101
|
Cilibrasi C, Riva G, Romano G, Cadamuro M, Bazzoni R, Butta V, Paoletta L, Dalprà L, Strazzabosco M, Lavitrano M, Giovannoni R, Bentivegna A. Resveratrol Impairs Glioma Stem Cells Proliferation and Motility by Modulating the Wnt Signaling Pathway. PLoS One 2017; 12:e0169854. [PMID: 28081224 PMCID: PMC5231344 DOI: 10.1371/journal.pone.0169854] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 12/22/2016] [Indexed: 12/31/2022] Open
Abstract
Glioblastoma multiforme (GBM) is a grade IV astrocytoma and the most common form of malignant brain tumor in adults. GBM remains one of the most fatal and least successfully treated solid tumors: current therapies provide a median survival of 12–15 months after diagnosis, due to the high recurrence rate. Glioma Stem Cells (GSCs) are believed to be the real driving force of tumor initiation, progression and relapse. Therefore, better therapeutic strategies GSCs-targeted are needed. Resveratrol is a polyphenolic phytoalexin found in fruits and vegetables displaying pleiotropic health benefits. Many studies have highlighted its chemo-preventive and chemotherapeutic activities in a wide range of solid tumors. In this work, we analyzed the effects of Resveratrol exposure on cell viability, proliferation and motility in seven GSC lines isolated from GBM patients. For the first time in our knowledge, we investigated Resveratrol impact on Wnt signaling pathway in GSCs, evaluating the expression of seven Wnt signaling pathway-related genes and the protein levels of c-Myc and β-catenin. Finally, we analyzed Twist1 and Snail1 protein levels, two pivotal activators of epithelial-mesenchymal transition (EMT) program. Results showed that although response to Resveratrol exposure was highly heterogeneous among GSC lines, generally it was able to inhibit cell proliferation, increase cell mortality, and strongly decrease cell motility, modulating the Wnt signaling pathway and the EMT activators. Treatment with Resveratrol may represent a new interesting therapeutic approach, in order to affect GSCs proliferation and motility, even if further investigations are needed to deeply understand the GSCs heterogeneous response.
Collapse
Affiliation(s)
- Chiara Cilibrasi
- School of Medicine and Surgery, University of Milano-Bicocca, via Cadore, Monza, Italy
- PhD Program in Neuroscience, University of Milano-Bicocca, via Cadore, Monza, Italy
- NeuroMI, Milan center of Neuroscience, University of Milano Bicocca, Dept. of Neurology and Neuroscience, San Gerardo Hospital, via Pergolesi, Monza, Italy
| | - Gabriele Riva
- School of Medicine and Surgery, University of Milano-Bicocca, via Cadore, Monza, Italy
- PhD Program in Neuroscience, University of Milano-Bicocca, via Cadore, Monza, Italy
- NeuroMI, Milan center of Neuroscience, University of Milano Bicocca, Dept. of Neurology and Neuroscience, San Gerardo Hospital, via Pergolesi, Monza, Italy
| | - Gabriele Romano
- School of Medicine and Surgery, University of Milano-Bicocca, via Cadore, Monza, Italy
- PhD Program in Translational and Molecular Medicine (DIMET), University of Milano-Bicocca, via Cadore, Monza, Italy
| | - Massimiliano Cadamuro
- School of Medicine and Surgery, University of Milano-Bicocca, via Cadore, Monza, Italy
| | - Riccardo Bazzoni
- School of Medicine and Surgery, University of Milano-Bicocca, via Cadore, Monza, Italy
| | - Valentina Butta
- School of Medicine and Surgery, University of Milano-Bicocca, via Cadore, Monza, Italy
- PhD Program in Neuroscience, University of Milano-Bicocca, via Cadore, Monza, Italy
| | - Laura Paoletta
- School of Medicine and Surgery, University of Milano-Bicocca, via Cadore, Monza, Italy
| | - Leda Dalprà
- School of Medicine and Surgery, University of Milano-Bicocca, via Cadore, Monza, Italy
| | - Mario Strazzabosco
- School of Medicine and Surgery, University of Milano-Bicocca, via Cadore, Monza, Italy
| | - Marialuisa Lavitrano
- School of Medicine and Surgery, University of Milano-Bicocca, via Cadore, Monza, Italy
| | - Roberto Giovannoni
- School of Medicine and Surgery, University of Milano-Bicocca, via Cadore, Monza, Italy
| | - Angela Bentivegna
- School of Medicine and Surgery, University of Milano-Bicocca, via Cadore, Monza, Italy
- NeuroMI, Milan center of Neuroscience, University of Milano Bicocca, Dept. of Neurology and Neuroscience, San Gerardo Hospital, via Pergolesi, Monza, Italy
- * E-mail:
| |
Collapse
|
102
|
Sakita JY, Gasparotto B, Garcia SB, Uyemura SA, Kannen V. A critical discussion on diet, genomic mutations and repair mechanisms in colon carcinogenesis. Toxicol Lett 2017; 265:106-116. [DOI: 10.1016/j.toxlet.2016.11.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 11/09/2016] [Accepted: 11/27/2016] [Indexed: 02/07/2023]
|
103
|
Buj R, Mallona I, Díez-Villanueva A, Barrera V, Mauricio D, Puig-Domingo M, Reverter JL, Matias-Guiu X, Azuara D, Ramírez JL, Alonso S, Rosell R, Capellà G, Perucho M, Robledo M, Peinado MA, Jordà M. Quantification of unmethylated Alu (QUAlu): a tool to assess global hypomethylation in routine clinical samples. Oncotarget 2016; 7:10536-46. [PMID: 26859682 PMCID: PMC4891138 DOI: 10.18632/oncotarget.7233] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 01/25/2016] [Indexed: 01/05/2023] Open
Abstract
Hypomethylation of DNA is a hallmark of cancer and its analysis as tumor biomarker has been proposed, but its determination in clinical settings is hampered by lack of standardized methodologies. Here, we present QUAlu (Quantification of Unmethylated Alu), a new technique to estimate the Percentage of UnMethylated Alu (PUMA) as a surrogate for global hypomethylation. QUAlu consists in the measurement by qPCR of Alu repeats after digestion of genomic DNA with isoschizomers with differential sensitivity to DNA methylation. QUAlu performance has been evaluated for reproducibility, trueness and specificity, and validated by deep sequencing. As a proof of use, QUAlu has been applied to a broad variety of pathological examination specimens covering five cancer types. Major findings of the preliminary application of QUAlu to clinical samples include: (1) all normal tissues displayed similar PUMA; (2) tumors showed variable PUMA with the highest levels in lung and colon and the lowest in thyroid cancer; (3) stools from colon cancer patients presented higher PUMA than those from control individuals; (4) lung squamous cell carcinomas showed higher PUMA than lung adenocarcinomas, and an increasing hypomethylation trend associated with smoking habits. In conclusion, QUAlu is a simple and robust method to determine Alu hypomethylation in human biospecimens and may be easily implemented in research and clinical settings.
Collapse
Affiliation(s)
- Raquel Buj
- Institute of Predictive and Personalized Medicine of Cancer (IMPPC), Badalona, Barcelona, Spain.,Germans Trias i Pujol Health Sciences Research Institute (IGTP), Badalona, Barcelona, Spain
| | - Izaskun Mallona
- Institute of Predictive and Personalized Medicine of Cancer (IMPPC), Badalona, Barcelona, Spain.,Germans Trias i Pujol Health Sciences Research Institute (IGTP), Badalona, Barcelona, Spain
| | - Anna Díez-Villanueva
- Institute of Predictive and Personalized Medicine of Cancer (IMPPC), Badalona, Barcelona, Spain.,Germans Trias i Pujol Health Sciences Research Institute (IGTP), Badalona, Barcelona, Spain
| | - Víctor Barrera
- Institute of Predictive and Personalized Medicine of Cancer (IMPPC), Badalona, Barcelona, Spain
| | - Dídac Mauricio
- Germans Trias i Pujol Health Sciences Research Institute (IGTP), Badalona, Barcelona, Spain.,Department of Endocrinology and Nutrition, University Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain.,ISCIII Center for Biomedical Research on Diabetes and Metabolic Associated Diseases (CIBERDEM), Madrid, Spain
| | - Manel Puig-Domingo
- Germans Trias i Pujol Health Sciences Research Institute (IGTP), Badalona, Barcelona, Spain.,Department of Endocrinology and Nutrition, University Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain.,ISCIII Center for Biomedical Research on Diabetes and Metabolic Associated Diseases (CIBERDEM), Madrid, Spain
| | - Jordi L Reverter
- Germans Trias i Pujol Health Sciences Research Institute (IGTP), Badalona, Barcelona, Spain.,Department of Endocrinology and Nutrition, University Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Xavier Matias-Guiu
- Department of Pathology and Molecular Genetics, University Hospital Arnau de Vilanova and University of Lleida, Biomedical Research Institute of Lleida (IRBLLEIDA), Lleida, Spain
| | - Daniel Azuara
- Catalan Institute of Oncology (ICO-IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Jose L Ramírez
- Germans Trias i Pujol Health Sciences Research Institute (IGTP), Badalona, Barcelona, Spain.,Catalan Institute of Oncology (ICO), Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Sergio Alonso
- Institute of Predictive and Personalized Medicine of Cancer (IMPPC), Badalona, Barcelona, Spain.,Germans Trias i Pujol Health Sciences Research Institute (IGTP), Badalona, Barcelona, Spain
| | - Rafael Rosell
- Germans Trias i Pujol Health Sciences Research Institute (IGTP), Badalona, Barcelona, Spain.,Catalan Institute of Oncology (ICO), Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Gabriel Capellà
- Catalan Institute of Oncology (ICO-IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Manuel Perucho
- Institute of Predictive and Personalized Medicine of Cancer (IMPPC), Badalona, Barcelona, Spain.,Germans Trias i Pujol Health Sciences Research Institute (IGTP), Badalona, Barcelona, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Mercedes Robledo
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Center (CNIO), Madrid, Spain.,ISCIII Center for Biomedical Research on Rare Diseases (CIBERER), Madrid, Spain
| | - Miguel A Peinado
- Institute of Predictive and Personalized Medicine of Cancer (IMPPC), Badalona, Barcelona, Spain.,Germans Trias i Pujol Health Sciences Research Institute (IGTP), Badalona, Barcelona, Spain
| | - Mireia Jordà
- Institute of Predictive and Personalized Medicine of Cancer (IMPPC), Badalona, Barcelona, Spain.,Germans Trias i Pujol Health Sciences Research Institute (IGTP), Badalona, Barcelona, Spain
| |
Collapse
|
104
|
Jordà M, Díez-Villanueva A, Mallona I, Martín B, Lois S, Barrera V, Esteller M, Vavouri T, Peinado MA. The epigenetic landscape of Alu repeats delineates the structural and functional genomic architecture of colon cancer cells. Genome Res 2016; 27:118-132. [PMID: 27999094 PMCID: PMC5204336 DOI: 10.1101/gr.207522.116] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 11/10/2016] [Indexed: 12/16/2022]
Abstract
Cancer cells exhibit multiple epigenetic changes with prominent local DNA hypermethylation and widespread hypomethylation affecting large chromosomal domains. Epigenome studies often disregard the study of repeat elements owing to technical complexity and their undefined role in genome regulation. We have developed NSUMA (Next-generation Sequencing of UnMethylated Alu), a cost-effective approach allowing the unambiguous interrogation of DNA methylation in more than 130,000 individual Alu elements, the most abundant retrotransposon in the human genome. DNA methylation profiles of Alu repeats have been analyzed in colon cancers and normal tissues using NSUMA and whole-genome bisulfite sequencing. Normal cells show a low proportion of unmethylated Alu (1%–4%) that may increase up to 10-fold in cancer cells. In normal cells, unmethylated Alu elements tend to locate in the vicinity of functionally rich regions and display epigenetic features consistent with a direct impact on genome regulation. In cancer cells, Alu repeats are more resistant to hypomethylation than other retroelements. Genome segmentation based on high/low rates of Alu hypomethylation allows the identification of genomic compartments with differential genetic, epigenetic, and transcriptomic features. Alu hypomethylated regions show low transcriptional activity, late DNA replication, and its extent is associated with higher chromosomal instability. Our analysis demonstrates that Alu retroelements contribute to define the epigenetic landscape of normal and cancer cells and provides a unique resource on the epigenetic dynamics of a principal, but largely unexplored, component of the primate genome.
