101
|
Lee YW, Cho HJ, Lee WH, Sonntag WE. Whole brain radiation-induced cognitive impairment: pathophysiological mechanisms and therapeutic targets. Biomol Ther (Seoul) 2013; 20:357-70. [PMID: 24009822 PMCID: PMC3762274 DOI: 10.4062/biomolther.2012.20.4.357] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/21/2012] [Accepted: 07/04/2012] [Indexed: 12/19/2022] Open
Abstract
Radiation therapy, the most commonly used for the treatment of brain tumors, has been shown to be of major significance in tu-mor control and survival rate of brain tumor patients. About 200,000 patients with brain tumor are treated with either partial large field or whole brain radiation every year in the United States. The use of radiation therapy for treatment of brain tumors, however, may lead to devastating functional deficits in brain several months to years after treatment. In particular, whole brain radiation therapy results in a significant reduction in learning and memory in brain tumor patients as long-term consequences of treatment. Although a number of in vitro and in vivo studies have demonstrated the pathogenesis of radiation-mediated brain injury, the cel-lular and molecular mechanisms by which radiation induces damage to normal tissue in brain remain largely unknown. Therefore, this review focuses on the pathophysiological mechanisms of whole brain radiation-induced cognitive impairment and the iden-tification of novel therapeutic targets. Specifically, we review the current knowledge about the effects of whole brain radiation on pro-oxidative and pro-inflammatory pathways, matrix metalloproteinases (MMPs)/tissue inhibitors of metalloproteinases (TIMPs) system and extracellular matrix (ECM), and physiological angiogenesis in brain. These studies may provide a foundation for defin-ing a new cellular and molecular basis related to the etiology of cognitive impairment that occurs among patients in response to whole brain radiation therapy. It may also lead to new opportunities for therapeutic interventions for brain tumor patients who are undergoing whole brain radiation therapy.
Collapse
Affiliation(s)
- Yong Woo Lee
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA 24061, USA ; School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | | | | | | |
Collapse
|
102
|
Andersson O, Hansen SH, Hellman K, Olsen LR, Andersson G, Badolo L, Svenstrup N, Nielsen PA. The grasshopper: a novel model for assessing vertebrate brain uptake. J Pharmacol Exp Ther 2013; 346:211-8. [PMID: 23671124 DOI: 10.1124/jpet.113.205476] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/07/2023] Open
Abstract
The aim of the present study was to develop a blood-brain barrier (BBB) permeability model that is applicable in the drug discovery phase. The BBB ensures proper neural function, but it restricts many drugs from entering the brain, and this complicates the development of new drugs against central nervous system diseases. Many in vitro models have been developed to predict BBB permeability, but the permeability characteristics of the human BBB are notoriously complex and hard to predict. Consequently, one single suitable BBB permeability screening model, which is generally applicable in the early drug discovery phase, does not yet exist. A new refined ex vivo insect-based BBB screening model that uses an intact, viable whole brain under controlled in vitro-like exposure conditions is presented. This model uses intact brains from desert locusts, which are placed in a well containing the compound solubilized in an insect buffer. After a limited time, the brain is removed and the compound concentration in the brain is measured by conventional liquid chromatography-mass spectrometry. The data presented here include 25 known drugs, and the data show that the ex vivo insect model can be used to measure the brain uptake over the hemolymph-brain barrier of drugs and that the brain uptake shows linear correlation with in situ perfusion data obtained in vertebrates. Moreover, this study shows that the insect ex vivo model is able to identify P-glycoprotein (Pgp) substrates, and the model allows differentiation between low-permeability compounds and compounds that are Pgp substrates.
Collapse
|
103
|
Sotnikov I, Veremeyko T, Starossom SC, Barteneva N, Weiner HL, Ponomarev ED. Platelets recognize brain-specific glycolipid structures, respond to neurovascular damage and promote neuroinflammation. PLoS One 2013; 8:e58979. [PMID: 23555611 PMCID: PMC3608633 DOI: 10.1371/journal.pone.0058979] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/07/2012] [Accepted: 02/11/2013] [Indexed: 11/23/2022] Open
Abstract
Platelets respond to vascular damage and contribute to inflammation, but their role in the neurodegenerative diseases is unknown. We found that the systemic administration of brain lipid rafts induced a massive platelet activation and degranulation resulting in a life-threatening anaphylactic-like response in mice. Platelets were engaged by the sialated glycosphingolipids (gangliosides) integrated in the rigid structures of astroglial and neuronal lipid rafts. The brain-abundant gangliosides GT1b and GQ1b were specifically recognized by the platelets and this recognition involved multiple receptors with P-selectin (CD62P) playing the central role. During the neuroinflammation, platelets accumulated in the central nervous system parenchyma, acquired an activated phenotype and secreted proinflammatory factors, thereby triggering immune response cascades. This study determines a new role of platelets which directly recognize a neuronal damage and communicate with the cells of the immune system in the pathogenesis of neurodegenerative diseases.
Collapse
Affiliation(s)
- Ilya Sotnikov
- Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Neonatal-Perinatal Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Tatyana Veremeyko
- Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Sarah C. Starossom
- Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Natalia Barteneva
- The Immune Disease Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Howard L. Weiner
- Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail: (EDP); (HLW)
| | - Eugene D. Ponomarev
- Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- School for Biomedical Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
- * E-mail: (EDP); (HLW)
| |
Collapse
|
104
|
Mohammadi E, Ghaedi K, Esmailie A, Rahgozar S. Gene expression profiling of liver X receptor α and Bcl-2-associated X protein in experimental transection spinal cord-injured rats. J Spinal Cord Med 2013; 36:66-71. [PMID: 23433337 PMCID: PMC3555109 DOI: 10.1179/2045772312y.0000000032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Study of molecular responses to central nervous system injury would be helpful for controlling the harmful pathways post-injury and triggering the useful pathways required for the treatment of injury. OBJECTIVE To investigate the expression level of liver X receptor α (LXRα) which has anti-inflammatory effects and pro-apoptotic Bcl-2-associated X protein (Bax) upon spinal cord injury (SCI). DESIGN To induce SCI, transection was carried out at T9 level of male Wister rats. Approximately 8 mm of rostral, caudal, and epicenter tissues of injured sites in treated rats were chosen for quantitative real-time polymerase chain reaction at the 6, 24, and 72 hours, and 7 and 10 days post-surgery. RESULTS Our results showed a complicated temporal and spatial pattern of alteration in LXRα and Bax mRNA expression levels after SCI. LXRα expression level followed a homologues pattern (additive and subtractive wave) with a difference in time at three areas of studied. Rostral, caudal, and epicenter expression patterns of Bax were dissimilar in these areas. Gradual increase in the expression of Bax without any decrease at the rostral area was observed, presumably indicating the active transcription process of this gene, regardless of its protein situation. CONCLUSION A time lapse significant change in Bax expression level was observed only in the epicenter of injury, emphasizing that apoptotic responses are limited to this area. Furthermore, an increase in LXRα transcription level was observed first in rostral area and then extended to epicentral and caudal areas, implying that inflammation responses extended from rostral to caudal areas.
