101
|
Jambon I, Thijs S, Torres-Farradá G, Rineau F, Weyens N, Carleer R, Samyn P, Vangronsveld J. Fenton-Mediated Biodegradation of Chlorendic Acid - A Highly Chlorinated Organic Pollutant - By Fungi Isolated From a Polluted Site. Front Microbiol 2019; 10:1892. [PMID: 31474967 PMCID: PMC6702520 DOI: 10.3389/fmicb.2019.01892] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 07/31/2019] [Indexed: 11/13/2022] Open
Abstract
Chlorendic acid is a recalcitrant, highly chlorinated organic pollutant for which no microbial degrader has yet been identified. To address this knowledge gap, fungi were isolated from bulk soil, rhizosphere, and roots of the common bent (Agrostis capillaris) and the hybrid poplar [Populus deltoides × (Populus trichocarpa × P. deltoides) cv. Grimminge], both of which grow on a chlorendic acid polluted site in Belgium. Isolates were taxonomically identified and phenotypically screened for chlorendic acid degradation. Several fungal isolates could degrade chlorendic acid in liquid media up to 45%. The chlorendic acid degrading fungal isolates produced higher levels of hydroxyl radicals when exposed to the pollutant when compared to non-exposed controls, suggesting that the oxidative degradation of chlorendic acid occurs through production of Fenton-mediated hydroxyl radicals. In addition, the isolated Ascomycete Penicillium sp. 1D-2a degraded 58% of the original chlorendic acid concentration in the soil after 28 days. This study demonstrates that the presence of fungi in a chlorendic acid polluted soil can degrade this highly chlorinated organic pollutant. These results indicate that recalcitrant, seemingly non-biologically degradable organic pollutants, such as chlorendic acid, can be remediated by using bioremediation, which opens new perspectives for in situ bioremediation.
Collapse
Affiliation(s)
- Inge Jambon
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Sofie Thijs
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Giselle Torres-Farradá
- Department of Microbiology and Virology, Faculty of Biology, University of Havana, La Habana, Cuba
| | - François Rineau
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Nele Weyens
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Robert Carleer
- Institute for Materials Research, Hasselt University, Diepenbeek, Belgium
| | - Pieter Samyn
- Institute for Materials Research, Hasselt University, Diepenbeek, Belgium
| | - Jaco Vangronsveld
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
- Department of Plant Physiology, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Lublin, Poland
| |
Collapse
|
102
|
Coelho GD, Ballaminut N, Thomaz DV, Gomes Machado KM. Characterization of a thermostable Deconica castanella Laccase and application toward pentachlorophenol degradation. Prep Biochem Biotechnol 2019; 49:908-915. [DOI: 10.1080/10826068.2019.1636280] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Glauciane Danusa Coelho
- Department of Mycology, Institute of Botany of São Paulo (Secretariat of the Environment of the State of São Paulo/SMA/SP), São Paulo, Brazil
| | - Nara Ballaminut
- Department of Mycology, Institute of Botany of São Paulo (Secretariat of the Environment of the State of São Paulo/SMA/SP), São Paulo, Brazil
| | | | | |
Collapse
|
103
|
Su J, Fu J, Silva C, Cavaco-Paulo A. Can Laccase-Assisted Processing Conditions Influence the Structure of the Reaction Products? Trends Biotechnol 2019; 37:683-686. [DOI: 10.1016/j.tibtech.2019.03.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/19/2019] [Accepted: 03/04/2019] [Indexed: 12/15/2022]
|
104
|
Rai R, Bibra M, Chadha BS, Sani RK. Enhanced hydrolysis of lignocellulosic biomass with doping of a highly thermostable recombinant laccase. Int J Biol Macromol 2019; 137:232-237. [PMID: 31260768 DOI: 10.1016/j.ijbiomac.2019.06.221] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/27/2019] [Accepted: 06/27/2019] [Indexed: 10/26/2022]
Abstract
A highly thermostable laccase from Geobacillus sp. strain WSUCF1 was cloned into Escherichia coli (E. coli) using pRham N-His SUMO expression system. The thermostable laccase with a molecular weight ~30 kDa had a t1/2 (pH 6.0) of 120 h at 50 °C. The homology modelling for laccase structure showed the presence of Cu active centers with His and Cys residues involved in the active site and ligand binding activity of the enzyme, respectively. The Km, Vmax, Kcat and Kcat/Km values of the purified enzyme with ABTS were found to be 0.146 mM, 1.52 U/mg, 1037 s-1 and 7102.7 s-1 mM-1, respectively. The doping of recombinant WSUCF1 laccase to commercial enzyme cocktails Accellerase® 1500 and Cellic CTec2 improved the hydrolysis of untreated, alkali and acid treated corn stover by 1.31-2.28 times and bagasse by 1.32-2.02 times. Further, in-house enzyme cocktails with laccase hydrolyzed untreated, alkali and acid treated bagasse and gave 1.44, 1.1, and 0.92 folds higher sugar, respectively, when compared with Accellerase 1500. The results suggested that thermostable laccase can aid in the improved hydrolysis of lignocellulosic biomass.
Collapse
Affiliation(s)
- Rohit Rai
- Department of Microbiology, Guru Nanak Dev University, Amritsar 143005, India; Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA; Department of Medical Laboratory Sciences, Lovely Professional University, Phagwara Road, Jalandhar 144411, India
| | - Mohit Bibra
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA; Green Biologics Inc., Little Falls, MN 56345, USA
| | - B S Chadha
- Department of Microbiology, Guru Nanak Dev University, Amritsar 143005, India
| | - Rajesh K Sani
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA; BuG ReMeDEE Consortium, Rapid City, SD 57701, USA.
| |
Collapse
|
105
|
Zaccaria S, Boff NA, Bettin F, Dillon AJP. Use of micro- and ultrafiltration membranes for concentration of laccase-rich enzymatic extract of Pleurotus sajor-caju PS-2001 and application in dye decolorization. CHEMICAL PAPERS 2019. [DOI: 10.1007/s11696-019-00845-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
106
|
Góralczyk-Bińkowska A, Jasińska A, Długoński J. CHARACTERISTICS AND USE OF MULTICOPPER OXIDASES ENZYMES. ADVANCEMENTS OF MICROBIOLOGY 2019. [DOI: 10.21307/pm-2019.58.1.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
107
|
Noman E, Al-Gheethi A, Mohamed RMSR, Talip BA. Myco-Remediation of Xenobiotic Organic Compounds for a Sustainable Environment: A Critical Review. Top Curr Chem (Cham) 2019; 377:17. [DOI: 10.1007/s41061-019-0241-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 05/08/2019] [Indexed: 01/06/2023]
|
108
|
Sondhi S, Saini K. Response surface based optimization of laccase production from Bacillus sp. MSK-01 using fruit juice waste as an effective substrate. Heliyon 2019; 5:e01718. [PMID: 31193314 PMCID: PMC6525328 DOI: 10.1016/j.heliyon.2019.e01718] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 04/18/2019] [Accepted: 05/09/2019] [Indexed: 11/05/2022] Open
Abstract
Laccases are multicopper oxidases containing four copper atoms per monomer distributed in three redox sites. Because of its tremendous applications in different areas, isolation of new laccases with wide range of industrial implementation. The present study focuses on the optimization of laccase production from Bacillus sp. MSK-01 under solid state fermentation conditions using fruit juice waste as the substrate. MSKLAC was produced extracellularly by the bacteria. This laccase was able to oxidize ABTS and syringaldazine. Various nutritional and environmental factors were utilized for increasing the enzyme yield. Plackett Burman was used to study the influence of input parameters on laccase yield. Tween-80, initial moisture ratio and magnesium sulphate were the major influencing factor affecting laccase yield. Central composite design of RSM was used for the modelling of experiment. Desirability approach was used to optimize laccase yield. Maximum laccase yield of 1645 IUg−1 was obtained when 0.55% of tween -80, 1:2.34 initial moisture ratio and 300μM magnesium sulphate was used. A 470 fold increase in the yield of laccase from unoptimized condition was obtained.