Collapse
Affiliation(s)
- Mireia Jordà
- Germans Trias i Pujol Health Science Research Institute (IGTP), Badalona 08916, Catalonia, Spain.,Institute of Predictive and Personalized Medicine of Cancer (IMPPC), Badalona 08916, Catalonia, Spain
| | - Anna Díez-Villanueva
- Germans Trias i Pujol Health Science Research Institute (IGTP), Badalona 08916, Catalonia, Spain.,Institute of Predictive and Personalized Medicine of Cancer (IMPPC), Badalona 08916, Catalonia, Spain
| | - Izaskun Mallona
- Germans Trias i Pujol Health Science Research Institute (IGTP), Badalona 08916, Catalonia, Spain.,Institute of Predictive and Personalized Medicine of Cancer (IMPPC), Badalona 08916, Catalonia, Spain
| | - Berta Martín
- Germans Trias i Pujol Health Science Research Institute (IGTP), Badalona 08916, Catalonia, Spain.,Institute of Predictive and Personalized Medicine of Cancer (IMPPC), Badalona 08916, Catalonia, Spain
| | - Sergi Lois
- Germans Trias i Pujol Health Science Research Institute (IGTP), Badalona 08916, Catalonia, Spain.,Institute of Predictive and Personalized Medicine of Cancer (IMPPC), Badalona 08916, Catalonia, Spain
| | - Víctor Barrera
- Germans Trias i Pujol Health Science Research Institute (IGTP), Badalona 08916, Catalonia, Spain.,Institute of Predictive and Personalized Medicine of Cancer (IMPPC), Badalona 08916, Catalonia, Spain
| | - Manel Esteller
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona 08908, Catalonia, Spain.,Department of Physiological Sciences II, School of Medicine, University of Barcelona, Barcelona 08907, Catalonia, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08010, Catalonia, Spain
| | - Tanya Vavouri
- Germans Trias i Pujol Health Science Research Institute (IGTP), Badalona 08916, Catalonia, Spain.,Josep Carreras Leukaemia Research Institute (IJC), Badalona 08916, Catalonia, Spain
| | - Miguel A Peinado
- Germans Trias i Pujol Health Science Research Institute (IGTP), Badalona 08916, Catalonia, Spain.,Institute of Predictive and Personalized Medicine of Cancer (IMPPC), Badalona 08916, Catalonia, Spain
| |
Collapse
|
105
|
Kong EY, Cheng SH, Yu KN. Zebrafish as an In Vivo Model to Assess Epigenetic Effects of Ionizing Radiation. Int J Mol Sci 2016; 17:ijms17122108. [PMID: 27983682 PMCID: PMC5187908 DOI: 10.3390/ijms17122108] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 12/01/2016] [Accepted: 12/09/2016] [Indexed: 12/14/2022] Open
Abstract
Exposure to ionizing radiations (IRs) is ubiquitous in our environment and can be categorized into “targeted” effects and “non-targeted” effects. In addition to inducing deoxyribonucleic acid (DNA) damage, IR exposure leads to epigenetic alterations that do not alter DNA sequence. Using an appropriate model to study the biological effects of radiation is crucial to better understand IR responses as well as to develop new strategies to alleviate exposure to IR. Zebrafish, Danio rerio, is a scientific model organism that has yielded scientific advances in several fields and recent studies show the usefulness of this vertebrate model in radiation biology. This review briefly describes both “targeted” and “non-targeted” effects, describes the findings in radiation biology using zebrafish as a model and highlights the potential of zebrafish to assess the epigenetic effects of IR, including DNA methylation, histone modifications and miRNA expression. Other in vivo models are included to compare observations made with zebrafish, or to illustrate the feasibility of in vivo models when the use of zebrafish was unavailable. Finally, tools to study epigenetic modifications in zebrafish, including changes in genome-wide DNA methylation, histone modifications and miRNA expression, are also described in this review.
Collapse
Affiliation(s)
- Eva Yi Kong
- Department of Physics and Materials Science, City University of Hong Kong, Hong Kong, China.
| | - Shuk Han Cheng
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China.
- State Key Laboratory in Marine Pollution, City University of Hong Kong, Hong Kong, China.
| | - Kwan Ngok Yu
- Department of Physics and Materials Science, City University of Hong Kong, Hong Kong, China.
- State Key Laboratory in Marine Pollution, City University of Hong Kong, Hong Kong, China.
| |
Collapse
|
106
|
Kaneko M, Kotake M, Bando H, Yamada T, Takemura H, Minamoto T. Prognostic and predictive significance of long interspersed nucleotide element-1 methylation in advanced-stage colorectal cancer. BMC Cancer 2016; 16:945. [PMID: 27955637 PMCID: PMC5154037 DOI: 10.1186/s12885-016-2984-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 11/29/2016] [Indexed: 12/23/2022] Open
Abstract
Background Hypomethylation of Long Interspersed Nucleotide Element-1 (LINE-1) is associated with worse prognosis in colorectal cancer (CRC). However, little is known about the relevance of this marker for the prognosis and response to chemotherapy of metastatic and recurrent (advanced-stage) CRC. Our aim was therefore to investigate whether tumor LINE-1 hypomethylation correlates with patient survival and with response to 5-fluorouracil (5-FU)/ oxaliplatin (FOLFOX) chemotherapy in advanced-stage CRC. Methods The study included 40 CRC patients who developed metastasis or local recurrence after surgery and subsequently underwent FOLFOX therapy. Progression-free and overall survival were estimated using the Kaplan-Meier method. LINE-1 methylation levels in formalin-fixed and paraffin-embedded primary tumor tissues were measured by MethyLight assay and correlated with patient survival. In vitro analyses were also conducted with human colon cancer cell lines having different LINE-1 methylation levels to examine the effects of 5-FU and oxaliplatin on LINE-1 activity and DNA double-strand-breaks. Results Patients with LINE-1 hypomethylation showed significantly worse progression-free (median: 6.6 vs 9.4 months; P = 0.02) and overall (median: 16.6 vs 23.2 months; P = 0.01) survival following chemotherapy compared to patients with high methylation. LINE-1 hypomethylation was an independent factor for poor prognosis (P = 0.018) and was associated with a trend for non-response to FOLFOX chemotherapy. In vitro analysis showed that oxaliplatin increased the LINE-1 score in LINE-1-expressing (hypomethylated) cancer cells, thereby enhancing and prolonging the effect of 5-FU against these cells. This finding supports the observed correlation between tumor LINE-1 methylation and response to chemotherapy in CRC patients. Conclusions Tumor LINE-1 hypomethylation is an independent marker of poor prognosis in advanced-stage CRC and may also predict non-response to combination FOLFOX chemotherapy. Prospective studies are needed to optimize the measurement of tumor LINE-1 methylation and to confirm its clinical impact, particularly as a predictive marker. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2984-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mami Kaneko
- Department of General and Cardiothoracic Surgery, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8641, Japan. .,Department of Gastrointestinal Surgery, Ishikawa Prefectural Central Hospital, Kanazawa, Japan. .,Division of Translational and Clinical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan.
| | - Masanori Kotake
- Department of General and Cardiothoracic Surgery, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8641, Japan
| | - Hiroyuki Bando
- Department of Gastrointestinal Surgery, Ishikawa Prefectural Central Hospital, Kanazawa, Japan
| | - Tetsuji Yamada
- Department of Gastrointestinal Surgery, Ishikawa Prefectural Central Hospital, Kanazawa, Japan
| | - Hirofumi Takemura
- Department of General and Cardiothoracic Surgery, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8641, Japan
| | - Toshinari Minamoto
- Division of Translational and Clinical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
107
|
Öner D, Moisse M, Ghosh M, Duca RC, Poels K, Luyts K, Putzeys E, Cokic SM, Van Landuyt K, Vanoirbeek J, Lambrechts D, Godderis L, Hoet PHM. Epigenetic effects of carbon nanotubes in human monocytic cells. Mutagenesis 2016; 32:181-191. [PMID: 28011750 DOI: 10.1093/mutage/gew053] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Carbon nanotubes (CNTs) are fibrous carbon-based nanomaterials with a potential to cause carcinogenesis in humans. Alterations in DNA methylation on cytosine-phosphate-guanidine (CpG) sites are potential markers of exposure-induced carcinogenesis. This study examined cytotoxicity, genotoxicity and DNA methylation alterations on human monocytic cells (THP-1) after incubation with single-walled CNTs (SWCNTs) and multi-walled CNTs (MWCNTs). Higher cytotoxicity and genotoxicity were observed after incubation with SWCNTs than incubation with MWCNTs. At the selected concentrations (25 and 100 µg/ml), DNA methylation alterations were studied. Liquid chromatography-mass spectrometry (LC-MS/MS) was used to assess global DNA methylation, and Illumina 450K microarrays were used to assess methylation of single CpG sites. Next, we assessed gene promoter-specific methylation levels. We observed no global methylation or hydroxymethylation alterations, but on gene-specific level, distinct clustering of CNT-treated samples were noted. Collectively, CNTs induced gene promoter-specific altered methylation and those 1127 different genes were identified to be hypomethylated. Differentially methylated genes were involved in several signalling cascade pathways, vascular endothelial growth factor and platelet activation pathways. Moreover, possible contribution of the epigenetic alterations to monocyte differentiation and mixed M1/M2 macrophage polarisation were discussed.
