101
|
Gonzales AL, Amberg GC, Earley S. Ca2+ release from the sarcoplasmic reticulum is required for sustained TRPM4 activity in cerebral artery smooth muscle cells. Am J Physiol Cell Physiol 2010; 299:C279-88. [PMID: 20427713 DOI: 10.1152/ajpcell.00550.2009] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The melastatin transient receptor potential (TRP) channel TRPM4 is a critical regulator of vascular smooth muscle cell membrane potential and contractility. Activation of the channel is Ca(2+)-dependent, but prolonged exposure to high (>1 microM) levels of intracellular Ca(2+) causes rapid (within approximately 2 min) desensitization of TRPM4 currents under conventional whole cell and inside-out patch-clamp conditions. The goal of the present study was to establish a novel method to record sustained TRPM4 currents in smooth muscle cells under near-physiological conditions. Using the amphotericin B-perforated patch-clamp technique, we recorded and characterized sustained (up to 30 min) transient inward cation currents (TICCs) in freshly isolated cerebral artery myocytes. In symmetrical cation solutions, TICCs reversed at 0 mV and had an apparent unitary conductance of 25 pS. Replacement of extracellular Na(+) with the nonpermeable cation N-methyl-d-glucamine abolished the current. TICC activity was attenuated by the TRPM4 blockers fluflenamic acid and 9-phenanthrol. Selective silencing of TRPM4 expression using small interfering RNA diminished TICC activity, suggesting that the molecular identity of the responsible ion channel is TRPM4. We used the perforated patch-clamp method to test the hypothesis that TRPM4 is activated by intracellular Ca(2+) signaling events. We found that TICC activity is independent of Ca(2+) influx and ryanodine receptor activity but is attenuated by sarco(endo)plasmic reticulum Ca(2+)-ATPase inhibition and blockade of inositol 1,4,5-trisphosphate receptor-mediated Ca(2+) release from the sarcoplasmic reticulum. Our findings suggest that TRPM4 channels in cerebral artery myocytes are regulated by Ca(2+) release from inositol 1,4,5-trisphosphate receptor on the sarcoplasmic reticulum.
Collapse
Affiliation(s)
- Albert L Gonzales
- Vascular Physiology Research Group, Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523-1617, USA
| | | | | |
Collapse
|
102
|
Adebiyi A, Zhao G, Narayanan D, Thomas-Gatewood CM, Bannister JP, Jaggar JH. Isoform-selective physical coupling of TRPC3 channels to IP3 receptors in smooth muscle cells regulates arterial contractility. Circ Res 2010; 106:1603-12. [PMID: 20378853 DOI: 10.1161/circresaha.110.216804] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Inositol 1,4,5-trisphosphate (IP(3))-induced vasoconstriction can occur independently of intracellular Ca(2+) release and via IP(3) receptor (IP(3)R) and canonical transient receptor potential (TRPC) channel activation, but functional signaling mechanisms mediating this effect are unclear. OBJECTIVES Study mechanisms by which IP(3)Rs stimulate TRPC channels in myocytes of resistance-size cerebral arteries. METHODS AND RESULTS Immunofluorescence resonance energy transfer (immuno-FRET) microscopy using isoform-selective antibodies indicated that endogenous type 1 IP(3)Rs (IP(3)R1) are in close spatial proximity to TRPC3, but distant from TRPC6 or TRPM4 channels in arterial myocytes. Endothelin-1 (ET-1), a phospholipase C-coupled receptor agonist, elevated immuno-FRET between IP(3)R1 and TRPC3, but not between IP(3)R1 and TRPC6 or TRPM4. TRPC3, but not TRPC6, coimmunoprecipitated with IP(3)R1. TRPC3 and TRPC6 antibodies selectively inhibited recombinant channels, but only the TRPC3 antibody blocked IP(3)-induced nonselective cation current (I(Cat)) in myocytes. TRPC3 knockdown attenuated immuno-FRET between IP(3)R1 and TRPC3, IP(3)-induced I(Cat) activation, and ET-1 and IP(3)-induced vasoconstriction, whereas TRPC6 channel knockdown had no effect. ET-1 did not alter total or plasma membrane-localized TRPC3, as determined using surface biotinylation. RT-PCR demonstrated that C-terminal calmodulin and IP(3)R binding (CIRB) domains are present in myocyte TRPC3 and TRPC6 channels. A peptide corresponding to the IP(3)R N-terminal region that can interact with TRPC channels activated I(Cat). A TRPC3 CIRB domain peptide attenuated IP(3)- and ET-1-induced I(Cat) activation and vasoconstriction. CONCLUSIONS IP(3) stimulates direct coupling between IP(3)R1 and membrane-resident TRPC3 channels in arterial myocytes, leading to I(Cat) activation and vasoconstriction. Close spatial proximity between IP(3)R1 and TRPC3 establishes this isoform-selective functional interaction.