Collapse
Affiliation(s)
- Sonica Sondhi
- Department of Biotechnology, Chandigarh College of Technology, CGC Landran, 140307, District-Mohali, Punjab, India
| | - Kiranjot Saini
- Department of Biotechnology, Chandigarh College of Technology, CGC Landran, 140307, District-Mohali, Punjab, India
| |
Collapse
|
109
|
Périgon S, Massier M, Germain J, Binet MN, Legay N, Mouhamadou B. Metabolic adaptation of fungal strains in response to contamination by polychlorinated biphenyls. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:14943-14950. [PMID: 30919176 DOI: 10.1007/s11356-019-04701-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 02/25/2019] [Indexed: 06/09/2023]
Abstract
Polychlorinated biphenyls (PCBs) represent a large group of recalcitrant environmental pollutants. Up to now, many studies have focused on bioremediation of PCBs by fungal strains; however, the mechanisms of adaptation of these strains towards PCBs remain unknown despite their importance in developing effective bioremediation processes. We studied five species, each consisting of two strains isolated either from PCB-polluted or PCB-unpolluted substrates (control strains). We investigated their responses to PCB contamination by studying their tolerance to PCBs, their ability to reduce these pollutants, and their expression level of Laccase genes. In Thermothelomyces thermophila, Thermothelomyces heterothallica, Thermoascus crustaceus, and Fusarium solani, all the studied strains showed a similar tolerance and PCB degradation regardless of their origin. In Schizophyllum commune, while both strains showed similar resistance to PCBs, i.e., PCBs and their degradation products presented no toxicity for these strains, the rate of PCB degradation of the strain from a PCB-polluted environment was significantly slightly higher. The PCB degradation did not correlate with the expression level of genes encoding Laccases. These results demonstrate that the tolerance and PCB degradation by the fungal strains, which did not involve Laccase genes, required different adaptation systems which seem to be constitutive or rapidly inducible by PCB according to the fungal species.
Collapse
Affiliation(s)
- Sophie Périgon
- Laboratoire d'Ecologie Alpine, UMR 5553 CNRS/USMB Université Grenoble Alpes, 38058, Grenoble CEDEX 9, France
| | - Martin Massier
- Laboratoire d'Ecologie Alpine, UMR 5553 CNRS/USMB Université Grenoble Alpes, 38058, Grenoble CEDEX 9, France
| | - Joaquim Germain
- Laboratoire d'Ecologie Alpine, UMR 5553 CNRS/USMB Université Grenoble Alpes, 38058, Grenoble CEDEX 9, France
| | - Marie-Noëlle Binet
- Laboratoire d'Ecologie Alpine, UMR 5553 CNRS/USMB Université Grenoble Alpes, 38058, Grenoble CEDEX 9, France
| | - Nicolas Legay
- Ecole de la Nature et du Paysage, INSA Centre Val de Loire, 9 Rue Chocolaterie, 41000, Blois, France
- CNRS, CITERES, UMR 7324, 37200, Tours, France
| | - Bello Mouhamadou
- Laboratoire d'Ecologie Alpine, UMR 5553 CNRS/USMB Université Grenoble Alpes, 38058, Grenoble CEDEX 9, France.
| |
Collapse
|
110
|
Glazunova OA, Moiseenko KV, Kamenihina IA, Isaykina TU, Yaropolov AI, Fedorova TV. Laccases with Variable Properties from Different Strains of Steccherinum ochraceum: Does Glycosylation Matter? Int J Mol Sci 2019; 20:E2008. [PMID: 31022851 PMCID: PMC6515407 DOI: 10.3390/ijms20082008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/14/2019] [Accepted: 04/19/2019] [Indexed: 11/17/2022] Open
Abstract
Laccases are blue multi-copper oxidases with an extensive number of actual and potential industrial applications. It is known that laccases from different fungal strains may vary in properties; however, the reason of this remains unclear. In the current study we have isolated and characterized seven laccases from different strains of Steccherinum ochraceum obtained from regions of central Russia. Although all seven laccases had the same primary sequences, there was a little variation in their molecular weights and thermostabilities. Moreover, statistically significant differences in laccases' catalytic parameters of oxidation of phenolic substrates and ABTS were observed. After the deglycosylation of four selected laccases by Endo H and PNGase F, their affinities to pyrocatechol and ABTS became the same, suggesting a substantial role of N-linked glycosylation in moderation of enzymatic properties of laccases.
Collapse
Affiliation(s)
- Olga A Glazunova
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia.
| | - Konstantin V Moiseenko
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia.
| | - Inna A Kamenihina
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia.
| | - Tatyana U Isaykina
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia.
| | - Alexander I Yaropolov
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia.
| | - Tatyana V Fedorova
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia.
| |
Collapse
|
111
|
Pereira-Patrón A, Solis-Pereira S, Lizama-Uc G, Ramírez-Prado JH, Pérez-Brito D, Tapia-Tussell R. Molecular characterization of laccase genes from the basidiomycete Trametes hirsuta Bm-2 and analysis of the 5' untranslated region (5'UTR). 3 Biotech 2019; 9:160. [PMID: 30944807 PMCID: PMC6441420 DOI: 10.1007/s13205-019-1691-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 03/21/2019] [Indexed: 11/25/2022] Open
Abstract
The aim of this study was to identify and characterize laccase genes produced by Trametes hirsuta Bm-2 in a liquid medium, both with and without induction. The amplification of 5'and 3'regions of laccase sequences was obtained by the RACE-PCR method, and these were assembled to obtain a cDNA of total length. Two new laccase genes were isolated from basal medium (lac-B) and lignocellulosic grapefruit substrate (lac-T), both encoding open reading frames of 2566 bp. Both laccase-predicted proteins consisted of 521 amino acids, four copper-binding regions, a signal peptide, and five potential glycosilation sites (Asn-Xaa-Ser/Tre). Moreover, the deduced amino acid sequences share about 76-85% identity with other laccases of WRF. Sequence comparison showed 47 synonymous point mutations between lac-B and lac-T. In addition, 5' untranslated regions (UTR) of laccase genes lac-B and lac-T showed differences in length and number of regulatory elements that may affect transcriptional or translational expression of these genes.
Collapse
Affiliation(s)
- Alejandrina Pereira-Patrón
- Depto. de Ingeniería Química y Bioquímica, Tecnológico Nacional de México, Instituto Tecnológico de Mérida, Av. Tecnológico Km 4.5 S/N, 97118 Mérida, Yucatán Mexico
| | - Sara Solis-Pereira
- Depto. de Ingeniería Química y Bioquímica, Tecnológico Nacional de México, Instituto Tecnológico de Mérida, Av. Tecnológico Km 4.5 S/N, 97118 Mérida, Yucatán Mexico
| | - Gabriel Lizama-Uc
- Depto. de Ingeniería Química y Bioquímica, Tecnológico Nacional de México, Instituto Tecnológico de Mérida, Av. Tecnológico Km 4.5 S/N, 97118 Mérida, Yucatán Mexico
| | - Jorge H. Ramírez-Prado
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Calle 43 No. 130 x 32 y 34, Col. Chuburná de Hidalgo, 97205 Mérida, Yucatán Mexico
| | - Daisy Pérez-Brito
- Laboratorio GeMBio, Centro de Investigación Científica de Yucatán, Calle 43 No. 130 x 32 y 34, Col. Chuburná de Hidalgo, 97205 Mérida, Yucatán Mexico
| | - Raul Tapia-Tussell
- Unidad de Energía Renovable, Centro de Investigación Científica de Yucatán, Carretera Sierra Papacal-Chuburná Puerto Km 5, 97302 Mérida, Yucatán Mexico
| |
Collapse
|
112
|
Chaurasia SK, Bhardwaj NK. Biobleaching - An ecofriendly and environmental benign pulp bleaching technique: A review. J Carbohydr Chem 2019. [DOI: 10.1080/07328303.2019.1581888] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
| | - Nishi K. Bhardwaj
- Avantha Centre for Industrial Research and Development, Yamuna Nagar, Haryana, India
| |
Collapse
|
113
|
Campaña AL, Florez SL, Noguera MJ, Fuentes OP, Ruiz Puentes P, Cruz JC, Osma JF. Enzyme-Based Electrochemical Biosensors for Microfluidic Platforms to Detect Pharmaceutical Residues in Wastewater. BIOSENSORS-BASEL 2019; 9:bios9010041. [PMID: 30875946 PMCID: PMC6468553 DOI: 10.3390/bios9010041] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/06/2019] [Accepted: 03/08/2019] [Indexed: 02/07/2023]
Abstract
Emerging water pollutants such as pharmaceutical contaminants are suspected to induce adverse effects to human health. These molecules became worrisome due to their increasingly high concentrations in surface waters. Despite this alarming situation, available data about actual concentrations in the environment is rather scarce, as it is not commonly monitored or regulated. This is aggravated even further by the absence of portable and reliable methods for their determination in the field. A promising way to tackle these issues is the use of enzyme-based and miniaturized biosensors for their electrochemical detection. Here, we present an overview of the latest developments in amperometric microfluidic biosensors that include, modeling and multiphysics simulation, design, manufacture, testing, and operation methods. Different types of biosensors are described, highlighting those based on oxidases/peroxidases and the integration with microfluidic platforms. Finally, issues regarding the stability of the biosensors and the enzyme molecules are discussed, as well as the most relevant approaches to address these obstacles.