Collapse
Affiliation(s)
| | - Kamran Ghaedi
- Correspondence to: Kamran Ghaedi (Ph.D.), Biology Department, School of Sciences, University of Isfahan, Hezar jerib Ave., Azadi Sq., Postal Code 73441-81746 Isfahan, Iran. Tel No.: +98-311-7932479; Fax No.: +98-311-7932456.
| | | | | |
Collapse
|
105
|
Pérez-Gómez R, Slováková J, Rives-Quinto N, Krejci A, Carmena A. A Serrate-Notch-Canoe complex mediates glial-neuroepithelial cell interactions essential during Drosophila optic lobe development. J Cell Sci 2013; 126:4873-84. [DOI: 10.1242/jcs.125617] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/03/2023] Open
Abstract
It is firmly established that neuron-glia interactions are fundamental across species for the correct establishment of a functional brain. Here, we found that the glia of the Drosophila larval brain display an essential non-autonomous role during the development of the optic lobe. The optic lobe develops from neuroepithelial cells that proliferate by dividing symmetrically until they switch to asymmetric/differentiative divisions generating neuroblasts. The proneural gene lethal of scute (l'sc) is transiently activated by the Epidermal Growth Factor Receptor (EGFR)/Ras signal transduction pathway at the leading edge of a proneural wave that sweeps from medial to lateral neuroepithelium promoting this switch. This process is tightly regulated by the tissue-autonomous function within the neuroepithelium of multiple signaling pathways, including EGFR/Ras and Notch. This study shows that the Notch ligand Serrate (Ser) is expressed in the glia and it forms a complex in vivo with Notch and Canoe, which colocalize at the adherens junctions of neuroepithelial cells. This complex is crucial for glial-neuroepithelial cell interactions during optic lobe development. Ser is tissue-autonomously required in the glia where it activates Notch to regulate its proliferation, and non-autonomously in the neuroepithelium where Ser induces Notch signaling to avoid the premature activation of the EGFR/Ras pathway and hence of L'sc. Interestingly, different Notch activity reporters showed very different expression patterns in the glia and in the neuroepithelium, suggesting the existence of tissue-specific factors that promote the expression of particular Notch target genes or/and a reporter response dependent on different thresholds of Notch signaling.
Collapse
|
106
|
Abstract
Many inborn errors of metabolism (IEMs) are associated with irreversible brain injury. For many, it is unclear how metabolite intoxication or substrate depletion accounts for the specific neurologic findings observed. IEM-associated brain injury patterns are characterized by whether the process involves gray matter, white matter, or both, and beyond that, whether subcortical or cortical gray matter nuclei are involved. Despite global insults, IEMs may result in selective injury to deep gray matter nuclei or white matter. This manuscript reviews the neuro-imaging patterns of neural injury in selected disorders of metabolism involving small molecule and macromolecular disorders (ie, Phenylketonuria, urea cycle disorders, and maple syrup urine disease) and discusses the contribution of diet and nutrition to the prevention or exacerbation of injury in selected inborn metabolic disorders. Where known, a review of the roles of individual differences in blood-brain permeability and transport mechanisms in the etiology of these disorders will be discussed.
Collapse
Affiliation(s)
- Andrea L. Gropman
- Departments of Pediatrics and Neurology, Children’s National Medical Center and the George Washington University of the Health Sciences, Washington, DC
| |
Collapse
|
107
|
Lien CF, Mohanta SK, Frontczak-Baniewicz M, Swinny JD, Zablocka B, Górecki DC. Absence of glial α-dystrobrevin causes abnormalities of the blood-brain barrier and progressive brain edema. J Biol Chem 2012; 287:41374-85. [PMID: 23043099 DOI: 10.1074/jbc.m112.400044] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/06/2022] Open
Abstract
The blood-brain barrier (BBB) plays a key role in maintaining brain functionality. Although mammalian BBB is formed by endothelial cells, its function requires interactions between endotheliocytes and glia. To understand the molecular mechanisms involved in these interactions is currently a major challenge. We show here that α-dystrobrevin (α-DB), a protein contributing to dystrophin-associated protein scaffolds in astrocytic endfeet, is essential for the formation and functioning of BBB. The absence of α-DB in null brains resulted in abnormal brain capillary permeability, progressively escalating brain edema, and damage of the neurovascular unit. Analyses in situ and in two-dimensional and three-dimensional in vitro models of BBB containing α-DB-null astrocytes demonstrated these abnormalities to be associated with loss of aquaporin-4 water and Kir4.1 potassium channels from glial endfeet, formation of intracellular vacuoles in α-DB-null astrocytes, and defects of the astrocyte-endothelial interactions. These caused deregulation of tight junction proteins in the endothelia. Importantly, α-DB but not dystrophins showed continuous expression throughout development in BBB models. Thus, α-DB emerges as a central organizer of dystrophin-associated protein in glial endfeet and a rare example of a glial protein with a role in maintaining BBB function. Its abnormalities might therefore lead to BBB dysfunction.
Collapse
Affiliation(s)
- Chun Fu Lien
- Molecular Medicine, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DT, United Kingdom
| | | | | | | | | | | |
Collapse
|
108
|
Treat LH, McDannold N, Zhang Y, Vykhodtseva N, Hynynen K. Improved anti-tumor effect of liposomal doxorubicin after targeted blood-brain barrier disruption by MRI-guided focused ultrasound in rat glioma. ULTRASOUND IN MEDICINE & BIOLOGY 2012; 38:1716-25. [PMID: 22818878 PMCID: PMC3438387 DOI: 10.1016/j.ultrasmedbio.2012.04.015] [Citation(s) in RCA: 223] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 12/14/2011] [Revised: 04/16/2012] [Accepted: 04/20/2012] [Indexed: 05/22/2023]
Abstract
The blood-brain barrier (BBB) inhibits the entry of the majority of chemotherapeutic agents into the brain. Previous studies have illustrated the feasibility of drug delivery across the BBB using focused ultrasound (FUS) and microbubbles. Here, we investigated the effect of FUS-enhanced delivery of doxorubicin on survival in rats with and 9L gliosarcoma cells inoculated in the brain. Each rat received either: (1) no treatment (control; N = 11), (2) FUS only (N = 9), (3) IV liposomal doxorubicin (DOX only; N = 17), or (4) FUS with concurrent IV injections of liposomal doxorubicin (FUS+DOX; N = 20). Post-treatment by magnetic resonance imaging (MRI) showed that FUS+DOX reduced tumor growth compared with DOX only. Further, we observed a modest but significant increase in median survival time after a single treatment FUS+DOX treatment (p = 0.0007), whereas neither DOX nor FUS had any significant impact on survival on its own. These results suggest that combined ultrasound-mediated BBB disruption may significantly increase the antineoplastic efficacy of liposomal doxorubicin in the brain.
Collapse
Affiliation(s)
- Lisa H. Treat
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts USA
- Radiology, Harvard Medical School and Brigham & Women’s Hospital, Boston, Massachusetts USA
| | - Nathan McDannold
- Radiology, Harvard Medical School and Brigham & Women’s Hospital, Boston, Massachusetts USA
- Correspondence to: Department of Radiology, Brigham and Women’s Hospital, 221, Longwood Avenue, room 521, Boston, MA 02115. Fax: 617-525-7450.
| | - Yongzhi Zhang
- Radiology, Harvard Medical School and Brigham & Women’s Hospital, Boston, Massachusetts USA
| | - Natalia Vykhodtseva
- Radiology, Harvard Medical School and Brigham & Women’s Hospital, Boston, Massachusetts USA
| | - Kullervo Hynynen
- Imaging Research, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario Canada
| |
Collapse
|
109
|
Baeten KM, Akassoglou K. Extracellular matrix and matrix receptors in blood-brain barrier formation and stroke. Dev Neurobiol 2012; 71:1018-39. [PMID: 21780303 DOI: 10.1002/dneu.20954] [Citation(s) in RCA: 276] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/11/2022]
Abstract
The blood-brain barrier (BBB) is formed primarily to protect the brain microenvironment from the influx of plasma components, which may disturb neuronal functions. The BBB is a functional unit that consists mainly of specialized endothelial cells (ECs) lining the cerebral blood vessels, astrocytes, and pericytes. The BBB is a dynamic structure that is altered in neurologic diseases, such as stroke. ECs and astrocytes secrete extracellular matrix (ECM) proteins to generate and maintain the basement membranes (BMs). ECM receptors, such as integrins and dystroglycan, are also expressed at the brain microvasculature and mediate the connections between cellular and matrix components in physiology and disease. ECM proteins and receptors elicit diverse molecular signals that allow cell adaptation to environmental changes and regulate growth and cell motility. The composition of the ECM is altered upon BBB disruption and directly affects the progression of neurologic disease. The purpose of this review is to discuss the dynamic changes of ECM composition and integrin receptor expression that control BBB functions in physiology and pathology.