Collapse
Affiliation(s)
- Adebowale Adebiyi
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38139, USA
| | | | | | | | | | | |
Collapse
|
103
|
Abstract
TRP (transient receptor potential) channels play important roles in the regulation of normal and pathological cellular function. In the vasculature, TRP channels are present both in ECs (endothelial cells) and vascular SMCs (smooth muscle cells) and contribute to vasomotor control mechanisms in most vascular beds. Vascular TRP channels are activated by various stimuli, such as mechanical perturbation, receptor activation and dietary molecules. Some of the specific roles of these channels in normal and impaired vascular function have emerged in recent years and include participation in vascular signalling processes, such as neurotransmission, hormonal signalling, NO production, myogenic tone and autoregulation of blood flow, thermoregulation, responses to oxidative stress and cellular proliferative activity. Current research is aimed at understanding the interactions of TRP channels with other vascular proteins and signalling mechanisms. These studies should reveal new targets for pharmacological therapy of vascular diseases, such as hypertension, ischaemia and vasospasm, and vascular proliferative states.
Collapse
|
104
|
El-Yazbi AF, Johnson RP, Walsh EJ, Takeya K, Walsh MP, Cole WC. Pressure-dependent contribution of Rho kinase-mediated calcium sensitization in serotonin-evoked vasoconstriction of rat cerebral arteries. J Physiol 2010; 588:1747-62. [PMID: 20351047 DOI: 10.1113/jphysiol.2010.187146] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Our understanding of the cellular signalling mechanisms contributing to agonist-induced constriction is almost exclusively based on the study of conduit arteries. Resistance arteries/arterioles have received less attention as standard biochemical approaches lack the necessary sensitivity to permit quantification of phosphoprotein levels in these small vessels. Here, we have employed a novel, highly sensitive Western blotting method to assess: (1) the contribution of Ca(2+) sensitization mediated by phosphorylation of myosin light chain phosphatase targeting subunit 1 (MYPT1) and the 17 kDa PKC-potentiated protein phosphatase 1 inhibitor protein (CPI-17) to serotonin (5-HT)-induced constriction of rat middle cerebral arteries, and (2) whether there is any interplay between pressure-induced myogenic and agonist-induced mechanisms of vasoconstriction. Arterial diameter and levels of MYPT1 (T697 and T855), CPI-17 and 20 kDa myosin light chain subunit (LC(20)) phosphorylation were determined following treatment with 5-HT (1 micromol l(1)) at 10 or 60 mmHg in the absence and presence of H1152 or GF109203X to suppress the activity of Rho-associated kinase (ROK) and protein kinase C (PKC), respectively. Although H1152 and GF109203X suppressed 5-HT-induced constriction and reduced phospho-LC(20) content at 10 mmHg, we failed to detect any increase in MYPT1 or CPI-17 phosphorylation. In contrast, an increase in MYPT1-T697 and MYPT1-T855 phosphorylation, but not phospho-CPI-17 content, was apparent at 60 mmHg following exposure to 5-HT, and the phosphorylation of both MYPT1 sites was sensitive to H1152 inhibition of ROK. The involvement of MYPT1 phosphorylation in the response to 5-HT at 60 mmHg was not dependent on force generation per se, as inhibition of cross-bridge cycling with blebbistatin (10 micromol l(1)) did not affect phosphoprotein content. Taken together, the data indicate that Ca(2+) sensitization owing to ROK-mediated phosphorylation of MYPT1 contributes to 5-HT-evoked vasoconstriction only in the presence of pressure-induced myogenic activation. These findings provide novel evidence of an interplay between myogenic- and agonist-induced vasoconstriction in cerebral resistance arteries.
Collapse
Affiliation(s)
- Ahmed F El-Yazbi
- The Smooth Muscle Research Group, Department of Physiology and Pharmacology, Faculty of Medicine, University of Calgary, 3330 Hospital Drive N.W., Calgary, Alberta, Canada T2N 4N1
| | | | | | | | | | | |
Collapse
|
105
|
Zholos A. Pharmacology of transient receptor potential melastatin channels in the vasculature. Br J Pharmacol 2010; 159:1559-71. [PMID: 20233227 DOI: 10.1111/j.1476-5381.2010.00649.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Mammalian transient receptor potential melastatin (TRPM) non-selective cation channels, the largest TRP subfamily, are widely expressed in excitable and non-excitable cells where they perform diverse functions ranging from detection of cold, taste, osmolarity, redox state and pH to control of Mg(2+) homeostasis and cell proliferation or death. Recently, TRPM gene expression has been identified in vascular smooth muscles with dominance of the TRPM8 channel. There has been in parallel considerable progress in decoding the functional roles of several TRPMs in the vasculature. This research on native cells is aided by the knowledge of the activation mechanisms and pharmacological properties of heterologously expressed TRPM subtypes. This paper summarizes the present state of knowledge of vascular TRPM channels and outlines several anticipated directions of future research in this area.