Collapse
Affiliation(s)
- Ana Lucia Campaña
- Department of Electrical and Electronics Engineering, Universidad de los Andes, Cra. 1E No. 19a-40, Bogotá, DC 111711, Colombia.
| | - Sergio Leonardo Florez
- Department of Electrical and Electronics Engineering, Universidad de los Andes, Cra. 1E No. 19a-40, Bogotá, DC 111711, Colombia.
| | - Mabel Juliana Noguera
- Department of Electrical and Electronics Engineering, Universidad de los Andes, Cra. 1E No. 19a-40, Bogotá, DC 111711, Colombia.
| | - Olga P Fuentes
- Department of Electrical and Electronics Engineering, Universidad de los Andes, Cra. 1E No. 19a-40, Bogotá, DC 111711, Colombia.
| | - Paola Ruiz Puentes
- Department of Biomedical Engineering, Universidad de los Andes, Cra. 1E No. 19a-40, Bogotá, DC 111711, Colombia.
| | - Juan C Cruz
- Department of Biomedical Engineering, Universidad de los Andes, Cra. 1E No. 19a-40, Bogotá, DC 111711, Colombia.
| | - Johann F Osma
- Department of Electrical and Electronics Engineering, Universidad de los Andes, Cra. 1E No. 19a-40, Bogotá, DC 111711, Colombia.
| |
Collapse
|
114
|
Basheer S, Rashid N, Akram MS, Akhtar M. A highly stable laccase from Bacillus subtilis strain R5: gene cloning and characterization. Biosci Biotechnol Biochem 2019; 83:436-445. [DOI: 10.1080/09168451.2018.1530097] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
ABSTRACT
The gene encoding copper-dependent laccase from Bacillus subtilis strain R5 was cloned and expressed in Escherichia coli. Initially the recombinant protein was produced in insoluble form as inclusion bodies. Successful attempts were made to produce the recombinant protein in soluble and active form. The laccase activity of the recombinant protein was highly dependent on the presence of copper ions in the growth medium and microaerobic conditions during protein production. The purified enzyme exhibited highest activity at 55 °C and pH 7.0. The recombinant protein was highly thermostable, albeit from a mesophilic source, with a half-life of 150 min at 80 °C. Similar to temperature, the recombinant protein was stable in the presence of organic solvents and protein denaturants such as urea. Furthermore, the recombinant protein was successfully utilized for the degradation of various synthetic dyes reflecting its potential use in treatment of wastewater in textile industry.
Abbreviations: ABTS,2,2’-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid; CBB, Coomassie brilliant blue; SGZ, syringaldazine; DMP, 2,2-dimethoxy phenol.
Collapse
Affiliation(s)
- Saadia Basheer
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Naeem Rashid
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | | | - Muhammad Akhtar
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
- School of Biological Sciences, University of Southampton, Southampton, UK
| |
Collapse
|
115
|
Moiseenko KV, Savinova OS, Vasina DV, Kononikhin AS, Tyazhelova TV, Fedorova TV. Laccase Isoenzymes of Trametes hirsuta LE-BIN072: Degradation of Industrial Dyes and Secretion under the Different Induction Conditions. APPL BIOCHEM MICRO+ 2019. [DOI: 10.1134/s0003683818090090] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
116
|
Javaid R, Sabir A, Sheikh N, Ferhan M. Recent Advances in Applications of Acidophilic Fungi to Produce Chemicals. Molecules 2019; 24:E786. [PMID: 30813221 PMCID: PMC6412211 DOI: 10.3390/molecules24040786] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/28/2018] [Accepted: 08/08/2018] [Indexed: 12/16/2022] Open
Abstract
Processing of fossil fuels is the major environmental issue today. Biomass utilization for the production of chemicals presents an alternative to simple energy generation by burning. Lignocellulosic biomass (cellulose, hemicellulose and lignin) is abundant and has been used for variety of purposes. Among them, lignin polymer having phenyl-propanoid subunits linked together either through C-C bonds or ether linkages can produce chemicals. It can be depolymerized by fungi using their enzyme machinery (laccases and peroxidases). Both acetic acid and formic acid production by certain fungi contribute significantly to lignin depolymerization. Fungal natural organic acids production is thought to have many key roles in nature depending upon the type of fungi producing them. Biological conversion of lignocellulosic biomass is beneficial over physiochemical processes. Laccases, copper containing proteins oxidize a broad spectrum of inorganic as well as organic compounds but most specifically phenolic compounds by radical catalyzed mechanism. Similarly, lignin peroxidases (LiP), heme containing proteins perform a vital part in oxidizing a wide variety of aromatic compounds with H₂O₂. Lignin depolymerization yields value-added compounds, the important ones are aromatics and phenols as well as certain polymers like polyurethane and carbon fibers. Thus, this review will provide a concept that biological modifications of lignin using acidophilic fungi can generate certain value added and environmentally friendly chemicals.
Collapse
Affiliation(s)
- Rehman Javaid
- Lignin Valorization & Nanomaterials Lab, Centre for Applied Molecular Biology (CAMB), University of the Punjab, 87-West Canal Bank Road, Thokar Niaz Baig, 53700 Lahore, Pakistan.
- Cell and Molecular Biology Lab, Department of Zoology, University of the Punjab Quaid-e Azam Campus, 54590 Lahore, Pakistan.
| | - Aqsa Sabir
- Lignin Valorization & Nanomaterials Lab, Centre for Applied Molecular Biology (CAMB), University of the Punjab, 87-West Canal Bank Road, Thokar Niaz Baig, 53700 Lahore, Pakistan.
| | - Nadeem Sheikh
- Lignin Valorization & Nanomaterials Lab, Centre for Applied Molecular Biology (CAMB), University of the Punjab, 87-West Canal Bank Road, Thokar Niaz Baig, 53700 Lahore, Pakistan.
- Cell and Molecular Biology Lab, Department of Zoology, University of the Punjab Quaid-e Azam Campus, 54590 Lahore, Pakistan.
| | - Muhammad Ferhan
- Lignin Valorization & Nanomaterials Lab, Centre for Applied Molecular Biology (CAMB), University of the Punjab, 87-West Canal Bank Road, Thokar Niaz Baig, 53700 Lahore, Pakistan.
| |
Collapse
|
117
|
Xu G, Wang J, Yin Q, Fang W, Xiao Y, Fang Z. Expression of a thermo- and alkali-philic fungal laccase in Pichia pastoris and its application. Protein Expr Purif 2019; 154:16-24. [DOI: 10.1016/j.pep.2018.09.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 09/18/2018] [Accepted: 09/20/2018] [Indexed: 11/24/2022]
|
118
|
Enzymatic Bioremediation: Current Status, Challenges of Obtaining Process, and Applications. MICROORGANISMS FOR SUSTAINABILITY 2019. [DOI: 10.1007/978-981-13-7462-3_4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
119
|
Hultberg M, Bodin H, Birgersson G. Impact on Wastewater Quality of Biopellets Composed of <i>Chlorella vulgaris</i> and <i>Aspergillus niger</i> and Lipid Content in the Harvested Biomass. ACTA ACUST UNITED AC 2019. [DOI: 10.4236/jwarp.2019.117050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
120
|
Bioremediation of Xenobiotic Organic Compounds in Greywater by Fungi Isolated from Peatland, a Future Direction. MANAGEMENT OF GREYWATER IN DEVELOPING COUNTRIES 2019. [DOI: 10.1007/978-3-319-90269-2_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
121
|
Wentzel LCP, Inforsato FJ, Montoya QV, Rossin BG, Nascimento NR, Rodrigues A, Sette LD. Fungi from Admiralty Bay (King George Island, Antarctica) Soils and Marine Sediments. MICROBIAL ECOLOGY 2019; 77:12-24. [PMID: 29916010 DOI: 10.1007/s00248-018-1217-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 05/31/2018] [Indexed: 06/08/2023]
Abstract
Extreme environments such as the Antarctic can lead to the discovery of new microbial taxa, as well as to new microbial-derived natural products. Considering that little is known yet about the diversity and the genetic resources present in these habitats, the main objective of this study was to evaluate the fungal communities from extreme environments collected at Aldmiralty Bay (Antarctica). A total of 891 and 226 isolates was obtained from soil and marine sediment samples, respectively. The most abundant isolates from soil samples were representatives of the genera Leucosporidium, Pseudogymnoascus, and a non-identified Ascomycota NIA6. Metschnikowia sp. was the most abundant taxon from marine samples, followed by isolates from the genera Penicillium and Pseudogymnoascus. Many of the genera were exclusive in marine sediment or terrestrial samples. However, representatives of eight genera were found in both types of samples. Data from non-metric multidimensional scaling showed that each sampling site is unique in their physical-chemical composition and fungal community. Biotechnological potential in relation to enzymatic production at low/moderate temperatures was also investigated. Ligninolytic enzymes were produced by few isolates from root-associated soil. Among the fungi isolated from marine sediments, 16 yeasts and nine fungi showed lipase activity and three yeasts and six filamentous fungi protease activity. The present study permitted increasing our knowledge on the diversity of fungi that inhabit the Antarctic, finding genera that have never been reported in this environment before and discovering putative new species of fungi.
