101
|
Li CJ, Liao WT, Wu MY, Chu PY. New Insights into the Role of Autophagy in Tumor Immune Microenvironment. Int J Mol Sci 2017; 18:ijms18071566. [PMID: 28753959 PMCID: PMC5536054 DOI: 10.3390/ijms18071566] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 07/11/2017] [Accepted: 07/13/2017] [Indexed: 02/06/2023] Open
Abstract
The tumor microenvironment is a complex system that is affected by various factors, including hypoxia, acidosis, and immune and inflammatory responses, which have significant effects on tumor adhesion, invasion, metastasis, angiogenesis, and autophagy. In this hostile tumor microenvironment, autophagy of tumor cells can promote tumor growth and metastasis. As autophagy is a double-edged sword in tumors, treatment of cancer via regulation of autophagy is extremely complicated. Therefore, understanding the relationship between tumor autophagy and the tumor microenvironment is extremely important. As the immune milieu plays an important role in tumor development, immunotherapy has become a promising form of cancer therapy. A multi-pronged treatment approach using immunotherapy and molecular targets may become the major direction for future cancer treatments. This article reviews existing knowledge regarding the immune factors in the tumor microenvironment and the status of tumor autophagy research.
Collapse
Affiliation(s)
- Chia-Jung Li
- Research Assistant Center, Show Chwan Memorial Hospital, Changhua 500, Taiwan.
| | - Wan-Ting Liao
- Chinese Medicine Department, Show Chwan Memorial Hospital, Changhua 500, Taiwan.
- Graduate Institute of Chinese Medicine, China Medical University, Taichung 404, Taiwan.
| | - Meng-Yu Wu
- Department of Emergency Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan.
| | - Pei-Yi Chu
- Department of Pathology, Show Chwan Memorial Hospital, Changhua 500, Taiwan.
- School of Medicine, College of Medicine, Fu-Jen Catholic University, New Taipei City 242, Taiwan.
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan.
| |
Collapse
|
102
|
Divac Rankov A, Ljujić M, Petrić M, Radojković D, Pešić M, Dinić J. Targeting autophagy to modulate cell survival: a comparative analysis in cancer, normal and embryonic cells. Histochem Cell Biol 2017; 148:529-544. [PMID: 28664293 DOI: 10.1007/s00418-017-1590-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2017] [Indexed: 01/07/2023]
Abstract
Autophagy is linked to multiple cancer-related signaling pathways, and represents a defense mechanism for cancer cells under therapeutic stress. The crosstalk between apoptosis and autophagy is essential for both tumorigenesis and embryonic development. We studied the influence of autophagy on cell survival in pro-apoptotic conditions induced by anticancer drugs in three model systems: human cancer cells (NCI-H460, COR-L23 and U87), human normal cells (HaCaT and MRC-5) and zebrafish embryos (Danio rerio). Autophagy induction with AZD2014 and tamoxifen antagonized the pro-apoptotic effect of chemotherapeutics doxorubicin and cisplatin in cell lines, while autophagy inhibition by wortmannin and chloroquine synergized the action of both anticancer agents. This effect was further verified by assessing cleaved caspase-3 and PARP-1 levels. Autophagy inhibitors significantly increased both apoptotic markers when applied in combination with doxorubicin while autophagy inducers had the opposite effect. In a similar manner, autophagy induction in zebrafish embryos prevented cisplatin-induced apoptosis in the tail region while autophagy inhibition increased cell death in the tail and retina of cisplatin-treated animals. Autophagy modulation with direct inhibitors of the PI3kinase/Akt/mTOR pathway (AZD2014 and wortmannin) triggered the cellular response to anticancer drugs more effectively in NCI-H460 and zebrafish embryonic models compared to HaCaT suggesting that these modulators are selective towards rapidly proliferating cells. Therefore, evaluating the autophagic properties of chemotherapeutics could help determine more accurately the fate of different cell types under treatment. Our study underlines the importance of testing autophagic activity of potential anticancer agents in a comparative approach to develop more rational anticancer therapeutic strategies.
Collapse
Affiliation(s)
- Aleksandra Divac Rankov
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11010, Belgrade, Serbia
| | - Mila Ljujić
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11010, Belgrade, Serbia
| | - Marija Petrić
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11010, Belgrade, Serbia
| | - Dragica Radojković
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11010, Belgrade, Serbia
| | - Milica Pešić
- Institute for Biological Research "Siniša Stanković", Department of Neurobiology, University of Belgrade, Despota Stefana 142, 11060, Belgrade, Serbia
| | - Jelena Dinić
- Institute for Biological Research "Siniša Stanković", Department of Neurobiology, University of Belgrade, Despota Stefana 142, 11060, Belgrade, Serbia.
| |
Collapse
|
103
|
Hu F, Guo XL, Zhang SS, Zhao QD, Li R, Xu Q, Wei LX. Suppression of p53 potentiates chemosensitivity in nutrient-deprived cholangiocarcinoma cells via inhibition of autophagy. Oncol Lett 2017; 14:1959-1966. [PMID: 28789429 PMCID: PMC5530065 DOI: 10.3892/ol.2017.6449] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 01/13/2017] [Indexed: 12/21/2022] Open
Abstract
Tumor protein p53 has been intensively studied as a major tumor suppressor. The activation of p53 is associated with various anti-neoplastic functions, including cell senescence, cell cycle arrest, apoptosis and inhibition of angiogenesis. However, the role of p53 in cancer cell chemosensitivity remains unknown. Cholangiocarcinoma cell lines QBC939 and RBE were grown in full-nutrient and nutrient-deprived conditions. The cell lines were treated with 5-fluorouracil or cisplatin and the rate of cell death was determined in these and controls using Cell Counting Kit-8 and microscopy-based methods, including in the presence of autophagy inhibitor 3MA, p53 inhibitor PFT-α or siRNA against p53 or Beclin-1. The present study demonstrated that the inhibition of p53 enhanced the sensitivity to chemotherapeutic agents in nutrient-deprived cholangiocarcinoma cells. Nutrient deprivation-induced autophagy was revealed to be inhibited following inhibition of p53. These data indicate that p53 is important for the activation of autophagy in nutrient-deprived cholangiocarcinoma cells, and thus contributes to cell survival and chemoresistance.
Collapse
Affiliation(s)
- Fei Hu
- Department of Medical Oncology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, P.R. China.,Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai 200438, P.R. China
| | - Xian-Ling Guo
- Department of Medical Oncology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, P.R. China.,Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai 200438, P.R. China
| | - Shan-Shan Zhang
- Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai 200438, P.R. China
| | - Qiu-Dong Zhao
- Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai 200438, P.R. China
| | - Rong Li
- Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai 200438, P.R. China
| | - Qing Xu
- Department of Medical Oncology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, P.R. China
| | - Li-Xin Wei
- Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai 200438, P.R. China
| |
Collapse
|
104
|
Autophagy suppresses Ras-driven epithelial tumourigenesis by limiting the accumulation of reactive oxygen species. Oncogene 2017; 36:5576-5592. [PMID: 28581519 PMCID: PMC5633656 DOI: 10.1038/onc.2017.175] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 04/12/2017] [Accepted: 05/01/2017] [Indexed: 12/23/2022]
Abstract
Activation of Ras signalling occurs in ~30% of human cancers; however, activated Ras alone is not sufficient for tumourigenesis. In a screen for tumour suppressors that cooperate with oncogenic Ras (RasV12) in Drosophila, we identified genes involved in the autophagy pathway. Bioinformatic analysis of human tumours revealed that several core autophagy genes, including GABARAP, correlate with oncogenic KRAS mutations and poor prognosis in human pancreatic cancer, supporting a potential tumour-suppressive effect of the pathway in Ras-driven human cancers. In Drosophila, we demonstrate that blocking autophagy at any step of the pathway enhances RasV12-driven epithelial tissue overgrowth via the accumulation of reactive oxygen species and activation of the Jun kinase stress response pathway. Blocking autophagy in RasV12 clones also results in non-cell-autonomous effects with autophagy, cell proliferation and caspase activation induced in adjacent wild-type cells. Our study has implications for understanding the interplay between perturbations in Ras signalling and autophagy in tumourigenesis, which might inform the development of novel therapeutics targeting Ras-driven cancers.
Collapse
|
105
|
Zambrano JN, Neely BA, Yeh ES. Hormonally up-regulated neu-associated kinase: A novel target for breast cancer progression. Pharmacol Res 2017; 119:188-194. [PMID: 28189783 PMCID: PMC5392418 DOI: 10.1016/j.phrs.2017.02.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 02/06/2017] [Accepted: 02/07/2017] [Indexed: 12/26/2022]
Abstract
Hormonally up-regulated neu-associated Kinase (Hunk) is a protein kinase that was originally identified in the murine mammary gland and has been shown to be highly expressed in Human Epidermal Growth Factor Receptor 2 positive (HER2+/ErbB2+) breast cancer cell lines as well as MMTV-neu derived mammary tumor cell lines. However, the physiological role of Hunk has been largely elusive since its identification. Though Hunk is predicted to be a Serine/Threonine (Ser/Thr) protein kinase with homology to the SNF1/AMPK family of protein kinases, there are no known Hunk substrates that have been identified to date. Recent work demonstrates a role for Hunk in HER2+/ErbB2+ breast cancer progression, including drug resistance to HER2/ErbB2 inhibitors, with Hunk potentially acting downstream of HER2/ErbB2 and the PI3K/Akt pathway. These studies have collectively shown that Hunk plays a vital role in promoting mammary tumorigenesis, as Hunk knockdown via shRNA in xenograft tumor models or crossing MMTV-neu or Pten-deficient genetically engineered mouse models into a Hunk knockout (Hunk-/-) background impairs mammary tumor growth in vivo. Because the majority of HER2+/ErbB2+ breast cancer patients acquire drug resistance to HER2/ErbB2 inhibitors, the characterization of novel drug targets like Hunk that have the potential to simultaneously suppress tumorigenesis and potentially enhance efficacy of current therapeutics is an important facet of drug development. Therefore, work aimed at uncovering specific regulatory functions for Hunk that could contribute to this protein kinase's role in both tumorigenesis and drug resistance will be informative. This review focuses on what is currently known about this under-studied protein kinase, and how targeting Hunk may prove to be a potential therapeutic target for the treatment of breast cancer.