Collapse
Affiliation(s)
- Deniz Öner
- Laboratory of Toxicology, Unit of Environment and Health, Department of Public Health and Primary Care, O & N I Herestraat 49 bus 706, 3000 Leuven, Belgium
| | - Matthieu Moisse
- Laboratory of Translational Genetics, Department of Oncology, O & N IV Herestraat 49 bus 912, 3000 Leuven, Belgium.,VIB Vesalius Research Center, O & N I Herestraat 49 bus 912, 3000 Leuven, Belgium and
| | - Manosij Ghosh
- Laboratory of Toxicology, Unit of Environment and Health, Department of Public Health and Primary Care, O & N I Herestraat 49 bus 706, 3000 Leuven, Belgium
| | - Radu C Duca
- Laboratory for Occupational and Environmental Hygiene, Unit of Environment and Health, Department of Public Health and Primary Care, Kapucijnenvoer 35 blok d bus 7001, KU Leuven, 3000 Leuven, Belgium
| | - Katrien Poels
- Laboratory for Occupational and Environmental Hygiene, Unit of Environment and Health, Department of Public Health and Primary Care, Kapucijnenvoer 35 blok d bus 7001, KU Leuven, 3000 Leuven, Belgium
| | - Katrien Luyts
- Laboratory of Toxicology, Unit of Environment and Health, Department of Public Health and Primary Care, O & N I Herestraat 49 bus 706, 3000 Leuven, Belgium
| | - Eveline Putzeys
- Laboratory of Toxicology, Unit of Environment and Health, Department of Public Health and Primary Care, O & N I Herestraat 49 bus 706, 3000 Leuven, Belgium.,Unit of Biomaterials (BIOMAT), Department of Oral Health Sciences, KU Leuven, Campus Sint-Raphael, Kapucijnenvoer 7, Block A-box 7001, 3000 Leuven, Belgium and
| | - Stevan M Cokic
- Unit of Biomaterials (BIOMAT), Department of Oral Health Sciences, KU Leuven, Campus Sint-Raphael, Kapucijnenvoer 7, Block A-box 7001, 3000 Leuven, Belgium and
| | - Kirsten Van Landuyt
- Unit of Biomaterials (BIOMAT), Department of Oral Health Sciences, KU Leuven, Campus Sint-Raphael, Kapucijnenvoer 7, Block A-box 7001, 3000 Leuven, Belgium and
| | - Jeroen Vanoirbeek
- Laboratory of Toxicology, Unit of Environment and Health, Department of Public Health and Primary Care, O & N I Herestraat 49 bus 706, 3000 Leuven, Belgium.,Laboratory for Occupational and Environmental Hygiene, Unit of Environment and Health, Department of Public Health and Primary Care, Kapucijnenvoer 35 blok d bus 7001, KU Leuven, 3000 Leuven, Belgium
| | - Diether Lambrechts
- Laboratory of Translational Genetics, Department of Oncology, O & N IV Herestraat 49 bus 912, 3000 Leuven, Belgium.,VIB Vesalius Research Center, O & N I Herestraat 49 bus 912, 3000 Leuven, Belgium and
| | - Lode Godderis
- Laboratory of Toxicology, Unit of Environment and Health, Department of Public Health and Primary Care, O & N I Herestraat 49 bus 706, 3000 Leuven, Belgium.,External Service for Prevention and Protection at Work, IDEWE, Interleuvenlaan 58, 3001 Leuven, Belgium
| | - Peter H M Hoet
- Laboratory of Toxicology, Unit of Environment and Health, Department of Public Health and Primary Care, O & N I Herestraat 49 bus 706, 3000 Leuven, Belgium,
| |
Collapse
|
108
|
Marandel L, Lepais O, Arbenoits E, Véron V, Dias K, Zion M, Panserat S. Remodelling of the hepatic epigenetic landscape of glucose-intolerant rainbow trout (Oncorhynchus mykiss) by nutritional status and dietary carbohydrates. Sci Rep 2016; 6:32187. [PMID: 27561320 PMCID: PMC4999891 DOI: 10.1038/srep32187] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 08/02/2016] [Indexed: 12/19/2022] Open
Abstract
The rainbow trout, a carnivorous fish, displays a 'glucose-intolerant' phenotype revealed by persistent hyperglycaemia when fed a high carbohydrate diet (HighCHO). Epigenetics refers to heritable changes in gene activity and is closely related to environmental changes and thus to metabolism adjustments governed by nutrition. In this study we first assessed in the trout liver whether and how nutritional status affects global epigenome modifications by targeting DNA methylation and histone marks previously reported to be affected in metabolic diseases. We then examined whether dietary carbohydrates could affect the epigenetic landscape of duplicated gluconeogenic genes previously reported to display changes in mRNA levels in trout fed a high carbohydrate diet. We specifically highlighted global hypomethylation of DNA and hypoacetylation of H3K9 in trout fed a HighCHO diet, a well-described phenotype in diabetes. g6pcb2 ohnologs were also hypomethylated at specific CpG sites in these animals according to their up-regulation. Our findings demonstrated that the hepatic epigenetic landscape can be affected by both nutritional status and dietary carbohydrates in trout. The mechanism underlying the setting up of these epigenetic modifications has now to be explored in order to improve understanding of its impact on the glucose intolerant phenotype in carnivorous teleosts.
Collapse
Affiliation(s)
- Lucie Marandel
- INRA, Univ Pau &Pays Adour, UMR 1419, Nutrition, Metabolism and Aquaculture, Saint Pée sur Nivelle, F-64310, France
| | - Olivier Lepais
- INRA, UMR 1224, Ecologie Comportementale et Biologie des Populations de Poissons, Saint Pée sur Nivelle, F-64310, France.,Univ Pau &Pays Adour, UMR 1224, Ecologie Comportementale et Biologie des Populations de Poissons, UFR Sciences et Techniques de la Côte Basque, Anglet, F-64600, France, Anglet, F-64600, France
| | - Eva Arbenoits
- INRA, Univ Pau &Pays Adour, UMR 1419, Nutrition, Metabolism and Aquaculture, Saint Pée sur Nivelle, F-64310, France
| | - Vincent Véron
- INRA, Univ Pau &Pays Adour, UMR 1419, Nutrition, Metabolism and Aquaculture, Saint Pée sur Nivelle, F-64310, France
| | - Karine Dias
- INRA, Univ Pau &Pays Adour, UMR 1419, Nutrition, Metabolism and Aquaculture, Saint Pée sur Nivelle, F-64310, France
| | - Marie Zion
- INRA, Univ Pau &Pays Adour, UMR 1419, Nutrition, Metabolism and Aquaculture, Saint Pée sur Nivelle, F-64310, France
| | - Stéphane Panserat
- INRA, Univ Pau &Pays Adour, UMR 1419, Nutrition, Metabolism and Aquaculture, Saint Pée sur Nivelle, F-64310, France
| |
Collapse
|
109
|
Yin TF, Wang M, Qing Y, Lin YM, Wu D. Research progress on chemopreventive effects of phytochemicals on colorectal cancer and their mechanisms. World J Gastroenterol 2016; 22:7058-7068. [PMID: 27610016 PMCID: PMC4988307 DOI: 10.3748/wjg.v22.i31.7058] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 05/31/2016] [Accepted: 06/15/2016] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is a type of cancer with high morbidity and mortality rates worldwide and has become a global health problem. The conventional radiotherapy and chemotherapy regimen for CRC not only has a low cure rate but also causes side effects. Many studies have shown that adequate intake of fruits and vegetables in the diet may have a protective effect on CRC occurrence, possibly due to the special biological protective effect of the phytochemicals in these foods. Numerous in vitro and in vivo studies have demonstrated that phytochemicals play strong antioxidant, anti-inflammatory and anti-cancer roles by regulating specific signaling pathways and molecular markers to inhibit the occurrence and development of CRC. This review summarizes the progress on CRC prevention using the phytochemicals sulforaphane, curcumin and resveratrol, and elaborates on the specific underlying mechanisms. Thus, we believe that phytochemicals might provide a novel therapeutic approach for CRC prevention, but future clinical studies are needed to confirm the specific preventive effect of phytochemicals on cancer.
Collapse
|
110
|
Kochmanski J, Marchlewicz EH, Savidge M, Montrose L, Faulk C, Dolinoy DC. Longitudinal effects of developmental bisphenol A and variable diet exposures on epigenetic drift in mice. Reprod Toxicol 2016; 68:154-163. [PMID: 27496716 DOI: 10.1016/j.reprotox.2016.07.021] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 07/18/2016] [Accepted: 07/31/2016] [Indexed: 12/13/2022]
Abstract
Environmental factors, including exogenous exposures and nutritional status, can affect DNA methylation across the epigenome, but effects of exposures on age-dependent epigenetic drift remain unclear. Here, we tested the hypothesis that early-life exposure to bisphenol A (BPA) and/or variable diet results in altered epigenetic drift, as measured longitudinally via target loci methylation in paired mouse tail tissue (3 wks/10 mos old). Methylation was quantified at two repetitive elements (LINE-1, IAP), two imprinted genes (Igf2, H19), and one non-imprinted gene (Esr1) in isogenic mice developmentally exposed to Control, Control+BPA (50μg/kg diet), Mediterranean, Western, Mediterranean+BPA, or Western+BPA diets. Across age, methylation levels significantly (p<0.050) decreased at LINE-1, IAP, and H19, and increased at Esr1. Igf2 demonstrated Western-specific changes in early-life methylation (p=0.027), and IAP showed marginal negative modification of drift in Western (p=0.058) and Western+BPA (p=0.051). Thus, DNA methylation drifts across age, and developmental nutritional exposures can alter age-related methylation patterns.
Collapse
Affiliation(s)
- Joseph Kochmanski
- Environmental Health Sciences, University of Michigan, School of Public Health, 1415 Washington Heights Ann Arbor, MI, 48109, USA.
| | - Elizabeth H Marchlewicz
- Environmental Health Sciences, University of Michigan, School of Public Health, 1415 Washington Heights Ann Arbor, MI, 48109, USA.
| | - Matthew Savidge
- Environmental Health Sciences, University of Michigan, School of Public Health, 1415 Washington Heights Ann Arbor, MI, 48109, USA.
| | - Luke Montrose
- Environmental Health Sciences, University of Michigan, School of Public Health, 1415 Washington Heights Ann Arbor, MI, 48109, USA.
| | - Christopher Faulk
- Environmental Health Sciences, University of Michigan, School of Public Health, 1415 Washington Heights Ann Arbor, MI, 48109, USA; Department of Animal Science, University of Minnesota, 1364 Eckles Ave, Falcon Heights, MN 55108, USA.
| | - Dana C Dolinoy
- Environmental Health Sciences, University of Michigan, School of Public Health, 1415 Washington Heights Ann Arbor, MI, 48109, USA; Nutritional Sciences, University of Michigan, School of Public Health, 1415 Washington Heights Ann Arbor, MI, 48109, USA.
| |
Collapse
|
111
|
Bandyopadhyay AK, Paul S, Adak S, Giri AK. Reduced LINE-1 methylation is associated with arsenic-induced genotoxic stress in children. Biometals 2016; 29:731-41. [DOI: 10.1007/s10534-016-9950-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 07/08/2016] [Indexed: 10/21/2022]
|
112
|
Yu SM, Kim SJ. 5-Azacytidine regulates matrix metalloproteinase-9 expression, and the migration and invasion of human fibrosarcoma HT1080 cells via PI3-kinase and ERK1/2 pathways. Int J Oncol 2016; 49:1241-7. [DOI: 10.3892/ijo.2016.3612] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 06/21/2016] [Indexed: 11/06/2022] Open
|
113
|
Lam K, Pan K, Linnekamp JF, Medema JP, Kandimalla R. DNA methylation based biomarkers in colorectal cancer: A systematic review. Biochim Biophys Acta Rev Cancer 2016; 1866:106-20. [PMID: 27385266 DOI: 10.1016/j.bbcan.2016.07.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 06/30/2016] [Accepted: 07/01/2016] [Indexed: 12/11/2022]
Abstract
Since genetic and epigenetic alterations influence the development of colorectal cancer (CRC), huge potential lies in the use of DNA methylation as biomarkers to improve the current diagnosis, screening, prognosis and treatment prediction. Here we performed a systematic review on DNA methylation-based biomarkers published in CRC, and discussed the current state of findings and future challenges. Based on the findings, we then provide a perspective on future studies. Genome-wide studies on DNA methylation revealed novel biomarkers as well as distinct subgroups that exist in CRC. For diagnostic purposes, the most independently validated genes to study further are VIM, SEPT9, ITGA4, OSM4, GATA4 and NDRG4. These hypermethylated biomarkers can even be combined with LINE1 hypomethylation and the performance of markers should be examined in comparison to FIT further to find sensitive combinations. In terms of prognostic markers, myopodin, KISS1, TMEFF2, HLTF, hMLH1, APAF1, BCL2 and p53 are independently validated. Most prognostic markers published lack both a multivariate analysis in comparison to clinical risk factors and the appropriate patient group who will benefit by adjuvant chemotherapy. Methylation of IGFBP3, mir148a and PTEN are found to be predictive markers for 5-FU and EGFR therapy respectively. For therapy prediction, more studies should focus on finding markers for chemotherapeutic drugs as majority of the patients would benefit. Translation of these biomarkers into clinical utility would require large-scale prospective cohorts and randomized clinical trials in future. Based on these findings and consideration we propose an avenue to introduce methylation markers into clinical practice in near future. For future studies, multi-omics profiling on matched tissue and non-invasive cohorts along with matched cohorts of adenoma to carcinoma is indispensable to concurrently stratify CRC and find novel, robust biomarkers. Moreover, future studies should examine the timing and heterogeneity of methylation as well as the difference in methylation levels between epithelial and stromal tissues.