Collapse
Affiliation(s)
- Alexander Zholos
- Centre for Vision and Vascular Science, Queen's University of Belfast, UK.
| |
Collapse
|
106
|
Differential recruitment of mechanisms for myogenic responses according to luminal pressure and arterial types. Pflugers Arch 2010; 460:19-29. [PMID: 20174820 DOI: 10.1007/s00424-010-0791-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Revised: 12/23/2009] [Accepted: 01/20/2010] [Indexed: 12/28/2022]
Abstract
Mechanosensitive nonselective cation channels (NSC(ms)), protein kinase C (PKC), and Rho kinase (ROCK) are suggested as underlying mechanisms for the myogenic contractile response (MR) to luminal pressure (P(lum)). Here we compared relative contributions from these mechanisms using pharmacological inhibitors in rabbit middle cerebral (RbCA), rat middle cerebral (RtCA), rat femoral (RtFA), and rat mesenteric (RtMA) small arteries. Inner diameters of pressurized arteries under various P(lum) were video-analyzed. 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS, 10 microM) was used as a blocker of NSC(ms). In general, RbCA and RtCA showed higher P(lum) sensitivity of MR than RtFA and RtMA. Ten micromolars of DIDS commonly decreased MRs more effectively at low P(lum) (40-60 mmHg) in all tested arteries except RtCA. In RbCA, PKC inhibitors (100 nM of Go6976 or Go6983) decreased the MR at relatively high P(lum) (80-100 mmHg) whereas ROCK inhibitor (Y-27632, 1 microM) showed a P(lum)-independent inhibition. In RtMA and RtCA, PKC inhibitors (Go6976 and Go6983) had no significant effect whereas Y-27632 generally inhibited the MR. In RtFA, neither PKC inhibitor nor Y-27632 alone affected MRs. Interestingly, in the presence of 10 microM DIDS, Go6983 and Y-27632 decreased the MR of RtFA. In RtMA, it was notable that the MR decreased spontaneously on repeated protocol of P(lum) increase, and the 'run-down' could be effective reversed by maxi-K(+) channel blocker (tetraethylammonium or iberiotoxin). In summary, our study shows the variability of MRs according to the arterial types in terms of their pressure sensitivity and underlying mechanisms that are recruited according to P(lum).
Collapse
|
107
|
Mechanotransduction by TRP Channels: General Concepts and Specific Role in the Vasculature. Cell Biochem Biophys 2009; 56:1-18. [DOI: 10.1007/s12013-009-9067-2] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
108
|
Nystoriak MA, Murakami K, Penar PL, Wellman GC. Ca(v)1.2 splice variant with exon 9* is critical for regulation of cerebral artery diameter. Am J Physiol Heart Circ Physiol 2009; 297:H1820-8. [PMID: 19717733 DOI: 10.1152/ajpheart.00326.2009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
L-type voltage-dependent Ca(2+) channels (VDCCs) are essential for numerous processes in the cardiovascular and nervous systems. Alternative splicing modulates proteomic composition of Ca(v)1.2 to generate functional variation between channel isoforms. Here, we describe expression and function of Ca(v)1.2 channels containing alternatively spliced exon 9* in cerebral artery myocytes. RT-PCR showed expression of Ca(v)1.2 splice variants both containing (alpha(1)C(9/9*/10)) and lacking (alpha(1)C(9/10)) exon 9* in intact rabbit and human cerebral arteries. With the use of laser capture microdissection and RT-PCR, expression of mRNA for both alpha(1)C(9/9*/10) and alpha(1)C(9/10) was demonstrated in isolated cerebral artery myocytes. Quantitative real-time PCR revealed significantly greater alpha(1)C(9/9*/10) expression relative to alpha(1)C(9/10) in intact rabbit cerebral arteries compared with cardiac tissue and cerebral cortex. To demonstrate a functional role for alpha(1)C(9/9*/10), smooth muscle of intact cerebral arteries was treated with antisense oligonucleotides targeting alpha(1)C(9/9*/10) (alpha(1)C(9/9*/10)-AS) or exon 9 (alpha(1)C-AS), expressed in all Ca(v)1.2 splice variants, by reversible permeabilization and organ cultured for 1-4 days. Treatment with alpha(1)C(9/9*/10)-AS reduced maximal constriction induced by elevated extracellular K(+) ([K(+)](o)) by approximately 75% compared with alpha(1)C(9/9*/10-)sense-treated arteries. Maximal constriction in response to the Ca(2+) ionophore ionomycin and [K(+)](o) EC(50) values were not altered by antisense treatment. Decreases in maximal [K(+)](o)-induced constriction were similar between alpha(1)C(9/9*/10)-AS and alpha(1)C-AS groups (22.7 + or - 9% and 25.6 + or - 4% constriction, respectively). We conclude that although cerebral artery myocytes express both alpha(1)C(9/9*/10) and alpha(1)C(9/10) VDCC splice variants, alpha(1)C(9/9*/10) is functionally dominant in the control of cerebral artery diameter.
Collapse
Affiliation(s)
- Matthew A Nystoriak
- Department of Pharmacology and Surgery, University of Vermont, College of Medicine, Burlington, VT 05405-0068, USA
| | | | | | | |
Collapse
|
109
|
Hill MA, Meininger GA, Davis MJ, Laher I. Therapeutic potential of pharmacologically targeting arteriolar myogenic tone. Trends Pharmacol Sci 2009; 30:363-74. [PMID: 19541373 DOI: 10.1016/j.tips.2009.04.008] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Revised: 04/28/2009] [Accepted: 04/28/2009] [Indexed: 01/05/2023]
Abstract
The arteriolar myogenic response, which is defined as vasoconstriction to increases in intraluminal pressure and, conversely, dilation to a reduction in pressure, is key in the setting of vascular resistance, local control of microvascular blood flow through autoregulation, and in the control of capillary hydrostatic pressure. Although considerable progress has been made in the quest for understanding the underlying sensory apparatus and cellular mechanisms, fundamental questions remain - particularly if this pathway is to be considered as a target for novel strategies of pharmacological intervention. We propose that an ability to 're-set' myogenic tone would enable modification of systemic vascular resistance and pressure while at the same time preserving existing interactions with neurohumoral regulatory mechanisms. The challenge, therefore, is to identify steps unique to the myogenic signaling pathway to enable specific pharmacological targeting.