Collapse
Affiliation(s)
- Joelle N Zambrano
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina Charleston, SC, USA.
| | - Benjamin A Neely
- Marine Biochemical Sciences, National Institute of Standards and Technology, Charleston, SC, USA.
| | - Elizabeth S Yeh
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina Charleston, SC, USA.
| |
Collapse
|
106
|
Oladghaffari M, Islamian JP, Baradaran B, Monfared AS. MLN4924 therapy as a novel approach in cancer treatment modalities. J Chemother 2017; 28:74-82. [PMID: 26292710 DOI: 10.1179/1973947815y.0000000066] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
MLN4924 is an investigational and a newly discovered small molecule that is a potent and selective inhibitor of the NEDD8 (Neural precursor cell-Expressed Developmentally down-regulated 8) Activating Enzyme (NAE), a pivotal regulator of the Cullin Ring Ligases E3 (CRL), which has been implicated recently in DNA damage. MLN4924 effectively inhibits tumour cell growth by inducing all three common types of death, namely apoptosis, autophagy and senescence and it was also reported that the formation of capillary vessels was significantly suppressed by MLN4924.In this review, we are going to highlight the molecular mechanism of MLN4924 in cancer therapy and its pros and cons in cancer therapy.
Collapse
Affiliation(s)
- Maryam Oladghaffari
- a Cellular & Molecular Biology Research Center, Medical Physics Department , Babol University of Medical Sciences , Iran
| | - Jalil Pirayesh Islamian
- b Immonology Research Center , Tabriz University of Medical Sciences , Tabriz , Iran.,c Department of Medical Physics, Faculty of Medicine , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Behzad Baradaran
- c Department of Medical Physics, Faculty of Medicine , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Ali Shabestani Monfared
- a Cellular & Molecular Biology Research Center, Medical Physics Department , Babol University of Medical Sciences , Iran
| |
Collapse
|
107
|
Evaluation of growth inhibitory response of Resveratrol and Salinomycin combinations against triple negative breast cancer cells. Biomed Pharmacother 2017; 89:1142-1151. [PMID: 28298074 DOI: 10.1016/j.biopha.2017.02.110] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/24/2017] [Accepted: 02/22/2017] [Indexed: 12/11/2022] Open
Abstract
Resveratrol (RSVL) a dietary phytochemical showed to enhance the efficacy of chemotherapeutic drugs. Recently, Salinomycin (SAL) has gained importance as cancer therapeutic value for breast cancer (BC), however, its superfluxious toxicity delimits the utility. Taking the advantage of RSVL, the therapeutic efficacy of RSVL and SAL combination was studied in vitro and in vivo system. Firstly, the synergistic combination dose of RSVL and SAL was calculated and further, the efficacy was examined by wound healing, and Western blots analysis. Further, in vivo study was performed to confirm the effect of colony formation and apoptosis detection by flow cytometry based assays. Further, the molecular mode of action was determined at both transcript and translational level by quantitative Real Time PCR combination in Ehrlich ascitic carcinoma model.The combination of IC20 (R20) of RSVL and IC10 (S10) dose of SAL showed best synergism (CI<1) with ∼5 fold dose advantage of SAL. Gene expression results at mRNA and protein level revealed that the unique combination of RSVL and SAL significantly inhibited epithelial mesenchymal transition (Fibronectin, Vimentin, N-Cadherin, and Slug); chronic inflammation (Cox2, NF-kB, p53), autophagy (Beclin and LC3) and apoptotic (Bax, Bcl-2) markers. Further, i n vivo study showed that low dose of SAL in combination with RSVL increased life span of Ehrlich ascitic mice. Overall, our study revealed that RSVL synergistically potentiated the anticancer potential of SAL against triple negative BC.
Collapse
|
108
|
Paula LM, De Moraes LHF, Do Canto AL, Dos Santos L, Martin AA, Rogatto SR, De Azevedo Canevari R. Analysis of molecular markers as predictive factors of lymph node involvement in breast carcinoma. Oncol Lett 2017; 13:488-496. [PMID: 28123587 DOI: 10.3892/ol.2016.5438] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 09/15/2016] [Indexed: 11/06/2022] Open
Abstract
Nodal status is the most significant independent prognostic factor in breast cancer. Identification of molecular markers would allow stratification of patients who require surgical assessment of lymph nodes from the large numbers of patients for whom this surgical procedure is unnecessary, thus leading to a more accurate prognosis. However, up to now, the reported studies are preliminary and controversial, and although hundreds of markers have been assessed, few of them have been used in clinical practice for treatment or prognosis in breast cancer. The purpose of the present study was to determine whether protein phosphatase Mg2+/Mn2+ dependent 1D, β-1,3-N-acetylglucosaminyltransferase, neural precursor cell expressed, developmentally down-regulated 9, prohibitin, phosphoinositide-3-kinase regulatory subunit 5 (PIK3R5), phosphatidylinositol-5-phosphate 4-kinase type IIα, TRF1-interacting ankyrin-related ADP-ribose polymerase 2, BCL2 associated agonist of cell death, G2 and S-phase expressed 1 and PAX interacting protein 1 genes, described as prognostic markers in breast cancer in a previous microarray study, are also predictors of lymph node involvement in breast carcinoma Reverse transcription-quantitative polymerase chain reaction analysis was performed on primary breast tumor tissues from women with negative lymph node involvement (n=27) compared with primary tumor tissues from women with positive lymph node involvement (n=23), and was also performed on primary tumors and paired lymph node metastases (n=11). For all genes analyzed, only the PIK3R5 gene exhibited differential expression in samples of primary tumors with positive lymph node involvement compared with primary tumors with negative lymph node involvement (P=0.0347). These results demonstrate that the PIK3R5 gene may be considered predictive of lymph node involvement in breast carcinoma. Although the other genes evaluated in the present study have been previously characterized to be involved with the development of distant metastases, they did not have predictive potential.
Collapse
Affiliation(s)
- Luciana Marques Paula
- Laboratory of Molecular Biology of Cancer, Institute of Research and Development (IP&D), University of Vale do Paraíba, São José dos Campos, 12244-000 São Paulo, Brazil
| | | | - Abaeté Leite Do Canto
- Center for Diagnostic Medicine, Pathology and Cytology (CIPAX), São José dos Campos, 12243-000 São Paulo, Brazil
| | - Laurita Dos Santos
- Laboratory of Biomedical Vibrational Spectroscopy, Institute of Research and Development (IP&D), University of Vale do Paraíba, São José dos Campos, 12244-000 São Paulo, Brazil
| | - Airton Abrahão Martin
- Laboratory of Biomedical Vibrational Spectroscopy, Institute of Research and Development (IP&D), University of Vale do Paraíba, São José dos Campos, 12244-000 São Paulo, Brazil
| | - Silvia Regina Rogatto
- NeoGene Laboratory, Urology Department, Sao Paulo State University, Botucatu, 18618-000 São Paulo, Brazil
| | - Renata De Azevedo Canevari
- Laboratory of Molecular Biology of Cancer, Institute of Research and Development (IP&D), University of Vale do Paraíba, São José dos Campos, 12244-000 São Paulo, Brazil
| |
Collapse
|
109
|
Zhou H, Yuan M, Yu Q, Zhou X, Min W, Gao D. Autophagy regulation and its role in gastric cancer and colorectal cancer. Cancer Biomark 2017; 17:1-10. [PMID: 27314289 DOI: 10.3233/cbm-160613] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Autophagy is associated with the occurrence, development, cellular adaptation, progression, treatment and prognosis of gastric cancer (GC) and colorectal cancer (CRC). The effect of autophagy in these two cancers has attracted our attention. OBJECTIVE The aim of this study was to describe the functional and regulatory mechanisms associated with autophagy in GC and CRC. METHODS We reviewed recent publications describing the role of autophagy in GC and CRC, including the functional characteristics, clinical significance and regulatory mechanisms. RESULTS Autophagy plays context-dependent dual roles in the development and progression of GC and CRC. It can either promote tumor growth and cell survival or can contribute to tumor suppression and promote cell death. Both of these effects employ complex regulatory networks, such as those mediated by p53, PI3K/Akt/mTOR, Ras and microRNA. Among the cellular process associated with these pathways, autophagy is a potential target for anti-tumor therapy. CONCLUSION Autophagy is associated with both tumorigenic and protective effects in cancer. However, the role of autophagy in GC and CRC remains unclear. Although the translation of the basic science of autophagy into clinical practice is a long process, the modulation of autophagy as a potential therapeutic approach in GC and CRC merits further investigation.