Collapse
Affiliation(s)
- Kevin Lam
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental Molecular Medicine (CEMM), Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Kathy Pan
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental Molecular Medicine (CEMM), Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Janneke Fiona Linnekamp
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental Molecular Medicine (CEMM), Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Jan Paul Medema
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental Molecular Medicine (CEMM), Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Raju Kandimalla
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental Molecular Medicine (CEMM), Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
114
|
Hashimoto Y, Zumwalt TJ, Goel A. DNA methylation patterns as noninvasive biomarkers and targets of epigenetic therapies in colorectal cancer. Epigenomics 2016; 8:685-703. [PMID: 27102979 DOI: 10.2217/epi-2015-0013] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Aberrant DNA methylation is frequently detected in gastrointestinal tumors, and can therefore potentially be used to screen, diagnose, prognosticate, and predict colorectal cancers (CRCs). Although colonoscopic screening remains the gold standard for CRC screening, this procedure is invasive, expensive, and suffers from poor patient compliance. Methylated DNA is an attractive choice for a biomarker substrate because CRCs harbor hundreds of aberrantly methylated genes. Furthermore, abundance in extracellular environments and resistance to degradation and enrichment in serum, stool, and other noninvasive bodily fluids, allows quantitative measurements of methylated DNA biomarkers. This article describes the most important studies that investigated the efficacy of serum- or stool-derived methylated DNA as population-based screening biomarkers in CRC, details several mechanisms and factors that control DNA methylation, describes a better use of prevailing technologies that discover novel DNA methylation biomarkers, and illustrates the diversity of demethylating agents and their applicability toward clinical impact.
Collapse
Affiliation(s)
- Yutaka Hashimoto
- Center for Translational Genomics & Oncology, Baylor Scott & White Research Institute & Sammons Cancer Center, Baylor University Medical Center, Dallas, TX, USA
| | - Timothy J Zumwalt
- Center for Translational Genomics & Oncology, Baylor Scott & White Research Institute & Sammons Cancer Center, Baylor University Medical Center, Dallas, TX, USA
| | - Ajay Goel
- Center for Translational Genomics & Oncology, Baylor Scott & White Research Institute & Sammons Cancer Center, Baylor University Medical Center, Dallas, TX, USA
| |
Collapse
|
115
|
Nilsen FM, Parrott BB, Bowden JA, Kassim BL, Somerville SE, Bryan TA, Bryan CE, Lange TR, Delaney JP, Brunell AM, Long SE, Guillette LJ. Global DNA methylation loss associated with mercury contamination and aging in the American alligator (Alligator mississippiensis). THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 545-546:389-97. [PMID: 26748003 PMCID: PMC4972023 DOI: 10.1016/j.scitotenv.2015.12.059] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 12/10/2015] [Accepted: 12/13/2015] [Indexed: 04/13/2023]
Abstract
Mercury is a widespread environmental contaminant with exposures eliciting a well-documented catalog of adverse effects. Yet, knowledge regarding the underlying mechanisms by which mercury exposures are translated into biological effects remains incomplete. DNA methylation is an epigenetic modification that is sensitive to environmental cues, and alterations in DNA methylation at the global level are associated with a variety of diseases. Using a liquid chromatography tandem mass spectrometry-based (LC-MS/MS) approach, global DNA methylation levels were measured in red blood cells of 144 wild American alligators (Alligator mississippiensis) from 6 sites with variable levels of mercury contamination across Florida's north-south axis. Variation in mercury concentrations measured in whole blood was highly associated with location, allowing the comparison of global DNA methylation levels across different "treatments" of mercury. Global DNA methylation in alligators across all locations was weakly associated with increased mercury exposure. However, a much more robust relationship was observed in those animals sampled from locations more highly contaminated with mercury. Also, similar to other vertebrates, global DNA methylation appears to decline with age in alligators. The relationship between age-associated loss of global DNA methylation and varying mercury exposures was examined to reveal a potential interaction. These findings demonstrate that global DNA methylation levels are associated with mercury exposure, and give insights into interactions between contaminants, aging, and epigenetics.
Collapse
Affiliation(s)
- Frances M Nilsen
- National Institute of Standards and Technology, Chemical Sciences Division, Environmental Chemical Sciences Group, Hollings Marine Laboratory, 331 Fort Johnson Road, Charleston, SC 29412, United States; Medical University of South Carolina, Marine Biomedicine and Environmental Sciences, 221 Fort Johnson Road, Charleston, SC 29412, United States; Hollings Marine Laboratory, 331 Fort Johnson Road, Charleston, SC 29412, United States.
| | - Benjamin B Parrott
- Medical University of South Carolina, Marine Biomedicine and Environmental Sciences, 221 Fort Johnson Road, Charleston, SC 29412, United States; Department of Obstetrics and Gynecology, Medical University of South Carolina, Charleston, SC 29403, United States; Hollings Marine Laboratory, 331 Fort Johnson Road, Charleston, SC 29412, United States
| | - John A Bowden
- National Institute of Standards and Technology, Chemical Sciences Division, Environmental Chemical Sciences Group, Hollings Marine Laboratory, 331 Fort Johnson Road, Charleston, SC 29412, United States; Hollings Marine Laboratory, 331 Fort Johnson Road, Charleston, SC 29412, United States
| | - Brittany L Kassim
- National Institute of Standards and Technology, Chemical Sciences Division, Environmental Chemical Sciences Group, Hollings Marine Laboratory, 331 Fort Johnson Road, Charleston, SC 29412, United States; Hollings Marine Laboratory, 331 Fort Johnson Road, Charleston, SC 29412, United States
| | - Stephen E Somerville
- Medical University of South Carolina, Marine Biomedicine and Environmental Sciences, 221 Fort Johnson Road, Charleston, SC 29412, United States; Department of Obstetrics and Gynecology, Medical University of South Carolina, Charleston, SC 29403, United States; Hollings Marine Laboratory, 331 Fort Johnson Road, Charleston, SC 29412, United States
| | - Teresa A Bryan
- Medical University of South Carolina, Marine Biomedicine and Environmental Sciences, 221 Fort Johnson Road, Charleston, SC 29412, United States; Department of Obstetrics and Gynecology, Medical University of South Carolina, Charleston, SC 29403, United States; Hollings Marine Laboratory, 331 Fort Johnson Road, Charleston, SC 29412, United States
| | - Colleen E Bryan
- National Institute of Standards and Technology, Chemical Sciences Division, Environmental Chemical Sciences Group, Hollings Marine Laboratory, 331 Fort Johnson Road, Charleston, SC 29412, United States; Hollings Marine Laboratory, 331 Fort Johnson Road, Charleston, SC 29412, United States
| | - Ted R Lange
- Florida Fish and Wildlife Conservation Commission, 601 W. Woodward Ave, Eustis, FL 32726, United States
| | - J Patrick Delaney
- Deseret Ranches- 13754 Deseret Lane, St. Cloud, Florida 34773-9381, United States
| | - Arnold M Brunell
- Florida Fish and Wildlife Conservation Commission, 601 W. Woodward Ave, Eustis, FL 32726, United States
| | - Stephen E Long
- National Institute of Standards and Technology, Chemical Sciences Division, Environmental Chemical Sciences Group, Hollings Marine Laboratory, 331 Fort Johnson Road, Charleston, SC 29412, United States; Hollings Marine Laboratory, 331 Fort Johnson Road, Charleston, SC 29412, United States
| | - Louis J Guillette
- Medical University of South Carolina, Marine Biomedicine and Environmental Sciences, 221 Fort Johnson Road, Charleston, SC 29412, United States; Department of Obstetrics and Gynecology, Medical University of South Carolina, Charleston, SC 29403, United States; Hollings Marine Laboratory, 331 Fort Johnson Road, Charleston, SC 29412, United States
| |
Collapse
|
116
|
Hypomethylation of repetitive elements in blood leukocyte DNA and risk of gastric lesions in a Chinese population. Cancer Epidemiol 2016; 41:122-8. [PMID: 26943853 DOI: 10.1016/j.canep.2016.02.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 02/06/2016] [Accepted: 02/09/2016] [Indexed: 01/01/2023]
Abstract
BACKGROUND To explore the association between hypomethylation of repetitive elements (LINE-1, Sat2, and ALU) in blood leukocyte DNA and risks of gastric lesions, and development of gastric cancer (GC), a population-based study was conducted in a high-risk area of GC in China. MATERIALS Methylation levels were determined by MethyLight in 902 subjects with various gastric lesions from two cohort studies at baseline and 276 subjects with long-term follow-up data. RESULTS The frequency of LINE-1 or Sat2 hypomethylation was significantly increased in subjects with dysplasia (DYS) compared with superficial gastritis/chronic atrophic gastritis. The odds ratios (ORs) were 2.22 [95% confidence interval (CI): 1.45-3.40] for LINE-1 and 1.58 (95% CI: 1.14-2.21) for Sat2. A dose-response pattern was found for the risk of DYS and LINE-1 hypomethylation (P-trend<0.001). Further stratified analysis indicated that the frequency of LINE-1 or Sat2 hypomethylation was higher in subjects with Helicobacter pylori infection. The ORs were 1.83 (95% CI: 1.12-2.99) for LINE-1 and 1.44 (95% CI: 1.01-2.05) for Sat2. The follow-up data indicated that the risk of progression to GC was increased in intestinal metaplasia (IM) subjects with LINE-1 hypomethylation (OR=2.82; 95% CI: 1.17-6.77) or Sat2 hypomethylation (OR=2.78; 95% CI: 1.15-6.74). The risk of progression to GC was also increased in DYS subjects with Sat2 hypomethylation (OR=5.24; 95% CI: 2.00-13.74). CONCLUSIONS These findings suggest that hypomethylation of repetitive elements in blood leukocytes is associated with the risks of advanced gastric lesions and development of GC.
Collapse
|
117
|
Chowdhury B, Seetharam A, Wang Z, Liu Y, Lossie AC, Thimmapuram J, Irudayaraj J. A Study of Alterations in DNA Epigenetic Modifications (5mC and 5hmC) and Gene Expression Influenced by Simulated Microgravity in Human Lymphoblastoid Cells. PLoS One 2016; 11:e0147514. [PMID: 26820575 PMCID: PMC4731572 DOI: 10.1371/journal.pone.0147514] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 01/05/2016] [Indexed: 12/22/2022] Open
Abstract
Cells alter their gene expression in response to exposure to various environmental changes. Epigenetic mechanisms such as DNA methylation are believed to regulate the alterations in gene expression patterns. In vitro and in vivo studies have documented changes in cellular proliferation, cytoskeletal remodeling, signal transduction, bone mineralization and immune deficiency under the influence of microgravity conditions experienced in space. However microgravity induced changes in the epigenome have not been well characterized. In this study we have used Next-generation Sequencing (NGS) to profile ground-based “simulated” microgravity induced changes on DNA methylation (5-methylcytosine or 5mC), hydroxymethylation (5-hydroxymethylcytosine or 5hmC), and simultaneous gene expression in cultured human lymphoblastoid cells. Our results indicate that simulated microgravity induced alterations in the methylome (~60% of the differentially methylated regions or DMRs are hypomethylated and ~92% of the differentially hydroxymethylated regions or DHMRs are hyperhydroxymethylated). Simulated microgravity also induced differential expression in 370 transcripts that were associated with crucial biological processes such as oxidative stress response, carbohydrate metabolism and regulation of transcription. While we were not able to obtain any global trend correlating the changes of methylation/ hydroxylation with gene expression, we have been able to profile the simulated microgravity induced changes of 5mC over some of the differentially expressed genes that includes five genes undergoing differential methylation over their promoters and twenty five genes undergoing differential methylation over their gene-bodies. To the best of our knowledge, this is the first NGS-based study to profile epigenomic patterns induced by short time exposure of simulated microgravity and we believe that our findings can be a valuable resource for future explorations.