Collapse
Affiliation(s)
- Kim M Baeten
- Gladstone Institute of Neurological Disease, University of California, San Francisco, California 94158, USA
| | | |
Collapse
|
110
|
Wootla B, Denic A, Warrington AE, Rodriguez M. Need for a paradigm shift in therapeutic approaches to CNS injury. Expert Rev Neurother 2012; 12:409-20. [PMID: 22449213 DOI: 10.1586/ern.12.24] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/13/2022]
Abstract
Irreversible damage to the nervous system can result from many causes including trauma, disruption of blood supply, pathogen infection or neurodegenerative disease. Common features following CNS injury include a disruption of axons, neuron death and injury, local B-cell and microglial activation, and the synthesis of pathogenic autoantibodies. CNS injury results in a pervasive inhibitory microenvironment that hinders regeneration. Current approaches to eliminate the inhibitory environment have met with limited success. These results argue for a paradigm shift in therapeutic approaches to CNS injury. Targeting CNS cells (neurons, oligodendrocytes and astrocytes) themselves may drive CNS repair. For example, our group and others have demonstrated that autoreactive antibodies can participate in aspects of CNS regeneration, including remyelination. We have developed recombinant autoreactive natural human IgM antibodies with the therapeutic potential for CNS repair in several neurologic diseases.
Collapse
Affiliation(s)
- Bharath Wootla
- Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | | | | | | |
Collapse
|
111
|
Boyan GS, Liu Y, Loser M. A cellular network of dye-coupled glia associated with the embryonic central complex in the grasshopper Schistocerca gregaria. Dev Genes Evol 2012; 222:125-38. [PMID: 22460819 DOI: 10.1007/s00427-012-0394-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/09/2011] [Accepted: 03/11/2012] [Indexed: 12/25/2022]
Abstract
The central complex of the grasshopper (Schistocerca gregaria) brain comprises a modular set of neuropils, which develops after mid-embryogenesis and is functional on hatching. Early in embryogenesis, Repo-positive glia cells are found intermingled among the commissures of the midbrain, but then redistribute as central complex modules become established and, by the end of embryogenesis, envelop all midbrain neuropils. The predominant glia associated with the central body during embryogenesis are glutamine synthetase-/Repo-positive astrocyte-like glia, which direct extensive processes (gliopodia) into and around midbrain neuropils. We used intracellular dye injection in brain slices to ascertain whether such glia are dye-coupled into a communicating cellular network during embryogenesis. Intracellular staining of individual cells located at any one of four sites around the central body revealed a population of dye-coupled cells whose number and spatial distribution were stereotypic for each site and comparable at both 70 and 100% of embryogenesis. Subsequent immunolabeling confirmed these dye-coupled cells to be astrocyte-like glia. The addition of n-heptanol to the bathing saline prevented all dye coupling, consistent with gap junctions linking the glia surrounding the central body. Since dye coupling also occurred in the absence of direct intersomal contacts, it might additionally involve the extensive array of gliopodia, which develop after glia are arrayed around the central body. Collating the data from all injection sites suggests that the developing central body is surrounded by a network of dye-coupled glia, which we speculate may function as a positioning system for the developing neuropils of the central complex.
Collapse
Affiliation(s)
- George S Boyan
- Developmental Neurobiology Group, Biocenter, Ludwig-Maximilians-Universität, Grosshadernerstrasse 2, 82152 Martinsried, Germany.
| | | | | |
Collapse
|
112
|
Edwards TN, Nuschke AC, Nern A, Meinertzhagen IA. Organization and metamorphosis of glia in the Drosophila visual system. J Comp Neurol 2012; 520:2067-85. [DOI: 10.1002/cne.23071] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/20/2022]
|
113
|
Geldenhuys WJ, Allen DD, Bloomquist JR. Novel models for assessing blood–brain barrier drug permeation. Expert Opin Drug Metab Toxicol 2012; 8:647-53. [DOI: 10.1517/17425255.2012.677433] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/06/2023]
|
114
|
Abstract
Immune responses in the CNS are common, despite its perception as a site of immune privilege. These responses can be mediated by resident microglia and astrocytes, which are innate immune cells without direct counterparts in the periphery. Furthermore, CNS immune reactions often take place in virtual isolation from the innate/adaptive immune interplay that characterizes peripheral immunity. However, microglia and astrocytes also engage in significant cross-talk with CNS-infiltrating T cells and other components of the innate immune system. Here we review the cellular and molecular basis of innate immunity in the CNS and discuss what is known about how outcomes of these interactions can lead to resolution of infection, neurodegeneration, or neural repair depending on the context.
Collapse
Affiliation(s)
- Richard M Ransohoff
- Neuroinflammation Research Center, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA.
| | | |
Collapse
|
115
|
Rodrigues F, Thuma L, Klämbt C. The regulation of glial-specific splicing of Neurexin IV requires HOW and Cdk12 activity. Development 2012; 139:1765-76. [PMID: 22461565 DOI: 10.1242/dev.074070] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/23/2023]
Abstract
The differentiation of the blood-brain barrier (BBB) is an essential process in the development of a complex nervous system and depends on alternative splicing. In the fly BBB, glial cells establish intensive septate junctions that require the cell-adhesion molecule Neurexin IV. Alternative splicing generates two different Neurexin IV isoforms: Neurexin IV(exon3), which is found in cells that form septate junctions, and Neurexin IV(exon4), which is found in neurons that form no septate junctions. Here, we show that the formation of the BBB depends on the RNA-binding protein HOW (Held out wings), which triggers glial specific splicing of Neurexin IV(exon3). Using a set of splice reporters, we show that one HOW-binding site is needed to include one of the two mutually exclusive exons 3 and 4, whereas binding at the three further motifs is needed to exclude exon 4. The differential splicing is controlled by nuclear access of HOW and can be induced in neurons following expression of nuclear HOW. Using a novel in vivo two-color splicing detector, we then screened for genes required for full HOW activity. This approach identified Cyclin-dependent kinase 12 (Cdk12) and the splicesosomal component Prp40 as major determinants in regulating HOW-dependent splicing of Neurexin IV. Thus, in addition to the control of nuclear localization of HOW, the phosphorylation of the C-terminal domain of the RNA polymerase II by Cdk12 provides an elegant mechanism in regulating timed splicing of newly synthesized mRNA molecules.
Collapse
Affiliation(s)
- Floriano Rodrigues
- Institut für Neurobiologie, Universität Münster, Badestrasse 9, 48149 Münster, Germany
| | | | | |
Collapse
|
116
|
Excitatory and Mitogenic Signaling in Cell Death, Blood-brain Barrier Breakdown, and BBB Repair after Intracerebral Hemorrhage. Transl Stroke Res 2012; 3:62-9. [PMID: 24323862 DOI: 10.1007/s12975-012-0147-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/12/2012] [Revised: 02/18/2012] [Accepted: 02/22/2012] [Indexed: 02/06/2023]
Abstract
Intracerebral hemorrhage (ICH) results in the release of a large number of endogenous molecules, including glutamate, Ca(2+), ROS, thrombin, heme, iron, TNF-α, and others. These molecules participate in excitatory and mitogenic signaling transduction in which N-methyl-D-aspartate (NMDA) receptors and Src family kinases (SFKs) are implicated. Mitogenic signaling initiates the cell cycle for normal cell division of microglia and neural progenitor cells, whereas aberrant mitogenic signaling causes toxicity, killing neurons, astrocytes, and brain microvascular endothelial cells in neurological diseases including ICH. In this review, we summarize (1) how SFKs modulate NMDA receptors to kill neurons following ICH and (2) how SFKs modulate mitogenic signaling transduction to kill neurons and play a role in disrupting the blood-brain barrier (BBB) immediately following ICH and in repairing the BBB during the recovery phases weeks following ICH.
Collapse
|
117
|
Unhavaithaya Y, Orr-Weaver TL. Polyploidization of glia in neural development links tissue growth to blood-brain barrier integrity. Genes Dev 2012; 26:31-6. [PMID: 22215808 DOI: 10.1101/gad.177436.111] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/05/2023]
Abstract
Proper development requires coordination in growth of the cell types composing an organ. Many plant and animal cells are polyploid, but how these polyploid tissues contribute to organ growth is not well understood. We found the Drosophila melanogaster subperineurial glia (SPG) to be polyploid, and ploidy is coordinated with brain mass. Inhibition of SPG polyploidy caused rupture of the septate junctions necessary for the blood-brain barrier. Thus, the increased SPG cell size resulting from polyploidization is required to maintain the SPG envelope surrounding the growing brain. Polyploidization likely is a conserved strategy to coordinate tissue growth during organogenesis, with potential vertebrate examples.