Collapse
Affiliation(s)
- Michael A Hill
- Dalton Cardiovascular Research Center and Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65211, USA.
| | | | | | | |
Collapse
|
110
|
Yang Y, Murphy TV, Ella SR, Grayson TH, Haddock R, Hwang YT, Braun AP, Peichun G, Korthuis RJ, Davis MJ, Hill MA. Heterogeneity in function of small artery smooth muscle BKCa: involvement of the beta1-subunit. J Physiol 2009; 587:3025-44. [PMID: 19359368 DOI: 10.1113/jphysiol.2009.169920] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Arteriolar myogenic vasoconstriction occurs when increased stretch or membrane tension leads to smooth muscle cell depolarization and opening of voltage-gated Ca2+ channels. To prevent positive feedback and excessive pressure-induced vasoconstriction, studies in cerebral artery smooth muscle have suggested that activation of large conductance, Ca2+-activated K+ channels (BKCa) provides an opposing hyperpolarizing influence reducing Ca2+ channel activity. We have hypothesized that this mechanism may not equally apply to all vascular beds. To establish the existence of such heterogeneity in vascular reactivity, studies were performed on rat vascular smooth muscle (VSM) cells from cremaster muscle arterioles and cerebral arteries. Whole cell K+ currents were determined at pipette [Ca2+] of 100 nM or 5 microM in the presence and absence of the BKCa inhibitor, iberiotoxin (IBTX; 0.1 microM). Similar outward current densities were observed for the two cell preparations at the lower pipette Ca2+ levels. At 5 microM Ca2+, cremaster VSM showed a significantly (P < 0.05) lower current density compared to cerebral VSM (34.5 +/- 1.9 vs 45.5 +/- 1.7 pA pF(-1) at +70 mV). Studies with IBTX suggested that the differences in K+ conductance at 5 microM intracellular [Ca2+] were largely due to activity of BKCa. 17beta-Oestradiol (1 microM), reported to potentiate BKCa current via the channel's beta-subunit, caused a greater effect on whole cell K+ currents in cerebral vessel smooth muscle cells (SMCs) compared to those of cremaster muscle. In contrast, the alpha-subunit-selective BKCa opener, NS-1619 (20 microM), exerted a similar effect in both preparations. Spontaneously transient outward currents (STOCs) were more apparent (frequency and amplitude) and occurred at more negative membrane potentials in cerebral compared to cremaster SMCs. Also consistent with decreased STOC activity in cremaster SMCs was an absence of detectable Ca2+ sparks (0 of 76 cells) compared to that in cerebral SMCs (76 of 105 cells). Quantitative PCR showed decreased mRNA expression for the beta1 subunit and a decrease in the beta1:alpha ratio in cremaster arterioles compared to cerebral vessels. Similarly, cremaster arterioles showed a decrease in total BKCa protein and the beta1:alpha-subunit ratio. The data support vascular heterogeneity with respect to the activity of BKCa in terms of both beta-subunit regulation and interaction with SR-mediated Ca2+ signalling.
Collapse
Affiliation(s)
- Yan Yang
- Dalton Cardiovascular Research Center and Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65211, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
111
|
Earley S, Gonzales AL, Crnich R. Endothelium-dependent cerebral artery dilation mediated by TRPA1 and Ca2+-Activated K+ channels. Circ Res 2009; 104:987-94. [PMID: 19299646 DOI: 10.1161/circresaha.108.189530] [Citation(s) in RCA: 210] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although it is well established that changes in endothelial intracellular [Ca(2+)] regulate endothelium-dependent vasodilatory pathways, the molecular identities of the ion channels responsible for Ca(2+) influx in these cells are not clearly defined. The sole member of the ankyrin (A) transient receptor potential (TRP) subfamily, TRPA1, is a Ca(2+)-permeable nonselective cation channel activated by electrophilic compounds such as acrolein (tear gas), allicin (garlic), and allyl isothiocyanate (AITC) (mustard oil). The present study examines the hypothesis that Ca(2+) influx via TRPA1 causes endothelium-dependent vasodilation. The effects of TRPA1 activity on vascular tone were examined using isolated, pressurized cerebral arteries. AITC induced concentration-dependent dilation of pressurized vessels with myogenic tone that was accompanied by a corresponding decrease in smooth muscle intracellular [Ca(2+)]. AITC-induced dilation was attenuated by disruption of the endothelium and when the TRPA1 channel blocker HC-030031 was present in the arterial lumen. TRPA1 channels were found to be present in native endothelial cells, localized to endothelial cell membrane projections proximal to vascular smooth muscle cells. AITC-induced dilation was insensitive to nitric oxide synthase or cyclooxygenase inhibition but was blocked by luminal administration of the small and intermediate conductance Ca(2+)-activated K(+) channel blockers apamin and TRAM34. BaCl(2), a blocker of inwardly rectifying K(+) channels, also inhibited AITC-induced dilation. AITC-induced smooth muscle cell hyperpolarization was blocked by apamin and TRAM34. We conclude that Ca(2+) influx via endothelial TRPA1 channels elicits vasodilation of cerebral arteries by a mechanism involving endothelial cell Ca(2+)-activated K(+) channels and inwardly rectifying K(+) channels in arterial myocytes.
