101
|
Exploring the MHC-peptide matrix of central tolerance in the human thymus. Nat Commun 2013; 4:2039. [PMID: 23783831 DOI: 10.1038/ncomms3039] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 05/21/2013] [Indexed: 01/22/2023] Open
Abstract
Ever since it was discovered that central tolerance to self is imposed on developing T cells in the thymus through their interaction with self-peptide major histocompatibility complexes on thymic antigen-presenting cells, immunologists have speculated about the nature of these peptides, particularly in humans. Here, to shed light on the so-far unknown human thymic peptide repertoire, we analyse peptides eluted from isolated thymic dendritic cells, dendritic cell-depleted antigen-presenting cells and whole thymus. Bioinformatic analysis of the 842 identified natural major histocompatibility complex I and II ligands reveals significant cross-talk between major histocompatibility complex-class I and II pathways and differences in source protein representation between individuals as well as different antigen-presenting cells. Furthermore, several autoimmune- and tumour-related peptides, from enolase and vimentin for example, are presented in the healthy thymus. 302 peptides are directly derived from negatively selecting dendritic cells, thus providing the first global view of the peptide matrix in the human thymus that imposes self-tolerance in vivo.
Collapse
|
102
|
Seto S, Tsujimura K, Horii T, Koide Y. Autophagy adaptor protein p62/SQSTM1 and autophagy-related gene Atg5 mediate autophagosome formation in response to Mycobacterium tuberculosis infection in dendritic cells. PLoS One 2013; 8:e86017. [PMID: 24376899 PMCID: PMC3871604 DOI: 10.1371/journal.pone.0086017] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 12/04/2013] [Indexed: 02/05/2023] Open
Abstract
Mycobacterium tuberculosis is an intracellular pathogen that can survive within phagocytic cells by inhibiting phagolysosome biogenesis. However, host cells can control the intracellular M. tuberculosis burden by the induction of autophagy. The mechanism of autophagosome formation to M. tuberculosis has been well studied in macrophages, but remains unclear in dendritic cells. We therefore characterized autophagosome formation in response to M. tuberculosis infection in dendritic cells. Autophagy marker protein LC3, autophagy adaptor protein p62/SQSTM1 (p62) and ubiquitin co-localized to M. tuberculosis in dendritic cells. Mycobacterial autophagosomes fused with lysosomes during infection, and major histcompatibility complex class II molecules (MHC II) also localized to mycobacterial autophagosomes. The proteins p62 and Atg5 function in the initiation and progression of autophagosome formation to M. tuberculosis, respectively; p62 mediates ubiquitination of M. tuberculosis and Atg5 is involved in the trafficking of degradative vesicles and MHC II to mycobacterial autophagosomes. These results imply that the autophagosome formation to M. tuberculosis in dendritic cells promotes the antigen presentation of mycobacterial peptides to CD4+ T lymphocytes via MHC II.
Collapse
Affiliation(s)
- Shintaro Seto
- Department of Infectious Diseases, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
- * E-mail:
| | - Kunio Tsujimura
- Department of Infectious Diseases, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Toshinobu Horii
- Department of Infectious Diseases, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Yukio Koide
- Department of Infectious Diseases, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| |
Collapse
|
103
|
Ratikan JA, Sayre JW, Schaue D. Chloroquine engages the immune system to eradicate irradiated breast tumors in mice. Int J Radiat Oncol Biol Phys 2013; 87:761-8. [PMID: 24138918 DOI: 10.1016/j.ijrobp.2013.07.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 07/15/2013] [Accepted: 07/17/2013] [Indexed: 10/26/2022]
Abstract
PURPOSE This study used chloroquine to direct radiation-induced tumor cell death pathways to harness the antitumor activity of the immune system. METHODS AND MATERIALS Chloroquine given immediately after tumor irradiation increased the cure rate of MCaK breast cancer in C3H mice. Chloroquine blocked radiation-induced autophagy and drove MCaK cells into a more rapid apoptotic and more immunogenic form of cell death. RESULTS Chloroquine treatment made irradiated tumor vaccines superior at inducing strong interferon gamma-associated immune responses in vivo and protecting mice from further tumor challenge. In vitro, chloroquine slowed antigen uptake and degradation by dendritic cells, although T-cell stimulation was unaffected. CONCLUSIONS This study illustrates a novel approach to improve the efficacy of breast cancer radiation therapy by blocking endosomal pathways, which enhances radiation-induced cell death within the field and drives antitumor immunity to assist therapeutic cure. The study illuminates and merges seemingly disparate concepts regarding the importance of autophagy in cancer therapy.
Collapse
Affiliation(s)
- Josephine Anna Ratikan
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | | | | |
Collapse
|
104
|
Autophagy in inflammation, infection, neurodegeneration and cancer. Int Immunopharmacol 2013; 18:55-65. [PMID: 24262302 DOI: 10.1016/j.intimp.2013.11.001] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 10/31/2013] [Accepted: 11/05/2013] [Indexed: 02/02/2023]
Abstract
In its classical form, autophagy is an essential, homeostatic process by which cytoplasmic components are degraded in a double-membrane-bound autophagosome in response to starvation. Paradoxically, although autophagy is primarily a protective process for the cell, it can also play a role in cell death. The roles of autophagy bridge both the innate and adaptive immune systems and autophagic dysfunction is associated with inflammation, infection, neurodegeneration and cancer. In this review, we discuss the contribution of autophagy to inflammatory, infectious and neurodegenerative diseases, as well as cancer.
Collapse
|
105
|
Wang J, Feng X, Zeng Y, Fan J, Wu J, Li Z, Liu X, Huang R, Huang F, Yu X, Yang X. Lipopolysaccharide (LPS)-induced autophagy is involved in the restriction of Escherichia coli in peritoneal mesothelial cells. BMC Microbiol 2013; 13:255. [PMID: 24219662 PMCID: PMC3833177 DOI: 10.1186/1471-2180-13-255] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 11/08/2013] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Host cell autophagy is implicated in the control of intracellular pathogen. Escherichia coli (E.coli) is the most common organism caused single-germ enterobacterial peritonitis during peritoneal dialysis. In this study, we investigated autophagy of peritoneal mesothelial cells and its role in defense against E.coli. RESULTS Autophagy in human peritoneal mesothelial cell line (HMrSV5) was induced by lipopolysaccharide (LPS) in a dose-dependent and time-dependent way, which was demonstrated by increased expression of Beclin-1 and light chain 3 (LC3)-II, the accumulation of punctate green fluorescent protein-LC3, and a higher number of monodansylcadaverine-labeled autophagic vacuoles. After incubation of HMrSV5 cells with E.coli following LPS stimulation, both the intracellular bactericidal activity and the co-localization of E.coli (K12-strain) with autophagosomes were enhanced. Conversely, blockade of autophagy with 3-methyladenine, wortmannin or Beclin-1 small-interfering RNA (siRNA) led to a significant reduction in autophagy-associated protein expression, attenuation of intracellular bactericidal activity, and reduced co-localization of E.coli with monodansylcadaverine-labeled autophagosomes. In addition, treatment of HMrSV5 cells with LPS caused a dose-dependent and time-dependent increase in Toll-like receptor 4 (TLR4) expression. Both knockdown of TLR4 with siRNA and pharmacological inhibition of TLR4 with Polymyxin B significantly decreased LPS-induced autophagy. Furthermore, TLR4 siRNA attenuated remarkably LPS-induced intracellular bactericidal activity. CONCLUSIONS Our findings demonstrated for the first time that LPS-induced autophagy in peritoneal mesothelial cells could enhance the intracellular bactericidal activity and the co-localization of E.coli with autophagosomes. The activation of TLR4 signaling was involved in this process. These results indicate that LPS-induced autophagy may be a cell-autonomous defense mechanism triggered in peritoneal mesothelial cells in response to E.coli infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Xiao Yang
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, 58th, Zhongshan Road II, Guangzhou 510080, China.
| |
Collapse
|
106
|
Kim HK, Lee WY, Kwon JT, Sohn DR, Hong SJ, Kim HJ. Association of ultraviolet radiation resistance-associated gene polymorphisms with rheumatoid arthritis. Biomed Rep 2013; 2:117-121. [PMID: 24649081 DOI: 10.3892/br.2013.185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 10/08/2013] [Indexed: 11/05/2022] Open
Abstract
The ultraviolet radiation resistance-associated gene (UVRAG) protein binds to the Beclin 1/PI3-kinase III complex and promotes autophagy. Autophagy may be upregulated by endoplasmic reticulum (ER) stress. Persistent and excessive ER stress may alter synovial fibroblast apoptosis and this alteration may affect the pathogenesis of rheumatoid arthritis (RA). In this study, we investigated whether UVRAG genetic polymorphisms are associated with RA. To determine the association between UVRAG polymorphisms and RA, we genotyped five UVRAG single-nucleotide polymorphisms (SNPs; rs7111334, intron C/T; rs7933235, intron A/G; rs1380075, intron T/A; rs1458836, near the 5' gene terminal G/A; and rs636420, exon 15 C/T) using a direct sequencing method in 243 RA patients and 417 control subjects. Among these, one SNP (rs7111334) exhibited significant genotypic/allelic differences between RA patients and the control group. Therefore, this study suggested a possible association between UVRAG polymorphisms and RA susceptibility.