Collapse
Affiliation(s)
- Basudev Chowdhury
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, United States of America
- Bindley Biosciences Center, Discovery Park, Purdue University, West Lafayette IN, 47907, United States of America
| | - Arun Seetharam
- Bioinformatics Core, Purdue University, West Lafayette, IN, 47907, United States of America
| | - Zhiping Wang
- Department of Medical and Molecular Genetics, Indiana University School of Medicine Indianapolis, Indianapolis, IN, 46202, United States of America
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine Indianapolis, Indianapolis, IN, 46202, United States of America
| | - Yunlong Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine Indianapolis, Indianapolis, IN, 46202, United States of America
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine Indianapolis, Indianapolis, IN, 46202, United States of America
| | - Amy C. Lossie
- Bindley Biosciences Center, Discovery Park, Purdue University, West Lafayette IN, 47907, United States of America
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, United States of America
| | - Jyothi Thimmapuram
- Bioinformatics Core, Purdue University, West Lafayette, IN, 47907, United States of America
- * E-mail: (JI); (JT)
| | - Joseph Irudayaraj
- Bindley Biosciences Center, Discovery Park, Purdue University, West Lafayette IN, 47907, United States of America
- Department of Agriculture and Biological Engineering, Purdue University, West Lafayette, IN, 47907, United States of America
- * E-mail: (JI); (JT)
| |
Collapse
|
118
|
Sahnane N, Magnoli F, Bernasconi B, Tibiletti MG, Romualdi C, Pedroni M, Ponz de Leon M, Magnani G, Reggiani-Bonetti L, Bertario L, Signoroni S, Capella C, Sessa F, Furlan D. Aberrant DNA methylation profiles of inherited and sporadic colorectal cancer. Clin Epigenetics 2015; 7:131. [PMID: 26697123 PMCID: PMC4687378 DOI: 10.1186/s13148-015-0165-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 12/16/2015] [Indexed: 12/11/2022] Open
Abstract
Background Aberrant DNA methylation has been widely investigated in sporadic colorectal carcinomas (CRCs), and extensive work has been performed to characterize different methylation profiles of CRC. Less information is available about the role of epigenetics in hereditary CRC and about the possible clinical use of epigenetic biomarkers in CRC, regardless of the etiopathogenesis. Long interspersed nucleotide element 1 (LINE-1) hypomethylation and gene-specific hypermethylation of 38 promoters were analyzed in multicenter series of 220 CRCs including 71 Lynch (Lynch colorectal cancer with microsatellite instability (LS-MSI)), 23 CRCs of patients under 40 years in which the main inherited CRC syndromes had been excluded (early-onset colorectal cancer with microsatellite stability (EO-MSS)), and 126 sporadic CRCs, comprising 28 cases with microsatellite instability (S-MSI) and 98 that were microsatellite stable (S-MSS). All tumor methylation patterns were integrated with clinico-pathological and genetic characteristics, namely chromosomal instability (CIN), TP53 loss, BRAF, and KRAS mutations. Results LS-MSI mainly showed absence of extensive DNA hypo- and hypermethylation. LINE-1 hypomethylation was observed in a subset of LS-MSI that were associated with the worse prognosis. Genetically, they commonly displayed G:A transition in the KRAS gene and absence of a CIN phenotype and of TP53 loss. S-MSI exhibited a specific epigenetic profile showing low rates of LINE-1 hypomethylation and extensive gene hypermethylation. S-MSI were mainly characterized by MLH1 methylation, BRAF mutation, and absence of a CIN phenotype and of TP53 loss. By contrast, S-MSS showed a high frequency of LINE-1 hypomethylation and of CIN, and they were associated with a worse prognosis. EO-MSS were a genetically and epigenetically heterogeneous group of CRCs. Like LS-MSI, some EO-MSS displayed low rates of DNA hypo- or hypermethylation and frequent G:A transitions in the KRAS gene, suggesting that a genetic syndrome might still be unrevealed in these patients. By contrast, some EO-MSS showed similar features to those observed in S-MSS, such as LINE-1 hypomethylation, CIN, and TP53 deletion. In all four classes, hypermethylation of ESR1, GATA5, and WT1 was very common. Conclusions Aberrant DNA methylation analysis allows the identification of different subsets of CRCs. This study confirms the potential utility of methylation tests for early detection of CRC and suggests that LINE-1 hypomethylation may be a useful prognostic marker in both sporadic and inherited CRCs. Electronic supplementary material The online version of this article (doi:10.1186/s13148-015-0165-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nora Sahnane
- Department of Surgical and Morphological Sciences, Section of Anatomic Pathology, University of Insubria, Via O. Rossi, 9, 21100 Varese, Italy
| | - Francesca Magnoli
- Department of Surgical and Morphological Sciences, Section of Anatomic Pathology, University of Insubria, Via O. Rossi, 9, 21100 Varese, Italy
| | - Barbara Bernasconi
- Department of Surgical and Morphological Sciences, Section of Anatomic Pathology, University of Insubria, Via O. Rossi, 9, 21100 Varese, Italy
| | | | - Chiara Romualdi
- CRIBI Biotechnology Center, University of Padova, Padua, Italy
| | - Monica Pedroni
- Department of Diagnostic Medicine, Clinical and Public Health, University of Modena and Reggio Emilia, Modena, Italy
| | - Maurizio Ponz de Leon
- Department of Diagnostic Medicine, Clinical and Public Health, University of Modena and Reggio Emilia, Modena, Italy
| | - Giulia Magnani
- Department of Diagnostic Medicine, Clinical and Public Health, University of Modena and Reggio Emilia, Modena, Italy
| | | | - Lucio Bertario
- Unit of Hereditary Digestive Tract Tumours, Fondazione IRCCS-Istituto Nazionale dei Tumori Milan, Modena, Italy
| | - Stefano Signoroni
- Unit of Hereditary Digestive Tract Tumours, Fondazione IRCCS-Istituto Nazionale dei Tumori Milan, Modena, Italy
| | - Carlo Capella
- Department of Surgical and Morphological Sciences, Section of Anatomic Pathology, University of Insubria, Via O. Rossi, 9, 21100 Varese, Italy
| | - Fausto Sessa
- Department of Surgical and Morphological Sciences, Section of Anatomic Pathology, University of Insubria, Via O. Rossi, 9, 21100 Varese, Italy
| | - Daniela Furlan
- Department of Surgical and Morphological Sciences, Section of Anatomic Pathology, University of Insubria, Via O. Rossi, 9, 21100 Varese, Italy
| | | |
Collapse
|
119
|
Jiang W, Liu N, Chen XZ, Sun Y, Li B, Ren XY, Qin WF, Jiang N, Xu YF, Li YQ, Ren J, Cho WCS, Yun JP, Zeng J, Liu LZ, Li L, Guo Y, Mai HQ, Zeng MS, Kang TB, Jia WH, Shao JY, Ma J. Genome-Wide Identification of a Methylation Gene Panel as a Prognostic Biomarker in Nasopharyngeal Carcinoma. Mol Cancer Ther 2015; 14:2864-2873. [PMID: 26443805 DOI: 10.1158/1535-7163.mct-15-0260] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 08/21/2015] [Indexed: 11/16/2022]
Abstract
DNA methylation, the best known epigenetic marker, can be used as a prognostic biomarker in many cancers. We examined DNA methylation status and survival in nasopharyngeal carcinoma (NPC) patients. Aberrant DNA-methylated genes in 24 NPC tissues and 24 noncancer nasopharyngitis biopsy tissues (NCNBT) were identified using Illumina 450K BeadChip. Correlations between DNA methylation and clinical outcomes were evaluated using bisulfite pyrosequencing in 454 NPC patients. Genome-wide methylation analysis demonstrated that NPC tissues had distinct DNA methylation patterns compared with NCNBT. Among all significant CpG sites, 2,173 CpG sites with β change ≥ 0.2 (1,880 hypermethylated, 293 hypomethylated) were identified (P < 0.05). A methylation gene panel comprising six hypermethylated genes was constructed with the average Z-score method. Patients in the training cohort with high methylation had poorer disease-free survival [DFS, HR, 2.26; 95% confidence interval (CI), 1.28-4.01; P, 0.005] and overall survival (OS, HR, 2.47; 95% CI, 1.30-4.71; P, 0.006) than those with low methylation. There were similar results in the validation (DFS, HR, 2.07; 95% CI, 1.17-3.67; P, 0.013; OS, HR, 1.83; 95% CI, 1.01-3.31; P, 0.046) and independent cohorts (DFS, HR, 1.94; 95% CI, 1.08-3.47; P, 0.026; OS, HR, 2.09; 95% CI, 1.10-3.98; P, 0.022). Analysis indicated that the methylation gene panel was an independent prognostic factor. Furthermore, patients with low methylation had a favorable response to concurrent chemotherapy with an improved DFS (P = 0.045) and OS (P = 0.031), whereas patients with high methylation did not benefit from concurrent chemotherapy. The six-hypermethylated gene panel was associated with poor survival in patients with NPC, demonstrating its potential usefulness as a prognostic biomarker to clinicians in NPC management.
Collapse
Affiliation(s)
- Wei Jiang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, People's Republic of China
| | - Na Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, People's Republic of China
| | - Xiao-Zhong Chen
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, People's Republic of China
| | - Ying Sun
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, People's Republic of China
| | - Bin Li
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, People's Republic of China
| | - Xian-Yue Ren
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, People's Republic of China
| | - Wei-Feng Qin
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, People's Republic of China
| | - Ning Jiang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, People's Republic of China
| | - Ya-Fei Xu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, People's Republic of China
| | - Ying-Qin Li
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, People's Republic of China
| | - Jian Ren
- School of Life Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - William C S Cho
- Department of Radiation Oncology, Queen Elizabeth Hospital, Hong Kong, People's Republic of China
| | - Jing-Ping Yun
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, People's Republic of China
| | - Jing Zeng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, People's Republic of China
| | - Li-Zhi Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, People's Republic of China
| | - Li Li
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, People's Republic of China
| | - Ying Guo
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, People's Republic of China
| | - Hai-Qiang Mai
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, People's Republic of China
| | - Mu-Sheng Zeng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, People's Republic of China
| | - Tie-Bang Kang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, People's Republic of China
| | - Wei-Hua Jia
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, People's Republic of China
| | - Jian-Yong Shao
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, People's Republic of China
| | - Jun Ma
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, People's Republic of China.
| |
Collapse
|
120
|
Belo H, Silva G, Cardoso BA, Porto B, Minguillon J, Barbot J, Coutinho J, Casado JA, Benedito M, Saturnino H, Costa E, Bueren JA, Surralles J, Almeida A. Epigenetic Alterations in Fanconi Anaemia: Role in Pathophysiology and Therapeutic Potential. PLoS One 2015; 10:e0139740. [PMID: 26466379 PMCID: PMC4605638 DOI: 10.1371/journal.pone.0139740] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 09/15/2015] [Indexed: 01/23/2023] Open
Abstract
Fanconi anaemia (FA) is an inherited disorder characterized by chromosomal instability. The phenotype is variable, which raises the possibility that it may be affected by other factors, such as epigenetic modifications. These play an important role in oncogenesis and may be pharmacologically manipulated. Our aim was to explore whether the epigenetic profiles in FA differ from non-FA individuals and whether these could be manipulated to alter the disease phenotype. We compared expression of epigenetic genes and DNA methylation profile of tumour suppressor genes between FA and normal samples. FA samples exhibited decreased expression levels of genes involved in epigenetic regulation and hypomethylation in the promoter regions of tumour suppressor genes. Treatment of FA cells with histone deacetylase inhibitor Vorinostat increased the expression of DNM3Tβ and reduced the levels of CIITA and HDAC9, PAK1, USP16, all involved in different aspects of epigenetic and immune regulation. Given the ability of Vorinostat to modulate epigenetic genes in FA patients, we investigated its functional effects on the FA phenotype. This was assessed by incubating FA cells with Vorinostat and quantifying chromosomal breaks induced by DNA cross-linking agents. Treatment of FA cells with Vorinostat resulted in a significant reduction of aberrant cells (81% on average). Our results suggest that epigenetic mechanisms may play a role in oncogenesis in FA. Epigenetic agents may be helpful in improving the phenotype of FA patients, potentially reducing tumour incidence in this population.