Collapse
Affiliation(s)
- Scott Earley
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523-1680, USA.
| | | | | |
Collapse
|
112
|
Zhao G, Adebiyi A, Blaskova E, Xi Q, Jaggar JH. Type 1 inositol 1,4,5-trisphosphate receptors mediate UTP-induced cation currents, Ca2+ signals, and vasoconstriction in cerebral arteries. Am J Physiol Cell Physiol 2008; 295:C1376-84. [PMID: 18799650 DOI: 10.1152/ajpcell.00362.2008] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Inositol 1,4,5-trisphosphate receptors (IP(3)Rs) regulate diverse physiological functions, including contraction and proliferation. There are three IP(3)R isoforms, but their functional significance in arterial smooth muscle cells is unclear. Here, we investigated relative expression and physiological functions of IP(3)R isoforms in cerebral artery smooth muscle cells. We show that 2-aminoethoxydiphenyl borate and xestospongin C, membrane-permeant IP(3)R blockers, reduced Ca(2+) wave activation and global intracellular Ca(2+) ([Ca(2+)](i)) elevation stimulated by UTP, a phospholipase C-coupled purinergic receptor agonist. Quantitative PCR, Western blotting, and immunofluorescence indicated that all three IP(3)R isoforms were expressed in acutely isolated cerebral artery smooth muscle cells, with IP(3)R1 being the most abundant isoform at 82% of total IP(3)R message. IP(3)R1 knockdown with short hairpin RNA (shRNA) did not alter baseline Ca(2+) wave frequency and global [Ca(2+)](i) but abolished UTP-induced Ca(2+) wave activation and reduced the UTP-induced global [Ca(2+)](i) elevation by approximately 61%. Antibodies targeting IP(3)R1 and IP(3)R1 knockdown reduced UTP-induced nonselective cation current (I(cat)) activation. IP(3)R1 knockdown also reduced UTP-induced vasoconstriction in pressurized arteries with both intact and depleted sarcoplasmic reticulum (SR) Ca(2+) by approximately 45%. These data indicate that IP(3)R1 is the predominant IP(3)R isoform expressed in rat cerebral artery smooth muscle cells. IP(3)R1 stimulation contributes to UTP-induced I(cat) activation, Ca(2+) wave generation, global [Ca(2+)](i) elevation, and vasoconstriction. In addition, IP(3)R1 activation constricts cerebral arteries in the absence of SR Ca(2+) release by stimulating plasma membrane I(cat).
Collapse
Affiliation(s)
- Guiling Zhao
- Dept. of Physiology, Univ. of Tennessee Health Science Center, Memphis, TN 38163, USA
| | | | | | | | | |
Collapse
|
113
|
Santana LF, Navedo MF, Amberg GC, Nieves-Cintrón M, Votaw VS, Ufret-Vincenty CA. Calcium sparklets in arterial smooth muscle. Clin Exp Pharmacol Physiol 2008; 35:1121-6. [PMID: 18215181 PMCID: PMC5832963 DOI: 10.1111/j.1440-1681.2007.04867.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Voltage-dependent, L-type Ca2+ channels (LTCC) play an essential role in arterial smooth muscle contraction and, consequently, the regulation of arterial diameter, tissue perfusion and blood pressure. However, the spatial organization of functional LTCC in arterial myocytes is incompletely understood. Total internal reflection fluorescence and swept-field confocal microscopy revealed that the opening of a single or a cluster of LTCC produces local elevations in [Ca2+]i called Ca2+ sparklets. In arterial myocytes, Ca2+ sparklets are produced by the opening of Cav1.2 channels. The Ca2+ sparklet activity is bimodal. In low activity mode, rare stochastic openings of solitary LTCC produce limited Ca2+ influx ('low activity Ca2+ sparklets'). In contrast, discrete clusters of LTCC associated with protein kinase Ca (PKCa) operate in a sustained, high-activity mode resulting in substantial Ca2+ influx ('persistent Ca2+ sparklets'). The Ca2+ sparklet activity varies regionally within a myocyte depending on the relative activities of nearby PKCa and opposing protein phosphates 2A and 2B. Low- and high-activity persistent Ca2+ sparklets modulate local and global [Ca2+]i in arterial smooth muscle, suggesting that this Ca2+ signal may play an important role in the regulation of vascular function.