Collapse
Affiliation(s)
- Yingdee Unhavaithaya
- Whitehead Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | | |
Collapse
|
118
|
Makhijani K, Alexander B, Tanaka T, Rulifson E, Brückner K. The peripheral nervous system supports blood cell homing and survival in the Drosophila larva. Development 2011; 138:5379-91. [PMID: 22071105 PMCID: PMC3222213 DOI: 10.1242/dev.067322] [Citation(s) in RCA: 164] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 09/09/2011] [Indexed: 12/13/2022]
Abstract
Interactions of hematopoietic cells with their microenvironment control blood cell colonization, homing and hematopoiesis. Here, we introduce larval hematopoiesis as the first Drosophila model for hematopoietic colonization and the role of the peripheral nervous system (PNS) as a microenvironment in hematopoiesis. The Drosophila larval hematopoietic system is founded by differentiated hemocytes of the embryo, which colonize segmentally repeated epidermal-muscular pockets and proliferate in these locations. Importantly, we show that these resident hemocytes tightly colocalize with peripheral neurons and we demonstrate that larval hemocytes depend on the PNS as an attractive and trophic microenvironment. atonal (ato) mutant or genetically ablated larvae, which are deficient for subsets of peripheral neurons, show a progressive apoptotic decline in hemocytes and an incomplete resident hemocyte pattern, whereas supernumerary peripheral neurons induced by ectopic expression of the proneural gene scute (sc) misdirect hemocytes to these ectopic locations. This PNS-hematopoietic connection in Drosophila parallels the emerging role of the PNS in hematopoiesis and immune functions in vertebrates, and provides the basis for the systematic genetic dissection of the PNS-hematopoietic axis in the future.
Collapse
Affiliation(s)
- Kalpana Makhijani
- Department of Cell and Tissue Biology, University of California San Francisco, 35 Medical Center Way, San Francisco, CA 94143-0669, USA
| | - Brandy Alexander
- Department of Cell and Tissue Biology, University of California San Francisco, 35 Medical Center Way, San Francisco, CA 94143-0669, USA
| | - Tsubasa Tanaka
- Department of Cell and Tissue Biology, University of California San Francisco, 35 Medical Center Way, San Francisco, CA 94143-0669, USA
| | - Eric Rulifson
- Department of Anatomy, University of California San Francisco, 35 Medical Center Way, San Francisco, CA 94143-0669, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, 35 Medical Center Way, San Francisco, CA 94143-0669, USA
| | - Katja Brückner
- Department of Cell and Tissue Biology, University of California San Francisco, 35 Medical Center Way, San Francisco, CA 94143-0669, USA
- Department of Anatomy, University of California San Francisco, 35 Medical Center Way, San Francisco, CA 94143-0669, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, 35 Medical Center Way, San Francisco, CA 94143-0669, USA
| |
Collapse
|
119
|
A Laminin G-EGF-Laminin G module in Neurexin IV is essential for the apico-lateral localization of Contactin and organization of septate junctions. PLoS One 2011; 6:e25926. [PMID: 22022470 PMCID: PMC3195077 DOI: 10.1371/journal.pone.0025926] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/04/2011] [Accepted: 09/13/2011] [Indexed: 01/01/2023] Open
Abstract
Septate junctions (SJs) display a unique ultrastructural morphology with ladder-like electron densities that are conserved through evolution. Genetic and molecular analyses have identified a highly conserved core complex of SJ proteins consisting of three cell adhesion molecules Neurexin IV, Contactin, and Neuroglian, which interact with the cytoskeletal FERM domain protein Coracle. How these individual proteins interact to form the septal arrays that create the paracellular barrier is poorly understood. Here, we show that point mutations that map to specific domains of neurexin IV lead to formation of fewer septae and disorganization of SJs. Consistent with these observations, our in vivo domain deletion analyses identified the first Laminin G-EGF-Laminin G module in the extracellular region of Neurexin IV as necessary for the localization of and association with Contactin. Neurexin IV protein that is devoid of its cytoplasmic region is able to create septae, but fails to form a full complement of SJs. These data provide the first in vivo evidence that specific domains in Neurexin IV are required for protein-protein interactions and organization of SJs. Given the molecular conservation of SJ proteins across species, our studies may provide insights into how vertebrate axo-glial SJs are organized in myelinated axons.
Collapse
|
120
|
The CD59 family member Leaky/Coiled is required for the establishment of the blood-brain barrier in Drosophila. J Neurosci 2011; 31:7876-85. [PMID: 21613501 DOI: 10.1523/jneurosci.0766-11.2011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/21/2022] Open
Abstract
The blood-brain barrier of Drosophila is established by the subperineurial glial cells that encase the CNS and PNS. The subperineurial glial cells are thin, highly interdigitated cells with epithelial character. The establishment of extensive septate junctions between these cells is crucial for the prevention of uncontrolled paracellular leakage of ions and solutes from the hemolymph into the nervous system. In the absence of septate junctions, macromolecules such as fluorescently labeled dextran can easily cross the blood-brain barrier. To identify additional components of the blood-brain barrier, we followed a genetic approach and injected Texas-Red-conjugated dextran into the hemolymph of embryos homozygous for chromosomal deficiencies. In this way, we identified the 153-aa-large protein Coiled, a new member of the Ly6 (leukocyte antigen 6) family, as being crucially required for septate junction formation and blood-brain barrier integrity. In coiled mutants, the normal distribution of septate junction markers such as NeurexinIV, Coracle, or Discs large is disturbed. EM analyses demonstrated that Coiled is required for the formation of septate junctions. We further show that Coiled is expressed by the subsperineurial glial cells in which it is anchored to the cell membrane via a glycosylphosphatidylinositol anchor and mediates adhesive properties. Clonal rescue studies indicate that the presence of Coiled is required symmetrically on both cells engaged in septate junction formation.
Collapse
|
121
|
Xu X, Warrington AE, Bieber AJ, Rodriguez M. Enhancing CNS repair in neurological disease: challenges arising from neurodegeneration and rewiring of the network. CNS Drugs 2011; 25:555-73. [PMID: 21699269 PMCID: PMC3140701 DOI: 10.2165/11587830-000000000-00000] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 12/11/2022]
Abstract
Repair of the central nervous system (CNS) constitutes an integral part of treating neurological disease and plays a crucial role in restoring CNS architecture and function. Distinct strategies have been developed to reconstruct the damaged neural tissue, with many tested preclinically in animal models. We review cell replacement-based repair strategies. By taking spinal cord injury, cerebral ischaemia and degenerative CNS disorders as examples for CNS repair, we discuss progress and potential problems in utilizing embryonic stem cells and adult neural/non-neural stem cells to repair cell loss in the CNS. Nevertheless, CNS repair is not simply a matter of cell transplantation. The major challenge is to induce regenerating neural cells to integrate into the neural network and compensate for damaged neural function. The neural cells confront an environment very different from that of the developmental stage in which these cells differentiate to form interwoven networks. During the repair process, one of the challenges is neurodegeneration, which can develop from interrupted innervations to/from the targets, chronic inflammation, ischaemia, aging or idiopathic neural toxicity. Neurodegeneration, which occurs on the basis of a characteristic vascular and neural web, usually presents as a chronically progressive process with unknown aetiology. Currently, there is no effective treatment to stop or slow down neurodegeneration. Pathological changes from patients with Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis indicate a broken homeostasis in the CNS. We discuss how the blood-brain barrier and neural networks are formed to maintain CNS homeostasis and their contribution to neurodegeneration in diseased conditions. Another challenge is that some inhibitors produced by CNS injury do not facilitate the regenerating neural cells to incorporate into a pre-existing network. We review glial responses to CNS injury. Of note, the reactive astrocytes not only encompass the lesions/pathogens but may also form glial scars to impede regenerating axons from traversing the lesions. In addition, myelin debris can prevent axon growth. Myelination enables saltatory transduction of electrical impulses along axonal calibers and actually provides trophic support to stabilize the axons. Therefore, repair strategies should be designed to promote axonal growth, myelination and modulate astrocytic responses. Finally, we discuss recent progress in developing human monoclonal IgMs that regulate CNS homeostasis and promote neural regeneration.