Collapse
Affiliation(s)
- Huangyan Zhou
- Department of Pathogen Biology and Immunology, Medical College of Nanchang University, Nanchang, Jiangxi, China.,Jiangxi Academy of Medical Sciences, Nanchang, Jiangxi, China.,Institute of Immunotherapy, Nanchang University, Nanchang, Jiangxi, China
| | - Min Yuan
- Department of Neurology, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Qiongfang Yu
- Department of Gastroenterology and Hepatology, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xiaoyan Zhou
- Department of Pathophysiology, Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Weiping Min
- Department of Pathogen Biology and Immunology, Medical College of Nanchang University, Nanchang, Jiangxi, China.,Jiangxi Academy of Medical Sciences, Nanchang, Jiangxi, China.,Institute of Immunotherapy, Nanchang University, Nanchang, Jiangxi, China
| | - Dian Gao
- Department of Pathogen Biology and Immunology, Medical College of Nanchang University, Nanchang, Jiangxi, China.,Jiangxi Academy of Medical Sciences, Nanchang, Jiangxi, China.,Institute of Immunotherapy, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
110
|
Xu J, Li Z, Su Q, Zhao J, Ma J. TRIM29 promotes progression of thyroid carcinoma via activating P13K/AKT signaling pathway. Oncol Rep 2017; 37:1555-1564. [DOI: 10.3892/or.2017.5364] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 12/28/2016] [Indexed: 11/05/2022] Open
|
111
|
Wang Y, Wu H, Li Z, Yang P, Li Z. A positive feedback loop between GRP78 and VPS34 is critical for GRP78-mediated autophagy in cancer cells. Exp Cell Res 2016; 351:24-35. [PMID: 28038917 DOI: 10.1016/j.yexcr.2016.12.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 12/17/2016] [Accepted: 12/22/2016] [Indexed: 01/12/2023]
Abstract
Autophagy and GRP78 overexpression are two important means by which tumor cells resist microenvironmental stress and chemotherapeutic drugs; however, the relationship between autophagy and GRP78 remains unclear. Here, we found that forced expression of GRP78 in tumor cells promoted autophagy, which was indicated by alterations in the levels of autophagy related proteins, such as increased VPS34 and LC3-II, and decreased p62 and LC3-I. Consistently, GRP78 knockdown suppressed tumor cell autophagy. Our results further demonstrated that GRP78-induced autophagy was mediated by VPS34, and that UPR-associated autophagy was also involved. GRP78-overexpressing cells treated with VPS34 siRNA reversed the autophagy induced by GRP78. Importantly, the expression of microRNA-143 (miR-143) was decreased in GRP78-overexpressing cells, and the increased expression of VPS34 was reversed by treatment with miR-143 mimic. This demonstrated that miR-143 plays a key role in GRP78's mediation of VPS34 expression. In addition, GRP78 acetylation was also involved in the occurrence of autophagy through upregulating VPS34. In turn, high expression of VPS34 promoted GRP78 transcription by modulating the GRP78 transcription factor ATF6. Moreover, VPS34 could enhance GRP78 protein stability by inhibiting GRP78 degradation via the ubiquitin-proteasome pathway. Collectively, the results revealed a positive feedback loop between GRP78 and VPS34 in tumor cells that might be important for autophagy during tumor development.
Collapse
Affiliation(s)
- Yingying Wang
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Haili Wu
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Zongwei Li
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Peng Yang
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Zhuoyu Li
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
112
|
White KAM, Luo L, Thompson TA, Torres S, Hu CA, Thomas NE, Lilyquist J, Anton‐Culver H, Gruber SB, From L, Busam KJ, Orlow I, Kanetsky PA, Marrett LD, Gallagher RP, Sacchetto L, Rosso S, Dwyer T, Cust AE, Begg CB, Berwick M. Variants in autophagy-related genes and clinical characteristics in melanoma: a population-based study. Cancer Med 2016; 5:3336-3345. [PMID: 27748080 PMCID: PMC5119988 DOI: 10.1002/cam4.929] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 08/23/2016] [Accepted: 09/07/2016] [Indexed: 12/11/2022] Open
Abstract
Autophagy has been linked with melanoma risk and survival, but no polymorphisms in autophagy-related (ATG) genes have been investigated in relation to melanoma progression. We examined five single-nucleotide polymorphisms (SNPs) in three ATG genes (ATG5; ATG10; and ATG16L) with known or suspected impact on autophagic flux in an international population-based case-control study of melanoma. DNA from 911 melanoma patients was genotyped. An association was identified between (GG) (rs2241880) and earlier stage at diagnosis (OR 0.47; 95% Confidence Intervals (CI) = 0.27-0.81, P = 0.02) and a decrease in Breslow thickness (P = 0.03). The ATG16L heterozygous genotype (AG) (rs2241880) was associated with younger age at diagnosis (P = 0.02). Two SNPs in ATG5 were found to be associated with increased stage (rs2245214 CG, OR 1.47; 95% CI = 1.11-1.94, P = 0.03; rs510432 CC, OR 1.84; 95% CI = 1.12-3.02, P = 0.05). Finally, we identified inverse associations between ATG5 (GG rs2245214) and melanomas on the scalp or neck (OR 0.20, 95% CI = 0.05-0.86, P = 0.03); ATG10 (CC) (rs1864182) and brisk tumor infiltrating lymphocytes (TILs) (OR 0.42; 95% CI = 0.21-0.88, P = 0.02), and ATG5 (CC) (rs510432) with nonbrisk TILs (OR 0.55; 95% CI = 0.34-0.87, P = 0.01). Our data suggest that ATG SNPs might be differentially associated with specific host and tumor characteristics including age at diagnosis, TILs, and stage. These associations may be critical to understanding the role of autophagy in cancer, and further investigation will help characterize the contribution of these variants to melanoma progression.
Collapse
Affiliation(s)
- Kirsten A. M. White
- Department of MedicineDivision of EpidemiologyUniversity of New MexicoAlbuquerqueNew Mexico
| | - Li Luo
- Department of MedicineDivision of EpidemiologyUniversity of New MexicoAlbuquerqueNew Mexico
| | - Todd A. Thompson
- Department of Pharmaceutical SciencesCollege of PharmacyUniversity of New MexicoAlbuquerqueNew Mexico
| | - Salina Torres
- Center for HPV PreventionDepartment of Pathology University of New MexicoAlbuquerqueNew Mexico
| | - Chien‐An Andy Hu
- Department of Biochemistry and Molecular BiologyUniversity of New MexicoAlbuquerqueNew Mexico
| | - Nancy E. Thomas
- Department of DermatologyUniversity of North CarolinaChapel HillNorth Carolina
- Lineberger Comprehensive Cancer CenterUniversity of North CarolinaChapel HillNorth Carolina
| | - Jenna Lilyquist
- Department of MedicineDivision of EpidemiologyUniversity of New MexicoAlbuquerqueNew Mexico
| | - Hoda Anton‐Culver
- Department of EpidemiologySchool of MedicineUniversity of CaliforniaIrvineCalifornia
| | - Stephen B. Gruber
- Department of MedicineKeck School of MedicineUniversity of Southern CaliforniaLos AngelesCalifornia
| | - Lynn From
- Cancer Care OntarioTorontoOntarioCanada
| | - Klaus J. Busam
- Department of PathologyMemorial Sloan Kettering Cancer CenterNew YorkNew York
| | - Irene Orlow
- Department of PathologyMemorial Sloan Kettering Cancer CenterNew YorkNew York
| | - Peter A. Kanetsky
- Department of Cancer EpidemiologyH. Lee Moffitt Cancer Center & Research InstituteTampaFlorida
| | | | | | - Lidia Sacchetto
- Piedmont Cancer RegistryCentre for Epidemiology and Prevention in Oncology in PiedmontTurinItaly
| | - Stefano Rosso
- Piedmont Cancer RegistryCentre for Epidemiology and Prevention in Oncology in PiedmontTurinItaly
| | - Terence Dwyer
- George Institute for Global HealthUniversity of OxfordUK
| | - Anne E. Cust
- University of SydneySydneyNew South WalesAustralia
| | - Colin B. Begg
- Department of PathologyMemorial Sloan Kettering Cancer CenterNew YorkNew York
| | - Marianne Berwick
- Department of MedicineDivision of EpidemiologyUniversity of New MexicoAlbuquerqueNew Mexico
| | | |
Collapse
|
113
|
Abstract
Macroautophagy/autophagy is a conserved lysosomal degradation process essential for cell physiology and human health. By regulating apoptosis, inflammation, pathogen clearance, immune response and other cellular processes, autophagy acts as a modulator of pathogenesis and is a potential therapeutic target in diverse diseases. With regard to oral disease, autophagy can be problematic either when it is activated or impaired, because this process is involved in diverse functions, depending on the specific disease and its level of progression. In particular, activated autophagy functions as a cytoprotective mechanism under environmental stress conditions, which regulates tumor growth and mediates resistance to anticancer treatment in established tumors. During infections and inflammation, activated autophagy selectively delivers microbial antigens to the immune systems, and is therefore connected to the elimination of intracellular pathogens. Impaired autophagy contributes to oxidative stress, genomic instability, chronic tissue damage, inflammation and tumorigenesis, and is involved in aberrant bacterial clearance and immune priming. Hence, substantial progress in the study of autophagy provides new insights into the pathogenesis of oral diseases. This review outlines the mechanisms of autophagy, and highlights the emerging roles of this process in oral cancer, periapical lesions, periodontal diseases, and oral candidiasis.