Collapse
Affiliation(s)
- Lia Costa Pinto Wentzel
- Instituto de Biociências, Departamento de Bioquímica e Microbiologia, São Paulo State University (UNESP), Av 24A, 1515, Rio Claro, 13506-900, SP, Brazil
| | - Fábio José Inforsato
- Instituto de Biociências, Departamento de Bioquímica e Microbiologia, São Paulo State University (UNESP), Av 24A, 1515, Rio Claro, 13506-900, SP, Brazil
| | - Quimi Vidaurre Montoya
- Instituto de Biociências, Departamento de Bioquímica e Microbiologia, São Paulo State University (UNESP), Av 24A, 1515, Rio Claro, 13506-900, SP, Brazil
| | - Bruna Gomes Rossin
- Instituto de Geociências e Ciências Exatas, Departamento de Planejamento Territorial e Geoprocessamento, São Paulo State University (UNESP), Avenida 24A, 1515, Rio Claro, 13506-900, SP, Brazil
| | - Nadia Regina Nascimento
- Instituto de Geociências e Ciências Exatas, Departamento de Planejamento Territorial e Geoprocessamento, São Paulo State University (UNESP), Avenida 24A, 1515, Rio Claro, 13506-900, SP, Brazil
| | - André Rodrigues
- Instituto de Biociências, Departamento de Bioquímica e Microbiologia, São Paulo State University (UNESP), Av 24A, 1515, Rio Claro, 13506-900, SP, Brazil
| | - Lara Durães Sette
- Instituto de Biociências, Departamento de Bioquímica e Microbiologia, São Paulo State University (UNESP), Av 24A, 1515, Rio Claro, 13506-900, SP, Brazil.
| |
Collapse
|
122
|
Piccinino D, Capecchi E, Botta L, Bollella P, Antiochia R, Crucianelli M, Saladino R. Layer by layer supported laccase on lignin nanoparticles catalyzes the selective oxidation of alcohols to aldehydes. Catal Sci Technol 2019. [DOI: 10.1039/c9cy00962k] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Lignin nanoparticles support laccase from Trametes versicolor in the selective oxidation of alcohols to aldehydes, in the presence of redox mediators.
Collapse
Affiliation(s)
- Davide Piccinino
- Department of Biological and Ecological Sciences
- University of Tuscia
- 01100 Viterbo
- Italy
| | - Eliana Capecchi
- Department of Biological and Ecological Sciences
- University of Tuscia
- 01100 Viterbo
- Italy
| | - Lorenzo Botta
- Department of Biological and Ecological Sciences
- University of Tuscia
- 01100 Viterbo
- Italy
| | - Paolo Bollella
- Department of Chemistry and Drug Technologies
- Sapienza University of Rome
- 00185 Rome
- Italy
| | - Riccarda Antiochia
- Department of Chemistry and Drug Technologies
- Sapienza University of Rome
- 00185 Rome
- Italy
| | - Marcello Crucianelli
- Department of Physical and Chemical Sciences
- University of Aquila
- 67100 Aquila
- Italy
| | - Raffaele Saladino
- Department of Biological and Ecological Sciences
- University of Tuscia
- 01100 Viterbo
- Italy
| |
Collapse
|
123
|
Darvishi F, Moradi M, Jolivalt C, Madzak C. Laccase production from sucrose by recombinant Yarrowia lipolytica and its application to decolorization of environmental pollutant dyes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 165:278-283. [PMID: 30205329 DOI: 10.1016/j.ecoenv.2018.09.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/28/2018] [Accepted: 09/03/2018] [Indexed: 06/08/2023]
Abstract
Laccases are used in decolorization and biodegradation of synthetic dyes, bioremediation of industrial wastewaters and delignification of lignocellulosic compounds. The aims of the present study were the optimization of a recombinant laccase production in Yarrowia lipolytica yeast using sucrose as a main carbon source, and the application of the resulting enzyme to decolorization of synthetic dyes, which are problematic environmental pollutants. Taguchi's experimental design method was employed to optimize medium compounds. Recombinant laccase production by Y. lipolytica YL4 strain increased to 900 U L-1 after optimization of sucrose, ammonium chloride, yeast extract and thiamine levels in the modified PPB medium. Furthermore, the production rate reached 6760 U L-1 in a 5 L bioreactor which represents 4.5- and 33.5-fold increases compared to cultures that were in shake-flask with optimized and primary media, respectively. The supernatant containing secreted recombinant laccase was applied for decolorization of seven dyes. The effects of pH, the amount of enzyme and incubation period were verified. The effect of incubation time on dye decolorization by recombinant laccase was important, which has an influence of greater extent than 90% after 48 h for all dyes. The Trametes versicolor laccase can be efficiently produced in Y. lipolytica and the recombinant enzyme has a considerable potential in the decolorization of pollutant synthetic dyes.
Collapse
Affiliation(s)
- Farshad Darvishi
- Microbial Biotechnology and Bioprocess Engineering (MBBE) Group, Department of Microbiology, Faculty of Science, University of Maragheh, Maragheh, Iran.
| | - Marzieh Moradi
- Microbial Biotechnology and Bioprocess Engineering (MBBE) Group, Department of Microbiology, Faculty of Science, University of Maragheh, Maragheh, Iran
| | - Claude Jolivalt
- Sorbonne Universités, UPMC Université Paris VI, CNRS, Laboratoire de Réactivité de Surface, F-75005 Paris, France
| | - Catherine Madzak
- UMR GMPA, AgroParisTech, INRA, Université Paris-Saclay, F-78850 Thiverval-Grignon, France
| |
Collapse
|
124
|
Olajuyigbe FM, Adetuyi OY, Fatokun CO. Characterization of free and immobilized laccase from Cyberlindnera fabianii and application in degradation of bisphenol A. Int J Biol Macromol 2018; 125:856-864. [PMID: 30557644 DOI: 10.1016/j.ijbiomac.2018.12.106] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/10/2018] [Accepted: 12/12/2018] [Indexed: 01/15/2023]
Abstract
Recovery difficulty and inactivation of laccases are major challenges that hamper their application in biotechnology. In this study, laccase was purified from Cyberlindnera fabianii using ion-exchange and gel filtration chromatography with homogeneity confirmed by sodium dodecyl sulphate polyacrylamide gel electrophoresis. Purified laccase of 52 kDa was immobilized on calcium and copper alginate beads by entrapment method. Free and immobilized enzymes were characterized, and efficiency of bisphenol A (BPA) degradation was determined. pH optima for free and immobilized laccases were 5.0 and 6.0, respectively. Ca and Cu alginate immobilized laccase (Ca-AIL and Cu-AIL) had optimum activity at 60 °C and 50 °C, respectively while free laccase (FL) was at 40 °C. Km and Vmax of FL, Ca-AIL and Cu-AIL were 0.032 mM and 15 mM/min, 0.078 mM and 6.98 mM/min, and 0.091 mM and 5.61 mM/min, respectively. Remarkably, immobilized laccases had higher operational stability than FL over 21 d at 4°C. Reusability of immobilized laccase was effective for 3 cycles with residual activity above 70%. Notably, Ca-AIL and Cu-AIL exhibited 71% and 65.5% BPA degradation efficiency on 14 d. Results reveal good kinetic parameters, improved thermal stability and enhanced reusability of immobilized laccase from C. fabianii with potentials for various industrial applications and bioremediation.
Collapse
Affiliation(s)
- Folasade M Olajuyigbe
- Enzyme Biotechnology and Environmental Health Unit, Department of Biochemistry, Federal University of Technology, Akure 340252, Ondo State, Nigeria.
| | - Oluwafijimi Y Adetuyi
- Enzyme Biotechnology and Environmental Health Unit, Department of Biochemistry, Federal University of Technology, Akure 340252, Ondo State, Nigeria
| | - Cornelius O Fatokun
- Enzyme Biotechnology and Environmental Health Unit, Department of Biochemistry, Federal University of Technology, Akure 340252, Ondo State, Nigeria
| |
Collapse
|
125
|
Role of the antioxidant defense system during the production of lignocellulolytic enzymes by fungi. Int Microbiol 2018; 22:255-264. [PMID: 30810986 DOI: 10.1007/s10123-018-00045-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 11/06/2018] [Accepted: 11/07/2018] [Indexed: 12/31/2022]
Abstract
Fungi are used for the production of several compounds and the efficiency of biotechnological processes is directly related to the metabolic activity of these microorganisms. The reactions catalyzed by lignocellulolytic enzymes are oxidative and generate reactive oxygen species (ROS). Excess of ROS can cause serious damages to cells, including cell death. Thus, the objective of this work was to evaluate the lignocellulolytic enzymes produced by Pleurotus sajor-caju CCB020, Phanerochaete chrysosporium ATCC 28326, Trichoderma reesei RUT-C30, and Aspergillus niger IZ-9 grown in sugarcane bagasse and two yeast extract (YE) concentrations and characterize the antioxidant defense system of fungal cells by the activities of superoxide dismutase (SOD) and catalase (CAT). Pleurotus sajor-caju exhibited the highest activities of laccase and peroxidase in sugarcane bagasse with 2.6 g of YE and an increased activity of manganese peroxidase in sugarcane bagasse with 1.3 g of YE was observed. However, P. chrysosporium showed the highest activities of exoglucanase and endoglucanase in sugarcane bagasse with 1.3 g of YE. Lipid peroxidation and variations in SOD and CAT activities were observed during the production of lignocellulolytic enzymes and depending on the YE concentrations. The antioxidant defense system was induced in response to the oxidative stress caused by imbalances between the production and the detoxification of ROS.