Collapse
Affiliation(s)
- Xiaohua Xu
- Department of Neurology, Mayo Clinic and Foundation, Rochester, MN 55905
| | | | - Allan J. Bieber
- Department of Neurology, Mayo Clinic and Foundation, Rochester, MN 55905
| | - Moses Rodriguez
- Department of Neurology, Mayo Clinic and Foundation, Rochester, MN 55905, Department of Immunology, Mayo Clinic and Foundation, Rochester, MN 55905
| |
Collapse
|
122
|
Nielsen PA, Andersson O, Hansen SH, Simonsen KB, Andersson G. Models for predicting blood–brain barrier permeation. Drug Discov Today 2011; 16:472-5. [DOI: 10.1016/j.drudis.2011.04.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/31/2010] [Revised: 02/09/2011] [Accepted: 04/04/2011] [Indexed: 01/09/2023]
|
123
|
Abstract
The evolutionary origins of glia are lost in time, as soft tissues rarely leave behind fossil footprints, and any molecular footprints they might have been left we have yet to decipher. Nevertheless, because of the growing realization of the importance glia plays in the development and functioning of the nervous system, lessons we can draw about commonalities among different taxa (including vertebrates) brought about either from a common origin, or from common adaptational pressures, shed light on the roles glia play in all nervous systems. The Acoelomorpha, primitive interstitial flatworms with very simple cellular organization and currently at the base of the bilaterian phylogeny, possess glia-like cells. If they indeed represent the ancestors of all other Bilateria, then it is possible that all glias derive from a common ancestor. However, basal taxa lacking convincing glia are found in most major phyletic lines: urochordates, hemichordates, bryozoans, rotifers, and basal platyhelminths. With deep phylogenies currently in flux, it is equally possible that glia in several lines had different origins. If developmental patterns are any indication, glia evolved from ectodermal cells, possibly from a mobile lineage, and even possibly independently in different regions of the body. As to what functions might have brought about the evolution of glia, by-product removal, structural support, phagocytic needs, developmental programming, and circuit modulation may be the more likely. Explaining possible cases of glial loss is more difficult, as once evolved, glia appears to keep inventing new functions, giving it continued value even after the original generative need becomes obsolete. Among all the uncertainties regarding the origin of glia, one thing is certain: that our ideas about those origins will change with every rearrangement in deep phylogeny and with continued advances in invertebrate molecular and developmental areas.
Collapse
Affiliation(s)
- Daniel K Hartline
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, University of Hawaii at Manoa, Honolulu, Hawaii 96822, USA.
| |
Collapse
|
124
|
Hijazi A, Haenlin M, Waltzer L, Roch F. The Ly6 protein coiled is required for septate junction and blood brain barrier organisation in Drosophila. PLoS One 2011; 6:e17763. [PMID: 21423573 PMCID: PMC3058042 DOI: 10.1371/journal.pone.0017763] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/16/2010] [Accepted: 02/09/2011] [Indexed: 11/18/2022] Open
Abstract
Background Genetic analysis of the Drosophila septate junctions has greatly contributed to our understanding of the mechanisms controlling the assembly of these adhesion structures, which bear strong similarities with the vertebrate tight junctions and the paranodal septate junctions. These adhesion complexes share conserved molecular components and have a common function: the formation of paracellular barriers restraining the diffusion of solutes through epithelial and glial envelopes. Methodology/Principal Findings In this work we characterise the function of the Drosophila cold gene, that codes for a protein belonging to the Ly6 superfamily of extracellular ligands. Analysis of cold mutants shows that this gene is specifically required for the organisation of the septate junctions in epithelial tissues and in the nervous system, where its contribution is essential for the maintenance of the blood-brain barrier. We show that cold acts in a cell autonomous way, and we present evidence indicating that this protein could act as a septate junction component. Conclusion/Significance We discuss the specific roles of cold and three other Drosophila members of the Ly6 superfamily that have been shown to participate in a non-redundant way in the process of septate junction assembly. We propose that vertebrate Ly6 proteins could fulfill analogous roles in tight junctions and/or paranodal septate junctions.
Collapse
Affiliation(s)
- Assia Hijazi
- Université de Toulouse, UPS, Centre de Biologie du Développement, Université Paul Sabatier, Toulouse, France
- Centre National de la Recherche Scientifique, UMR 5547, Centre de Biologie du Développement, Toulouse, France
| | - Marc Haenlin
- Université de Toulouse, UPS, Centre de Biologie du Développement, Université Paul Sabatier, Toulouse, France
- Centre National de la Recherche Scientifique, UMR 5547, Centre de Biologie du Développement, Toulouse, France
| | - Lucas Waltzer
- Université de Toulouse, UPS, Centre de Biologie du Développement, Université Paul Sabatier, Toulouse, France
- Centre National de la Recherche Scientifique, UMR 5547, Centre de Biologie du Développement, Toulouse, France
| | - Fernando Roch
- Université de Toulouse, UPS, Centre de Biologie du Développement, Université Paul Sabatier, Toulouse, France
- Centre National de la Recherche Scientifique, UMR 5547, Centre de Biologie du Développement, Toulouse, France
- * E-mail:
| |
Collapse
|
125
|
Slice cultures as a model to study neurovascular coupling and blood brain barrier in vitro. Cardiovasc Psychiatry Neurol 2011; 2011:646958. [PMID: 21350722 PMCID: PMC3042620 DOI: 10.1155/2011/646958] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 09/30/2010] [Accepted: 12/24/2010] [Indexed: 11/18/2022] Open
Abstract
Proper neuronal functioning depends on a strictly regulated interstitial environment and tight coupling of neuronal and metabolic activity involving adequate vascular responses. These functions take place at the blood brain barrier (BBB) composed of endothelial cells, basal lamina covered with pericytes, and the endfeet of perivascular astrocytes. In conventional in vitro models of the BBB, some of these components are missing.
Here we describe a new model system for studying BBB and neurovascular coupling by using confocal microscopy and fluorescence staining protocols in organotypic hippocampal slice cultures.
An elaborated network of vessels is retained in culture in spite of the absence of blood flow. Application of calcein-AM either from the interstitial or from the luminal side resulted in different staining patterns indicating the maintenance of a barrier. By contrast, the ethidium derivative MitoSox penetrated perivascular basal lamina and revealed free radical formation in contractile cells embracing the vessels, likely pericytes.
Collapse
|
126
|
Ponnambalam S, Alberghina M. Evolution of the VEGF-regulated vascular network from a neural guidance system. Mol Neurobiol 2011; 43:192-206. [PMID: 21271303 DOI: 10.1007/s12035-011-8167-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/29/2010] [Accepted: 01/12/2011] [Indexed: 12/27/2022]
Abstract
The vascular network is closely linked to the neural system, and an interdependence is displayed in healthy and in pathophysiological responses. How has close apposition of two such functionally different systems occurred? Here, we present a hypothesis for the evolution of the vascular network from an ancestral neural guidance system. Biological cornerstones of this hypothesis are the vascular endothelial growth factor (VEGF) protein family and cognate receptors. The primary sequences of such proteins are conserved from invertebrates, such as worms and flies that lack discernible vascular systems compared to mammals, but all these systems have sophisticated neuronal wiring involving such molecules. Ancestral VEGFs and receptors (VEGFRs) could have been used to develop and maintain the nervous system in primitive eukaryotes. During evolution, the demands of increased morphological complexity required systems for transporting molecules and cells, i.e., biological conductive tubes. We propose that the VEGF-VEGFR axis was subverted by evolution to mediate the formation of biological tubes necessary for transport of fluids, e.g., blood. Increasingly, there is evidence that aberrant VEGF-mediated responses are also linked to neuronal dysfunctions ranging from motor neuron disease, stroke, Parkinson's disease, Alzheimer's disease, ischemic brain disease, epilepsy, multiple sclerosis, and neuronal repair after injury, as well as common vascular diseases (e.g., retinal disease). Manipulation and correction of the VEGF response in different neural tissues could be an effective strategy to treat different neurological diseases.