Collapse
Affiliation(s)
- Luis F Santana
- Department of Physiology and Biophysics, University of Washington School of Medicine, Box 357290, Seattle, WA 98195, USA.
| | | | | | | | | | | |
Collapse
|
114
|
Kim HR, Gallant C, Leavis PC, Gunst SJ, Morgan KG. Cytoskeletal remodeling in differentiated vascular smooth muscle is actin isoform dependent and stimulus dependent. Am J Physiol Cell Physiol 2008; 295:C768-78. [PMID: 18596213 DOI: 10.1152/ajpcell.00174.2008] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Dynamic remodeling of the actin cytoskeleton plays an essential role in the migration and proliferation of vascular smooth muscle cells. It has been suggested that actin remodeling may also play an important functional role in nonmigrating, nonproliferating differentiated vascular smooth muscle (dVSM). In the present study, we show that contractile agonists increase the net polymerization of actin in dVSM, as measured by the differential ultracentrifugation of vascular smooth muscle tissue and the costaining of single freshly dissociated cells with fluorescent probes specific for globular and filamentous actin. Furthermore, induced alterations of the actin polymerization state, as well as actin decoy peptides, inhibit contractility in a stimulus-dependent manner. Latrunculin pretreatment or actin decoy peptides significantly inhibit contractility induced by a phorbol ester or an alpha-agonist, but these procedures have no effect on contractions induced by KCl. Aorta dVSM expresses alpha-smooth muscle actin, beta-actin, nonmuscle gamma-actin, and smooth muscle gamma-actin. The incorporation of isoform-specific cell-permeant synthetic actin decoy peptides, as well as isoform-specific probing of cell fractions and two-dimensional gels, demonstrates that actin remodeling during alpha-agonist contractions involves the remodeling of primarily gamma-actin and, to a lesser extent, beta-actin. Taken together, these results show that net isoform- and agonist-dependent increases in actin polymerization regulate vascular contractility.
Collapse
Affiliation(s)
- Hak Rim Kim
- Department of Health Sciences, Boston University, Boston, Massachusetts 02215, USA
| | | | | | | | | |
Collapse
|
115
|
|
116
|
Cha SK, Wu T, Huang CL. Protein kinase C inhibits caveolae-mediated endocytosis of TRPV5. Am J Physiol Renal Physiol 2008; 294:F1212-21. [PMID: 18305097 DOI: 10.1152/ajprenal.00007.2008] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Transient receptor potential vanilloid 5 (TRPV5) constitutes the apical entry pathway for transepithelial Ca2+reabsorption in kidney. Many hormones alter renal Ca2+reabsorption at least partly by regulating TRPV5. The mechanism for acute regulation of TRPV5 by phospholipase C-coupled hormones is largely unknown. Here, we found that protein kinase C (PKC) activator 1-oleoyl-acetyl-sn-glycerol (OAG) increased TRPV5 current density and surface abundance in cultured cells. The OAG-mediated increase of TRPV5 was prevented by preincubation with specific PKC inhibitors. Coexpression with a dominant-negative dynamin increased the basal TRPV5 current density and prevented the increase by OAG. Knockdown of caveolin-1 by small interference RNA (siRNA) prevented the increase of TRPV5 by OAG. In contrast, knockdown of clathrin heavy chain had no effects. OAG had no effect on TRPV5 expressed in caveolin-1 null cells derived from caveolin-1 knockout mice. Forced expression of recombinant caveolin-1 restored the regulation of TRPV5 by OAG in caveolin-1 knockout cells. Mutations of serine-299 and/or serine-654 of TRPV5 (consensus residues for phosphorylation by PKC) abolished the regulation by OAG. Parathyroid hormone (PTH) increased TRPV5 current density in cells coexpressing TRPV5 and type 1 PTH receptor. The increase caused by PTH was prevented by PKC inhibitor, mutation of serine-299/serine-654, or by knockdown of caveolin-1. Thus, TRPV5 undergoes constitutive caveolae-mediated endocytosis. Activation of PKC increases cell surface abundance of TRPV5 by inhibiting the endocytosis. This mechanism of regulation by PKC may contribute to the acute stimulation of TRPV5 and renal Ca2+reabsorption by PTH.
Collapse
|
117
|
Pathophysiological implications of transient receptor potential channels in vascular function. Curr Opin Nephrol Hypertens 2008; 17:193-8. [DOI: 10.1097/mnh.0b013e3282f52467] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
118
|
Abstract
BACKGROUND AND PURPOSE TRPM4 and TRPM5 are calcium-activated non-selective cation channels with almost identical characteristics. TRPM4 is detected in several tissues including heart, kidney, brainstem, cerebral artery and immune system whereas TRPM5 expression is more restricted. Determination of their roles in physiological processes requires specific pharmacological tools. TRPM4 is inhibited by glibenclamide, a modulator of ATP binding cassette proteins (ABC transporters), such as the cystic fibrosis transmembrane conductance regulator (CFTR). We took advantage of this similarity to investigate the effect of hydroxytricyclic compounds shown to modulate ABC transporters, on TRPM4 and TRPM5. EXPERIMENTAL APPROACH Experiments were conducted using HEK-293 cells permanently transfected to express human TRPM4 or TRPM5. Currents were recorded using the whole-cell and inside-out variants of the patch-clamp technique. KEY RESULTS The CFTR channel activator benzo[c]quinolizinium MPB-104 inhibited TRPM4 current with an IC(50) in the range of 2 x 10(-5) M, with no effect on single-channel conductance. In addition, 9-phenanthrol, lacking the chemical groups necessary for CFTR activation, also reversibly inhibited TRPM4 with a similar IC(50). Channel inhibition was voltage independent. The IC(50) determined in the whole-cell and inside-out experiments were similar, suggesting a direct effect of the molecule. However, 9-phenanthrol was ineffective on TRPM5, the most closely related channel within the TRP protein family. CONCLUSIONS AND IMPLICATIONS We identify 9-phenanthrol as a TRPM4 inhibitor, without effects on TRPM5. It could be valuable in investigating the physiological functions of TRPM4, as distinct from those of TRPM5.