Collapse
Affiliation(s)
- Ya-Qin Tan
- a The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education , School and Hospital of Stomatology, Wuhan University , Wuhan , Hubei , China
| | - Jing Zhang
- a The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education , School and Hospital of Stomatology, Wuhan University , Wuhan , Hubei , China.,b Department of Oral Medicine , School and Hospital of Stomatology, Wuhan University , Wuhan , Hubei , China
| | - Gang Zhou
- a The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education , School and Hospital of Stomatology, Wuhan University , Wuhan , Hubei , China.,b Department of Oral Medicine , School and Hospital of Stomatology, Wuhan University , Wuhan , Hubei , China
| |
Collapse
|
114
|
Kucinska M, Piotrowska-Kempisty H, Lisiak N, Kaczmarek M, Dams-Kozlowska H, Granig WH, Höferl M, Jäger W, Zehl M, Murias M, Erker T. Selective anticancer activity of the novel thiobenzanilide 63T against human lung adenocarcinoma cells. Toxicol In Vitro 2016; 37:148-161. [PMID: 27660182 DOI: 10.1016/j.tiv.2016.09.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 09/06/2016] [Accepted: 09/18/2016] [Indexed: 02/07/2023]
Abstract
Previously, it has been reported that molecules built on the benzanilide and thiobenzanilide scaffold are the promising groups of compounds with several biological activities including antifungal, antimycotic, antibacterial, spasmolytic, and anticancer ones. In this study the mechanism of action of one selected thiobenzanilide derivative N,N'-(1,2-phenylene)bis3,4,5-trifluorobenzothioamide (63T) with strongest cytotoxic activity has been investigated for the first time in human lung adenocarcinoma (A549) and normal lung derived fibroblast (CCD39Lu) in a cell culture model. The results demonstrated, that 63T can be considered a selective anticancer compound. Based on these results, several experiments including the analysis of cellular morphology, cell phase distribution, cytoplasmic histone-associated DNA fragmentation, apoptosis, necrosis, and autophagy detection were performed to understand better the mechanism underlying the anticancer activity. The data showed that 63T is a small molecule compound, which selectively induces cancer cell death in a caspase independent pathway; moreover, the autophagic dose-dependent processes may be involved in the mechanism of cell death.
Collapse
Affiliation(s)
- Malgorzata Kucinska
- Department of Toxicology, Poznan University of Medical Sciences, Poznan, Poland
| | | | - Natalia Lisiak
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Poznan, Poland
| | - Mariusz Kaczmarek
- Department of Immunology, Chair of Clinical Immunology, Poznan University of Medical Sciences, Poznan, Poland
| | - Hanna Dams-Kozlowska
- Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland; Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, Poznan, Poland
| | - Walter H Granig
- Department of Medicinal Chemistry, University of Vienna, Vienna, Austria
| | - Martina Höferl
- Department of Clinical Pharmacy and Diagnostics, University of Vienna, Austria
| | - Walter Jäger
- Department of Clinical Pharmacy and Diagnostics, University of Vienna, Austria
| | - Martin Zehl
- Department of Pharmacognosy, University of Vienna, Austria
| | - Marek Murias
- Department of Toxicology, Poznan University of Medical Sciences, Poznan, Poland.
| | - Thomas Erker
- Department of Medicinal Chemistry, University of Vienna, Vienna, Austria
| |
Collapse
|
115
|
Brisson L, Bański P, Sboarina M, Dethier C, Danhier P, Fontenille MJ, Van Hée VF, Vazeille T, Tardy M, Falces J, Bouzin C, Porporato PE, Frédérick R, Michiels C, Copetti T, Sonveaux P. Lactate Dehydrogenase B Controls Lysosome Activity and Autophagy in Cancer. Cancer Cell 2016; 30:418-431. [PMID: 27622334 DOI: 10.1016/j.ccell.2016.08.005] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 05/13/2016] [Accepted: 08/10/2016] [Indexed: 01/09/2023]
Abstract
Metabolic adaptability is essential for tumor progression and includes cooperation between cancer cells with different metabolic phenotypes. Optimal glucose supply to glycolytic cancer cells occurs when oxidative cancer cells use lactate preferentially to glucose. However, using lactate instead of glucose mimics glucose deprivation, and glucose starvation induces autophagy. We report that lactate sustains autophagy in cancer. In cancer cells preferentially to normal cells, lactate dehydrogenase B (LDHB), catalyzing the conversion of lactate and NAD(+) to pyruvate, NADH and H(+), controls lysosomal acidification, vesicle maturation, and intracellular proteolysis. LDHB activity is necessary for basal autophagy and cancer cell proliferation not only in oxidative cancer cells but also in glycolytic cancer cells.
Collapse
Affiliation(s)
- Lucie Brisson
- Institut de Recherche Expérimentale et Clinique (IREC), Pole of Pharmacology, Université catholique de Louvain (UCL), 1200 Brussels, Belgium
| | - Piotr Bański
- Institut de Recherche Expérimentale et Clinique (IREC), Pole of Pharmacology, Université catholique de Louvain (UCL), 1200 Brussels, Belgium
| | - Martina Sboarina
- Institut de Recherche Expérimentale et Clinique (IREC), Pole of Pharmacology, Université catholique de Louvain (UCL), 1200 Brussels, Belgium
| | - Coralie Dethier
- Institut de Recherche Expérimentale et Clinique (IREC), Pole of Pharmacology, Université catholique de Louvain (UCL), 1200 Brussels, Belgium
| | - Pierre Danhier
- Institut de Recherche Expérimentale et Clinique (IREC), Pole of Pharmacology, Université catholique de Louvain (UCL), 1200 Brussels, Belgium; Louvain Drug Research Institute (LDRI), Université catholique de Louvain (UCL), 1200 Brussels, Belgium
| | - Marie-Joséphine Fontenille
- Institut de Recherche Expérimentale et Clinique (IREC), Pole of Pharmacology, Université catholique de Louvain (UCL), 1200 Brussels, Belgium
| | - Vincent F Van Hée
- Institut de Recherche Expérimentale et Clinique (IREC), Pole of Pharmacology, Université catholique de Louvain (UCL), 1200 Brussels, Belgium
| | - Thibaut Vazeille
- Institut de Recherche Expérimentale et Clinique (IREC), Pole of Pharmacology, Université catholique de Louvain (UCL), 1200 Brussels, Belgium
| | - Morgane Tardy
- Institut de Recherche Expérimentale et Clinique (IREC), Pole of Pharmacology, Université catholique de Louvain (UCL), 1200 Brussels, Belgium
| | - Jorge Falces
- Institut de Recherche Expérimentale et Clinique (IREC), Pole of Pharmacology, Université catholique de Louvain (UCL), 1200 Brussels, Belgium
| | - Caroline Bouzin
- IREC Imaging Platform, Université catholique de Louvain (UCL), 1200 Brussels, Belgium
| | - Paolo E Porporato
- Institut de Recherche Expérimentale et Clinique (IREC), Pole of Pharmacology, Université catholique de Louvain (UCL), 1200 Brussels, Belgium
| | - Raphaël Frédérick
- Louvain Drug Research Institute (LDRI), Université catholique de Louvain (UCL), 1200 Brussels, Belgium
| | | | - Tamara Copetti
- Institut de Recherche Expérimentale et Clinique (IREC), Pole of Pharmacology, Université catholique de Louvain (UCL), 1200 Brussels, Belgium
| | - Pierre Sonveaux
- Institut de Recherche Expérimentale et Clinique (IREC), Pole of Pharmacology, Université catholique de Louvain (UCL), 1200 Brussels, Belgium.
| |
Collapse
|
116
|
Sen NE, Drost J, Gispert S, Torres-Odio S, Damrath E, Klinkenberg M, Hamzeiy H, Akdal G, Güllüoğlu H, Başak AN, Auburger G. Search for SCA2 blood RNA biomarkers highlights Ataxin-2 as strong modifier of the mitochondrial factor PINK1 levels. Neurobiol Dis 2016; 96:115-126. [PMID: 27597528 DOI: 10.1016/j.nbd.2016.09.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 08/24/2016] [Accepted: 09/01/2016] [Indexed: 12/13/2022] Open
Abstract
Ataxin-2 (ATXN2) polyglutamine domain expansions of large size result in an autosomal dominantly inherited multi-system-atrophy of the nervous system named spinocerebellar ataxia type 2 (SCA2), while expansions of intermediate size act as polygenic risk factors for motor neuron disease (ALS and FTLD) and perhaps also for Levodopa-responsive Parkinson's disease (PD). In view of the established role of ATXN2 for RNA processing in periods of cell stress and the expression of ATXN2 in blood cells such as platelets, we investigated whether global deep RNA sequencing of whole blood from SCA2 patients identifies a molecular profile which might serve as diagnostic biomarker. The bioinformatic analysis of SCA2 blood global transcriptomics revealed various significant effects on RNA processing pathways, as well as the pathways of Huntington's disease and PD where mitochondrial dysfunction is crucial. Notably, an induction of PINK1 and PARK7 expression was observed. Conversely, expression of Pink1 was severely decreased upon global transcriptome profiling of Atxn2-knockout mouse cerebellum and liver, in parallel to strong effects on Opa1 and Ghitm, which encode known mitochondrial dynamics regulators. These results were validated by quantitative PCR and immunoblots. Starvation stress of human SH-SY5Y neuroblastoma cells led to a transcriptional phasic induction of ATXN2 in parallel to PINK1, and the knockdown of one enhanced the expression of the other during stress response. These findings suggest that ATXN2 may modify the known PINK1 roles for mitochondrial quality control and autophagy during cell stress. Given that PINK1 is responsible for autosomal recessive juvenile PD, this genetic interaction provides a concept how the degeneration of nigrostriatal dopaminergic neurons and the Parkinson phenotype may be triggered by ATXN2 mutations.