Collapse
Affiliation(s)
- Hélio Belo
- Unidade de Investigação em Patobiologia Molecular, Instituto Português de Oncologia de Lisboa Francisco Gentil, E.P.E., Lisboa, Portugal
- CEDOC, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Gabriela Silva
- Unidade de Investigação em Patobiologia Molecular, Instituto Português de Oncologia de Lisboa Francisco Gentil, E.P.E., Lisboa, Portugal
- CEDOC, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Bruno A. Cardoso
- Unidade de Investigação em Patobiologia Molecular, Instituto Português de Oncologia de Lisboa Francisco Gentil, E.P.E., Lisboa, Portugal
- CEDOC, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Beatriz Porto
- Laboratório de Citogenética do Instituto de Ciências Biomédicas de Abel Salazar, Porto, Portugal
| | - Jordi Minguillon
- Center for Biomedical Network Research on Rare Diseases (CIBERER) and Department of Genetics and Microbiology, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - José Barbot
- Unidade de Hematologia Pediátrica do Centro Hospitalar do Porto, Porto, Portugal
| | - Jorge Coutinho
- Unidade de Hematologia Pediátrica do Centro Hospitalar do Porto, Porto, Portugal
| | - Jose A. Casado
- Hematopoiesis and Gene Therapy Division, CIEMAT, Madrid, Spain
| | - Manuela Benedito
- Serviço de hematologia do Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Hema Saturnino
- Serviço de hematologia do Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Emília Costa
- Unidade de Hematologia Pediátrica do Centro Hospitalar do Porto, Porto, Portugal
| | - Juan A. Bueren
- Unidade de Hematologia Pediátrica do Centro Hospitalar do Porto, Porto, Portugal
| | - Jordi Surralles
- Center for Biomedical Network Research on Rare Diseases (CIBERER) and Department of Genetics and Microbiology, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Antonio Almeida
- Unidade de Investigação em Patobiologia Molecular, Instituto Português de Oncologia de Lisboa Francisco Gentil, E.P.E., Lisboa, Portugal
- CEDOC, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
- * E-mail:
| |
Collapse
|
121
|
Babić Božović I, Stanković A, Živković M, Vraneković J, Kapović M, Brajenović-Milić B. Altered LINE-1 Methylation in Mothers of Children with Down Syndrome. PLoS One 2015; 10:e0127423. [PMID: 26017139 PMCID: PMC4446367 DOI: 10.1371/journal.pone.0127423] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 04/15/2015] [Indexed: 01/08/2023] Open
Abstract
Down syndrome (DS, also known as trisomy 21) most often results from chromosomal nondisjunction during oogenesis. Numerous studies sustain a causal link between global DNA hypomethylation and genetic instability. It has been suggested that DNA hypomethylation might affect the structure and dynamics of chromatin regions that are critical for chromosome stability and segregation, thus favouring chromosomal nondisjunction during meiosis. Maternal global DNA hypomethylation has not yet been analyzed as a potential risk factor for chromosome 21 nondisjunction. This study aimed to asses the risk for DS in association with maternal global DNA methylation and the impact of endogenous and exogenous factors that reportedly influence DNA methylation status. Global DNA methylation was analyzed in peripheral blood lymphocytes by quantifying LINE-1 methylation using the MethyLight method. Levels of global DNA methylation were significantly lower among mothers of children with maternally derived trisomy 21 than among control mothers (P = 0.000). The combination of MTHFR C677T genotype and diet significantly influenced global DNA methylation (R2 = 4.5%, P = 0.046). The lowest values of global DNA methylation were observed in mothers with MTHFR 677 CT+TT genotype and low dietary folate. Although our findings revealed an association between maternal global DNA hypomethylation and trisomy 21 of maternal origin, further progress and final conclusions regarding the role of global DNA methylation and the occurrence of trisomy 21 are facing major challenges.
Collapse
Affiliation(s)
- Ivana Babić Božović
- Department of Biology and Medical Genetics, School of Medicine, University of Rijeka, Rijeka, Croatia
| | - Aleksandra Stanković
- Vinča Institute of Nuclear Sciences, Laboratory for Radiobiology and Molecular Genetics, University of Belgrade, Belgrade, Serbia
| | - Maja Živković
- Vinča Institute of Nuclear Sciences, Laboratory for Radiobiology and Molecular Genetics, University of Belgrade, Belgrade, Serbia
| | - Jadranka Vraneković
- Department of Biology and Medical Genetics, School of Medicine, University of Rijeka, Rijeka, Croatia
| | - Miljenko Kapović
- Department of Biology and Medical Genetics, School of Medicine, University of Rijeka, Rijeka, Croatia
| | - Bojana Brajenović-Milić
- Department of Biology and Medical Genetics, School of Medicine, University of Rijeka, Rijeka, Croatia
- * E-mail:
| |
Collapse
|
122
|
Forn M, Díez-Villanueva A, Merlos-Suárez A, Muñoz M, Lois S, Carriò E, Jordà M, Bigas A, Batlle E, Peinado MA. Overlapping DNA methylation dynamics in mouse intestinal cell differentiation and early stages of malignant progression. PLoS One 2015; 10:e0123263. [PMID: 25933092 PMCID: PMC4416816 DOI: 10.1371/journal.pone.0123263] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 02/17/2015] [Indexed: 12/20/2022] Open
Abstract
Mouse models of intestinal crypt cell differentiation and tumorigenesis have been used to characterize the molecular mechanisms underlying both processes. DNA methylation is a key epigenetic mark and plays an important role in cell identity and differentiation programs and cancer. To get insights into the dynamics of cell differentiation and malignant transformation we have compared the DNA methylation profiles along the mouse small intestine crypt and early stages of tumorigenesis. Genome-scale analysis of DNA methylation together with microarray gene expression have been applied to compare intestinal crypt stem cells (EphB2high), differentiated cells (EphB2negative), ApcMin/+ adenomas and the corresponding non-tumor adjacent tissue, together with small and large intestine samples and the colon cancer cell line CT26. Compared with late stages, small intestine crypt differentiation and early stages of tumorigenesis display few and relatively small changes in DNA methylation. Hypermethylated loci are largely shared by the two processes and affect the proximities of promoter and enhancer regions, with enrichment in genes associated with the intestinal stem cell signature and the PRC2 complex. The hypermethylation is progressive, with minute levels in differentiated cells, as compared with intestinal stem cells, and reaching full methylation in advanced stages. Hypomethylation shows different signatures in differentiation and cancer and is already present in the non-tumor tissue adjacent to the adenomas in ApcMin/+ mice, but at lower levels than advanced cancers. This study provides a reference framework to decipher the mechanisms driving mouse intestinal tumorigenesis and also the human counterpart.
Collapse
Affiliation(s)
- Marta Forn
- Institute of Predictive and Personalized Medicine of Cancer (IMPPC) 08916 Badalona, Barcelona, Spain
| | - Anna Díez-Villanueva
- Institute of Predictive and Personalized Medicine of Cancer (IMPPC) 08916 Badalona, Barcelona, Spain
| | - Anna Merlos-Suárez
- Institute for Research in Biomedicine (IRB Barcelona) 08028 Barcelona, Spain
| | - Mar Muñoz
- Institute of Predictive and Personalized Medicine of Cancer (IMPPC) 08916 Badalona, Barcelona, Spain
| | - Sergi Lois
- Institute of Predictive and Personalized Medicine of Cancer (IMPPC) 08916 Badalona, Barcelona, Spain
| | - Elvira Carriò
- Institute of Predictive and Personalized Medicine of Cancer (IMPPC) 08916 Badalona, Barcelona, Spain
| | - Mireia Jordà
- Institute of Predictive and Personalized Medicine of Cancer (IMPPC) 08916 Badalona, Barcelona, Spain
| | - Anna Bigas
- Institut Hospital del Mar d’Investigació Mèdica (IMIM) 08003 Barcelona, Spain
| | - Eduard Batlle
- Institute for Research in Biomedicine (IRB Barcelona) 08028 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Miguel A. Peinado
- Institute of Predictive and Personalized Medicine of Cancer (IMPPC) 08916 Badalona, Barcelona, Spain
- * E-mail:
| |
Collapse
|
123
|
Somatic DNA Hypomethylation in H. pylori-Associated High-Risk Gastritis and Gastric Cancer: Enhanced Somatic Hypomethylation Associates with Advanced Stage Cancer. Clin Transl Gastroenterol 2015; 6:e85. [PMID: 25928808 PMCID: PMC4459532 DOI: 10.1038/ctg.2015.14] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 03/10/2015] [Accepted: 03/19/2015] [Indexed: 01/06/2023] Open
Abstract
Objectives: Helicobacter pylori-related high-risk gastritis (HRG) is a severe risk factor for gastric cancer (GC). The link between HRG and long-term risk for GC may involve genetic and epigenetic alterations underlying a field defect, i.e. a region of the mucosa prone to cancer development. Global DNA hypomethylation is a pervasive alteration in GC that associates with chromosomal instability and poor prognosis. The aim of this study was to determine the chronology of this alteration along the progression of HRG to GC, to test the hypothesis that it occurs early in the chronology of this pathway and plays a mechanistic role in the long-term cancer risk. Methods: We comparatively measured the genomic methylation level in gastric biopsies from 94 GC patients and 16 of their cancer-free relatives, 38 HRG patients, and 17 GERD patients, using a quantitative enzymatic method. Results: GC biopsies were hypomethylated compared to their matching non-tumor mucosa (P=9.4 × 10−12), irrespective of the tumor location or patients' country of origin. Genome-wide hypomethylation was also found in gastric mucosa of GC (P=1.5 × 10−5) and HRG (P=0.004) patients compared with healthy donors and GC relatives, regardless of the biopsy location within the stomach or previous H. pylori eradication therapy. An enhanced hypomethylation, distinguished by a bi-slope distribution of the differences in methylation between tumor and normal tissues, associated with a more invasive (P=0.005) and advanced stage (P=0.017) type of GC. Conclusions: Universal DNA demethylation in normal gastric mucosa in GC patients appears sporadic rather than familial. Genomic hypomethylation in HRG possibly contributes to a field defect for cancerization that is not reversed by bacterial eradication. Enhanced somatic hypomethylation may stratify GC for prognostic purposes.