Collapse
|
126
|
Crystal structures of multicopper oxidase CueO G304K mutant: structural basis of the increased laccase activity. Sci Rep 2018; 8:14252. [PMID: 30250139 PMCID: PMC6155172 DOI: 10.1038/s41598-018-32446-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 09/05/2018] [Indexed: 01/13/2023] Open
Abstract
The multicopper oxidase CueO is involved in copper homeostasis and copper (Cu) tolerance in Escherichia coli. The laccase activity of CueO G304K mutant is higher than wild-type CueO. To explain this increase in activity, we solved the crystal structure of G304K mutant at 1.49 Å. Compared with wild-type CueO, the G304K mutant showed dramatic conformational changes in methionine-rich helix and the relative regulatory loop (R-loop). We further solved the structure of Cu-soaked enzyme, and found that the addition of Cu ions induced further conformational changes in the R-loop and methionine-rich helix as a result of the new Cu-binding sites on the enzyme's surface. We propose a mechanism for the enhanced laccase activity of the G304K mutant, where movements of the R-loop combined with the changes of the methionine-rich region uncover the T1 Cu site allowing greater access of the substrate. Two of the G304K double mutants showed the enhanced or decreased laccase activity, providing further evidence for the interaction between the R-loop and the methionine-rich region. The cuprous oxidase activity of these mutants was about 20% that of wild-type CueO. These structural features of the G304K mutant provide clues for designing specific substrate-binding mutants in the biotechnological applications.
Collapse
|
127
|
Effects of fungal-assisted algal harvesting through biopellet formation on pesticides in water. Biodegradation 2018; 29:557-565. [PMID: 30171388 PMCID: PMC6245101 DOI: 10.1007/s10532-018-9852-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 08/29/2018] [Indexed: 11/30/2022]
Abstract
Recent research has demonstrated the potential of using filamentous fungi to form pellets with microalgae (biopellets), in order to facilitate harvesting of microalgae from water following algae-based treatment of wastewater. In parallel, there is a need to develop techniques for removing organic pollutants such as pesticides and pharmaceuticals from wastewater. In experiments using the microalga Chlorella vulgaris, the filamentous fungus Aspergillus niger and biopellets composed of these microorganisms, this study investigated whether fungal-assisted algal harvesting can also remove pesticides from contaminated water. A mixture of 38 pesticides was tested and the concentrations of 17 of these were found to be reduced significantly in the biopellet treatment, compared with the control. After harvesting, the concentration of total pesticides in the algal treatment did not differ significantly from that in the control. However, in the fungal treatment and biopellet treatment, the concentration was significantly lower (59.6 ± 2.0 µg/L and 56.1 ± 2.8 µg/L, respectively) than in the control (66.6 ± 1.0 µg/L). Thus fungal-assisted algal harvesting through biopellet formation can also provide scope for removing organic pollutants from wastewater, with removal mainly being performed by the fungus.
Collapse
|
128
|
Chang BV, Fan SN, Tsai YC, Chung YL, Tu PX, Yang CW. Removal of emerging contaminants using spent mushroom compost. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 634:922-933. [PMID: 29660886 DOI: 10.1016/j.scitotenv.2018.03.366] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/23/2018] [Accepted: 03/30/2018] [Indexed: 06/08/2023]
Abstract
Acetaminophen and sulfonamides are emerging contaminants. Conventional wastewater treatment systems fail to degrade these compounds properly. Mycoremediation, is a form of novel bioremediation that uses extracellular enzymes of white-rot fungi to degrade pollutants in the environment. In this study, spent mushroom compost (SMC), which contains fungal extracellular enzymes, was tested for acetaminophen and sulfonamides removal. Among the SMCs of nine mushrooms tested in batch experiments, the SMC of Pleurotus eryngii exhibited the highest removal rate for acetaminophen and sulfonamides. Several fungal extracellular enzymes that might be involved in removal of acetaminophen and sulfonamides were identified by metaproteomic analysis. The bacterial classes, Betaproteobacteria and Alphaproteobacteria, were revealed by metagenomic analysis and may be assisting with acetaminophen and sulfonamide removal, respectively, in the SMC of Pleurotus eryngii. Bioreactor experiments were used to simulate the capability of Pleurotus eryngii SMC for the removal of acetaminophen and sulfonamides from wastewater. The results of this study provide a feasible solution for acetaminophen and sulfonamide removal from wastewater using the SMC of Pleurotus eryngii.
Collapse
Affiliation(s)
- Bea-Ven Chang
- Department of Microbiology, Soochow University, Taipei, Taiwan, ROC
| | - Shao-Ning Fan
- Department of Microbiology, Soochow University, Taipei, Taiwan, ROC
| | - Yao-Chou Tsai
- Department of Microbiology, Soochow University, Taipei, Taiwan, ROC
| | - Yi-Lin Chung
- Department of Microbiology, Soochow University, Taipei, Taiwan, ROC
| | - Ping-Xun Tu
- Department of Microbiology, Soochow University, Taipei, Taiwan, ROC
| | - Chu-Wen Yang
- Department of Microbiology, Soochow University, Taipei, Taiwan, ROC.
| |
Collapse
|
129
|
Su J, Noro J, Fu J, Wang Q, Silva C, Cavaco-Paulo A. Exploring PEGylated and immobilized laccases for catechol polymerization. AMB Express 2018; 8:134. [PMID: 30136217 PMCID: PMC6104406 DOI: 10.1186/s13568-018-0665-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 08/17/2018] [Indexed: 02/03/2023] Open
Abstract
Laccases have been reported for their ability to eliminate hazardous phenolic compounds by oxidative polymerization. The exploitation of the oxidative behavior of different laccase forms, namely free/native, free/PEGylated, immobilized/native and immobilized/PEGylated, was assessed in this study. We found that PEGylated and immobilized laccase forms have differentiated catalytic behavior revealing distinct conversion rates and differentiated poly(catechol) chains, as confirmed by UV-Visible spectroscopy, by the total content of OH groups and by MALDI-TOF spectroscopy. The synergy underlying on the immobilized/PEGylated enzyme forms reveal to be responsible for the highest conversion rates and for the longer polymers produced.
Collapse
Affiliation(s)
- Jing Su
- International Joint Research Laboratory for Textile and Fiber Bioprocesses, Jiangnan University, Wuxi, 214122 China
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Jennifer Noro
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Jiajia Fu
- International Joint Research Laboratory for Textile and Fiber Bioprocesses, Jiangnan University, Wuxi, 214122 China
| | - Qiang Wang
- International Joint Research Laboratory for Textile and Fiber Bioprocesses, Jiangnan University, Wuxi, 214122 China
| | - Carla Silva
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Artur Cavaco-Paulo
- International Joint Research Laboratory for Textile and Fiber Bioprocesses, Jiangnan University, Wuxi, 214122 China
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
130
|
Zhang Z, Liu J, Fan J, Wang Z, Li L. Detection of catechol using an electrochemical biosensor based on engineered Escherichia coli cells that surface-display laccase. Anal Chim Acta 2018; 1009:65-72. [PMID: 29422133 DOI: 10.1016/j.aca.2018.01.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 12/01/2017] [Accepted: 01/04/2018] [Indexed: 02/08/2023]
Abstract
In this study, we report an electrochemical microbial biosensor that was made by immobilizing a bacterial laccase on the surface of Escherichia coli cells followed by adsorption of modified live cells onto a glassy-carbon electrode. Expression and surface localization of laccase on target cells were confirmed by Western blotting, flow cytometry assays and immunofluorescence microscopy observation. Increased tandem-aligned anchors with three repeats of the N-terminal domain of an ice nucleation protein were used to construct a highly active E. coli whole cell laccase-based catalytic system. When the proposed biosensor was used to detect catechol, the electrochemical response under optimized pH conditions was linear within a concentration range of 0.5 μM-300.0 μM catechol. Metal ions (Mn2+, Fe3+, Cu2+, Mg2+, Al3+ and Zn2+) at concentrations from 1 to 10 mg L-1, bovine serum albumin and glucose at concentrations from 0.1 to 10 g L-1, and ascorbic acid at concentrations from 0.01 to 0.1 g L-1 did not cause a noticeable interference effect. The detection limit of 0.1 μM catechol was comparable to those of other biosensors based on purified chemically modified laccases. When used to detect catechol in real red wine and tea samples, the biosensor offered a considerable level of accuracy comparable to the HPLC method as well as high recovery rates (98.2%-103.8%) towards all of the tested samples. Moreover, the developed system also exhibited high stability and reproducibility.