Collapse
Affiliation(s)
- Nesli Ece Sen
- Experimental Neurology, Goethe University Medical School, 60590 Frankfurt/Main, Germany; Suna and İnan Kıraç Foundation, Neurodegeneration Research Laboratory (NDAL), Boğaziçi University, 34342 Istanbul, Turkey
| | - Jessica Drost
- Experimental Neurology, Goethe University Medical School, 60590 Frankfurt/Main, Germany
| | - Suzana Gispert
- Experimental Neurology, Goethe University Medical School, 60590 Frankfurt/Main, Germany
| | - Sylvia Torres-Odio
- Experimental Neurology, Goethe University Medical School, 60590 Frankfurt/Main, Germany
| | - Ewa Damrath
- Experimental Neurology, Goethe University Medical School, 60590 Frankfurt/Main, Germany
| | - Michael Klinkenberg
- Experimental Neurology, Goethe University Medical School, 60590 Frankfurt/Main, Germany
| | - Hamid Hamzeiy
- Suna and İnan Kıraç Foundation, Neurodegeneration Research Laboratory (NDAL), Boğaziçi University, 34342 Istanbul, Turkey
| | - Gülden Akdal
- Department of Neurology, Faculty of Medicine, Dokuz Eylül University, Izmir, Turkey
| | - Halil Güllüoğlu
- Department of Neurology, Faculty of Medicine, Izmir University, Izmir, Turkey
| | - A Nazlı Başak
- Suna and İnan Kıraç Foundation, Neurodegeneration Research Laboratory (NDAL), Boğaziçi University, 34342 Istanbul, Turkey.
| | - Georg Auburger
- Experimental Neurology, Goethe University Medical School, 60590 Frankfurt/Main, Germany.
| |
Collapse
|
117
|
Wang F, Wang FM, Lv HM, Han T. Role of β2 adrenergic receptor signaling pathway in hepatocellular carcinoma. Shijie Huaren Xiaohua Zazhi 2016; 24:3598-3606. [DOI: 10.11569/wcjd.v24.i24.3598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignancies characterized by insidious onset and poor prognosis. Studies have shown that β adrenergic receptor signaling, especially β2 adrenergic receptor (β2-AR) signaling, regulates multiple cellular processes that contribute to the initiation and progression of cancer, including differentiation, proliferation and apoptosis. β2-AR signaling is also involved in tumor angiogenesis, progression and metastasis in HCC. Therefore, understanding of the role of the β2 adrenergic receptor signaling pathway in HCC progression and metastasis will be of great value in developing therapeutic strategies for this maliganancy. In this paper, we will discuss the role of β2 adrenergic receptor signaling pathway in HCC.
Collapse
|
118
|
Schmitz KJ, Ademi C, Bertram S, Schmid KW, Baba HA. Prognostic relevance of autophagy-related markers LC3, p62/sequestosome 1, Beclin-1 and ULK1 in colorectal cancer patients with respect to KRAS mutational status. World J Surg Oncol 2016; 14:189. [PMID: 27444698 PMCID: PMC4957418 DOI: 10.1186/s12957-016-0946-x] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 07/13/2016] [Indexed: 02/08/2023] Open
Abstract
Background Autophagy is a cellular pathway that regulates transportation of cytoplasmic macromolecules and organelles to lysosomes for degradation. Autophagy is involved in both tumorigenesis and tumour suppression. Here we investigated the potential prognostic value of the autophagy-related proteins Beclin-1, p62, LC3 and uncoordinated (UNC) 51-like kinase 1 (ULK1) in a cohort of colorectal cancer (CRC) specimens. Methods In this study, we analysed the immunoexpression of the autophagy-related proteins p62, LC3, Beclin-1 and ULK1 in 127 CRC patients with known KRAS mutational status and detailed clinical follow-up. Results Survival analysis of p62 staining showed a significant correlation of cytoplasmic (not nuclear) p62 expression with a favourable tumour-specific overall survival (OS). The prognostic power of cytoplasmic p62 was found in the KRAS-mutated subgroup but was lost in the KRAS wildtype subgroup. Survival analysis of Beclin-1 staining did not show an association with OS in the complete cohort. LC3 overexpression demonstrated a slight, though not significant, association with decreased OS. Upon stratifying cases by KRAS mutational status, nuclear (not cytoplasmic) Beclin-1 staining was associated with a significantly decreased OS in the KRAS-mutated subgroup but not in the KRAS wildtype CRCs. In addition, LC3 overexpression was significantly associated with decreased OS in the KRAS-mutated CRC subgroup. ULK1 expression was not correlated to survival. Conclusions Immunohistochemical analyses of LC3, p62 and Beclin-1 may constitute promising novel prognostic markers in CRC, especially in KRAS-mutated CRCs. This strategy might help in identifying high-risk patients who would benefit from autophagy-related anticancer drugs. Electronic supplementary material The online version of this article (doi:10.1186/s12957-016-0946-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Klaus Juergen Schmitz
- Institute of Pathology, Mühlenstrasse 31, 45659, Recklinghausen, Germany. .,Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, Essen, 45147, Germany.
| | - Ceflije Ademi
- Department of Senology, Prosper Hospital Recklinghausen, Mühlenstrasse 27, 45659, Recklinghausen, Germany
| | - Stefanie Bertram
- Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, Essen, 45147, Germany
| | - Kurt Werner Schmid
- Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, Essen, 45147, Germany
| | - Hideo Andreas Baba
- Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, Essen, 45147, Germany
| |
Collapse
|
119
|
Cathepsin-B-mediated cleavage of Disabled-2 regulates TGF-β-induced autophagy. Nat Cell Biol 2016; 18:851-63. [PMID: 27398911 DOI: 10.1038/ncb3388] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 06/13/2016] [Indexed: 12/17/2022]
Abstract
Transforming growth factor-β (TGF-β) induces the expression of Disabled-2 (Dab2), an endocytic adaptor and tumour suppressor, concomitant with the induction of an epithelial-mesenchymal transition (EMT) in mammary epithelial cells. Here we show that following TGF-β-mediated EMT, sustained TGF-β treatment leads to proteolytic degradation of Dab2 by cathepsin B (CTSB), loss of the mesenchymal phenotype and induction of autophagy. CTSB inhibition or expression of a CTSB-resistant Dab2 mutant maintains Dab2 expression and shifts long-term TGF-β-treated cells from autophagy to apoptosis. We further show that Dab2 interacts with Beclin-1 to promote casein-kinase-2-mediated phosphorylation of Beclin-1, preventing Beclin-1-Vps34 interaction and subsequent autophagosome assembly. Thus, CTSB-mediated degradation of Dab2 allows Beclin-1-Vps34 induction of autophagy, whereas sustained Dab2 expression prevents autophagy and promotes apoptosis by stabilizing the pro-apoptotic Bim protein. In vivo studies suggest that Dab2-mediated regulation of autophagy modulates chemotherapeutic resistance and tumour metastasis.
Collapse
|
120
|
Salminen A, Kaarniranta K, Kauppinen A. AMPK and HIF signaling pathways regulate both longevity and cancer growth: the good news and the bad news about survival mechanisms. Biogerontology 2016; 17:655-80. [PMID: 27259535 DOI: 10.1007/s10522-016-9655-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 05/31/2016] [Indexed: 02/08/2023]
Abstract
The AMP-activated protein kinase (AMPK) and hypoxia-inducible factor (HIF) signaling pathways are evolutionarily-conserved survival mechanisms responding to two fundamental stresses, energy deficiency and/or oxygen deprivation. The AMPK and HIF pathways regulate the function of a survival network with several transcription factors, e.g. FOXO, NF-κB, NRF2, and p53, as well as with protein kinases and other factors, such as mTOR, ULK1, HDAC5, and SIRT1. Given that AMPK and HIF activation can enhance not only healthspan and lifespan but also cancer growth in a context-dependent manner; it seems that cancer cells can hijack certain survival factors to maintain their growth in harsh conditions. AMPK activation improves energy metabolism, stimulates autophagy, and inhibits inflammation, whereas HIF-1α increases angiogenesis and helps cells to adapt to severe conditions. First we will review how AMPK and HIF signaling mechanisms control the function of an integrated survival network which is able not only to improve the regulation of longevity but also support the progression of tumorigenesis. We will also describe distinct crossroads between the regulation of longevity and cancer, e.g. specific regulation through the AMPKα and HIF-α isoforms, the Warburg effect, mitochondrial dynamics, and cellular senescence.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland.