Collapse
|
119
|
Folgering JHA, Sharif-Naeini R, Dedman A, Patel A, Delmas P, Honoré E. Molecular basis of the mammalian pressure-sensitive ion channels: focus on vascular mechanotransduction. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2008; 97:180-95. [PMID: 18343483 DOI: 10.1016/j.pbiomolbio.2008.02.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Mechano-gated ion channels are implicated in a variety of neurosensory functions ranging from touch sensitivity to hearing. In the heart, rhythm disturbance subsequent to mechanical effects is also associated with the activation of stretch-sensitive ion channels. Arterial autoregulation in response to hemodynamic stimuli, a vital process required for protection against hypertension-induced injury, is similarly dependent on the activity of force-sensitive ion channels. Seminal work in prokaryotes and invertebrates, including the nematode Caenorhabditis elegans and the fruit fly drosophila, greatly helped to identify the molecular basis of volume regulation, hearing and touch sensitivity. In mammals, more recent findings have indicated that members of several structural family of ion channels, namely the transient receptor potential (TRP) channels, the amiloride-sensitive ENaC/ASIC channels and the potassium channels K2P and Kir are involved in cellular mechanotransduction. In the present review, we will focus on the molecular and functional properties of these channel subunits and will emphasize on their role in the pressure-dependent arterial myogenic constriction and the flow-mediated vasodilation.
Collapse
Affiliation(s)
- Joost H A Folgering
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS-UMR6097, 660 route des Lucioles, Sophia Antipolis, 06560 Valbonne, France
| | | | | | | | | | | |
Collapse
|
120
|
Raina H, Ella SR, Hill MA. Decreased activity of the smooth muscle Na+/Ca2+ exchanger impairs arteriolar myogenic reactivity. J Physiol 2008; 586:1669-81. [PMID: 18218677 DOI: 10.1113/jphysiol.2007.150268] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Arteriolar myogenic vasoconstriction occurs when stretch or increased membrane tension leads to smooth muscle cell (SMC) depolarization and opening of voltage-gated Ca(2+) channels. While the mechanism underlying the depolarization is uncertain a role for non-selective cation channels has been demonstrated. As such channels may be expected to pass Na(+), we hypothesized that reverse mode Na(+)/Ca(2+) exchange (NCX) may act to remove Na(+) and in addition play a role in myogenic signalling through coupled Ca(2+) entry. Further, reverse (Ca(2+) entry) mode function of the NCX is favoured by the membrane potential found in myogenically active arterioles. All experiments were performed on isolated rat cremaster muscle first order arterioles (passive diameter approximately 150 mum) which were pressurized in the absence of intraluminal flow. Reduction of extracellular Na(+) to promote reverse-mode NCX activity caused significant, concentration-dependent vasoconstriction and increased intracellular Ca(2+). This vasoconstriction was attenuated by the NCX inhibitors KB-R7943 and SEA 04000. Western blotting confirmed the existence of NCX protein while real-time PCR studies demonstrated that the major isoform expressed in the arteriolar wall was NCX1. Oligonucleotide knockdown (24 and 36 h) of NCX inhibited the vasoconstrictor response to reduced extracellular Na(+) while also impairing both steady-state myogenic responses (as shown by pressure-diameter relationships) and acute reactivity to a 50 to 120 mmHg pressure step. The data are consistent with reverse mode activity of the NCX in arterioles and a contribution of this exchanger to myogenic vasoconstriction.
Collapse
Affiliation(s)
- Hema Raina
- School of Medical Sciences, RMIT University, Bundoora, Victoria 3083, Australia
| | | | | |
Collapse
|
121
|
Brayden JE, Earley S, Nelson MT, Reading S. Transient receptor potential (TRP) channels, vascular tone and autoregulation of cerebral blood flow. Clin Exp Pharmacol Physiol 2008; 35:1116-20. [PMID: 18215190 DOI: 10.1111/j.1440-1681.2007.04855.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Members of the transient receptor potential (TRP) channel superfamily are present in vascular smooth muscle cells and play important roles in the regulation of vascular contractility. The TRPC3 and TRPC6 channels are activated by stimulation of several excitatory receptors in vascular smooth muscle cells. Activation of these channels leads to myocyte depolarization, which stimulates Ca2+ entry via voltage-dependent Ca2+ channels (VDCC), leading to vasoconstriction. The TRPV4 channels in arterial myocytes are activated by epoxyeicosatrienoic acids, and activation of the channels enhances Ca2+ spark and transient Ca2+-sensitive K+ channel activity, thereby hyperpolarizing and relaxing vascular smooth muscle cells. The TRPC6 and TRPM4 channels are activated by mechanical stimulation of cerebral artery myocytes. Subsequent depolarization and activation of VDCC Ca2+ entry is directly linked to the development of myogenic tone in vitro and to autoregulation of cerebral blood flow in vivo. These findings imply a fundamental importance of TRP channels in the regulation of vascular smooth muscle tone and suggest that TRP channels could be important targets for drug therapy under conditions in which vascular contractility is disturbed (e.g. hypertension, stroke, vasospasm).