Collapse
Affiliation(s)
- Hyung-Ki Kim
- Department of Clinical Pharmacology, Soonchunhyang University, Cheonan, Republic of Korea
| | - Wha-Young Lee
- Soonchunhyang Medical Research Institute, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - Jun-Tack Kwon
- Department of Clinical Pharmacology, Soonchunhyang University, Cheonan, Republic of Korea
| | - Dong-Ryul Sohn
- Department of Clinical Pharmacology, Soonchunhyang University, Cheonan, Republic of Korea
| | - Seung-Jae Hong
- Division of Rheumatology, Department of Internal Medicine, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Hak-Jae Kim
- Department of Clinical Pharmacology, Soonchunhyang University, Cheonan, Republic of Korea ; Soonchunhyang Medical Research Institute, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| |
Collapse
|
107
|
Lorin S, Hamaï A, Mehrpour M, Codogno P. Autophagy regulation and its role in cancer. Semin Cancer Biol 2013; 23:361-79. [DOI: 10.1016/j.semcancer.2013.06.007] [Citation(s) in RCA: 184] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 06/12/2013] [Accepted: 06/18/2013] [Indexed: 12/11/2022]
|
108
|
Cheng Y, Ren X, Hait WN, Yang JM. Therapeutic targeting of autophagy in disease: biology and pharmacology. Pharmacol Rev 2013; 65:1162-97. [PMID: 23943849 PMCID: PMC3799234 DOI: 10.1124/pr.112.007120] [Citation(s) in RCA: 197] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Autophagy, a process of self-digestion of the cytoplasm and organelles through which cellular components are recycled for reuse or energy production, is an evolutionarily conserved response to metabolic stress found in eukaryotes from yeast to mammals. It is noteworthy that autophagy is also associated with various pathophysiologic conditions in which this cellular process plays either a cytoprotective or cytopathic role in response to a variety of stresses such as metabolic, inflammatory, neurodegenerative, and therapeutic stress. It is now generally believed that modulating the activity of autophagy through targeting specific regulatory molecules in the autophagy machinery may impact disease processes, thus autophagy may represent a new pharmacologic target for drug development and therapeutic intervention of various human disorders. Induction or inhibition of autophagy using small molecule compounds has shown promise in the treatment of diseases such as cancer. Depending on context, induction or suppression of autophagy may exert therapeutic effects via promoting either cell survival or death, two major events targeted by therapies for various disorders. A better understanding of the biology of autophagy and the pharmacology of autophagy modulators has the potential for facilitating the development of autophagy-based therapeutic interventions for several human diseases.
Collapse
Affiliation(s)
- Yan Cheng
- Department of Pharmacology and Penn State Hershey Cancer Institute, Pennsylvania State University College of Medicine and Milton S Hershey Medical Center, 500 University Drive, Hershey, PA 17033, USA
| | | | | | | |
Collapse
|
109
|
Münz C. Autophagy in cellular transformation, survival and communication with the tumor microenvironment. Semin Cancer Biol 2013; 23:299-300. [PMID: 23811289 DOI: 10.1016/j.semcancer.2013.06.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Autophagy describes several metabolic pathways, by which cytoplasmic constituents are imported into lysosomes for degradation. These pathways and in particular macroautophagy play an important role during oncogenesis by apparently inhibiting cellular transformation initially, but then ensuring tumor cell survival in established cancers. Furthermore, the conditioning of the tumor microenvironment, including the cross-talk with the immune system, is influenced by autophagy. These multiple facets of autophagy regulation in tumors will be discussed in the series of review articles of this issue of Seminars in Cancer Biology. A comprehensive understanding of this pathway in oncology is needed to efficiently apply autophagy regulating tumor therapies, which are already in use.
Collapse
Affiliation(s)
- Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| |
Collapse
|
110
|
Bertolo C, Roa S, Sagardoy A, Mena-Varas M, Robles EF, Martinez-Ferrandis JI, Sagaert X, Tousseyn T, Orta A, Lossos IS, Amar S, Natkunam Y, Briones J, Melnick A, Malumbres R, Martinez-Climent JA. LITAF, a BCL6 target gene, regulates autophagy in mature B-cell lymphomas. Br J Haematol 2013; 162:621-30. [PMID: 23795761 DOI: 10.1111/bjh.12440] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 05/17/2013] [Indexed: 02/03/2023]
Abstract
We have previously reported that LITAF is silenced by promoter hypermethylation in germinal centre-derived B-cell lymphomas, but beyond these data the regulation and function of lipopolysaccharide-induced tumour necrosis factor (TNF) factor (LITAF) in B cells are unknown. Gene expression and immunohistochemical studies revealed that LITAF and BCL6 show opposite expression in tonsil B-cell subpopulations and B-cell lymphomas, suggesting that BCL6 may regulate LITAF expression. Accordingly, BCL6 silencing increased LITAF expression, and chromatin immunoprecipitation and luciferase reporter assays demonstrated a direct transcriptional repression of LITAF by BCL6. Gain- and loss-of-function experiments in different B-cell lymphoma cell lines revealed that, in contrast to its function in monocytes, LITAF does not induce lipopolysaccharide-mediated TNF secretion in B cells. However, gene expression microarrays defined a LITAF-related transcriptional signature containing genes regulating autophagy, including MAP1LC3B (LC3B). In addition, immunofluorescence analysis co-localized LITAF with autophagosomes, further suggesting a possible role in autophagy modulation. Accordingly, ectopic LITAF expression in B-cell lymphoma cells enhanced autophagy responses to starvation, which were impaired upon LITAF silencing. Our results indicate that the BCL6-mediated transcriptional repression of LITAF may inhibit autophagy in B cells during the germinal centre reaction, and suggest that the constitutive repression of autophagy responses in BCL6-driven lymphomas may contribute to lymphomagenesis.
Collapse
Affiliation(s)
- Cristina Bertolo
- Division of Oncology, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
111
|
TLR4 signaling is involved in brain vascular toxicity of PCB153 bound to nanoparticles. PLoS One 2013; 8:e63159. [PMID: 23690990 PMCID: PMC3653967 DOI: 10.1371/journal.pone.0063159] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 03/29/2013] [Indexed: 11/26/2022] Open
Abstract
PCBs bind to environmental particles; however, potential toxicity exhibited by such complexes is not well understood. The aim of the present study is to study the hypothesis that assembling onto nanoparticles can influence the PCB153-induced brain endothelial toxicity via interaction with the toll-like receptor 4 (TLR4). To address this hypothesis, TLR4-deficient and wild type control mice (males, 10 week old) were exposed to PCB153 (5 ng/g body weight) bound to chemically inert silica nanoparticles (PCB153-NPs), PCB153 alone, silica nanoparticles (NPs; diameter, 20 nm), or vehicle. Selected animals were also subjected to 40 min ischemia, followed by a 24 h reperfusion. As compared to exposure to PCB153 alone, treatment with PCB153-NP potentiated the brain infarct volume in control mice. Importantly, this effect was attenuated in TLR4-deficient mice. Similarly, PCB153-NP-induced proinflammatory responses and disruption of tight junction integrity were less pronounced in TLR4-deficient mice as compared to control animals. Additional in vitro experiments revealed that TLR4 mediates toxicity of PCB153-NP via recruitment of tumor necrosis factor-associated factor 6 (TRAF6). The results of current study indicate that binding to seemingly inert nanoparticles increase cerebrovascular toxicity of PCBs and suggest that targeting the TLR4/TRAF6 signaling may protect against these effects.