Collapse
Affiliation(s)
- Sreenivasan Ponnambalam
- Endothelial Cell Biology Unit, Institute of Molecular & Cellular Biology, LIGHT Laboratories, University of Leeds, Leeds, UK.
| | | |
Collapse
|
127
|
Tam SJ, Watts RJ. Connecting vascular and nervous system development: angiogenesis and the blood-brain barrier. Annu Rev Neurosci 2011; 33:379-408. [PMID: 20367445 DOI: 10.1146/annurev-neuro-060909-152829] [Citation(s) in RCA: 134] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/09/2022]
Abstract
The vascular and nervous systems share a common necessity of circuit formation to coordinate nutrient and information transfer, respectively. Shared developmental principles have evolved to orchestrate the formation of both the vascular and the nervous systems. This evolution is highlighted by the identification of specific guidance cues that direct both systems to their target tissues. In addition to sharing cellular and molecular signaling events during development, the vascular and nervous systems also form an intricate interface within the central nervous system called the neurovascular unit. Understanding how the neurovascular unit develops and functions, and more specifically how the blood-brain barrier within this unit is established, is of utmost importance. We explore the history, recent discoveries, and unanswered questions surrounding the relationship between the vascular and nervous systems with a focus on developmental signaling cues that guide network formation and establish the interface between these two systems.
Collapse
Affiliation(s)
- Stephen J Tam
- Neurodegeneration Labs, Department of Neuroscience, Genentech, Inc., South San Francisco, California 94080, USA
| | | |
Collapse
|
128
|
Hatan M, Shinder V, Israeli D, Schnorrer F, Volk T. The Drosophila blood brain barrier is maintained by GPCR-dependent dynamic actin structures. ACTA ACUST UNITED AC 2011; 192:307-19. [PMID: 21242289 PMCID: PMC3172179 DOI: 10.1083/jcb.201007095] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/25/2022]
Abstract
Formation of actin-rich structures along the lateral borders of subperineurial glial cells are induced and maintained by the G protein–coupled receptor Moody. The blood brain barrier (BBB) is essential for insulation of the nervous system from the surrounding environment. In Drosophila melanogaster, the BBB is maintained by septate junctions formed between subperineurial glia (SPG) and requires the Moody/G protein–coupled receptor (GPCR) signaling pathway. In this study, we describe novel specialized actin-rich structures (ARSs) that dynamically form along the lateral borders of the SPG cells. ARS formation and association with nonmuscle myosin is regulated by Moody/GPCR signaling and requires myosin activation. Consistently, an overlap between ARS localization, elevated Ca2+ levels, and myosin light chain phosphorylation is detected. Disruption of the ARS by inhibition of the actin regulator Arp2/3 complex leads to abrogation of the BBB. Our results suggest a mechanism by which the Drosophila BBB is maintained by Moody/GPCR-dependent formation of ARSs, which is supported by myosin activation. The localization of the ARSs close to the septate junctions enables efficient sealing of membrane gaps formed during nerve cord growth.
Collapse
Affiliation(s)
- Meital Hatan
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | |
Collapse
|
129
|
Rodrigues F, Schmidt I, Klämbt C. Comparing peripheral glial cell differentiation in Drosophila and vertebrates. Cell Mol Life Sci 2011; 68:55-69. [PMID: 20820850 PMCID: PMC11114915 DOI: 10.1007/s00018-010-0512-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/04/2010] [Revised: 08/13/2010] [Accepted: 08/16/2010] [Indexed: 01/08/2023]
Abstract
In all complex organisms, the peripheral nerves ensure the portage of information from the periphery to central computing and back again. Axons are in part amazingly long and are accompanied by several different glial cell types. These peripheral glial cells ensure electrical conductance, most likely nature the long axon, and establish and maintain a barrier towards extracellular body fluids. Recent work has revealed a surprisingly similar organization of peripheral nerves of vertebrates and Drosophila. Thus, the genetic dissection of glial differentiation in Drosophila may also advance our understanding of basic principles underlying the development of peripheral nerves in vertebrates.
Collapse
Affiliation(s)
| | - Imke Schmidt
- Institut für Neurobiologie, Badestr. 9, 48149 Münster, Germany
| | | |
Collapse
|
130
|
Abstract
In the last decade, the claudin family of integral membrane proteins has been identified as the major protein component of the tight junctions in all vertebrates. The claudin superfamily proteins also function to regulate channel activity, intercellular signaling, and cell morphology. Subsequently, claudin homologues have been identified in invertebrates, including Drosophila and Caenorhabditis elegans. Recent studies demonstrate that the C. elegans claudins, clc-1 to clc-5, and similar proteins in the greater PMP22/EMP/claudin/calcium channel γ subunit family, including nsy-1-nsy-4 and vab-9, while highly divergent at a sequence level from each other and from the vertebrate claudins, in some cases play roles similar to those traditionally assigned to their vertebrate homologues. These include regulating cell adhesion and passage of small molecules through the paracellular space. The claudin superfamily proteins also function to regulate channel activity, intercellular signaling, and cell morphology. Study of claudin superfamily proteins in C. elegans should continue to provide clues as to how core claudin protein function can be modified to serve various specific roles at regions of cell-cell contact in metazoans.
Collapse
|
131
|
Rodríguez JJ, Verkhratsky A. Neuroglial roots of neurodegenerative diseases? Mol Neurobiol 2010; 43:87-96. [PMID: 21161612 DOI: 10.1007/s12035-010-8157-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/22/2010] [Accepted: 11/26/2010] [Indexed: 12/12/2022]
Abstract
Neuroglia is critically important for controlling the brain homeostasis and for mounting the brain defence against pathological insults. Here, we overview recent data about the role of neuroglia in various types of neurodegenerative diseases (Alzheimer's disease, Parkinson's disease, fronto-temporal dementia, Wernicke encephalopathy, amyotrophic lateral sclerosis and immunodeficiency virus-1-associated dementia). In all these forms of neurodegeneration, astroglia undergoes complex morphological and functional changes. The early and mid-term stages of neurodegenerative processes, and specifically of Alzheimer's disease, are associated with generalised atrophy of astroglia, whereas the later stages are characterised with an astrogliosis and microglial activation linked to neuropathological lesions such as senile plaques. Atrophic changes in astroglia may contribute to the initial cognitive deficits due to reduced glial synaptic coverage and decreased neuroprotection.
Collapse
|
132
|
Hsuchou H, Kastin AJ, Tu H, Joan Abbott N, Couraud PO, Pan W. Role of astrocytic leptin receptor subtypes on leptin permeation across hCMEC/D3 human brain endothelial cells. J Neurochem 2010; 115:1288-98. [PMID: 20977476 DOI: 10.1111/j.1471-4159.2010.07028.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/08/2023]
Abstract
Astrocytic leptin receptors (ObR) can be up-regulated in conditions such as adult-onset obesity. To determine whether the levels and subtypes of astrocytic ObR modulate leptin transport, we co-cultured hCMEC/D3 human brain endothelial cells and C6 astrocytoma cells in the Transwell system, and tested leptin permeation from apical to basolateral chambers. In comparison with hCMEC alone, co-culture of C6 cells reduced the permeability of paracellular markers and leptin. Unexpectedly, ObRb over-expression in C6 cells increased leptin permeation whereas ObRa over-expression showed no effect when compared with the control group of pcDNA-transfected C6 cells. By contrast, the paracellular permeability to the sodium fluorescein control was unchanged by over-expression of ObR subtypes. Leptin remained intact after crossing the monolayer as shown by HPLC and acid precipitation, and this was not affected by C6 cell co-culture or the over-expression of different ObR subtypes. Thus, increased expression of ObRb (and to a lesser extent ObRe) in C6 cells specifically increased the permeation of leptin across the hCMEC monolayer. Consistent with the evidence that the most apparent regulatory changes of ObR during obesity and inflammation occur in astrocytes, the results indicate that astrocytes actively regulate leptin transport across the blood-brain barrier, a mechanism independent of reduction of paracellular permeability.