Collapse
Affiliation(s)
- Zhen Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; College of Biology Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
| | - Jin Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jin Fan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhiyong Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Lin Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
131
|
Liang Y, Hou J, Liu Y, Luo Y, Tang J, Cheng JJ, Daroch M. Textile Dye Decolorizing Synechococcus PCC7942 Engineered With CotA Laccase. Front Bioeng Biotechnol 2018; 6:95. [PMID: 30050901 PMCID: PMC6052094 DOI: 10.3389/fbioe.2018.00095] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 06/25/2018] [Indexed: 01/20/2023] Open
Abstract
Cyanobacteria are prokaryotic phototrophs capable of achieving high cellular densities with minimal inputs. These prokaryotic organisms can grow using sunlight as energy source and carbon dioxide as carbon source what makes them promising candidates as microbial cell factories for the production of numerous compounds such as chemicals, fuels, or biocatalysts. In this study, we have successfully designed and constructed using synthetic biology approach two recombinant strains of Synechococcus elongatus PCC7942 for heterologous expression of the industrially relevant Bacillus subtilis CotA laccase. One of the strains (PCC7942-NSI-CotA) was constructed through integration of the laccase gene into neutral site I of the cyanobacterial genome whilst the other (PCC7942-NSII-CotA) targeted neutral site II of the genome. Of the two strains the one with CotA laccase integrated in neutral site II (PCC7942-NSII-CotA) was superior in terms of growth rate and enzymatic activity toward typical laccase substrates: ABTS [2,2-azino-bis (3-ethylbenzothiazoline-6-sulfonate)] and syringaldazine. That may suggest that two of the traditionally used neutral sites of S. elongatus PCC7942 are not equally suitable for the expression of certain transgenes. The PCC7942-NSII-CotA produced protein was capable of decolourising three classes of dyes namely: anthraquinonic-, azo-, and indigoid-type over 7 days of incubation making the strain a potentially useful microbial cell factory for the production of broad-spectrum biodegradation agent. Interestingly, presence of additional synthetic redox mediator ABTS had no effect on the degradation of these dyes.
Collapse
Affiliation(s)
- Yuanmei Liang
- School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen, China
| | - Juan Hou
- School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen, China
| | - Ying Liu
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Yifan Luo
- School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen, China
| | - Jie Tang
- School of Pharmacy and Bioengineering, Chengdu University, Chengdu, China
| | - Jay J. Cheng
- School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen, China
- Department of Biological and Agricultural Engineering, North Carolina State University, Raleigh, NC, United States
| | - Maurycy Daroch
- School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen, China
| |
Collapse
|
132
|
Ancona-Escalante W, Tapia-Tussell R, Pool-Yam L, Can-Cauich A, Lizama-Uc G, Solís-Pereira S. Laccase-mediator system produced by Trametes hirsuta Bm-2 on lignocellulosic substrate improves dye decolorization. 3 Biotech 2018; 8:298. [PMID: 29963358 PMCID: PMC6021273 DOI: 10.1007/s13205-018-1323-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 06/18/2018] [Indexed: 11/29/2022] Open
Abstract
Lignin is a source for obtaining natural phenols with high commercial value that can act as redox mediators enhancing effects in dye decolorization. In this study Trametes hirsuta Bm-2 was grown on wheat bran to produce laccases and phenol extracts (PE). Ultrafiltered phenols obtained at different times were evaluated in their potential as redox mediators of laccase activity and indigo carmin decolorization. Laccase activity (L) on ABTS increased up to 12.4 times with L/PE72 compared with laccase alone and L/PE48 showed the highest level of dye decolorization (97%) compared with laccase (12%). The chromatographic analysis by HPLC showed variation in the profile and concentration of phenols at different times of culture. Stability of the laccase mediator system (LMs) in dye decolorization was maintained over 3 months. Our results suggest the use of natural mediators as a strategy for improving efficiency in dye biodegradation by laccase-producing fungi.
Collapse
Affiliation(s)
- Wendy Ancona-Escalante
- Depto. Ingeniería Química y Bioquímica, Instituto Tecnológico de Mérida, CP. 97118 Mérida, Yucatán Mexico
| | - Raul Tapia-Tussell
- Unidad de Energía Renovable, Centro de Investigación Científica de Yucatán A.C., Carretera Sierra Papacal-Chuburna Puerto, km 5, Sierra Papacal, CP. 97302 Mérida, Yucatán Mexico
| | - Luis Pool-Yam
- Depto. Ingeniería Química y Bioquímica, Instituto Tecnológico de Mérida, CP. 97118 Mérida, Yucatán Mexico
| | - Abraham Can-Cauich
- Depto. Ingeniería Química y Bioquímica, Instituto Tecnológico de Mérida, CP. 97118 Mérida, Yucatán Mexico
| | - Gabriel Lizama-Uc
- Depto. Ingeniería Química y Bioquímica, Instituto Tecnológico de Mérida, CP. 97118 Mérida, Yucatán Mexico
| | - Sara Solís-Pereira
- Depto. Ingeniería Química y Bioquímica, Instituto Tecnológico de Mérida, CP. 97118 Mérida, Yucatán Mexico
| |
Collapse
|
133
|
Olajuyigbe FM, Fatokun CO, Oyelere OM. Biodelignification of some agro-residues by Stenotrophomonas sp. CFB-09 and enhanced production of ligninolytic enzymes. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2018. [DOI: 10.1016/j.bcab.2018.05.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
134
|
Mir-Tutusaus JA, Baccar R, Caminal G, Sarrà M. Can white-rot fungi be a real wastewater treatment alternative for organic micropollutants removal? A review. WATER RESEARCH 2018; 138:137-151. [PMID: 29579480 DOI: 10.1016/j.watres.2018.02.056] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/20/2018] [Accepted: 02/21/2018] [Indexed: 05/20/2023]
Abstract
Micropollutants are a diverse group of compounds that are detected at trace concentrations and may have a negative effect on the environment and/or human health. Most of them are unregulated contaminants, although they have raised a concern in the scientific and global community and future regulation might be written in the near future. Several approaches have been tested to remove micropollutants from wastewater streams. In this manuscript, a focus is placed in reactor biological treatments that use white-rot fungi. A critical review of white-rot fungal-based technologies for micropollutant removal from wastewater has been conducted, several capabilities and limitations of such approaches have been identified and a range of solutions to overcome most of the limitations have been reviewed and/or proposed. Overall, this review argues that white-rot fungal reactors could be an efficient technology to remove micropollutants from specific wastewater streams.
Collapse
Affiliation(s)
- Josep Anton Mir-Tutusaus
- Departament d'Enginyeria Química Biològica i Ambiental, Escola d'Enginyeria, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Rim Baccar
- ENIS Laboratory of Environmental Engineering and Eco Technology, University of Sfax, BP 1173-3038, Sfax, Tunisia
| | - Glòria Caminal
- Institut de Química Avançada de Catalunya (IQAC), CSIC, Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Montserrat Sarrà
- Departament d'Enginyeria Química Biològica i Ambiental, Escola d'Enginyeria, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain.
| |
Collapse
|
135
|
|
136
|
Fathi-Roudsari M, Behmanesh M, Salmanian AH, Sadeghizadeh M, Khajeh K. Functional Surface Display of Laccase in a Phenol-Inducible Bacterial Circuit for Bioremediation Purposes. IRANIAN BIOMEDICAL JOURNAL 2018; 22:202-9. [PMID: 29078699 PMCID: PMC5889505 DOI: 10.22034/ibj.22.3.202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Background: Phenolic compounds, which are produced routinely by industrial and urban activities, possess dangers to live organisms and environment. Laccases are oxidoreductase enzymes with the ability of remediating a wide variety of phenolic compounds to more benign molecules. The purpose of the present research is surface display of a laccase enzyme with adhesin involved in diffuse adhesion (AIDA-I) autotransporter system on the surface of Escherichia coli cells for bioremediation of phenolic compounds. Methods: The expression of laccase was regulated by a phenol-responsive promoter (a σ54promoter). The constitutively-expressed CapR transcription activator was able to induce laccase expression in the presence of phenolic compounds. Results: Western blot analysis showed the expression and correct transfer of the enzyme to the outer membrane of E. coli cells in the presence of phenol. Activity assay confirmed the correct folding of the enzyme after translocation through the autotransporter system. HPLC analysis of residual phenol in culture medium showed a significant reduction of phenol concentration in the presence of cells displaying laccase on the surface. Conclusion: Our findings confirm that autodisplay enables functional surface display of laccase for direct substrate-enzyme availability by overcoming membrane hindrance.