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland.,Department of Ophthalmology, Kuopio University Hospital, P.O. Box 100, FI-70029, KYS, Finland
| | - Anu Kauppinen
- Faculty of Health Sciences, School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| |
Collapse
|
121
|
Liu L, Wu Y, Huang X. Orientin protects myocardial cells against hypoxia-reoxygenation injury through induction of autophagy. Eur J Pharmacol 2016; 776:90-8. [DOI: 10.1016/j.ejphar.2016.02.037] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 02/10/2016] [Accepted: 02/10/2016] [Indexed: 12/24/2022]
|
122
|
Jiang S, Fan J, Wang Q, Ju D, Feng M, Li J, Guan ZB, An D, Wang X, Ye L. Diosgenin induces ROS-dependent autophagy and cytotoxicity via mTOR signaling pathway in chronic myeloid leukemia cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2016; 23:243-52. [PMID: 26969378 DOI: 10.1016/j.phymed.2016.01.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 01/18/2016] [Accepted: 01/26/2016] [Indexed: 05/07/2023]
Abstract
BACKGROUND Diosgenin, a steroidal saponin isolated from legumes and yams, has been confirmed to possess potent anticancer effect on multifarious tumors including chronic myeloid leukemia (CML). PURPOSE We aimed to further determine the anti-cancer activity of diosgenin and its mechanisms in CML cells. METHODS The cell vitality was detected by MTT assay. Autophagic flux and reactive oxygen species (ROS) production were analyzed by laser scanning confocal microscope. Apoptosis was observed by flow cytometry. All proteins expression was examined by western blotting. RESULTS Autophagy induction was demonstrated by examination of autophagic flux including autophagosomes accumulation, autophagosome-lysosome fusion and degradation of autophagosomes. Moreover, blocking autophagy with inhibitor chloroquine (CQ) and 3-methyladenine (3-MA), enhanced diosgenin-induced apoptosis, indicating the protective effect of autophagy in diosgenin-treated CML cells. Further study suggested that diosgenin-induced autophagy and cytotoxicity were accompanied by reactive oxygen species (ROS) generation and mammalian target of rapamycin (mTOR) signaling pathway inhibition. N-acetyl-L-cysteine (NAC) administration, a scavenger agent of ROS, could down-regulate diosgenin-induced autophagy via reversion of mTOR pathway inhibition. CONCLUSION These results indicate that diosgenin obviously generates ROS and this oxidative pressure not only produces cytotoxic effect on CML cells but also induces autophagy. What's more, autophagy functions as a cytoprotective mechanism to overcome cytotoxicity of diosgenin in tumor cells and inhibition of autophagy can enhance the anti-CML activity of diosgenin.
Collapse
Affiliation(s)
- Shanshan Jiang
- Department of Biosynthesis & Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Jiajun Fan
- Department of Biosynthesis & Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Qian Wang
- Department of Biosynthesis & Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Dianwen Ju
- Department of Biosynthesis & Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Meiqing Feng
- Department of Biosynthesis & Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Jiyang Li
- Department of Biosynthesis & Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Zhong-Bin Guan
- Shanghai Institute For Food And Drug Control, Shanghai, China
| | - Duopeng An
- Department of Biosynthesis & Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Xin Wang
- Department of Biosynthesis & Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Li Ye
- Department of Biosynthesis & Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China.
| |
Collapse
|
123
|
Zambrano J, Yeh ES. Autophagy and Apoptotic Crosstalk: Mechanism of Therapeutic Resistance in HER2-Positive Breast Cancer. BREAST CANCER-BASIC AND CLINICAL RESEARCH 2016; 10:13-23. [PMID: 26997868 PMCID: PMC4790584 DOI: 10.4137/bcbcr.s32791] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 02/03/2016] [Accepted: 02/05/2016] [Indexed: 12/16/2022]
Abstract
While breast cancer patients benefit from the use of HER2 inhibitors, many fail therapy and become resistant to treatment, indicating a critical need to prevent treatment failure. A number of studies have emerged that highlight the catabolic process of autophagy in breast cancer as a mechanism of resistance to chemotherapy and targeted inhibitors. Furthermore, recent research has begun to dissect how autophagy signaling crosstalks with apoptotic signaling. Thus, a possible strategy in fighting resistance is to couple targeting of apoptotic and autophagy signaling pathways. In this review, we discuss how cellular response by autophagy circumvents cell death to promote resistance of breast cancers to HER2 inhibitors, as well as the potential avenues of therapeutic intervention.
Collapse
Affiliation(s)
- Joelle Zambrano
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, USA
| | - Elizabeth S Yeh
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
124
|
Dash S, Chava S, Chandra PK, Aydin Y, Balart LA, Wu T. Autophagy in hepatocellular carcinomas: from pathophysiology to therapeutic response. Hepat Med 2016; 8:9-20. [PMID: 26955295 PMCID: PMC4772942 DOI: 10.2147/hmer.s63700] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Autophagy is an intracellular lysosomal degradation process performed by the cells to maintain energy balance. The autophagy response plays an important role in the progression of liver disease due to hepatitis virus infection, alcoholic liver disease, nonalcoholic fatty liver disease, liver cirrhosis, and hepatocellular carcinoma (HCC). An increased autophagy response also contributes to the pathogenesis of liver disease through modulation of innate and adaptive immune responses; a defective cellular autophagy response leads to the development of HCC. Recent progress in the field indicates that autophagy modulation provides a novel targeted therapy for human liver cancer. The purpose of this review is to update our understanding of how the cellular autophagy response impacts the pathophysiology of liver disease and HCC treatment.
Collapse
Affiliation(s)
- Srikanta Dash
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, USA; Department of Gastroenterology and Hepatology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Srinivas Chava
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Partha K Chandra
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Yucel Aydin
- Department of Gastroenterology and Hepatology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Luis A Balart
- Department of Gastroenterology and Hepatology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Tong Wu
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| |
Collapse
|
125
|
Xie WY, Zhou XD, Li Q, Chen LX, Ran DH. Acid-induced autophagy protects human lung cancer cells from apoptosis by activating ER stress. Exp Cell Res 2015; 339:270-9. [DOI: 10.1016/j.yexcr.2015.11.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Revised: 10/22/2015] [Accepted: 11/06/2015] [Indexed: 02/04/2023]
|
126
|
Burada F, Nicoli ER, Ciurea ME, Uscatu DC, Ioana M, Gheonea DI. Autophagy in colorectal cancer: An important switch from physiology to pathology. World J Gastrointest Oncol 2015; 7:271-284. [PMID: 26600927 PMCID: PMC4644850 DOI: 10.4251/wjgo.v7.i11.271] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 06/20/2015] [Accepted: 10/09/2015] [Indexed: 02/05/2023] Open
Abstract
Colorectal cancer (CRC) remains a leading cause of cancer death in both men and women worldwide. Among the factors and mechanisms that are involved in the multifactorial etiology of CRC, autophagy is an important transformational switch that occurs when a cell shifts from normal to malignant. In recent years, multiple hypotheses have been considered regarding the autophagy mechanisms that are involved in cancer. The currently accepted hypothesis is that autophagy has dual and contradictory roles in carcinogenesis, but the precise mechanisms leading to autophagy in cancer are not yet fully defined and seem to be context dependent. Autophagy is a surveillance mechanism used by normal cells that protects them from the transformation to malignancy by removing damaged organelles and aggregated proteins and by reducing reactive oxygen species, mitochondrial abnormalities and DNA damage. However, autophagy also supports tumor formation by promoting access to nutrients that are critical to the metabolism and growth of tumor cells and by inhibiting cellular death and increasing drug resistance. Autophagy studies in CRC have focused on several molecules, mainly microtubule-associated protein 1 light chain 3, beclin 1, and autophagy related 5, with conflicting results. Beneficial effects were observed for some agents that modulate autophagy in CRC either alone or, more often, in combination with other agents. More extensive studies are needed in the future to clarify the roles of autophagy-related genes and modulators in colorectal carcinogenesis, and to develop potential beneficial agents for the prognosis and treatment of CRC.
Collapse
|
127
|
ZHANG LILI, ZHANG JIE, CHEN LI, WANG JIANLI. Autophagy in human skin squamous cell carcinoma: Inhibition by 3-MA enhances the effect of 5-FU-induced chemotherapy sensitivity. Oncol Rep 2015; 34:3147-55. [DOI: 10.3892/or.2015.4302] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 07/31/2015] [Indexed: 11/06/2022] Open
|
128
|
Biomolecular bases of the senescence process and cancer. A new approach to oncological treatment linked to ageing. Ageing Res Rev 2015; 23:125-38. [PMID: 25847820 DOI: 10.1016/j.arr.2015.03.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 03/30/2015] [Indexed: 01/07/2023]
Abstract
Human ageing is associated with a gradual decline in the physiological functions of the body at multiple levels and it is a key risk factor for many diseases, including cancer. Ageing process is intimately related to widespread cellular senescence, characterised by an irreversible loss of proliferative capacity and altered functioning associated with telomere attrition, accumulation of DNA damage and compromised mitochondrial and metabolic function. Tumour and senescent cells may be generated in response to the same stimuli, where either cellular senescence or transformation would constitute two opposite outcomes of the same degenerative process. This paper aims to review the state of knowledge on the biomolecular relationship between cellular senescence, ageing and cancer. Importantly, many of the cell signalling pathways that are found to be altered during both cellular senescence and tumourigenesis are regulated through shared epigenetic mechanisms and, therefore, they are potentially reversible. MicroRNAs are emerging as pivotal players linking ageing and cancer. These small RNA molecules have generated great interest from the point of view of future clinical therapy for cancer because successful experimental results have been obtained in animal models. Micro-RNA therapies for cancer are already being tested in clinical phase trials. These findings have potential importance in cancer treatment in aged people although further research-based knowledge is needed to convert them into an effective molecular therapies for cancer linked to ageing.