Collapse
|
124
|
Yi JM, Kim TO. Epigenetic alterations in inflammatory bowel disease and cancer. Intest Res 2015; 13:112-21. [PMID: 25931995 PMCID: PMC4414752 DOI: 10.5217/ir.2015.13.2.112] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 01/14/2015] [Accepted: 01/14/2015] [Indexed: 12/15/2022] Open
Abstract
Overwhelming evidences supports the idea that inflammatory bowel disease (IBD) is caused by a complex interplay between genetic alterations of multiple genes and an aberrant interaction with environmental factors. There is growing evidence that epigenetic factors can play a significant part in the pathogenesis of IBD. Significant effort has been invested in uncovering genetic and epigenetic factors, which may increase the risk of IBD, but progress has been slow, and few IBD-specific factors have been detected so far. It has been known for decades that DNA methylation is the most well studied epigenetic modification, and analysis of DNA methylation is leading to a new generation of cancer biomarkers. Therefore, in this review, we summarize the role of DNA methylation alteration in IBD pathogenesis, and discuss specific genes or genetic loci using recent molecular technology advances. Here, we suggest that DNA methylation should be studied in depth to understand the molecular pathways of IBD pathogenesis, and discuss epigenetic studies of IBD that may have a significant impact on the field of IBD research.
Collapse
Affiliation(s)
- Joo Mi Yi
- Research Institute, Dongnam Institute of Radiological & Medical Sciences (DIRAMS), Busan, Korea
| | - Tae Oh Kim
- Department of Internal Medicine, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea
| |
Collapse
|
125
|
Ignatieva EV, Podkolodnaya OA, Orlov YL, Vasiliev GV, Kolchanov NA. Regulatory genomics: Combined experimental and computational approaches. RUSS J GENET+ 2015. [DOI: 10.1134/s1022795415040067] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
126
|
Prognostic significance of promoter CpG island hypermethylation and repetitive DNA hypomethylation in stage I lung adenocarcinoma. Virchows Arch 2015; 466:675-83. [DOI: 10.1007/s00428-015-1749-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 01/15/2015] [Accepted: 02/24/2015] [Indexed: 12/15/2022]
|
127
|
The molecular pathogenesis of colorectal cancer and its potential application to colorectal cancer screening. Dig Dis Sci 2015; 60:762-72. [PMID: 25492499 PMCID: PMC4779895 DOI: 10.1007/s10620-014-3444-4] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 11/15/2014] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Advances in our understanding of the molecular genetics and epigenetics of colorectal cancer have led to novel insights into the pathogenesis of this common cancer. These advances have revealed that there are molecular subtypes of colon polyps and colon cancer and that these molecular subclasses have unique and discrete clinical and pathological features. Although the molecular characterization of these subgroups of colorectal polyps and cancer is only partially understood at this time, it does appear likely that classifying colon polyps and cancers based on their genomic instability and/or epigenomic instability status will eventually be useful for informing approaches for the prevention and early detection of colon polyps and colorectal cancer. CONCLUSIONS In this review, we will discuss our current understanding of the molecular pathogenesis of the polyp to cancer sequence and the potential to use this information to direct screening and prevention programs.
Collapse
|
128
|
Guo Y, Su ZY, Kong ANT. Current Perspectives on Epigenetic Modifications by Dietary Chemopreventive and Herbal Phytochemicals. ACTA ACUST UNITED AC 2015; 1:245-257. [PMID: 26328267 DOI: 10.1007/s40495-015-0023-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Studies during the last two decades have revealed the involvement of epigenetic modifications in the development of human cancer. It is now recognized that the interplay of DNA methylation, post-translational histone modification, and non-coding RNAs can interact with genetic defects to drive tumorigenesis. The early onset, reversibility, and dynamic nature of such epigenetic modifications enable them to be developed as promising cancer biomarkers and preventive/therapeutic targets. In addition to the recent approval of several epigenetic therapies in the treatment of human cancer, emerging studies have indicated that dietary phytochemicals might exert cancer chemopreventive effects by targeting epigenetic mechanisms. In this review, we will present the current understanding of the epigenetic alterations in carcinogenesis and highlight the potential of targeting these mechanisms to treat/prevent cancer. The latest findings, published in the past three years regarding the effects of dietary phytochemicals in modulating epigenetic mechanisms will also be discussed.
Collapse
Affiliation(s)
- Yue Guo
- Graduate Program in Pharmaceutical Sciences, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA ; Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Zheng-Yuan Su
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Ah-Ng Tony Kong
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
129
|
Lee Y, Kim YJ, Choi YJ, Lee JW, Lee S, Cho YH, Chung HW. Radiation-induced changes in DNA methylation and their relationship to chromosome aberrations in nuclear power plant workers. Int J Radiat Biol 2015; 91:142-9. [PMID: 25264146 DOI: 10.3109/09553002.2015.969847] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE We investigated the association between occupational radiation exposure and DNA methylation changes in nuclear power plant workers. We also evaluated whether radiation- induced DNA methylation alterations are associated with chromosome aberrations. MATERIALS AND METHODS The study population included 170 radiation-exposed workers and 30 controls. We measured global, long interspersed nuclear element-1 (LINE-1), and satellite 2 methylation levels in blood leukocyte DNA. The analysis of chromosome aberrations was performed on peripheral lymphocytes. RESULTS Global DNA methylation levels were lower in radiation-exposed workers than in controls. The methylation levels were negatively associated with the recent 1.5-year radiation dose in a multiple linear regression model (β = - 0.0088, p ≤ 0.001); the levels increased proportionally with the total cumulative dose in radiation-exposed workers. LINE-1 methylation levels were higher in radiation-exposed workers than in controls and were significantly associated with the total cumulative radiation dose in a multiple linear regression model (β = - 0.031, p = 0.035). Global DNA methylation levels were also correlated with chromosome aberrations among workers. Workers with low global methylation levels had a higher frequency of chromosome aberrations than did subjects with high global methylation levels. CONCLUSION Occupational exposure to low-dose radiation could affect DNA methylation levels, and the radiation-induced DNA methylation alterations may be associated with chromosome aberrations.
Collapse
Affiliation(s)
- Younghyun Lee
- School of Public Health and Institute of Health and Environment, Seoul National University , Gwanak-gu, Seoul , Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
130
|
Abstract
Colorectal cancer (CRC) is one of most common malignancies and a leading cause of cancer related deaths worldwide. Epigenetic change is an important mechanism of colorectal carcinogenesis. Accumulation of epigenetic changes was found in colorectal cancer and other tumors. Aberrant changes in DNA methylation, histone modification, imprinting, and noncoding RNAs were frequently found in human colorectal cancer. Epigenetic changes may serve as a diagnostic, prognostic, and chemo-sensitive marker. It also becomes a cancer preventive or therapeutic target in some circumstances.
Collapse
Affiliation(s)
- Wenji Yan
- Department of Gastroenterology and Hepatology, Chinese PLA General Hospital, #28 Fuxing Road, Beijing, 100853, China
| | | |
Collapse
|
131
|
Barchitta M, Quattrocchi A, Maugeri A, Vinciguerra M, Agodi A. LINE-1 hypomethylation in blood and tissue samples as an epigenetic marker for cancer risk: a systematic review and meta-analysis. PLoS One 2014; 9:e109478. [PMID: 25275447 PMCID: PMC4183594 DOI: 10.1371/journal.pone.0109478] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 08/31/2014] [Indexed: 01/07/2023] Open
Abstract
Objective A systematic review and a meta-analysis were carried out in order to summarize the current published studies and to evaluate LINE-1 hypomethylation in blood and other tissues as an epigenetic marker for cancer risk. Methods A systematic literature search in the Medline database, using PubMed, was conducted for epidemiological studies, published before March 2014. The random-effects model was used to estimate weighted mean differences (MDs) with 95% Confidence Intervals (CIs). Furthermore, subgroup analyses were conducted by sample type (tissue or blood samples), cancer types, and by assays used to measure global DNA methylation levels. The Cochrane software package Review Manager 5.2 was used. Results A total of 19 unique articles on 6107 samples (2554 from cancer patients and 3553 control samples) were included in the meta-analysis. LINE-1 methylation levels were significantly lower in cancer patients than in controls (MD: −6.40, 95% CI: −7.71, −5.09; p<0.001). The significant difference in methylation levels was confirmed in tissue samples (MD −7.55; 95% CI: −9.14, −65.95; p<0.001), but not in blood samples (MD: −0.26, 95% CI: −0.69, 0.17; p = 0.23). LINE-1 methylation levels were significantly lower in colorectal and gastric cancer patients than in controls (MD: −8.33; 95% CI: −10.56, −6.10; p<0.001 and MD: −5.75; 95% CI: −7.75, −3.74; p<0.001) whereas, no significant difference was observed for hepatocellular cancer. Conclusions The present meta-analysis adds new evidence to the growing literature on the role of LINE-1 hypomethylation in human cancer and demonstrates that LINE-1 methylation levels were significantly lower in cancer patients than in control samples, especially in certain cancer types. This result was confirmed in tissue samples, both fresh/frozen or FFPE specimens, but not in blood. Further studies are needed to better clarify the role of LINE-1 methylation in specific subgroups, considering both cancer and sample type, and the methods of measurement.
Collapse
Affiliation(s)
| | | | - Andrea Maugeri
- Department GF Ingrassia, University of Catania, Catania, Italy
| | - Manlio Vinciguerra
- University College London, Institute for Liver and Digestive Health, Royal Free Campus, London, United Kingdom
- Gastroenterology Unit, Department of Medical Sciences, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
- * E-mail: (AA); (MV)
| | - Antonella Agodi
- Department GF Ingrassia, University of Catania, Catania, Italy
- * E-mail: (AA); (MV)
| |
Collapse
|
132
|
Anestopoulos I, Voulgaridou GP, Georgakilas AG, Franco R, Pappa A, Panayiotidis MI. Epigenetic therapy as a novel approach in hepatocellular carcinoma. Pharmacol Ther 2014; 145:103-19. [PMID: 25205159 DOI: 10.1016/j.pharmthera.2014.09.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 09/02/2014] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is the most common type of liver malignancy and one with high fatality. Its 5-year survival rate remains low and thus, there is a need for improvement of current treatment strategies as well as development of novel targeted methodologies in order to optimize existing therapeutic protocols. To this end, only recently, it was discovered that its pathophysiology also involves epigenetic alterations in DNA methylation, histone modifications and/or non-coding microRNA patterns. Unlike genetic events, epigenetic alterations are reversible and thus potentially considered to be an alternative option in cancer treatment protocols. In this review, we describe the general characteristics and resulted major alterations of the epigenetic machinery as well as current state of progress of epigenetic therapy (via different single or combinatorial experimental approaches) in HCC.
Collapse
Affiliation(s)
- Ioannis Anestopoulos
- Department of Molecular Biology & Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | | | - Alexandros G Georgakilas
- School of Applied Mathematical & Physical Sciences, National Technical University of Athens, Athens, Greece
| | - Rodrigo Franco
- Redox Biology Center, School of Veterinary Medicine & Biomedical Sciences, Redox Biology Center, University of Nebraska-Lincoln, USA
| | - Aglaia Pappa
- Department of Molecular Biology & Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | | |
Collapse
|
133
|
Abstract
Epigenetic control of gene expression programs is essential for normal organismal development and cellular function. Abrogation of epigenetic regulation is seen in many human diseases, including cancer and neuropsychiatric disorders, where it can affect disease etiology and progression. Abnormal epigenetic profiles can serve as biomarkers of disease states and predictors of disease outcomes. Therefore, epigenetics is a key area of clinical investigation in diagnosis, prognosis, and treatment. In this review, we give an overarching view of epigenetic mechanisms of human disease. Genetic mutations in genes that encode chromatin regulators can cause monogenic disease or are incriminated in polygenic, multifactorial diseases. Environmental stresses can also impact directly on chromatin regulation, and these changes can increase the risk of, or directly cause, disease. Finally, emerging evidence suggests that exposure to environmental stresses in older generations may predispose subsequent generations to disease in a manner that involves the transgenerational inheritance of epigenetic information.