Collapse
|
112
|
|
113
|
Parekh VV, Wu L, Boyd KL, Williams JA, Gaddy JA, Olivares-Villagómez D, Cover TL, Zong WX, Zhang J, Van Kaer L. Impaired autophagy, defective T cell homeostasis, and a wasting syndrome in mice with a T cell-specific deletion of Vps34. THE JOURNAL OF IMMUNOLOGY 2013; 190:5086-101. [PMID: 23596309 DOI: 10.4049/jimmunol.1202071] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Autophagy plays a critical role in multiple aspects of the immune system, including the development and function of T lymphocytes. In mammalian cells, the class III PI3K vacuolar protein sorting (Vps)34 is thought to play a critical role in autophagy. However, recent studies have cast doubt on the role of Vps34 in autophagy, at least in certain cell types. To study the effects of Vps34 on autophagy in T lymphocytes, we generated mice that selectively lack Vps34 in the T cell lineage. Vps34 ablation in T cells caused profound defects in autophagic flux, resulting in accumulation of cellular organelles and apoptosis. These animals exhibited normal intrathymic development of conventional T cells, but they were profoundly impaired in the intrathymic development of invariant NKT cells. In peripheral organs, T cell-specific ablation of Vps34 had a profound impact on T cell homeostasis and function. Furthermore, aged animals developed an inflammatory wasting syndrome characterized by weight loss, intestinal inflammation, and anemia. Consistent with this phenotype, Vps34 was required for the peripheral maintenance and function of CD4(+)Foxp3(+) regulatory T cells. Collectively, our study reveals a critical role for Vps34 in autophagy and for the peripheral homeostasis and function of T lymphocytes.
Collapse
Affiliation(s)
- Vrajesh V Parekh
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
114
|
Bhattacharya A, Eissa NT. Autophagy and autoimmunity crosstalks. Front Immunol 2013; 4:88. [PMID: 23596443 PMCID: PMC3625920 DOI: 10.3389/fimmu.2013.00088] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 04/01/2013] [Indexed: 01/03/2023] Open
Abstract
Autophagy, initially viewed as a conserved bulk-degradation mechanism, has emerged as a central player in a multitude of immune functions. Autophagy is important in host defense against intracellular and extracellular pathogens, metabolic syndromes, immune cell homeostasis, antigen processing and presentation, and maintenance of tolerance. The observation that the above processes are implicated in triggering or exacerbating autoimmunity raises the possibility that autophagy is involved in mediating autoimmune processes, either directly or as a consequence of innate or adaptive functions mediated by the pathway. Genome-wide association studies have shown association between single nucleotide polymorphisms (SNPs) in autophagy related gene 5 (Atg5), and Atg16l1 with susceptibility to systemic lupus erythematosus (SLE) and Crohn’s disease, respectively. Enhanced expression of Atg5 was also reported in blood of mice with experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis (MS), and in T cells isolated from blood or brain tissues from patients with active relapse of MS. This review explores the roles of autophagy pathway in the innate and adaptive immune systems on regulating or mediating the onset, progression, or exacerbation of autoimmune processes.
Collapse
|
115
|
Kondylis V, van Nispen Tot Pannerden HE, van Dijk S, Ten Broeke T, Wubbolts R, Geerts WJ, Seinen C, Mutis T, Heijnen HFG. Endosome-mediated autophagy: an unconventional MIIC-driven autophagic pathway operational in dendritic cells. Autophagy 2013; 9:861-80. [PMID: 23481895 DOI: 10.4161/auto.24111] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Activation of TLR signaling has been shown to induce autophagy in antigen-presenting cells (APCs). Using high-resolution microscopy approaches, we show that in LPS-stimulated dendritic cells (DCs), autophagosomes emerge from MHC class II compartments (MIICs) and harbor both the molecular machinery for antigen processing and the autophagosome markers LC3 and ATG16L1. This ENdosome-Mediated Autophagy (ENMA) appears to be the major type of autophagy in DCs, as similar structures were observed upon established autophagy-inducing conditions (nutrient deprivation, rapamycin) and under basal conditions in the presence of bafilomycin A1. Autophagosome formation was not significantly affected in DCs expressing ATG4B (C74A) mutant and atg4b (-/-) bone marrow DCs, but the degradation of the autophagy substrate SQSTM1/p62 was largely impaired. Furthermore, we demonstrate that the previously described DC aggresome-like LPS-induced structures (DALIS) contain vesicular membranes, and in addition to SQSTM1 and ubiquitin, they are positive for LC3. LC3 localization on DALIS is independent of its lipidation. MIIC-driven autophagosomes preferentially engulf the LPS-induced SQSTM1-positive DALIS, which become later degraded in autolysosomes. DALIS-associated membranes also contain ATG16L1, ATG9 and the Q-SNARE VTI1B, suggesting that they may represent (at least in part) a membrane reservoir for autophagosome expansion. We propose that ENMA constitutes an unconventional, APC-specific type of autophagy, which mediates the processing and presentation of cytosolic antigens by MHC class II machinery, and/or the selective clearance of toxic by-products of elevated ROS/RNS production in activated DCs, thereby promoting their survival.
Collapse
Affiliation(s)
- Vangelis Kondylis
- Cell Microscopy Center; Department of Cell Biology, University Medical Center Utrecht, Utrecht, The Netherlands, Institute of Biomembranes, Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Aichinger M, Wu C, Nedjic J, Klein L. Macroautophagy substrates are loaded onto MHC class II of medullary thymic epithelial cells for central tolerance. J Exp Med 2013; 210:287-300. [PMID: 23382543 PMCID: PMC3570095 DOI: 10.1084/jem.20122149] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 01/02/2013] [Indexed: 02/05/2023] Open
Abstract
Macroautophagy serves cellular housekeeping and metabolic functions through delivery of cytoplasmic constituents for lysosomal degradation. In addition, it may mediate the unconventional presentation of intracellular antigens to CD4(+) T cells; however, the physiological relevance of this endogenous MHC class II loading pathway remains poorly defined. Here, we characterize the role of macroautophagy in thymic epithelial cells (TECs) for negative selection. Direct presentation for clonal deletion of MHC class II-restricted thymocytes required macroautophagy for a mitochondrial version of a neo-antigen, but was autophagy-independent for a membrane-bound form. A model antigen specifically expressed in Aire(+) medullary TECs (mTECs) induced efficient deletion via direct presentation when targeted to autophagosomes, whereas interference with autophagosomal routing of this antigen through exchange of a single amino acid or ablation of an essential autophagy gene abolished direct presentation for negative selection. Furthermore, when this autophagy substrate was expressed by mTECs in high amounts, endogenous presentation and indirect presentation by DCs operated in a redundant manner, whereas macroautophagy-dependent endogenous loading was essential for clonal deletion at limiting antigen doses. Our findings suggest that macroautophagy supports central CD4(+) T cell tolerance through facilitating the direct presentation of endogenous self-antigens by mTECs.
Collapse
Affiliation(s)
- Martin Aichinger
- Institute for Immunology, Ludwig-Maximilians-Universität, 80336 Munich, Germany
| | | | | | | |
Collapse
|
117
|
Goletti D, Petruccioli E, Romagnoli A, Piacentini M, Fimia GM. Autophagy in Mycobacterium tuberculosis infection: a passepartout to flush the intruder out? Cytokine Growth Factor Rev 2013; 24:335-43. [PMID: 23395260 DOI: 10.1016/j.cytogfr.2013.01.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Accepted: 01/09/2013] [Indexed: 12/14/2022]
Abstract
Tuberculosis is a global health calamity. The causative agent, Mycobacterium tuberculosis (M. tuberculosis), has evolved elaborate survival mechanisms in humans, allowing it to remain in a clinically latent infection state, constantly engaging the immune system, with the possibility to progress to active disease. Autophagy is a cellular process responsible for the degradation of intracellular components, including invading pathogens, playing an important role in both innate and adaptive immunity. In this review, we describe the molecular mechanisms employed by M. tuberculosis to avoid autophagic degradation and exploit this process to its own advantage. Moreover, we discuss the multiple roles played by autophagy in the immune responses to M. tuberculosis, and its unforeseen contribution to the antibacterial activity of tuberculosis-specific drugs.
Collapse
Affiliation(s)
- Delia Goletti
- Translational Research Unit, Department of Epidemiology and Preclinical Research, INMI, Rome, Italy
| | | | | | | | | |
Collapse
|
118
|
Petkova DS, Viret C, Faure M. IRGM in autophagy and viral infections. Front Immunol 2013; 3:426. [PMID: 23335927 PMCID: PMC3547297 DOI: 10.3389/fimmu.2012.00426] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 12/23/2012] [Indexed: 12/22/2022] Open
Abstract
Autophagy is a cell autonomous process allowing each individual cell to fight intracellular pathogens. Autophagy can destroy pathogens within the cytosol, and can elicit innate and adaptive immune responses against microorganisms. Nevertheless, numerous pathogens have developed molecular strategies enabling them to avoid or even exploit autophagy for their own benefit. IRGM (immunity-related GTPase family M) is a human protein recently highlighted for its contribution to autophagy upon infections. The physical association of IRGM with mitochondria and different autophagy-regulating proteins, ATG5, ATG10, SH3GLB1, and LC3, contribute to explain how IRGM could regulate autophagy. Whereas IRGM is involved in autophagy-mediated immunity against bacteria, certain viruses seem to have developed strategies to manipulate autophagy through the selective targeting of this protein. Furthermore, irgm variants are linked to infection-associated human pathologies such as the inflammatory Crohn’s disease. Here, we discuss how IRGM might contribute to human autophagy upon viral infection, and why its targeting might be beneficial to virus replication.