Collapse
Affiliation(s)
- Hung Hsuchou
- Blood-Brain Barrier Group, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | | | | | | | | | | |
Collapse
|
133
|
Abstract
The blood-brain barrier (BBB) regulates passage of nutrients and signaling molecules from the circulation into the brain. Whether lipoproteins cross the BBB in vivo has been controversial, and no clear requirement for circulating lipoproteins in brain development has been shown. We address these issues in Drosophila, which has an functionally conserved BBB, and lipoproteins that resemble those of vertebrates. We show that the Drosophila lipoprotein lipophorin exists in two isoforms. Both isoforms cross the BBB, but accumulate on distinct subsets of cells within the brain. In addition to acting as a lipid carrier, lipophorin carries both sterol-linked and GPI-linked proteins into the circulation and transports them across the BBB. Finally, lipophorin promotes neuroblast proliferation by a mechanism that does not depend on delivery of dietary lipids. Transport of lipophorin and its cargo across the BBB represents a novel mechanism by which peripherally synthesized proteins might enter the brain and influence its development. Furthermore, lipid-linkage may be an efficient method to transport therapeutic molecules across the BBB.
Collapse
|
134
|
Blauth K, Banerjee S, Bhat MA. Axonal ensheathment and intercellular barrier formation in Drosophila. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 283:93-128. [PMID: 20801419 DOI: 10.1016/s1937-6448(10)83003-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 12/26/2022]
Abstract
Glial cells are critical players in every major aspect of nervous system development, function, and disease. Other than their traditional supportive role, glial cells perform a variety of important functions such as myelination, synapse formation and plasticity, and establishment of blood-brain and blood-nerve barriers in the nervous system. Recent studies highlight the striking functional similarities between Drosophila and vertebrate glia. In both systems, glial cells play an essential role in neural ensheathment thereby isolating the nervous system and help to create a local ionic microenvironment for conduction of nerve impulses. Here, we review the anatomical aspects and the molecular players that underlie ensheathment during different stages of nervous system development in Drosophila and how these processes lead to the organization of neuroglial junctions. We also discuss some key aspects of the invertebrate axonal ensheathment and junctional organization with that of vertebrate myelination and axon-glial interactions. Finally, we highlight the importance of intercellular junctions in barrier formation in various cellular contexts in Drosophila. We speculate that unraveling the genetic and molecular mechanisms of ensheathment across species might provide key insights into human myelin-related disorders and help in designing therapeutic interventions.
Collapse
Affiliation(s)
- Kevin Blauth
- Curriculum in Neurobiology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | | | | |
Collapse
|
135
|
Abstract
Neurons and glial cells show mutual interdependence in many developmental and functional aspects of their biology. To establish their intricate relationships with neurons, glial cells must migrate over what are often long distances. In the CNS glial cells generally migrate as single cells, whereas PNS glial cells tend to migrate as cohorts of cells. How are their journeys initiated and directed, and what stops the migratory phase once glial cells are aligned with their neuronal counterparts? A deeper understanding of glial migration and the underlying neuron-glia interactions may contribute to the development of therapeutics for demyelinating diseases or glial tumours.
Collapse
|
136
|
Hijazi A, Masson W, Augé B, Waltzer L, Haenlin M, Roch F. boudin is required for septate junction organisation in Drosophila and codes for a diffusible protein of the Ly6 superfamily. Development 2009; 136:2199-209. [PMID: 19502482 DOI: 10.1242/dev.033845] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/19/2023]
Abstract
The Ly6 superfamily, present in most metazoan genomes, codes for different cell-surface proteins and secreted ligands containing an extracellular motif called a Ly6 domain or three-finger domain. We report the identification of 36 novel genes coding for proteins of this family in Drosophila. One of these fly Ly6 proteins, coded by the gene boudin (bou), is essential for tracheal morphogenesis in the fly embryo and contributes to the maintenance of the paracellular barrier and the organisation of the septate junctions in this tissue. Bou, a glycosylphosphatidylinositol anchored membrane protein, is also required for septate junction organisation in epithelial tissues and in the chordotonal organ glial cells, but not in the central nervous system. Our study reveals interesting parallelisms between the Ly6 proteins of flies and vertebrates, such as the CD59 antigen. Similarly to this human protein, Bou travels from cell to cell associated with extracellular particles and, consistently, we show that it is required in a non-cell-autonomous fashion. Our work opens the way for future studies addressing the function of Ly6 proteins using Drosophila as a model system.
Collapse
Affiliation(s)
- Assia Hijazi
- Université de Toulouse UPS, Centre de Biologie du Développement, CNRS UMR 5547, Bâtiment 4R3, 118 route de Narbonne, F-31062 Toulouse, France
| | | | | | | | | | | |
Collapse
|
137
|
Wheeler SR, Banerjee S, Blauth K, Rogers SL, Bhat MA, Crews ST. Neurexin IV and Wrapper interactions mediate Drosophila midline glial migration and axonal ensheathment. Development 2009; 136:1147-57. [PMID: 19270173 DOI: 10.1242/dev.030254] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022]
Abstract
Glia play crucial roles in ensheathing axons, a process that requires an intricate series of glia-neuron interactions. The membrane-anchored protein Wrapper is present in Drosophila midline glia and is required for ensheathment of commissural axons. By contrast, Neurexin IV is present on the membranes of neurons and commissural axons, and is highly concentrated at their interfaces with midline glia. Analysis of Neurexin IV and wrapper mutant embryos revealed identical defects in glial migration, ensheathment and glial subdivision of the commissures. Mutant and misexpression experiments indicated that Neurexin IV membrane localization is dependent on interactions with Wrapper. Cell culture aggregation assays and biochemical experiments demonstrated the ability of Neurexin IV to promote cell adhesion by binding to Wrapper. These results show that neuronal-expressed Neurexin IV and midline glial-expressed Wrapper act as heterophilic adhesion molecules that mediate multiple cellular events involved in glia-neuron interactions.
Collapse
Affiliation(s)
- Scott R Wheeler
- Department of Biochemistry and Biophysics, The University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | | | | | |
Collapse
|
138
|
Tremblay ME, Riad M, Chierzi S, Murai KK, Pasquale EB, Doucet G. Developmental course of EphA4 cellular and subcellular localization in the postnatal rat hippocampus. J Comp Neurol 2009; 512:798-813. [PMID: 19086003 DOI: 10.1002/cne.21922] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/11/2022]
Abstract
From embryonic development to adulthood, the EphA4 receptor and several of its ephrin-A or -B ligands are expressed in the hippocampus, where they presumably play distinct roles at different developmental stages. To help clarify these diverse roles in the assembly and function of the hippocampus, we examined the cellular and subcellular localization of EphA4 in postnatal rat hippocampus by light and electron microscopic immunocytochemistry. On postnatal day (P) 1, the EphA4 immunostaining was robust in most layers of CA1, CA3, and dentate gyrus and then decreased gradually, until P21, especially in the cell body layers. At the ultrastructural level, focal spots of EphA4 immunoreactivity were detected all over the plasma membrane of pyramidal and granule cells, between P1 and P14, from the perikarya to the dendritic and axonal extremities, including growth cones and filopodia. This cell surface immunoreactivity then became restricted to the synapse-associated dendritic spines and axon terminals by P21. In astrocytes, the EphA4 immunolabeling showed a similar cell surface redistribution, from the perikarya and large processes at P1-P7, to small perisynaptic processes at P14-P21. In both cell types, spots of EphA4 immunoreactivity were also detected, with an incidence decreasing with maturation, on the endoplasmic reticulum, Golgi apparatus, and vesicles, organelles involved in protein synthesis, posttranslational modifications, and transport. The cell surface evolution of EphA4 localization in neuronal and glial cells is consistent with successive involvements in the developmental movements of cell bodies first, followed by process outgrowth and guidance, synaptogenesis, and finally synaptic maintenance and plasticity.