Collapse
|
129
|
Bagca BG, Ozalp O, Kurt CC, Mutlu Z, Saydam G, Gunduz C, Avci CB. Ruxolitinib induces autophagy in chronic myeloid leukemia cells. Tumour Biol 2015; 37:1573-9. [PMID: 26298727 DOI: 10.1007/s13277-015-3947-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 08/17/2015] [Indexed: 12/22/2022] Open
Abstract
Ruxolitinib is the first agent used in myelofibrosis treatment with its potent JAK2 inhibitory effect. In this novel study, we aimed to discover the anti-leukemic effect of ruxolitinib in K-562 human chronic myeloid leukemia cell line compared to NCI-BL 2171 human healthy B lymphocyte cell line. Cytotoxic effect of ruxolitinib was determined by using WST-1 assay. IC50 values for K-562 and NCI-BL 2171 cell lines were defined as 20 and 23.6 μM at the 48th hour, respectively. Autophagic effects of ruxolitinib were detected by measuring LC3B-II protein formation. Ruxolitinib induced autophagic cell death in K-562 and NCI-BL 2171 cell lines 2.11- and 1.79-fold compared to control groups, respectively. To determine the autophagy-related gene expression changes, total RNA was isolated from K-562 and NCI-BL 2171 cells treated with ruxolitinib and untreated cells as control group. Reverse transcription procedure was performed for cDNA synthesis, and gene expressions were shown by RT-qPCR. Ruxolitinib treatment caused a notable decrease in expression of AKT, mTOR, and STAT autophagy inhibitor genes in K-562 cells, contrariwise control cell line. Ruxolitinib is a promising agent in chronic myeloid leukemia treatment by blocking JAK/STAT pathway known as downstream of BCR-ABL and triggering autophagy. This is the first study that reveals the relationship between ruxolitinib and autophagy induction.
Collapse
Affiliation(s)
- Bakiye Goker Bagca
- Department of Medical Biology, School of Medicine, Ege University, Izmir, Turkey.
| | - Ozgun Ozalp
- Department of Medical Biology, School of Medicine, Ege University, Izmir, Turkey
| | - Cansu Caliskan Kurt
- Department of Medical Biology, School of Medicine, Ege University, Izmir, Turkey
| | - Zeynep Mutlu
- Department of Medical Biology, School of Medicine, Ege University, Izmir, Turkey
| | - Guray Saydam
- Department of Hematology, School of Medicine, Ege University, Izmir, Turkey
| | - Cumhur Gunduz
- Department of Medical Biology, School of Medicine, Ege University, Izmir, Turkey
| | - Cigir Biray Avci
- Department of Medical Biology, School of Medicine, Ege University, Izmir, Turkey
| |
Collapse
|
130
|
Abstract
Apoptosis and autophagy are both highly regulated biological processes that have important roles in development, differentiation, homeostasis, and disease. These processes may take place independently, with autophagy being cytoprotective for preventing cells from apoptosis and apoptosis blocking autophagy. But in most circumstances, both may be induced sequentially with autophagy preceding apoptosis. The simultaneous activation of both processes has been observed not only in experimental settings but also in pathophysiological conditions. In fact, these two pathways are tightly connected with each other by substantial interplays between them, enabling the coordinated regulation of cell fates by these two pathways. They share some common upstream signaling components, and some components of one pathway may play important roles in the other, and vice versa. Such proteins represent the critical interconnections of the two pathways, which seem to determine the cell for survival or death. Here several critical molecular interconnections between apoptosis and autophagy pathways are reviewed, with their action mechanisms being highlighted.
Collapse
Affiliation(s)
- Gao-Xiang Zhao
- Department of Immunobiology, College of Life Science and Technology, Jinan University , Guangzhou 510632 , China
| | | | | | | |
Collapse
|
131
|
Rosenberg LH, Lafitte M, Grant W, Chen W, Cleveland JL, Duckett DR. Development of an HTS-Compatible Assay for the Discovery of Ulk1 Inhibitors. ACTA ACUST UNITED AC 2015; 20:913-20. [PMID: 25851035 DOI: 10.1177/1087057115579391] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 03/09/2015] [Indexed: 11/17/2022]
Abstract
A rapidly accumulating body of work suggests the autophagy pathway is an attractive therapeutic target for neurodegenerative diseases and cancer. To validate autophagy as an anticancer strategy and to assess if systemic inhibition of the pathway will have deleterious effects on normal tissues and physiology, highly selective autophagy inhibitors are needed. While several inducers and inhibitors of autophagy are known, all are nonspecific and none target the enzymes that execute the pathway. A central upstream regulator of the autophagy pathway is the serine/threonine kinase Ulk1 (UNC-51-like kinase-1). Selective molecular probes that function as Ulk1-specific inhibitors are needed to improve our understanding of the autophagy pathway. To identify inhibitors of Ulk1 kinase activity, we developed an HTS-compatible, homogeneous biochemical assay using AlphaScreen technology. This novel assay design uses purified stress-activated Ulk1 and monitors phosphorylation of its full-length native substrate, Atg13. This assay was optimized and validated in a 384-well format by screening the Sigma LOPAC library. Here we report that the Ulk1 AlphaScreen assay is robust and reproducible, with a Z' factor value of 0.83 ± 0.02 and a signal to background ratio of 20 ± 1.2. Thus, this assay can be used to screen large chemical libraries to discover novel inhibitors of Ulk1.
Collapse
Affiliation(s)
- Laura H Rosenberg
- Department of Molecular Therapeutics, Scripps Florida, Jupiter, FL, USA
| | - Marie Lafitte
- Department of Molecular Therapeutics, Scripps Florida, Jupiter, FL, USA
| | - Wayne Grant
- Department of Molecular Therapeutics, Scripps Florida, Jupiter, FL, USA
| | - Weimin Chen
- Department of Molecular Therapeutics, Scripps Florida, Jupiter, FL, USA
| | - John L Cleveland
- Department of Tumor Biology, The Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Derek R Duckett
- Department of Molecular Therapeutics, Scripps Florida, Jupiter, FL, USA
| |
Collapse
|
132
|
O'Reilly EA, Gubbins L, Sharma S, Tully R, Guang MHZ, Weiner-Gorzel K, McCaffrey J, Harrison M, Furlong F, Kell M, McCann A. The fate of chemoresistance in triple negative breast cancer (TNBC). BBA CLINICAL 2015; 3:257-75. [PMID: 26676166 PMCID: PMC4661576 DOI: 10.1016/j.bbacli.2015.03.003] [Citation(s) in RCA: 275] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 03/03/2015] [Accepted: 03/05/2015] [Indexed: 12/21/2022]
Abstract
BACKGROUND Treatment options for women presenting with triple negative breast cancer (TNBC) are limited due to the lack of a therapeutic target and as a result, are managed with standard chemotherapy such as paclitaxel (Taxol®). Following chemotherapy, the ideal tumour response is apoptotic cell death. Post-chemotherapy, cells can maintain viability by undergoing viable cellular responses such as cellular senescence, generating secretomes which can directly enhance the malignant phenotype. SCOPE OF REVIEW How tumour cells retain viability in response to chemotherapeutic engagement is discussed. In addition we discuss the implications of this retained tumour cell viability in the context of the development of recurrent and metastatic TNBC disease. Current adjuvant and neo-adjuvant treatments available and the novel potential therapies that are being researched are also reviewed. MAJOR CONCLUSIONS Cellular senescence and cytoprotective autophagy are potential mechanisms of chemoresistance in TNBC. These two non-apoptotic outcomes in response to chemotherapy are inextricably linked and are neglected outcomes of investigation in the chemotherapeutic arena. Cellular fate assessments may therefore have the potential to predict TNBC patient outcome. GENERAL SIGNIFICANCE Focusing on the fact that cancer cells can bypass the desired cellular apoptotic response to chemotherapy through cellular senescence and cytoprotective autophagy will highlight the importance of targeting non-apoptotic survival pathways to enhance chemotherapeutic efficacy.
Collapse
Affiliation(s)
- Elma A O'Reilly
- UCD Conway Institute of Biomolecular and Biomedical Research, UCD School of Medicine and Medical Science (SMMS), Belfield, Dublin 4, Ireland ; Department of Surgery, Mater Misericordiae Hospital, Dublin 7, Ireland
| | - Luke Gubbins
- UCD Conway Institute of Biomolecular and Biomedical Research, UCD School of Medicine and Medical Science (SMMS), Belfield, Dublin 4, Ireland
| | - Shiva Sharma
- UCD Conway Institute of Biomolecular and Biomedical Research, UCD School of Medicine and Medical Science (SMMS), Belfield, Dublin 4, Ireland ; Department of Surgery, Mater Misericordiae Hospital, Dublin 7, Ireland
| | - Riona Tully
- UCD Conway Institute of Biomolecular and Biomedical Research, UCD School of Medicine and Medical Science (SMMS), Belfield, Dublin 4, Ireland
| | - Matthew Ho Zhing Guang
- UCD Conway Institute of Biomolecular and Biomedical Research, UCD School of Medicine and Medical Science (SMMS), Belfield, Dublin 4, Ireland
| | - Karolina Weiner-Gorzel
- UCD Conway Institute of Biomolecular and Biomedical Research, UCD School of Medicine and Medical Science (SMMS), Belfield, Dublin 4, Ireland
| | - John McCaffrey
- Department of Oncology, Mater Misericordiae Hospital, Dublin 7, Ireland
| | - Michele Harrison
- Department of Pathology, Mater Misericordiae Hospital, Dublin 7, Ireland
| | - Fiona Furlong
- School of Pharmacy, Queens University Belfast, Belfast BT7 1NN, UK
| | - Malcolm Kell
- Department of Surgery, Mater Misericordiae Hospital, Dublin 7, Ireland
| | - Amanda McCann
- UCD Conway Institute of Biomolecular and Biomedical Research, UCD School of Medicine and Medical Science (SMMS), Belfield, Dublin 4, Ireland
| |
Collapse
|
133
|
Autophagy in skin wounds: a novel marker for vital reactions. Int J Legal Med 2015; 129:537-41. [DOI: 10.1007/s00414-015-1168-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 02/27/2015] [Indexed: 10/23/2022]
|
134
|
Abstract
Autophagy is a catabolic degradation process in which cellular proteins and
organelles are engulfed by double-membrane autophagosomes and degraded in lysosomes.