Collapse
Affiliation(s)
- Denitsa S Petkova
- Laboratory of Autophagy, Infections and Immunity, INSERM, U1111, CIRI, Université Lyon 1 Lyon, France
| | | | | |
Collapse
|
119
|
Abstract
Macroautophagy has recently emerged as an important catabolic process involved not only in innate immunity but also in adaptive immunity. Initially described to deliver intracellular antigens to MHC class II loading compartments, its molecular machinery has now also been described to enhance the delivery of extracellular antigens to MHC class II loading compartments by accelerating phagosome maturation. Therefore in pathological situations (viral or bacterial infections, tumorigenesis) the pathway might be involved in shaping CD4(+) T cell responses.In this chapter we describe three basic experiments for the monitoring and manipulation of macroautophagic antigen processing towards MHC class II presentation. Firstly, we will discuss how to monitor autophagic flux and autophagosome fusion with MHC class II loading compartments. Secondly, we will show how to target proteins to autophagosomes in order to monitor macroautophagy-dependent antigen processing via their enhanced presentation on MHC class II molecules to CD4(+) T cells. And finally, we will describe how macroautophagy can be silenced in antigen presenting cells, like human monocyte-derived dendritic cells (DCs).
Collapse
Affiliation(s)
- Monique Gannage
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Rosa Barreira da Silva
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland.
| |
Collapse
|
120
|
Liu G, Bi Y, Wang R, Wang X. Self-eating and self-defense: autophagy controls innate immunity and adaptive immunity. J Leukoc Biol 2012; 93:511-9. [PMID: 23271703 DOI: 10.1189/jlb.0812389] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Autophagy (macroautophagy; "self-eating") is a degradation process, in which cytoplasmic content is engulfed and degraded by the lysosome. And, immunity is an important mechanism of the "self-defense" system. Autophagy has long been recognized as a stress response to nutrient deprivation. This will provide energy and anabolic building blocks to maintain cellular bioenergetic homeostasis. Thus, autophagy plays critical roles in regulating a wide variety of pathophysiological processes, including tumorigenesis, embryo development, tissue remodeling, and most recently, immunity. The latter shows that a self-eating (autophagy) process could regulate a self-defense (immune) system. In this review, we summarize the recent findings regarding the regulatory and mechanistic insights of the autophagy pathway in immunity.
Collapse
Affiliation(s)
- Guangwei Liu
- Shanghai Medical College, Fudan University, Yixueyuan Rd. 138, Xuhui District, Shanghai, China.
| | | | | | | |
Collapse
|
121
|
Abstract
By convention, peptides presented at the cell surface by MHC class II molecules (MHCII) are derived from internalized ("exogenous") antigen that is denatured and fragmented in the endocytic compartment and loaded onto MHC in the late endosome with the assistance of the H2-DM chaperone. Over the past two decades several alternatives to this pathway have been described but the extent to which they contribute to natural CD4(+) T cell (T(CD4+))) responses has not been assessed, mainly because studies have focused primarily on individual epitopes. My laboratory has begun to address this issue in virus infection models and a picture is emerging in which classical presentation plays a relatively minor role, with a number of alternative presentation pathways collectively accounting for the majority of peptide presentation. The potential ramifications for this fundamentally altered view of MHCII peptide supply are discussed.
Collapse
|
122
|
Bai R, You W, Chen J, Huang H, Ke C. Molecular cloning and expression analysis of GABA(A) receptor-associated protein (GABARAP) from small abalone, Haliotis diversicolor. FISH & SHELLFISH IMMUNOLOGY 2012; 33:675-682. [PMID: 22771962 DOI: 10.1016/j.fsi.2012.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 04/03/2012] [Accepted: 05/07/2012] [Indexed: 06/01/2023]
Abstract
GABA(A) receptor-associated protein (GABARAP), a multifunctional protein participating in autophagy process, is evolutionarily conserved and involves in innate immunity in eukaryotic cells, but currently there is no research on the relationship between GABARAP and innate immunity in mollusc. In the present study, the GABARAP full-length cDNA and its genomic DNA were firstly cloned from small abalone (Haliotis diversicolor), which was named as saGABARAP. Its full-length cDNA is 963 bp with a 354 bp open reading frame encoding a protein of 117 aa, a 276 bp 5'-UTR, and a 333 bp 3'-UTR including a poly(A) tail, two typical polyadenylation signals (AATAA) and two RNA instability motifs (ATTTA). The deduced protein has an estimated molecular weight of 13.9 kDa and a predicted PI of 8.73. Its genomic DNA comprises 4352 bp, containing three exons and two introns. Quantitative real-time PCR analysis revealed that saGABARAP was constitutively expressed in all examined tissues, with the highest expression level in hepatopancreas, and was upregulated in hepatopancreas and hemocytes after bacterial challenge. In addition, saGABARAP was ubiquitously expressed at all examined embryonic and larval development stages. These results suggested that saGABARAP could respond to bacteria challenge and may play a vital role in the adult innate immune system against pathogens and the development process of abalone embryo and larvae.
Collapse
Affiliation(s)
- Rongyao Bai
- Department of Biochemistry and Biotechnology, School of Life Sciences, Xiamen University, Xiamen 361005, China
| | | | | | | | | |
Collapse
|
123
|
Lin YC, Kuo HC, Wang JS, Lin WW. Regulation of inflammatory response by 3-methyladenine involves the coordinative actions on Akt and glycogen synthase kinase 3β rather than autophagy. THE JOURNAL OF IMMUNOLOGY 2012; 189:4154-64. [PMID: 22972931 DOI: 10.4049/jimmunol.1102739] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
3-Methyladenine (3-MA) is one of the most commonly used inhibitors in autophagy research today. However, rather than inhibiting class III PI3K that is involved in autophagy suppression, 3-MA might also interfere with class I PI3K and consequently augment autophagy flux. In this study, we aim to get a thorough understanding on the action mechanisms of 3-MA in TLR4-mediated inflammatory responses in RAW264.7 macrophages and, moreover, to decipher the action of 3-MA in modulation of autophagy. We found that 3-MA could enhance LPS-induced NF-κB activation and production of TNF-α, inducible NO synthase (iNOS), cyclooxygenase-2, IL-1β, and IL-12. In contrast, 3-MA suppressed LPS-induced IFN-β production and STAT signaling. Studies revealed that 3-MA can, through inhibition of Akt as a result of class I PI3K interference, positively regulate p38, JNK, and p65, but negatively regulate TANK-binding kinase 1 and IFN regulatory factor 3 mediated by TLR4. As glycogen synthase kinase 3β (GSK3β) is an important Akt substrate, we further explored its involvement in the actions of 3-MA. 3-MA was found to enhance LPS-induced NF-κB activation, iNOS, and pro-IL-1β expression, and these actions were reversed by either GSK3β inhibitors or small interfering GSK3β. Lastly, we demonstrated that 3-MA acts as an autophagy inducer in RAW264.7 macrophages, but the stimulating effects on NF-κB activation and iNOS and cyclooxygenase-2 expression were not affected in LPS-stimulated macrophages with small interfering autophagy protein-5 treatment. These results not only shed new light on the action mechanisms of 3-MA to differentially regulate inflammatory outcomes derived from TLR4-mediated MyD88 and Toll/IL-1R domain-containing adapter inducing IFN-β pathways, but also highlight the necessity to check autophagy status upon taking 3-MA as a general autophagy inhibitor.
Collapse
Affiliation(s)
- Yi-Chieh Lin
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | | | | | | |
Collapse
|
124
|
Li L, Saade F, Petrovsky N. The future of human DNA vaccines. J Biotechnol 2012; 162:171-82. [PMID: 22981627 DOI: 10.1016/j.jbiotec.2012.08.012] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 08/01/2012] [Accepted: 08/06/2012] [Indexed: 01/03/2023]
Abstract
DNA vaccines have evolved greatly over the last 20 years since their invention, but have yet to become a competitive alternative to conventional protein or carbohydrate based human vaccines. Whilst safety concerns were an initial barrier, the Achilles heel of DNA vaccines remains their poor immunogenicity when compared to protein vaccines. A wide variety of strategies have been developed to optimize DNA vaccine immunogenicity, including codon optimization, genetic adjuvants, electroporation and sophisticated prime-boost regimens, with each of these methods having its advantages and limitations. Whilst each of these methods has contributed to incremental improvements in DNA vaccine efficacy, more is still needed if human DNA vaccines are to succeed commercially. This review foresees a final breakthrough in human DNA vaccines will come from application of the latest cutting-edge technologies, including "epigenetics" and "omics" approaches, alongside traditional techniques to improve immunogenicity such as adjuvants and electroporation, thereby overcoming the current limitations of DNA vaccines in humans.