Collapse
Affiliation(s)
| | - Mehrdad Behmanesh
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Majid Sadeghizadeh
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Khosro Khajeh
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
137
|
Mir-Tutusaus JA, Caminal G, Sarrà M. Influence of process variables in a continuous treatment of non-sterile hospital wastewater by Trametes versicolor and novel method for inoculum production. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 212:415-423. [PMID: 29455149 DOI: 10.1016/j.jenvman.2018.02.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 01/29/2018] [Accepted: 02/05/2018] [Indexed: 06/08/2023]
Abstract
Micropollutants such as pharmaceutical active compounds, present at high concentration in hospital wastewater (HWW), pose both environmental and human health challenges. Fungal reactors can effectively remove such contaminants and produce non-toxic effluents, but their ability to operate for a long period of time is yet to be demonstrated in real hospital wastewater. Several process variables need to be studied beforehand. Here, variables: pellet size, aeration and carbon-to-nitrogen ratio are studied in continuous operations with real HWW. Moreover, a novel strategy for inoculum production that could reduce economical and operational costs is proposed and tested. Optimum pellet size was found to be 2 mm and an aeration of 0.8 L min-1 was needed to maintain fungal viability. The carbon-to-nitrogen ratio of 7.5 was selected and the pellet production time was reduced from 6 to 3 days. The novel low-cost inoculum preparation produced pellets with the same characteristics as the traditionally prepared ones.
Collapse
Affiliation(s)
- Josep Anton Mir-Tutusaus
- Departament d'Enginyeria Química Biològica i Ambiental, Escola d'Enginyeria, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Glòria Caminal
- Institut de Química Avançada de Catalunya (IQAC) CSIC, Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Montserrat Sarrà
- Departament d'Enginyeria Química Biològica i Ambiental, Escola d'Enginyeria, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain.
| |
Collapse
|
138
|
Laccase production in bioreactor scale under saline condition by the marine-derived basidiomycete Peniophora sp. CBMAI 1063. Fungal Biol 2018; 122:302-309. [PMID: 29665956 DOI: 10.1016/j.funbio.2018.01.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 01/25/2018] [Accepted: 01/31/2018] [Indexed: 11/21/2022]
Abstract
Laccase production in saline conditions is still poorly studied. The aim of the present study was to investigate the production of laccase in two different types of bioreactors by the marine-derived basidiomycete Peniophora sp. CBMAI 1063. The highest laccase activity and productivity were obtained in the Stirred Tank (ST) bioreactor, while the highest biomass concentration in Air-lift (AL) bioreactor. The main laccase produced was purified by ion exchange and size exclusion chromatography and appeared to be monomeric with molecular weight of approximately 55 kDa. The optimum oxidation activity was obtained at pH 5.0. The thermal stability of the enzyme ranged from 30 to 50 °C (120 min). The Far-UV Circular Dichroism revealed the presence of high β-sheet and low α-helical conformation in the protein structure. Additional experiments carried out in flask scale showed that the marine-derived fungus was able to produce laccase only in the presence of artificial seawater and copper sulfate. Results from the present study confirmed the fungal adaptation to marine conditions and its potential for being used in saline environments and/or processes.
Collapse
|
139
|
Agrawal K, Chaturvedi V, Verma P. Fungal laccase discovered but yet undiscovered. BIORESOUR BIOPROCESS 2018. [DOI: 10.1186/s40643-018-0190-z] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
140
|
Conceição AA, Cunha JRB, Vieira VO, Pelaéz RDR, Mendonça S, Almeida JRM, Dias ES, de Almeida EG, de Siqueira FG. Bioconversion and Biotransformation Efficiencies of Wild Macrofungi. Fungal Biol 2018. [DOI: 10.1007/978-3-030-02622-6_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
141
|
Preparation and Optimisation of Cross-Linked Enzyme Aggregates Using Native Isolate White Rot Fungi Trametes versicolor and Fomes fomentarius for the Decolourisation of Synthetic Dyes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 15:ijerph15010023. [PMID: 29295505 PMCID: PMC5800123 DOI: 10.3390/ijerph15010023] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/11/2017] [Accepted: 12/12/2017] [Indexed: 01/30/2023]
Abstract
The key to obtaining an optimum performance of an enzyme is often a question of devising a suitable enzyme and optimisation of conditions for its immobilization. In this study, laccases from the native isolates of white rot fungi Fomes fomentarius and/or Trametes versicolor, obtained from Czech forests, were used. From these, cross-linked enzyme aggregates (CLEA) were prepared and characterised when the experimental conditions were optimized. Based on the optimization steps, saturated ammonium sulphate solution (75 wt.%) was used as the precipitating agent, and different concentrations of glutaraldehyde as a cross-linking agent were investigated. CLEA aggregates formed under the optimal conditions showed higher catalytic efficiency and stabilities (thermal, pH, and storage, against denaturation) as well as high reusability compared to free laccase for both fungal strains. The best concentration of glutaraldehyde seemed to be 50 mM and higher efficiency of cross-linking was observed at a low temperature 4 °C. An insignificant increase in optimum pH for CLEA laccases with respect to free laccases for both fungi was observed. The results show that the optimum temperature for both free laccase and CLEA laccase was 35 °C for T. versicolor and 30 °C for F. fomentarius. The CLEAs retained 80% of their initial activity for Trametes and 74% for Fomes after 70 days of cultivation. Prepared cross-linked enzyme aggregates were also investigated for their decolourisation activity on malachite green, bromothymol blue, and methyl red dyes. Immobilised CLEA laccase from Trametes versicolor showed 95% decolourisation potential and CLEA from Fomes fomentarius demonstrated 90% decolourisation efficiency within 10 h for all dyes used. These results suggest that these CLEAs have promising potential in dye decolourisation.
Collapse
|
142
|
Otero IVR, Ferro M, Bacci M, Ferreira H, Sette LD. De novo transcriptome assembly: a new laccase multigene family from the marine-derived basidiomycete Peniophora sp. CBMAI 1063. AMB Express 2017; 7:222. [PMID: 29264716 PMCID: PMC5738328 DOI: 10.1186/s13568-017-0526-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 12/13/2017] [Indexed: 12/02/2022] Open
Abstract
Laccases are multicopper oxidases that are able to catalyze reactions involving a range of substrates, including phenols and amines, and this ability is related to the existence of different laccases. Basidiomycetes usually have more than one gene for laccase, but until now, this feature has not been demonstrated in a marine-derived fungus. Peniophora sp. CBMAI 1063 is a basidiomycete fungus isolated from a marine sponge that exhibits the ability to secrete significant amounts of laccase in saline
conditions. In the present study, we identified laccase sequences from the transcriptome of Peniophora sp. CBMAI 1063 and used them to perform different molecular in silico analyses. The results revealed the presence of at least eight putative genes, which may encode ten different laccases with peptide lengths ranging from 482 to 588 aa and molecular weights ranging from 53.5 to 64.4 kDa. These laccases seem to perform extracellular activities, with the exception of one that may represent an intracellular laccase. The 10 predicted laccases expressed by Peniophora sp. CBMAI 1063 in laccase-induced media showed different patterns of N-glycosylation and isoelectric points and are divided into two classes based on the residue associated with the regulation of the redox potential of the enzyme. None of the predicted laccases showed more than 61% similarity to other fungal laccases. Based on the differences among the laccases expressed by Peniophora sp. CBMAI 1063, this marine-derived basidiomycete represents a valuable resource with strong potential for biotechnological exploitation.
Collapse
|
143
|
Nitheranont T, Watanabe A, Asada Y. Heterologous expression of two minor laccase isozyme cDNAs from the edible mushroom Grifola frondosa. Biosci Biotechnol Biochem 2017; 81:2367-2369. [DOI: 10.1080/09168451.2017.1394814] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Abstract
Two cDNAs encoding the minor laccase isozymes (Lac2 and Lac3) of Grifola frondosa were cloned, characterized, and expressed in Pichia pastoris. The recombinant Lac2 (rLac2) was stable at pH 6.0, whereas the recombinant Lac3 (rLac3) was stable in a broad pH range (pH 4.0–8.0). In addition, rLac2 and rLac3 showed the highest catalytic efficiency (kcat/Km) for 2,2′-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid).
Collapse
Affiliation(s)
- Thitinard Nitheranont
- Faculty of Agriculture, Department of Applied Biological Science, Kagawa University, Kagawa, Japan
| | - Akira Watanabe
- Faculty of Agriculture, Department of Applied Biological Science, Kagawa University, Kagawa, Japan
| | - Yasuhiko Asada
- Faculty of Agriculture, Department of Applied Biological Science, Kagawa University, Kagawa, Japan
| |
Collapse
|
144
|
Immobilized Cerrena sp. laccase: preparation, thermal inactivation, and operational stability in malachite green decolorization. Sci Rep 2017; 7:16429. [PMID: 29180686 PMCID: PMC5703875 DOI: 10.1038/s41598-017-16771-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 11/17/2017] [Indexed: 11/15/2022] Open
Abstract
Laccases are polyphenol oxidases with widespread applications in various industries. In the present study, the laccase from Cerrena sp. HYB07 was immobilized with four methods, namely entrapment in alginate, covalently binding to chitosan as well as formation of cross-linked enzyme aggregates (CLEAs) and magnetic CLEAs (M-CLEAs). The activity recovery rates of the immobilized laccases ranged from 29% to 68%. Immobilization elevated the reaction temperature optimum and reduced substrate specificity, but not necessarily the turnover rate. pH stability of immobilized laccases was improved compared with that of the free laccase, especially at acidic pH values. Thermal inactivation of all laccases followed a simple first-order exponential decay model, and immobilized laccases displayed higher thermostability, as manifested by lower thermal inactivation rate constants and longer enzyme half-life time. Operational stability of the immobilized laccase was demonstrated by decolorization of the triphenylmethane dye malachite green (MG) at 60 °C. MG decolorization with free laccase was accompanied by a shift of the absorption peak and accumulation of a stable, colored intermediate tetradesmethyl MG, probably due to lower thermostability of the free laccase and premature termination of the degradation pathway. In contrast, complete decolorization of MG was achieved with laccase CLEAs at 60 °C.