Autophagy has emerged as a critical pathway in tumor development and cancer therapy,
although its precise function remains a conundrum. The current consensus is that
autophagy has a dual role in cancer. On the one hand, autophagy functions as a tumor
suppressor mechanism by preventing the accumulation of damaged organelles and
aggregated proteins. On the other hand, autophagy is a key cell survival mechanism
for established tumors; therefore autophagy inhibition suppresses tumor progression.
Here, we summarize recent progress on the role of autophagy in tumorigenesis and
cancer therapy.
Collapse
Affiliation(s)
- Xiaoyong Zhi
- Center for Autophagy Research, Department of
Internal Medicine, University of Texas Southwestern Medical
CenterDallas, Texas
75390USA
| | - Qing Zhong
- Department of Biochemistry, University of
Texas Southwestern Medical CenterDallas, Texas
75390USA
| |
Collapse
|
135
|
Braoudaki M, Lambrou GI, Giannikou K, Milionis V, Stefanaki K, Birks DK, Prodromou N, Kolialexi A, Kattamis A, Spiliopoulou CA, Tzortzatou-Stathopoulou F, Kanavakis E. Microrna expression signatures predict patient progression and disease outcome in pediatric embryonal central nervous system neoplasms. J Hematol Oncol 2014; 7:96. [PMID: 25551588 PMCID: PMC4342799 DOI: 10.1186/s13045-014-0096-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 12/12/2014] [Indexed: 02/07/2023] Open
Abstract
Background Although, substantial experimental evidence related to diagnosis and treatment of pediatric central nervous system (CNS) neoplasms have been demonstrated, the understanding of the etiology and pathogenesis of the disease remains scarce. Recent microRNA (miRNA)-based research reveals the involvement of miRNAs in various aspects of CNS development and proposes that they might compose key molecules underlying oncogenesis. The current study evaluated miRNA differential expression detected between pediatric embryonal brain tumors and normal controls to characterize candidate biomarkers related to diagnosis, prognosis and therapy. Methods Overall, 19 embryonal brain tumors; 15 Medulloblastomas (MBs) and 4 Atypical Teratoid/Rabdoid Tumors (AT/RTs) were studied. As controls, 13 samples were used; The First-Choice Human Brain Reference RNA and 12 samples from deceased children who underwent autopsy and were not present with any brain malignancy. RNA extraction was carried out using the Trizol method, whilst miRNA extraction was performed with the mirVANA miRNA isolation kit. The experimental approach included miRNA microarrays covering 1211 miRNAs. Quantitative Real-Time Polymerase Chain Reaction was performed to validate the expression profiles of miR-34a and miR-601 in all 32 samples initially screened with miRNA microarrays and in an additional independent cohort of 30 patients (21MBs and 9 AT/RTs). Moreover, meta-analyses was performed in total 27 embryonal tumor samples; 19 MBs, 8 ATRTs and 121 control samples. Twelve germinomas were also used as an independent validation cohort. All deregulated miRNAs were correlated to patients’ clinical characteristics and pathological measures. Results In several cases, there was a positive correlation between individual miRNA expression levels and laboratory or clinical characteristics. Based on that, miR-601 could serve as a putative tumor suppressor gene, whilst miR-34a as an oncogene. In general, miR-34a demonstrated oncogenic roles in all pediatric embryonal CNS neoplasms studied. Conclusions Deeper understanding of the aberrant miRNA expression in pediatric embryonal brain tumors might aid in the development of tumor-specific miRNA signatures, which could potentially afford promising biomarkers related to diagnosis, prognosis and patient targeted therapy. Electronic supplementary material The online version of this article (doi:10.1186/s13045-014-0096-y) contains supplementary material, which is available to authorized users.
Collapse
|
136
|
Reidick C, El Magraoui F, Meyer HE, Stenmark H, Platta HW. Regulation of the Tumor-Suppressor Function of the Class III Phosphatidylinositol 3-Kinase Complex by Ubiquitin and SUMO. Cancers (Basel) 2014; 7:1-29. [PMID: 25545884 PMCID: PMC4381249 DOI: 10.3390/cancers7010001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 12/08/2014] [Indexed: 12/19/2022] Open
Abstract
The occurrence of cancer is often associated with a dysfunction in one of the three central membrane-involution processes—autophagy, endocytosis or cytokinesis. Interestingly, all three pathways are controlled by the same central signaling module: the class III phosphatidylinositol 3-kinase (PI3K-III) complex and its catalytic product, the phosphorylated lipid phosphatidylinositol 3-phosphate (PtdIns3P). The activity of the catalytic subunit of the PI3K-III complex, the lipid-kinase VPS34, requires the presence of the membrane-targeting factor VPS15 as well as the adaptor protein Beclin 1. Furthermore, a growing list of regulatory proteins associates with VPS34 via Beclin 1. These accessory factors define distinct subunit compositions and thereby guide the PI3K-III complex to its different cellular and physiological roles. Here we discuss the regulation of the PI3K-III complex components by ubiquitination and SUMOylation. Especially Beclin 1 has emerged as a highly regulated protein, which can be modified with Lys11-, Lys48- or Lys63-linked polyubiquitin chains catalyzed by distinct E3 ligases from the RING-, HECT-, RBR- or Cullin-type. We also point out other cross-links of these ligases with autophagy in order to discuss how these data might be merged into a general concept.
Collapse
Affiliation(s)
- Christina Reidick
- Biochemie Intrazellulärer Transportprozesse, Ruhr-Universität Bochum, Bochum 44801, Germany.
| | - Fouzi El Magraoui
- Biomedical Research, Human Brain Proteomics II, Leibniz-Institut für Analytische Wissenschaften-ISAS, Dortmund 44139, Germany.
| | - Helmut E Meyer
- Biomedical Research, Human Brain Proteomics II, Leibniz-Institut für Analytische Wissenschaften-ISAS, Dortmund 44139, Germany.
| | - Harald Stenmark
- Department of Biochemistry, Institute for Cancer Research, Oslo University Hospital, Montebello, Oslo 0310, Norway.
| | - Harald W Platta
- Biochemie Intrazellulärer Transportprozesse, Ruhr-Universität Bochum, Bochum 44801, Germany.
| |
Collapse
|
137
|
Poillet-Perez L, Despouy G, Delage-Mourroux R, Boyer-Guittaut M. Interplay between ROS and autophagy in cancer cells, from tumor initiation to cancer therapy. Redox Biol 2014; 4:184-92. [PMID: 25590798 PMCID: PMC4803791 DOI: 10.1016/j.redox.2014.12.003] [Citation(s) in RCA: 366] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 12/08/2014] [Accepted: 12/09/2014] [Indexed: 12/20/2022] Open
Abstract
Cancer formation is a complex and highly regulated multi-step process which is highly dependent of its environment, from the tissue to the patient. This complexity implies the development of specific treatments adapted to each type of tumor. The initial step of cancer formation requires the transformation of a healthy cell to a cancer cell, a process regulated by multiple intracellular and extracellular stimuli. The further steps, from the anarchic proliferation of cancer cells to form a primary tumor to the migration of cancer cells to distant organs to form metastasis, are also highly dependent of the tumor environment but of intracellular molecules and pathways as well. In this review, we will focus on the regulatory role of reactive oxygen species (ROS) and autophagy levels during the course of cancer development, from cellular transformation to the formation of metastasis. These data will allow us to discuss the potential of this molecule or pathway as putative future therapeutic targets. In cancer cells, ROS are able to regulate the different steps of autophagy pathway. During cancer initiation, anti-tumoral autophagy is going through ROS elimination. During cancer development, pro-tumoral autophagy is linked to decreased ROS levels. Autophagy inhibitor or antioxidant with anti-cancer drug: a new therapeutic approach?
Collapse
Affiliation(s)
- Laura Poillet-Perez
- Université de Franche-Comté, Laboratoire de Biochimie, EA3922 «Estrogènes, Expression Génique et Pathologies du Système Nerveux Central», SFR IBCT FED4234, UFR Sciences et Techniques, 16 Route de Gray, 25030 Besançon Cedex, France
| | - Gilles Despouy
- Université de Franche-Comté, Laboratoire de Biochimie, EA3922 «Estrogènes, Expression Génique et Pathologies du Système Nerveux Central», SFR IBCT FED4234, UFR Sciences et Techniques, 16 Route de Gray, 25030 Besançon Cedex, France
| | - Régis Delage-Mourroux
- Université de Franche-Comté, Laboratoire de Biochimie, EA3922 «Estrogènes, Expression Génique et Pathologies du Système Nerveux Central», SFR IBCT FED4234, UFR Sciences et Techniques, 16 Route de Gray, 25030 Besançon Cedex, France
| | - Michaël Boyer-Guittaut
- Université de Franche-Comté, Laboratoire de Biochimie, EA3922 «Estrogènes, Expression Génique et Pathologies du Système Nerveux Central», SFR IBCT FED4234, UFR Sciences et Techniques, 16 Route de Gray, 25030 Besançon Cedex, France.
| |
Collapse
|