Collapse
Affiliation(s)
- Joseph E Brayden
- Department of Pharmacology, The University of Vermont, 89 Beaumont Avenue, Burlington, VT 05405, USA.
| | | | | | | |
Collapse
|
122
|
TRP channels and mechanosensory transduction: insights into the arterial myogenic response. Pflugers Arch 2008; 456:529-40. [PMID: 18183414 DOI: 10.1007/s00424-007-0432-y] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Revised: 12/04/2007] [Accepted: 12/10/2007] [Indexed: 12/19/2022]
Abstract
Mechano-gated ion channels are implicated in a variety of key physiological functions ranging from touch sensitivity to arterial pressure regulation. Seminal work in prokaryotes and invertebrates provided strong evidence for the role of specific ion channels in volume regulation, touch sensitivity, or hearing, specifically the mechanosensitive channel subunits of large and small conductances (MscL and MscS), the mechanosensory channel subunits (MEC) and the transient receptor potential channel subunits (TRP). In mammals, recent studies further indicate that members of the TRP channel family may also be considered as possible candidate mechanosensors responding to either tension, flow, or changes in cell volume. However, contradictory results have challenged whether these TRP channels, including TRPC1 and TRPC6, are directly activated by mechanical stimulation. In the present review, we will focus on the mechanosensory function of TRP channels, discuss whether a direct or indirect mechanism is at play, and focus on the proposed role for these channels in the arterial myogenic response to changes in intraluminal pressure.
Collapse
|
123
|
Navedo MF, Nieves-Cintrón M, Amberg GC, Yuan C, Votaw VS, Lederer WJ, McKnight GS, Santana LF. AKAP150 is required for stuttering persistent Ca2+ sparklets and angiotensin II-induced hypertension. Circ Res 2008; 102:e1-e11. [PMID: 18174462 DOI: 10.1161/circresaha.107.167809] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hypertension is a perplexing multiorgan disease involving renal primary pathology and enhanced angiotensin II vascular reactivity. Here, we report that a novel form of a local Ca2+ signaling in arterial smooth muscle is linked to the development of angiotensin II-induced hypertension. Long openings and reopenings of L-type Ca2+ channels in arterial myocytes produce stuttering persistent Ca2+ sparklets that increase Ca2+ influx and vascular tone. These stuttering persistent Ca2+ sparklets arise from the molecular interactions between the L-type Ca2+ channel and protein kinase Calpha at only a few subsarcolemmal regions in resistance arteries. We have identified AKAP150 as the key protein, which targets protein kinase Calpha to the L-type Ca2+ channels and thereby enables its regulatory function. Accordingly, AKAP150 knockout mice (AKAP150-/-) were found to lack persistent Ca2+ sparklets and have lower arterial wall intracellular calcium ([Ca2+]i) and decreased myogenic tone. Furthermore, AKAP150-/- mice were hypotensive and did not develop angiotensin II-induced hypertension. We conclude that local control of L-type Ca2+ channel function is regulated by AKAP150-targeted protein kinase C signaling, which controls stuttering persistent Ca2+ influx, vascular tone, and blood pressure under physiological conditions and underlies angiotensin II-dependent hypertension.
Collapse
Affiliation(s)
- Manuel F Navedo
- Department of Physiology & Biophysics, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | | | | | |
Collapse
|
124
|
Kashihara T, Nakayama K, Ishikawa T. Distinct Roles of Protein Kinase C Isoforms in Myogenic Constriction of Rat Posterior Cerebral Arteries. J Pharmacol Sci 2008; 108:446-54. [DOI: 10.1254/jphs.08184fp] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
125
|
Regulation of phospholipase C-δ1 by ARGHAP6, a GTPase-activating protein for RhoA: Possible role for enhanced activity of phospholipase C in hypertension. Int J Biochem Cell Biol 2008; 40:2264-73. [DOI: 10.1016/j.biocel.2008.03.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Revised: 03/07/2008] [Accepted: 03/12/2008] [Indexed: 11/20/2022]
|
126
|
|
127
|
Hill MA, Davis MJ. Coupling a change in intraluminal pressure to vascular smooth muscle depolarization: still stretching for an explanation. Am J Physiol Heart Circ Physiol 2007; 292:H2570-2. [PMID: 17384129 DOI: 10.1152/ajpheart.00331.2007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Michael A Hill
- Dalton Cardiovascular Research Center, Department of Medical Pharmacology and Physiology, University of Missouri, 134 Research Park Dr., Columbia, MO 65211, USA.
| | | |
Collapse
|