11/06/2022]
|
142
|
Walpoth BH. Vascular organogenesis: dream or reality? Organogenesis 2011; 6:158-60. [PMID: 21197217 DOI: 10.4161/org.6.3.12334] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Accepted: 05/09/2010] [Indexed: 11/19/2022] Open
Affiliation(s)
- Beat H Walpoth
- Cardiovascular Research, Department of Surgery, Faculty of Medicine, Geneva University Hospital, Geneva, Switzerland.
| |
Collapse
|
143
|
Rapid Engineered Small Diameter Vascular Grafts from Smooth Muscle Cells. Cardiovasc Eng Technol 2011. [DOI: 10.1007/s13239-011-0044-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
144
|
Wang X, Sui S. Pulsatile Culture of a Poly(DL-Lactic-Co-Glycolic Acid) Sandwiched Cell/Hydrogel Construct Fabricated Using a Step-by-Step Mold/Extraction Method. Artif Organs 2011; 35:645-55. [DOI: 10.1111/j.1525-1594.2010.01137.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
145
|
Simionescu A, Tedder ME, Chuang TH, Simionescu DT. Lectin and antibody-based histochemical techniques for cardiovascular tissue engineering. J Histotechnol 2011; 34:20-28. [PMID: 25620822 DOI: 10.1179/014788811x12949268296040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Tissue engineering holds immense potential for treatment of cardiovascular diseases by creating living structures to replace diseased blood vessels, heart valves, and cardiac muscle. In a traditional approach, scaffolds are seeded with stem cells and subjected to stimuli in bioreactors that mimic physiologic conditions or are directly implanted into target sites in animal models. The expected results are significant cell changes, extensive remodeling of the scaffolds and creation of surrogate structures that would be deemed acceptable for tissue regeneration. Histochemical techniques are increasingly becoming essential tools in tissue engineering research. In our studies, we used lectin and antibody-based techniques to characterize novel collagen and elastin scaffolds and to ensure efficient removal of xenoantigens. Scaffolds were implanted in animals and infiltrated host cells were identified using antibodies to activated fibroblasts, macrophages, and lymphocytes. Stem cell-seeded scaffolds were subjected to mechanical strains and tested for differentiation into cardiovascular cells using antibody-based double immunofluorescence methods. Finally, living heart valves were constructed from scaffolds and stem cells, subjected to conditioning in a bioreactor and stem cell differentiation evaluated by immunofluorescence. Overall, these techniques have proven to be outstanding companions to biochemical, molecular biology and cell analysis methods used in tissue engineering research and development.
Collapse
Affiliation(s)
| | - Mary E Tedder
- Department of Bioengineering, Clemson University, Clemson, SC, USA
| | | | - Dan T Simionescu
- Department of Bioengineering, Clemson University, Clemson, SC, USA
| |
Collapse
|
146
|
Hassan K, Kim SH, Park I, Lee SH, Kim SH, Jung Y, Kim SH, Kim SH. Small diameter double layer tubular scaffolds using highly elastic PLCL copolymer for vascular tissue engineering. Macromol Res 2011. [DOI: 10.1007/s13233-011-0208-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
147
|
Madhavan K, Belchenko D, Tan W. Roles of genipin crosslinking and biomolecule conditioning in collagen-based biopolymer: Potential for vascular media regeneration. J Biomed Mater Res A 2011; 97:16-26. [DOI: 10.1002/jbm.a.33006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Revised: 08/11/2010] [Accepted: 08/17/2010] [Indexed: 11/05/2022]
|
148
|
Song Y, Wennink JW, Kamphuis MM, Sterk LM, Vermes I, Poot AA, Feijen J, Grijpma DW. Dynamic Culturing of Smooth Muscle Cells in Tubular Poly(Trimethylene Carbonate) Scaffolds for Vascular Tissue Engineering. Tissue Eng Part A 2011; 17:381-7. [DOI: 10.1089/ten.tea.2009.0805] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Yan Song
- Institute for Biomedical Technology and Technical Medicine (MIRA), University of Twente, Enschede, The Netherlands
- Department of Polymer Chemistry and Biomaterials, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Jos W.H. Wennink
- Institute for Biomedical Technology and Technical Medicine (MIRA), University of Twente, Enschede, The Netherlands
- Department of Polymer Chemistry and Biomaterials, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Marloes M.J. Kamphuis
- Institute for Biomedical Technology and Technical Medicine (MIRA), University of Twente, Enschede, The Netherlands
- Department of Polymer Chemistry and Biomaterials, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
- Department of Clinical Chemistry, Medical Spectrum Twente Hospital, Enschede, The Netherlands
| | | | - Istvan Vermes
- Institute for Biomedical Technology and Technical Medicine (MIRA), University of Twente, Enschede, The Netherlands
- Department of Polymer Chemistry and Biomaterials, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
- Department of Clinical Chemistry, Medical Spectrum Twente Hospital, Enschede, The Netherlands
| | - Andre A. Poot
- Institute for Biomedical Technology and Technical Medicine (MIRA), University of Twente, Enschede, The Netherlands
- Department of Polymer Chemistry and Biomaterials, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Jan Feijen
- Institute for Biomedical Technology and Technical Medicine (MIRA), University of Twente, Enschede, The Netherlands
- Department of Polymer Chemistry and Biomaterials, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Dirk W. Grijpma
- Institute for Biomedical Technology and Technical Medicine (MIRA), University of Twente, Enschede, The Netherlands
- Department of Polymer Chemistry and Biomaterials, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
149
|
A Computer-Controlled Apparatus for the Characterization of Mechanical and Viscoelastic Properties of Tissue-Engineered Vascular Constructs. Cardiovasc Eng Technol 2011. [DOI: 10.1007/s13239-011-0033-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
150
|
Pankajakshan D, Agrawal DK. Scaffolds in tissue engineering of blood vessels. Can J Physiol Pharmacol 2011; 88:855-73. [PMID: 20921972 DOI: 10.1139/y10-073] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tissue engineering of small diameter (<5 mm) blood vessels is a promising approach for developing viable alternatives to autologous vascular grafts. It involves in vitro seeding of cells onto a scaffold on which the cells attach, proliferate, and differentiate while secreting the components of extracellular matrix that are required for creating the tissue. The scaffold should provide the initial requisite mechanical strength to withstand in vivo hemodynamic forces until vascular smooth muscle cells and fibroblasts reinforce the extracellular matrix of the vessel wall. Hence, the choice of scaffold is crucial for providing guidance cues to the cells to behave in the required manner to produce tissues and organs of the desired shape and size. Several types of scaffolds have been used for the reconstruction of blood vessels. They can be broadly classified as biological scaffolds, decellularized matrices, and polymeric biodegradable scaffolds. This review focuses on the different types of scaffolds that have been designed, developed, and tested for tissue engineering of blood vessels, including use of stem cells in vascular tissue engineering.
Collapse
Affiliation(s)
- Divya Pankajakshan
- Center for Clinical and Translational Science, Creighton University School of Medicine, Omaha, Nebraska, USA
| | | |
Collapse
|