Collapse
Affiliation(s)
- Lei Li
- Vaxine Pty Ltd, Bedford Park, Adelaide 5042, Australia
| | | | | |
Collapse
|
125
|
Abstract
Pathogen-associated molecular pattern molecules (PAMPs) are derived from microorganisms and recognized by pattern recognition receptor (PRR)-bearing cells of the innate immune system as well as many epithelial cells. In contrast, damage-associated molecular pattern molecules (DAMPs) are cell-derived and initiate and perpetuate immunity in response to trauma, ischemia, and tissue damage, either in the absence or presence of pathogenic infection. Most PAMPs and DAMPs serve as so-called 'Signal 0s' that bind specific receptors [Toll-like receptors, NOD-like receptors, RIG-I-like receptors, AIM2-like receptors, and the receptor for advanced glycation end products (RAGE)] to promote autophagy. Autophagy, a conserved lysosomal degradation pathway, is a cell survival mechanism invoked in response to environmental and cellular stress. Autophagy is inferred to have been present in the last common eukaryotic ancestor and only to have been lost by some obligatory intracellular parasites. As such, autophagy represents a unifying biology, subserving survival and the earliest host defense strategies, predating apoptosis, within eukaryotes. Here, we review recent advances in our understanding of autophagic molecular mechanisms and functions in emergent immunity.
Collapse
Affiliation(s)
- Daolin Tang
- Department of SurgeryUniversity of Pittsburgh Cancer InstitutePittsburghPAUSA
| | - Rui Kang
- Department of SurgeryUniversity of Pittsburgh Cancer InstitutePittsburghPAUSA
| | - Carolyn B. Coyne
- Department of Microbiology and Molecular GeneticsUniversity of PittsburghPittsburghPAUSA
| | - Herbert J. Zeh
- Department of SurgeryUniversity of Pittsburgh Cancer InstitutePittsburghPAUSA
| | - Michael T. Lotze
- Department of SurgeryUniversity of Pittsburgh Cancer InstitutePittsburghPAUSA
| |
Collapse
|
126
|
Chen GY, Yang HJ, Lu CH, Chao YC, Hwang SM, Chen CL, Lo KW, Sung LY, Luo WY, Tuan HY, Hu YC. Simultaneous induction of autophagy and toll-like receptor signaling pathways by graphene oxide. Biomaterials 2012; 33:6559-69. [DOI: 10.1016/j.biomaterials.2012.05.064] [Citation(s) in RCA: 187] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 05/27/2012] [Indexed: 11/15/2022]
|
127
|
Zhou XJ, Zhang H. Autophagy in immunity: implications in etiology of autoimmune/autoinflammatory diseases. Autophagy 2012; 8:1286-99. [PMID: 22878595 DOI: 10.4161/auto.21212] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Autophagy is now emerging as a spotlight in trafficking events that activate innate and adaptive immunity. It facilitates innate pathogen detection and antigen presentation, as well as pathogen clearance and lymphocyte homeostasis. In this review, we first summarize new insights into its functions in immunity, which underlie its associations with autoimmunity. As some lines of evidence are emerging to support its role in autoimmune and autoinflammatory diseases, we further discuss whether and how it affects autoimmune diseases including systemic lupus erythematosus, rheumatoid arthritis, diabetes mellitus and multiple sclerosis, as well as autoinflammatory diseases, such as Crohn disease and vitiligo.
Collapse
Affiliation(s)
- Xu-Jie Zhou
- Renal Division, Department of Medicine, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | | |
Collapse
|
128
|
Romagnoli A, Etna MP, Giacomini E, Pardini M, Remoli ME, Corazzari M, Falasca L, Goletti D, Gafa V, Simeone R, Delogu G, Piacentini M, Brosch R, Fimia GM, Coccia EM. ESX-1 dependent impairment of autophagic flux by Mycobacterium tuberculosis in human dendritic cells. Autophagy 2012; 8:1357-70. [PMID: 22885411 DOI: 10.4161/auto.20881] [Citation(s) in RCA: 211] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Emerging evidence points to an important role of autophagy in the immune response mediated by dendritic cells (DC) against Mycobacterium tuberculosis (Mtb). Since current vaccination based on Bacillus Calmette-Guerin (BCG) is unable to stop the tuberculosis epidemic, a deeper comprehension of the alterations induced by Mtb in DC is essential for setting new vaccine strategies. Here, we compared the capacity of virulent (H37Rv) and avirulent (H37Ra) Mtb strains as well as BCG to modulate autophagy in human primary DC. We found that Mtb H37Rv impairs autophagy at the step of autophagosome-lysosome fusion. In contrast, neither Mtb H37Ra nor BCG strains were able to hamper autophagosome maturation. Both these attenuated strains have a functional inhibition of the 6kD early secreted antigenic target ESAT-6, an effector protein of the ESAT-6 Secretion System-1(ESX-1)/type VII secretion system. Notably, the ability to inhibit autophagy was fully restored in recombinant BCG and Mtb H37Ra strains in which ESAT-6 secretion was re-established by genetic complementation using either the ESX-1 region from Mtb (BCG::ESX-1) or the PhoP gene (Mtb H37Ra::PhoP), a regulator of ESAT-6 secretion. Importantly, the autophagic block induced by Mtb was overcome by rapamycin treatment leading to an increased interleukin-12 expression and, in turn, to an enhanced capacity to expand a Th1-oriented response. Collectively, our study demonstrated that Mtb alters the autophagic machinery through the ESX-1 system, and thereby opens new exciting perspectives to better understand the relationship between Mtb virulence and its ability to escape the DC-mediated immune response.
Collapse
Affiliation(s)
- Alessandra Romagnoli
- Department of Epidemiology and Preclinical Research, National Institute for Infectious Diseases L. Spallanzani, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
129
|
Golden EB, Pellicciotta I, Demaria S, Barcellos-Hoff MH, Formenti SC. The convergence of radiation and immunogenic cell death signaling pathways. Front Oncol 2012; 2:88. [PMID: 22891162 PMCID: PMC3413017 DOI: 10.3389/fonc.2012.00088] [Citation(s) in RCA: 198] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 07/18/2012] [Indexed: 11/13/2022] Open
Abstract
Ionizing radiation (IR) triggers programmed cell death in tumor cells through a variety of highly regulated processes. Radiation-induced tumor cell death has been studied extensively in vitro and is widely attributed to multiple distinct mechanisms, including apoptosis, necrosis, mitotic catastrophe (MC), autophagy, and senescence, which may occur concurrently. When considering tumor cell death in the context of an organism, an emerging body of evidence suggests there is a reciprocal relationship in which radiation stimulates the immune system, which in turn contributes to tumor cell kill. As a result, traditional measurements of radiation-induced tumor cell death, in vitro, fail to represent the extent of clinically observed responses, including reductions in loco-regional failure rates and improvements in metastases free and overall survival. Hence, understanding the immunological responses to the type of radiation-induced cell death is critical. In this review, the mechanisms of radiation-induced tumor cell death are described, with particular focus on immunogenic cell death (ICD). Strategies combining radiotherapy with specific chemotherapies or immunotherapies capable of inducing a repertoire of cancer specific immunogens might potentiate tumor control not only by enhancing cell kill but also through the induction of a successful anti-tumor vaccination that improves patient survival.