Collapse
Affiliation(s)
- Marie-Eve Tremblay
- Département de Pathologie et Biologie Cellulaire, Groupe de Recherche sur le Système Nerveux Central, Université de Montréal, Montréal, Québec, Canada
| | | | | | | | | | | |
Collapse
|
139
|
Albuquerque EX, Pereira EFR, Alkondon M, Rogers SW. Mammalian nicotinic acetylcholine receptors: from structure to function. Physiol Rev 2009; 89:73-120. [PMID: 19126755 PMCID: PMC2713585 DOI: 10.1152/physrev.00015.2008] [Citation(s) in RCA: 1263] [Impact Index Per Article: 78.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/21/2022] Open
Abstract
The classical studies of nicotine by Langley at the turn of the 20th century introduced the concept of a "receptive substance," from which the idea of a "receptor" came to light. Subsequent studies aided by the Torpedo electric organ, a rich source of muscle-type nicotinic receptors (nAChRs), and the discovery of alpha-bungarotoxin, a snake toxin that binds pseudo-irreversibly to the muscle nAChR, resulted in the muscle nAChR being the best characterized ligand-gated ion channel hitherto. With the advancement of functional and genetic studies in the late 1980s, the existence of nAChRs in the mammalian brain was confirmed and the realization that the numerous nAChR subtypes contribute to the psychoactive properties of nicotine and other drugs of abuse and to the neuropathology of various diseases, including Alzheimer's, Parkinson's, and schizophrenia, has since emerged. This review provides a comprehensive overview of these findings and the more recent revelations of the impact that the rich diversity in function and expression of this receptor family has on neuronal and nonneuronal cells throughout the body. Despite these numerous developments, our understanding of the contributions of specific neuronal nAChR subtypes to the many facets of physiology throughout the body remains in its infancy.
Collapse
Affiliation(s)
- Edson X Albuquerque
- Department of Pharmacology and Experimental Therapeutics, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | | | | |
Collapse
|
140
|
Abstract
During evolution, as organisms increased in complexity and function, the need for the ensheathment and insulation of axons by glia became vital for faster conductance of action potentials in nerves. Myelination, as the process is termed, facilitates the formation of discrete domains within the axolemma that are enriched in ion channels, and macromolecular complexes consisting of cell adhesion molecules and cytoskeletal regulators. While it is known that glia play a substantial role in the coordination and organization of these domains, the mechanisms involved and signals transduced between the axon and glia, as well as the proteins regulating axo-glial junction formation remain elusive. Emerging evidence has shed light on the processes regulating myelination and domain differentiation, and key molecules have been identified that are required for their assembly and maintenance. This review highlights these recent findings, and relates their significance to domain disorganization as seen in several demyelinating disorders and other neuropathies.
Collapse
Affiliation(s)
- Courtney Thaxton
- Department of Cell and Molecular Physiology, Curriculum in Neurobiology, UNC-Neuroscience Center and Neurodevelopmental Disorders Research Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599-7545, USA
| | | |
Collapse
|
141
|
Syapin PJ. Regulation of haeme oxygenase-1 for treatment of neuroinflammation and brain disorders. Br J Pharmacol 2008; 155:623-40. [PMID: 18794892 DOI: 10.1038/bjp.2008.342] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/19/2022] Open
Abstract
Injury to the CNS elicits a host defense reaction that utilizes astrocytes, microglia, neurons and oligodendrocytes. Neuroinflammation is a major host defense mechanism designed to restore normal structure and function after CNS insult, but like other forms of inflammation, chronic neuroinflammation may contribute to pathogenesis. The inducible haeme oxygenase isoform, haeme oxygenase-1 (HO-1), is a phase 2 enzyme upregulated in response to electrophilic xenobiotics, oxidative stress, cellular injury and disease. There is emerging evidence that HO-1 expression helps mediate the resolution of inflammation, including neuroinflammation. Whether this is solely because of the catabolism of haeme or includes additional mechanisms is unclear. This review provides a brief background on the molecular biology and biochemistry of haeme oxygenases and the actions of haeme, bilirubin, iron and carbon monoxide in the CNS. It then presents our current state of knowledge regarding HO-1 expression in the CNS, regulation of HO-1 induction in neural cells and discusses the prospect of pharmacological manipulation of HO-1 as therapy for CNS disorders. Because of recognized species and cellular differences in HO-1 regulation, a major objective of this review is to draw attention to areas where gaps exist in the experimental record regarding regulation of HO-1 in neural cells. The results indicate the HO-1 system to be an important therapeutic target in CNS disorders, but our understanding of HO-1 expression in human neural cells is severely lacking.
Collapse
Affiliation(s)
- P J Syapin
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430-6592, USA.
| |
Collapse
|
142
|
Wolburg H, Noell S, Mack A, Wolburg-Buchholz K, Fallier-Becker P. Brain endothelial cells and the glio-vascular complex. Cell Tissue Res 2008; 335:75-96. [DOI: 10.1007/s00441-008-0658-9] [Citation(s) in RCA: 304] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/31/2008] [Accepted: 06/03/2008] [Indexed: 02/01/2023]
|
143
|
Abstract
The ensheathment of neurons and their axons creates an ion-sensitive microenvironment that allows rapid conduction of nerve impulses. One of the fundamental questions about axonal ensheathment is how insulating glial cells wrap around axons. The mechanisms that underlie insulation of axons in invertebrates and vertebrates are not fully understood. In the present article we address cellular aspects of axonal ensheathment in Drosophila by taking advantage of glial mutants that illustrate a range of phenotypic defects including ensheathment of axons. From the findings of these mutant studies, we summarize that loss of glial cells, defects in glial membrane wrapping, failure of glial migration, and loss of specialized ladderlike septate junctions between ensheathing glial membranes result in axon-glial functional defects. These studies provide a broad perspective on glial ensheathment of axons in Drosophila and key insights into the anatomical and cellular aspects of axonal insulation. Given the powerful genetic approaches available in Drosophila, the axonal ensheathment process can be dissected in great detail to reveal the fundamental principles of ensheathment. These observations will be relevant to understanding the very similar processes in vertebrates, where defects in glial cell functions lead to devastating neurological diseases.
Collapse
Affiliation(s)
- Swati Banerjee
- Department of Cell and Molecular Physiology, Neurodevelopmental Disorders Research Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-7545, USA
| | | |
Collapse
|
144
|
Septate junctions are required for ommatidial integrity and blood-eye barrier function in Drosophila. Dev Biol 2008; 317:585-99. [PMID: 18407259 DOI: 10.1016/j.ydbio.2008.03.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/24/2007] [Revised: 03/02/2008] [Accepted: 03/04/2008] [Indexed: 11/22/2022]
Abstract
The anatomical organization of the Drosophila ommatidia is achieved by specification and contextual placement of photoreceptors, cone and pigment cells. The photoreceptors must be sealed from high ionic concentrations of the hemolymph by a barrier to allow phototransduction. In vertebrates, a blood-retinal barrier (BRB) is established by tight junctions (TJs) present in the retinal pigment epithelium and endothelial membrane of the retinal vessels. In Drosophila ommatidia, the junctional organization and barrier formation is poorly understood. Here we report that septate junctions (SJs), the vertebrate analogs of TJs, are present in the adult ommatidia and are formed between and among the cone and pigment cells. We show that the localization of Neurexin IV (Nrx IV), a SJ-specific protein, coincides with the location of SJs in the cone and pigment cells. Somatic mosaic analysis of nrx IV null mutants shows that loss of Nrx IV leads to defects in ommatidial morphology and integrity. nrx IV hypomorphic allelic combinations generated viable adults with defective SJs and displayed a compromised blood-eye barrier (BEB) function. These findings establish that SJs are essential for ommatidial integrity and in creating a BEB around the ion and light sensitive photoreceptors. Our studies may provide clues towards understanding the vertebrate BEB formation and function.
Collapse
|