Collapse
|
145
|
Mate DM, Alcalde M. Laccase: a multi-purpose biocatalyst at the forefront of biotechnology. Microb Biotechnol 2017; 10:1457-1467. [PMID: 27696775 PMCID: PMC5658592 DOI: 10.1111/1751-7915.12422] [Citation(s) in RCA: 270] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 09/12/2016] [Accepted: 09/15/2016] [Indexed: 11/30/2022] Open
Abstract
Laccases are multicopper containing enzymes capable of performing one electron oxidation of a broad range of substrates. Using molecular oxygen as the final electron acceptor, they release only water as a by-product, and as such, laccases are eco-friendly, versatile biocatalysts that have generated an enormous biotechnological interest. Indeed, this group of enzymes has been used in different industrial fields for very diverse purposes, from food additive and beverage processing to biomedical diagnosis, and as cross-linking agents for furniture construction or in the production of biofuels. Laccases have also been studied intensely in nanobiotechnology for the development of implantable biosensors and biofuel cells. Moreover, their capacity to transform complex xenobiotics makes them useful biocatalysts in enzymatic bioremediation. This review summarizes the most significant recent advances in the use of laccases and their future perspectives in biotechnology.
Collapse
Affiliation(s)
- Diana M. Mate
- Department of BiocatalysisInstitute of CatalysisCSICCantoblanco28049MadridSpain
| | - Miguel Alcalde
- Department of BiocatalysisInstitute of CatalysisCSICCantoblanco28049MadridSpain
| |
Collapse
|
146
|
|
147
|
Yang J, Li W, Ng TB, Deng X, Lin J, Ye X. Laccases: Production, Expression Regulation, and Applications in Pharmaceutical Biodegradation. Front Microbiol 2017; 8:832. [PMID: 28559880 PMCID: PMC5432550 DOI: 10.3389/fmicb.2017.00832] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 04/24/2017] [Indexed: 01/08/2023] Open
Abstract
Laccases are a family of copper-containing oxidases with important applications in bioremediation and other various industrial and biotechnological areas. There have been over two dozen reviews on laccases since 2010 covering various aspects of this group of versatile enzymes, from their occurrence, biochemical properties, and expression to immobilization and applications. This review is not intended to be all-encompassing; instead, we highlighted some of the latest developments in basic and applied laccase research with an emphasis on laccase-mediated bioremediation of pharmaceuticals, especially antibiotics. Pharmaceuticals are a broad class of emerging organic contaminants that are recalcitrant and prevalent. The recent surge in the relevant literature justifies a short review on the topic. Since low laccase yields in natural and genetically modified hosts constitute a bottleneck to industrial-scale applications, we also accentuated a genus of laccase-producing white-rot fungi, Cerrena, and included a discussion with regards to regulation of laccase expression.
Collapse
Affiliation(s)
- Jie Yang
- Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou UniversityFujian, China
| | - Wenjuan Li
- Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou UniversityFujian, China
| | - Tzi Bun Ng
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong KongShatin, Hong Kong
| | - Xiangzhen Deng
- Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou UniversityFujian, China
| | - Juan Lin
- Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou UniversityFujian, China
| | - Xiuyun Ye
- Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou UniversityFujian, China
| |
Collapse
|
148
|
Diversity of opportunistic black fungi on babassu coconut shells, a rich source of esters and hydrocarbons. Fungal Biol 2017; 121:488-500. [DOI: 10.1016/j.funbio.2017.01.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 01/31/2017] [Accepted: 01/31/2017] [Indexed: 11/18/2022]
|
149
|
Fernández PM, Martorell MM, Blaser MG, Ruberto LAM, de Figueroa LIC, Mac Cormack WP. Phenol degradation and heavy metal tolerance of Antarctic yeasts. Extremophiles 2017. [PMID: 28271165 DOI: 10.1007/s00792-017-0915-5/tables/2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
Abstract
In cold environments, biodegradation of organic pollutants and heavy metal bio-conversion requires the activity of cold-adapted or cold-tolerant microorganisms. In this work, the ability to utilize phenol, methanol and n-hexadecane as C source, the tolerance to different heavy metals and growth from 5 to 30 °C were evaluated in cold-adapted yeasts isolated from Antarctica. Fifty-nine percent of the yeasts were classified as psychrotolerant as they could grow in all the range of temperature tested, while the other 41% were classified as psychrophilic as they only grew below 25 °C. In the assimilation tests, 32, 78, and 13% of the yeasts could utilize phenol, n-hexadecane, and methanol as C source, respectively, but only 6% could assimilate the three C sources evaluated. In relation to heavy metals ions, 55, 68, and 80% were tolerant to 1 mM of Cr(VI), Cd(II), and Cu(II), respectively. Approximately a half of the isolates tolerated all of them. Most of the selected yeasts belong to genera previously reported as common for Antarctic soils, but several other genera were also isolated, which contribute to the knowledge of this cold environment mycodiversity. The tolerance to heavy metals of the phenol-degrading cold-adapted yeasts illustrated that the strains could be valuable as inoculant for cold wastewater treatment in extremely cold environments.
Collapse
Affiliation(s)
- Pablo Marcelo Fernández
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), San Miguel de Tucumán, Argentina
| | | | - Mariana G Blaser
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), San Miguel de Tucumán, Argentina
| | - Lucas Adolfo Mauro Ruberto
- Instituto Antártico Argentino (IAA), Buenos Aires, Argentina
- Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
- NANOBIOTEC-CONICET, Buenos Aires, Argentina
| | - Lucía Inés Castellanos de Figueroa
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), San Miguel de Tucumán, Argentina
- Universidad Nacional de Tucumán (UNT), San Miguel de Tucumán, Argentina
| | - Walter Patricio Mac Cormack
- Instituto Antártico Argentino (IAA), Buenos Aires, Argentina
- Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
- NANOBIOTEC-CONICET, Buenos Aires, Argentina
| |
Collapse
|
150
|
Fernández PM, Martorell MM, Blaser MG, Ruberto LAM, de Figueroa LIC, Mac Cormack WP. Phenol degradation and heavy metal tolerance of Antarctic yeasts. Extremophiles 2017; 21:445-457. [PMID: 28271165 DOI: 10.1007/s00792-017-0915-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 01/22/2017] [Indexed: 11/26/2022]
Abstract
In cold environments, biodegradation of organic pollutants and heavy metal bio-conversion requires the activity of cold-adapted or cold-tolerant microorganisms. In this work, the ability to utilize phenol, methanol and n-hexadecane as C source, the tolerance to different heavy metals and growth from 5 to 30 °C were evaluated in cold-adapted yeasts isolated from Antarctica. Fifty-nine percent of the yeasts were classified as psychrotolerant as they could grow in all the range of temperature tested, while the other 41% were classified as psychrophilic as they only grew below 25 °C. In the assimilation tests, 32, 78, and 13% of the yeasts could utilize phenol, n-hexadecane, and methanol as C source, respectively, but only 6% could assimilate the three C sources evaluated. In relation to heavy metals ions, 55, 68, and 80% were tolerant to 1 mM of Cr(VI), Cd(II), and Cu(II), respectively. Approximately a half of the isolates tolerated all of them. Most of the selected yeasts belong to genera previously reported as common for Antarctic soils, but several other genera were also isolated, which contribute to the knowledge of this cold environment mycodiversity. The tolerance to heavy metals of the phenol-degrading cold-adapted yeasts illustrated that the strains could be valuable as inoculant for cold wastewater treatment in extremely cold environments.
Collapse
Affiliation(s)
- Pablo Marcelo Fernández
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), San Miguel de Tucumán, Argentina
| | | | - Mariana G Blaser
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), San Miguel de Tucumán, Argentina
| | - Lucas Adolfo Mauro Ruberto
- Instituto Antártico Argentino (IAA), Buenos Aires, Argentina
- Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
- NANOBIOTEC-CONICET, Buenos Aires, Argentina
| | - Lucía Inés Castellanos de Figueroa
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), San Miguel de Tucumán, Argentina
- Universidad Nacional de Tucumán (UNT), San Miguel de Tucumán, Argentina
| | - Walter Patricio Mac Cormack
- Instituto Antártico Argentino (IAA), Buenos Aires, Argentina
- Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
- NANOBIOTEC-CONICET, Buenos Aires, Argentina
| |
Collapse
|