Collapse
Affiliation(s)
- Encouse B Golden
- Department of Radiation Oncology, New York University New York, NY, USA
| | | | | | | | | |
Collapse
|
130
|
Li Y, Hahn T, Garrison K, Cui ZH, Thorburn A, Thorburn J, Hu HM, Akporiaye ET. The vitamin E analogue α-TEA stimulates tumor autophagy and enhances antigen cross-presentation. Cancer Res 2012; 72:3535-45. [PMID: 22745370 DOI: 10.1158/0008-5472.can-11-3103] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The semisynthetic vitamin E derivative alpha-tocopheryloxyacetic acid (α-TEA) induces tumor cell apoptosis and may offer a simple adjuvant supplement for cancer therapy if its mechanisms can be better understood. Here we report that α-TEA also triggers tumor cell autophagy and that it improves cross-presentation of tumor antigens to the immune system. α-TEA stimulated both apoptosis and autophagy in murine mammary and lung cancer cells and inhibition of caspase-dependent apoptosis enhanced α-TEA-induced autophagy. Cell exposure to α-TEA generated double-membrane-bound vesicles indicative of autophagosomes, which efficiently cross-primed antigen-specific CD8(+) T cells. Notably, vaccination with dendritic cells pulsed with α-TEA-generated autophagosomes reduced lung metastases and increased the survival of tumor-bearing mice. Taken together, our findings suggest that both autophagy and apoptosis signaling programs are activated during α-TEA-induced tumor cell killing. We suggest that the ability of α-TEA to stimulate autophagy and enhance cross-priming of CD8(+) T cells might be exploited as an adjuvant strategy to improve stimulation of antitumor immune responses.
Collapse
Affiliation(s)
- Yuhuan Li
- Robert W. Franz Cancer Research Center, Earle A. Chiles Research Institute, Providence Portland Medical Center, Portland, Oregon 97213, USA
| | | | | | | | | | | | | | | |
Collapse
|
131
|
Schall N, Page N, Macri C, Chaloin O, Briand JP, Muller S. Peptide-based approaches to treat lupus and other autoimmune diseases. J Autoimmun 2012; 39:143-53. [PMID: 22727561 DOI: 10.1016/j.jaut.2012.05.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 05/20/2012] [Indexed: 01/15/2023]
Abstract
After a long period where the potential of therapeutic peptides was let into oblivion and even dismissed, there is a revival of interest in peptides as potential drug candidates. Novel strategies for limiting metabolism and improve their bioavailability, and alternative routes of administration have emerged. This resulted in a large number of peptide-based drugs that are now being marketed in different indications. Regarding autoimmunity, successful data have been reported in numerous mouse models of autoimmune inflammation, yet relatively few clinical trials based on synthetic peptides are currently underway. This review reports on peptides that show much promises in appropriate mouse models of autoimmunity and describes in more detail clinical trials based on peptides for treating autoimmune patients. A particular emphasis is given to the 21-mer peptide P140/Lupuzor that has completed successfully phase I, phase IIa and phase IIb clinical trials for systemic lupus erythematosus.
Collapse
Affiliation(s)
- Nicolas Schall
- CNRS, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | | | | | | | | | | |
Collapse
|
132
|
Autophagy mediates transporter associated with antigen processing-independent presentation of viral epitopes through MHC class I pathway. Blood 2012; 120:994-1004. [PMID: 22723550 DOI: 10.1182/blood-2012-01-402404] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The endogenous presentation of the majority of viral epitopes through MHC class I pathway is strictly dependent on the transporter associated with antigen processing (TAP) complex, which transfers the peptide products of proteasomal degradation into the endoplasmic reticulum. A small number of epitopes can be presented through the TAP-independent pathway, the precise mechanism for which remains largely unresolved. Here we show that TAP-independent presentation can be mediated by autophagy and that this process uses the vacuolar pathway and not the conventional secretory pathway. After macroautophagy, the antigen is processed through a proteasome-independent pathway, and the peptide epitopes are loaded within the autophagolysosomal compartment in a process facilitated by the relative acid stability of the peptide-MHC interaction. Despite bypassing much of the conventional MHC class I pathway, the autophagy-mediated pathway generates the same epitope as that generated through the conventional pathway and thus may have a role in circumventing viral immune evasion strategies that primarily target the conventional pathway.
Collapse
|
133
|
Lundegaard C, Lund O, Nielsen M. Predictions versus high-throughput experiments in T-cell epitope discovery: competition or synergy? Expert Rev Vaccines 2012; 11:43-54. [PMID: 22149708 DOI: 10.1586/erv.11.160] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Prediction methods as well as experimental methods for T-cell epitope discovery have developed significantly in recent years. High-throughput experimental methods have made it possible to perform full-length protein scans for epitopes restricted to a limited number of MHC alleles. The high costs and limitations regarding the number of proteins and MHC alleles that are feasibly handled by such experimental methods have made in silico prediction models of high interest. MHC binding prediction methods are today of a very high quality and can predict MHC binding peptides with high accuracy. This is possible for a large range of MHC alleles and relevant length of binding peptides. The predictions can easily be performed for complete proteomes of any size. Prediction methods are still, however, dependent on good experimental methods for validation, and should merely be used as a guide for rational epitope discovery. We expect prediction methods as well as experimental validation methods to continue to develop and that we will soon see clinical trials of products whose development has been guided by prediction methods.
Collapse
Affiliation(s)
- Claus Lundegaard
- Technical University of Denmark-DTU, Center for Biological Sequence Analysis, Department of Systems Biology, Kemitorvet 208, DK 2800, Kgs. Lyngby, Denmark
| | | | | |
Collapse
|
134
|
Devenish RJ, Klionsky DJ. Autophagy: mechanism and physiological relevance 'brewed' from yeast studies. Front Biosci (Schol Ed) 2012; 4:1354-63. [PMID: 22652877 DOI: 10.2741/s337] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Autophagy is a highly conserved process of quality control occurring inside cells by which cytoplasmic material can be degraded and the products recycled for use as new building blocks or for energy production. The rapid progress and 'explosion' of knowledge concerning autophagic processes in mammals/humans that has occurred over the last 15 years was driven by fundamental studies in yeast, principally using Saccharomyces cerevisiae, leading to the identification and cloning of genes required for autophagy. This chapter reviews the role of yeast studies in understanding the molecular mechanisms of autophagic processes, focusing on aspects that are conserved in mammals/humans and how autophagy is increasingly implicated in the pathogenesis of disease and is required for development and differentiation.
Collapse
Affiliation(s)
- Rodney J Devenish
- Department of Biochemistry and Molecular Biology, Monash University, Clayton campus, Victoria 3800, Australia.
| | | |
Collapse
|
135
|
Dutta RK, Kathania M, Raje M, Majumdar S. IL-6 inhibits IFN-γ induced autophagy in Mycobacterium tuberculosis H37Rv infected macrophages. Int J Biochem Cell Biol 2012; 44:942-54. [DOI: 10.1016/j.biocel.2012.02.021] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 02/22/2012] [Accepted: 02/29/2012] [Indexed: 01/07/2023]
|
136
|
Killian M. Dual role of autophagy in HIV-1 replication and pathogenesis. AIDS Res Ther 2012; 9:16. [PMID: 22606989 PMCID: PMC3514335 DOI: 10.1186/1742-6405-9-16] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 04/21/2012] [Indexed: 12/19/2022] Open
Abstract
Autophagy, the major mechanism for degrading long-lived intracellular proteins and organelles, is essential for eukaryotic cell homeostasis. Autophagy also defends the cell against invasion by microorganisms and has important roles in innate and adaptive immunity. Increasingly evident is that HIV-1 replication is dependent on select components of autophagy. Fittingly, HIV-1 proteins are able to modulate autophagy to maximize virus production. At the same time, HIV-1 proteins appear to disrupt autophagy in uninfected cells, thereby contributing to CD4+ cell death and HIV-1 pathogenesis. These observations allow for new approaches for the treatment and possibly the prevention of HIV-1 infection. This review focuses on the relationship between autophagy and HIV-1 infection. Discussed is how autophagy plays dual roles in HIV-1 replication and HIV-1 disease progression.
Collapse
|
137
|
Borges TJ, Wieten L, van Herwijnen MJC, Broere F, van der Zee R, Bonorino C, van Eden W. The anti-inflammatory mechanisms of Hsp70. Front Immunol 2012; 3:95. [PMID: 22566973 PMCID: PMC3343630 DOI: 10.3389/fimmu.2012.00095] [Citation(s) in RCA: 184] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 04/11/2012] [Indexed: 01/08/2023] Open
Abstract
Immune responses to heat shock proteins (Hsp) develop in virtually all inflammatory diseases; however, the significance of such responses is only now becoming clear. In experimental disease models, Hsp administration can prevent or arrest inflammatory damage, and in initial clinical trials in patients with chronic inflammatory diseases, Hsp peptides have been shown to promote the production of anti-inflammatory cytokines, indicating immunoregulatory potential of Hsp. Therefore, the presence of immune responses to Hsp in inflammatory diseases can be seen as an attempt of the immune system to correct the inflammatory condition. Hsp70 can modulate inflammatory responses in models of arthritis, colitis and graft rejection, and the mechanisms underlying this effect are now being elucidated. Incubation with microbial Hsp70 was seen to induce tolerogenic dendritic cells (DCs) and to promote a suppressive phenotype in myeloid-derived suppressor cells and monocytes. These DC could induce regulatory T cells (Tregs), independently of the antigens they presented. Some Hsp70 family members are associated with autophagy, leading to a preferential uploading of Hsp70 peptides in MHC class II molecules of stressed cells. Henceforth, conserved Hsp70 peptides may be presented in these situations and constitute targets of Tregs, contributing to downregulation of inflammation. Finally, an interfering effect in multiple intracellular inflammatory signaling pathways is also known for Hsp70. Altogether it seems attractive to use Hsp70, or its derivative peptides, for modulation of inflammation. This is a physiological immunotherapy approach, without the immediate necessity of defining disease-specific auto-antigens. In this article, we present the evidence on anti-inflammatory effects of Hsp70 and discuss the need for experiments that will be crucial for the further exploration of the immunosuppressive potential of this protein.
Collapse
Affiliation(s)
- Thiago J Borges
- Faculdade de Biociências e Instituto de Pesquisas Biomédicas, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | | | | | | | | | | | | |
Collapse
|
138
|
Rosello A, Warnes G, Meier UC. Cell death pathways and autophagy in the central nervous system and its involvement in neurodegeneration, immunity and central nervous system infection: to die or not to die--that is the question. Clin Exp Immunol 2012; 168:52-7. [PMID: 22385237 DOI: 10.1111/j.1365-2249.2011.04544.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Death rules our lives. In this short paper, we summarize new insights into molecular mechanisms of neurodegeneration. Here we review the most important processes of cell death: apoptosis and oncosis. We focus on autophagy, which is pivotal for neuronal homeostasis, in the context of neurodegeneration, infection and immunity. Its dysfunction has been linked to several neurodegenerative diseases such as Parkinson's, Huntington's and Alzheimer's diseases. Our understanding is still incomplete, but may highlight attractive new avenues for the development of treatment strategies to combat neurodegenerative diseases.
Collapse
Affiliation(s)
- A Rosello
- Neuroimmunology Group, Centre for Neuroscience and Trauma, Flow Cytometry Group, Blizard Institute, Queen Mary University of London, Barts and The London, London, UK
| | | | | |
Collapse
|
139
|
De Luca A, Iannitti RG, Bozza S, Beau R, Casagrande A, D'Angelo C, Moretti S, Cunha C, Giovannini G, Massi-Benedetti C, Carvalho A, Boon L, Latgé JP, Romani L. CD4(+) T cell vaccination overcomes defective cross-presentation of fungal antigens in a mouse model of chronic granulomatous disease. J Clin Invest 2012; 122:1816-31. [PMID: 22523066 DOI: 10.1172/jci60862] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 02/15/2012] [Indexed: 12/27/2022] Open
Abstract
Aspergillus fumigatus is a model fungal pathogen and a common cause of infection in individuals with the primary immunodeficiency chronic granulomatous disease (CGD). Although primarily considered a deficiency of innate immunity, CGD is also linked to dysfunctional T cell reactivity. Both CD4(+) and CD8(+) T cells mediate vaccine-induced protection from experimental aspergillosis, but the molecular mechanisms leading to the generation of protective immunity and whether these mechanisms are dysregulated in individuals with CGD have not been determined. Here, we show that activation of either T cell subset in a mouse model of CGD is contingent upon the nature of the fungal vaccine, the involvement of distinct innate receptor signaling pathways, and the mode of antigen routing and presentation in DCs. Aspergillus conidia activated CD8(+) T cells upon sorting to the Rab14(+) endosomal compartment required for alternative MHC class I presentation. Cross-priming of CD8(+) T cells failed to occur in mice with CGD due to defective DC endosomal alkalinization and autophagy. However, long-lasting antifungal protection and disease control were successfully achieved upon vaccination with purified fungal antigens that activated CD4(+) T cells through the endosome/lysosome pathway. Our study thus indicates that distinct intracellular pathways are exploited for the priming of CD4(+) and CD8(+) T cells to A. fumigatus and suggests that CD4(+) T cell vaccination may be able to overcome defective antifungal CD8(+) T cell memory in individuals with CGD.
Collapse
Affiliation(s)
- Antonella De Luca
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
140
|
Mintern JD, Villadangos JA. Autophagy and mechanisms of effective immunity. Front Immunol 2012; 3:60. [PMID: 22566941 PMCID: PMC3342370 DOI: 10.3389/fimmu.2012.00060] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 03/08/2012] [Indexed: 01/27/2023] Open
Abstract
Macroautophagy (autophagy) is a cellular pathway facilitating several critical functions. First, autophagy is a major pathway of degradation. It enables elimination of microbes that have invaded intracellular compartments. In addition, it promotes degradation of damaged cellular content, thereby acting to limit inflammatory signals. Second, autophagy is a major trafficking pathway, shuttling content between the cytosol and the lysosomal compartment. Given these two key roles, autophagy can have significant and sometimes unexpected consequences on mechanisms that initiate robust immunity. Here, we will discuss the impact of autophagy on pathways of innate and adaptive immune responses including microbe elimination, inflammatory cytokine production, antigen processing and T and B lymphocyte immunity.
Collapse
Affiliation(s)
- Justine D Mintern
- Department of Biochemistry and Molecular Biology, The University of Melbourne Parkville, VIC, Australia
| | | |
Collapse
|
141
|
Alexandropoulos K, Danzl NM. Thymic epithelial cells: antigen presenting cells that regulate T cell repertoire and tolerance development. Immunol Res 2012; 54:177-90. [DOI: 10.1007/s12026-012-8301-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
142
|
Stoeckle C, Quecke P, Rückrich T, Burster T, Reich M, Weber E, Kalbacher H, Driessen C, Melms A, Tolosa E. Cathepsin S dominates autoantigen processing in human thymic dendritic cells. J Autoimmun 2012; 38:332-43. [PMID: 22424724 DOI: 10.1016/j.jaut.2012.02.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 02/25/2012] [Accepted: 02/26/2012] [Indexed: 10/28/2022]
Abstract
The interaction of developing thymocytes with peptide-MHC complexes on thymic antigen presenting cells (APC) is crucial for T cell development, both for positive selection of "useful" thymocytes as well as negative selection of autoreactive thymocytes to prevent autoimmunity. The peptides presented on MHC II molecules are generated by lysosomal proteases such as the cathepsins. At the same time, lysosomal proteases will also destroy other potential T cell epitopes from self-antigens. This will lead to a lack of presentation on negatively selecting thymic antigen presenting cells and consequently, escape of autoreactive T cells recognizing these epitopes. In order to understand the processes that govern generation or destruction of self-epitopes in thymic APC, we studied the antigen processing machinery and epitope processing in the human thymus. We find that each type of thymic APC expresses a different signature of lysosomal proteases, providing indirect evidence that positive and negative selection of CD4(+) T cells might occur on different sets of peptides, in analogy to what has been proposed for CD8(+) T cells. We also find that myeloid dendritic cells (DC) are more efficient in processing autoantigen than plasmacytoid DC. In addition, we observed that cathepsin S plays a central role in processing of the autoantigens myelin basic protein and proinsulin in thymic dendritic cells. Cathepsin S destroyed a number of known T cell epitopes, which would be expected to result in lack of presentation and consequently, escape of autoreactive T cells. Cathepsin S therefore appears to be an important factor that influences selection of autoreactive T cells.
Collapse
Affiliation(s)
- Christina Stoeckle
- Hertie Institute for Clinical Brain Research, University of Tuebingen, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
143
|
Abstract
Autophagy is a specialized cellular pathway involved in maintaining homeostasis by degrading long-lived cellular proteins and organelles. Recent studies have demonstrated that autophagy is utilized by immune systems to protect host cells from invading pathogens and regulate uncontrolled immune responses. During pathogen recognition, induction of autophagy by pattern recognition receptors leads to the promotion or inhibition of consequent signaling pathways. Furthermore, autophagy plays a role in the delivery of pathogen signatures in order to promote the recognition thereof by pattern recognition receptors. In addition to innate recognition, autophagy has been shown to facilitate MHC class II presentation of intracellular antigens to activate CD4 T cells. In this review, we describe the roles of autophagy in innate recognition of pathogens and adaptive immunity, such as antigen presentation, as well as the clinical relevance of autophagy in the treatment of human diseases.
Collapse
Affiliation(s)
- Ji Eun Oh
- Laboratory of Host Defenses, Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Heung Kyu Lee
- Laboratory of Host Defenses, Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| |
Collapse
|
144
|
Baek KH, Park J, Shin I. Autophagy-regulating small molecules and their therapeutic applications. Chem Soc Rev 2012; 41:3245-63. [PMID: 22293658 DOI: 10.1039/c2cs15328a] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Autophagy or self-eating is a complicated cellular process that is involved in protein and organelle digestion occurring via a lysosome-dependent pathway. This process is of great importance in maintaining normal cellular homeostasis. However, disruption of autophagy is closely associated with various human diseases such as cancer, neurodegenerative disorders, heart disease and pathogen infection. Therefore, small molecules that modulate autophagy can be employed to dissect this complex process and ultimately could have high potential for the treatment of a variety of diseases. This critical review discusses general aspects of autophagy, autophagy-associated diseases and autophagy regulators for biological research and therapeutic applications (207 references).
Collapse
Affiliation(s)
- Kyung-Hwa Baek
- Center for Biofunctional Molecules, Department of Chemistry, Yonsei University, Seoul 120-749, Korea
| | | | | |
Collapse
|
145
|
Kleinnijenhuis J, Oosting M, Plantinga TS, van der Meer JWM, Joosten LAB, Crevel RV, Netea MG. Autophagy modulates the Mycobacterium tuberculosis-induced cytokine response. Immunology 2011; 134:341-8. [PMID: 21978003 PMCID: PMC3209573 DOI: 10.1111/j.1365-2567.2011.03494.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 07/21/2011] [Accepted: 07/26/2011] [Indexed: 11/26/2022] Open
Abstract
Both autophagy and pro-inflammatory cytokines are involved in the host defence against mycobacteria, but little is known regarding the effect of autophagy on Mycobacterium tuberculosis (MTB)-induced cytokine production. In the present study, we assessed the effect of autophagy on production of monocyte-derived and T-cell-derived cytokines, and examined whether two functional polymorphisms in autophagy genes led to altered cytokine production. Blocking autophagy inhibited tumour necrosis factor-α (TNF-α) production, while enhancing interleukin-1β (IL-1β) production in peripheral blood mononuclear cells stimulated with MTB. Induction of autophagy by starvation or interferon-γ (IFN-γ) had the opposite effect. The modulation of both TNF-α and IL-1β production by autophagy was induced at the level of gene transcription. Functional polymorphisms in the autophagy genes ATG16L1 and IRGM did not have a major impact on MTB-induced cytokine production in healthy volunteers, although a moderate effect was observed on IFN-γ production by the ATG16L1 T300A polymorphism. These data demonstrate the interplay between autophagy and inflammation during host defence against mycobacteria, and future studies to investigate the clinical implications of these effects for the susceptibility to tuberculosis are warranted.
Collapse
|
146
|
Wilkinson S, Croft DR, O'Prey J, Meedendorp A, O'Prey M, Dufès C, Ryan KM. The cyclin-dependent kinase PITSLRE/CDK11 is required for successful autophagy. Autophagy 2011; 7:1295-301. [PMID: 21808150 PMCID: PMC3242795 DOI: 10.4161/auto.7.11.16646] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Revised: 07/13/2011] [Accepted: 07/18/2011] [Indexed: 12/12/2022] Open
Abstract
(Macro)autophagy is a membrane-trafficking process that serves to sequester cellular constituents in organelles termed autophagosomes, which target their degradation in the lysosome. Autophagy operates at basal levels in all cells where it serves as a homeostatic mechanism to maintain cellular integrity. The levels and cargoes of autophagy can, however, change in response to a variety of stimuli, and perturbations in autophagy are known to be involved in the aetiology of various human diseases. Autophagy must therefore be tightly controlled. We report here that the Drosophila cyclin-dependent kinase PITSLRE is a modulator of autophagy. Loss of the human PITSLRE orthologue, CDK11, initially appears to induce autophagy, but at later time points CDK11 is critically required for autophagic flux and cargo digestion. Since PITSLRE/CDK11 regulates autophagy in both Drosophila and human cells, this kinase represents a novel phylogenetically conserved component of the autophagy machinery.
Collapse
Affiliation(s)
- Simon Wilkinson
- Tumour Cell Death Laboratory, Beatson Institute for Cancer Research, Glasgow, UK.
| | | | | | | | | | | | | |
Collapse
|
147
|
Host cell autophagy in immune response to zoonotic infections. Clin Dev Immunol 2011; 2012:910525. [PMID: 22110539 PMCID: PMC3205612 DOI: 10.1155/2012/910525] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2011] [Accepted: 09/26/2011] [Indexed: 12/15/2022]
Abstract
Autophagy is a fundamental homeostatic process in which cytoplasmic targets are sequestered within double-membraned autophagosomes and subsequently delivered to lysosomes for degradation. Accumulating evidence supports the pivotal role of autophagy in host defense against intracellular pathogens implicating both innate and adaptive immunity. Many of these pathogens cause common zoonotic infections worldwide. The induction of the autophagic machinery by innate immune receptors signaling, such as TLRs, NOD1/2, and p62/SQSTM1 in antigen-presenting cells results in inhibition of survival and elimination of invading pathogens. Furthermore, Th1 cytokines induce the autophagic process, whereas autophagy also contributes to antigen processing and MHC class II presentation, linking innate to adaptive immunity. However, several pathogens have developed strategies to avoid autophagy or exploit autophagic machinery to their advantage. This paper focuses on the role of host cell autophagy in the regulation of immune response against intracellular pathogens, emphasizing on selected bacterial and protozoan zoonoses.
Collapse
|
148
|
Noman MZ, Janji B, Kaminska B, Van Moer K, Pierson S, Przanowski P, Buart S, Berchem G, Romero P, Mami-Chouaib F, Chouaib S. Blocking hypoxia-induced autophagy in tumors restores cytotoxic T-cell activity and promotes regression. Cancer Res 2011; 71:5976-86. [PMID: 21810913 DOI: 10.1158/0008-5472.can-11-1094] [Citation(s) in RCA: 204] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The relationship between hypoxic stress, autophagy, and specific cell-mediated cytotoxicity remains unknown. This study shows that hypoxia-induced resistance of lung tumor to cytolytic T lymphocyte (CTL)-mediated lysis is associated with autophagy induction in target cells. In turn, this correlates with STAT3 phosphorylation on tyrosine 705 residue (pSTAT3) and HIF-1α accumulation. Inhibition of autophagy by siRNA targeting of either beclin1 or Atg5 resulted in impairment of pSTAT3 and restoration of hypoxic tumor cell susceptibility to CTL-mediated lysis. Furthermore, inhibition of pSTAT3 in hypoxic Atg5 or beclin1-targeted tumor cells was found to be associated with the inhibition Src kinase (pSrc). Autophagy-induced pSTAT3 and pSrc regulation seemed to involve the ubiquitin proteasome system and p62/SQSTM1. In vivo experiments using B16-F10 melanoma tumor cells indicated that depletion of beclin1 resulted in an inhibition of B16-F10 tumor growth and increased tumor apoptosis. Moreover, in vivo inhibition of autophagy by hydroxychloroquine in B16-F10 tumor-bearing mice and mice vaccinated with tyrosinase-related protein-2 peptide dramatically increased tumor growth inhibition. Collectively, this study establishes a novel functional link between hypoxia-induced autophagy and the regulation of antigen-specific T-cell lysis and points to a major role of autophagy in the control of in vivo tumor growth.
Collapse
Affiliation(s)
- Muhammad Zaeem Noman
- Unité INSERM U753, Institut de Cancérologie Gustave Roussy, Villejuif Cedex, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
149
|
Münz C. Antigen processing by macroautophagy for MHC presentation. Front Immunol 2011; 2:42. [PMID: 22566832 PMCID: PMC3342048 DOI: 10.3389/fimmu.2011.00042] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 08/22/2011] [Indexed: 12/16/2022] Open
Abstract
T cells recognize antigen fragments, presented to them by MHC molecules. It lies in the interest of the immune system to display a maximal diversity of these peptides and utilize all catabolic processes to generate them. Macroautophagy, a pathway that delivers cytoplasmic constituents for lysosomal degradation is no exception. In recent years, it has become apparent that macroautophagy assists in intra- and extracellular antigen processing for MHC class II presentation to CD4+ helper T cells. Surprisingly, however, macroautophagy also assists in antigen packaging for better cross-presentation on MHC molecules of bystander cells, which could be consistent with its role in unconventional protein secretion. These three pathways of antigen processing for MHC presentation via macroautophagy will be discussed in this review and cell biological aspects will be high-lighted that might explain, how the molecular machinery of macroautophagy might assist these diverse antigen processing pathways.
Collapse
Affiliation(s)
- Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich Zürich, Switzerland.
| |
Collapse
|
150
|
Saleh M. The machinery of Nod-like receptors: refining the paths to immunity and cell death. Immunol Rev 2011; 243:235-46. [DOI: 10.1111/j.1600-065x.2011.01045.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|