Collapse
Affiliation(s)
- Emily Brookes
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| | | |
Collapse
|
134
|
Pongpanich M, Patchsung M, Thongsroy J, Mutirangura A. Characteristics of replication-independent endogenous double-strand breaks in Saccharomyces cerevisiae. BMC Genomics 2014; 15:750. [PMID: 25179264 PMCID: PMC4158086 DOI: 10.1186/1471-2164-15-750] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 08/29/2014] [Indexed: 11/25/2022] Open
Abstract
Background Replication-independent endogenous double-strand breaks (RIND-EDSBs) occur in both humans and yeast in the absence of inductive agents and DNA replication. In human cells, RIND-EDSBs are hypermethylated, preferentially retained in the heterochromatin and unbound by γ-H2AX. In single gene deletion yeast strains, the RIND-EDSB levels are altered; the number of RIND-EDSBs is higher in strains with deletions of histone deacetylase, endonucleases, topoisomerase, or DNA repair regulators, but lower in strains with deletions of the high-mobility group box proteins or Sir2. In summary, RIND-EDSBs are different from pathologic DSBs in terms of their causes and consequences. In this study, we identified the nucleotide sequences surrounding RIND-EDSBs and investigated the features of these sequences as well as their break locations. Results In recent work, we detected RIND-EDSBs using ligation mediated PCR. In this study, we sequenced RIND-EDSB PCR products of resting state Saccharomyces cerevisiae using next-generation sequencing to analyze RIND-EDSB sequences. We found that the break locations are scattered across a number of chromosomes. The number of breaks correlated with the size of the chromosomes. Most importantly, the break occurrences had sequence pattern specificity. Specifically, the majority of the breaks occurred immediately after the sequence “ACGT” (P = 2.2E-156). Because the “ACGT” sequence does not occur primarily in the yeast genome, this specificity of the “ACGT” sequence cannot be attributed to chance. Conclusions RIND-EDSBs occur non-randomly; that is, they are produced and retained by specific mechanisms. Because these particular mechanisms regulate their generation and they possess potentially specific functions, RIND-EDSBs could be epigenetic marks. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-750) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | - Apiwat Mutirangura
- Center for Excellence in Molecular Genetics of Cancer and Human Diseases, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
135
|
Hokazono K, Ueki T, Nagayoshi K, Nishioka Y, Hatae T, Koga Y, Hirahashi M, Oda Y, Tanaka M. A CpG island methylator phenotype of colorectal cancer that is contiguous with conventional adenomas, but not serrated polyps. Oncol Lett 2014; 8:1937-1944. [PMID: 25289081 PMCID: PMC4186580 DOI: 10.3892/ol.2014.2430] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 07/15/2014] [Indexed: 01/05/2023] Open
Abstract
A subset of colorectal cancers (CRCs) harbor the CpG island methylator phenotype (CIMP), with concurrent multiple promoter hypermethylation of tumor-related genes. A serrated pathway in which CIMP is developed from serrated polyps is proposed. The present study characterized CIMP and morphologically examined precursor lesions of CIMP. In total, 104 CRCs treated between January 1996 and December 2004 were examined. Aberrant promoter methylation of 15 cancer-related genes was analyzed. CIMP status was classified according to the number of methylated genes and was correlated with the clinicopathological features, including the concomitant polyps in and around the tumors. The frequency of aberrant methylation in each CRC showed a bimodal pattern, and the CRCs were classified as CIMP-high (CIMP-H), CIMP-low (CIMP-L) and CIMP-negative (CIMP-N). CIMP-H was associated with aberrant methylation of MLH1 (P=0.005) and with an improved recurrence-free survival (RFS) rate following curative resection compared with CIMP-L/N (five-year RFS rate, 93.8 vs. 67.1%; P=0.044), while CIMP-N tumors were associated with frequent distant metastases at diagnosis (P=0.023). No concomitant serrated lesions were present in the tumors, whereas conventional adenoma was contiguous with 11 (10.6%) of 104 CRCs, including four CIMP-H CRCs. CIMP-H was classified in CRCs by a novel CIMP marker panel and the presence of concomitant tumors revealed that certain CIMP-H CRCs may have arisen from conventional adenomas.
Collapse
Affiliation(s)
- Koji Hokazono
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
| | - Takashi Ueki
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
| | - Kinuko Nagayoshi
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
| | - Yasunobu Nishioka
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
| | - Tatsunobu Hatae
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
| | - Yutaka Koga
- Department of Anatomical Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
| | - Minako Hirahashi
- Department of Anatomical Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
| | - Yoshinao Oda
- Department of Anatomical Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
| | - Masao Tanaka
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
| |
Collapse
|
136
|
Konda K, Konishi K, Yamochi T, Ito YM, Nozawa H, Tojo M, Shinmura K, Kogo M, Katagiri A, Kubota Y, Muramoto T, Yano Y, Kobayashi Y, Kihara T, Tagawa T, Makino R, Takimoto M, Imawari M, Yoshida H. Distinct molecular features of different macroscopic subtypes of colorectal neoplasms. PLoS One 2014; 9:e103822. [PMID: 25093594 PMCID: PMC4122357 DOI: 10.1371/journal.pone.0103822] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Accepted: 07/01/2014] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Colorectal adenoma develops into cancer with the accumulation of genetic and epigenetic changes. We studied the underlying molecular and clinicopathological features to better understand the heterogeneity of colorectal neoplasms (CRNs). METHODS We evaluated both genetic (mutations of KRAS, BRAF, TP53, and PIK3CA, and microsatellite instability [MSI]) and epigenetic (methylation status of nine genes or sequences, including the CpG island methylator phenotype [CIMP] markers) alterations in 158 CRNs including 56 polypoid neoplasms (PNs), 25 granular type laterally spreading tumors (LST-Gs), 48 non-granular type LSTs (LST-NGs), 19 depressed neoplasms (DNs) and 10 small flat-elevated neoplasms (S-FNs) on the basis of macroscopic appearance. RESULTS S-FNs showed few molecular changes except SFRP1 methylation. Significant differences in the frequency of KRAS mutations were observed among subtypes (68% for LST-Gs, 36% for PNs, 16% for DNs and 6% for LST-NGs) (P<0.001). By contrast, the frequency of TP53 mutation was higher in DNs than PNs or LST-Gs (32% vs. 5% or 0%, respectively) (P<0.007). We also observed significant differences in the frequency of CIMP between LST-Gs and LST-NGs or PNs (32% vs. 6% or 5%, respectively) (P<0.005). Moreover, the methylation level of LINE-1 was significantly lower in DNs or LST-Gs than in PNs (58.3% or 60.5% vs. 63.2%, P<0.05). PIK3CA mutations were detected only in LSTs. Finally, multivariate analyses showed that macroscopic morphologies were significantly associated with an increased risk of molecular changes (PN or LST-G for KRAS mutation, odds ratio [OR] 9.11; LST-NG or DN for TP53 mutation, OR 5.30; LST-G for PIK3CA mutation, OR 26.53; LST-G or DN for LINE-1 hypomethylation, OR 3.41). CONCLUSION We demonstrated that CRNs could be classified into five macroscopic subtypes according to clinicopathological and molecular differences, suggesting that different mechanisms are involved in the pathogenesis of colorectal tumorigenesis.
Collapse
Affiliation(s)
- Kenichi Konda
- Division of Gastroenterology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Kazuo Konishi
- Division of Gastroenterology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
- * E-mail:
| | - Toshiko Yamochi
- Department of Pathology, Showa University School of Medicine, Tokyo, Japan
| | - Yoichi M. Ito
- Department of Biostatistics, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Hisako Nozawa
- Division of Gastroenterology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Masayuki Tojo
- Division of Gastroenterology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Kensuke Shinmura
- Division of Gastroenterology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Mari Kogo
- Department of Hospital Pharmaceutics, Showa University School of Pharmacy, Tokyo, Japan
| | - Atsushi Katagiri
- Division of Gastroenterology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Yutaro Kubota
- Division of Gastroenterology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Takashi Muramoto
- Division of Gastroenterology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Yuichiro Yano
- Division of Gastroenterology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Yoshiya Kobayashi
- Division of Gastroenterology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Toshihiro Kihara
- Division of Gastroenterology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Teppei Tagawa
- Division of Gastroenterology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Reiko Makino
- Clinical Collaborating laboratory, Showa University School of Medicine, Tokyo, Japan
| | - Masafumi Takimoto
- Department of Pathology, Showa University School of Medicine, Tokyo, Japan
| | - Michio Imawari
- Division of Gastroenterology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Hitoshi Yoshida
- Division of Gastroenterology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| |
Collapse
|
137
|
Zhu C, Utsunomiya T, Ikemoto T, Yamada S, Morine Y, Imura S, Arakawa Y, Takasu C, Ishikawa D, Imoto I, Shimada M. Hypomethylation of long interspersed nuclear element-1 (LINE-1) is associated with poor prognosis via activation of c-MET in hepatocellular carcinoma. Ann Surg Oncol 2014; 21 Suppl 4:S729-35. [PMID: 24992910 DOI: 10.1245/s10434-014-3874-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Indexed: 12/22/2022]
Abstract
BACKGROUND Long interspersed nuclear element-1 (LINE-1) methylation status, representing global DNA methylation levels, is associated with patient prognosis in several types of cancer. This study was designed to examine the prognostic significance of LINE-1 methylation in patients with hepatocellular carcinoma (HCC) and the possible mechanisms related to oncogene activation. METHODS Seventy-five HCC patients who underwent hepatectomy between 2006 and 2012 were enrolled in this study. Quantitative pyrosequencing was performed to quantify the methylation level of three CpG sites in the LINE-1 promoter. Clinicopathological variables and prognosis were compared between LINE-1 hypo- and hypermethylation groups. LINE-1-inserted c-MET (L1-MET) gene expression and its correlation with LINE-1 methylation levels also were analyzed. RESULTS LINE-1 was significantly hypomethylated in tumor tissues compared with nontumor tissues (48.3 ± 12.2 % vs. 68.2 ± 2.0 %, respectively, p < 0.0001). LINE-1 hypomethylation was not associated with any clinicopathological factors in HCC patients, except sex (p < 0.05). However, patients with LINE-1 hypomethylation exhibited significantly poorer outcome, and multivariate analysis revealed that LINE-1 hypomethylation was an independent risk factor for overall survival (hazard ratio (HR) = 6.1, p = 0.031) and disease-free survival (HR = 2.34, p = 0.045). L1-MET expression was significantly higher in tumor tissues (p < 0.01). L1-MET expression levels were inversely correlated with LINE-1 methylation levels, and positively correlated with c-MET expression (p < 0.05). Furthermore, higher c-MET protein expression was observed in the LINE-1 hypomethylated tumor tissues compared with hypermethylated tumor tissues (p = 0.032). CONCLUSIONS LINE-1 hypomethylation is significantly associated with poor prognosis in patients with HCC, possibly due to activation of c-MET expression.
Collapse
Affiliation(s)
- Chengzhan Zhu
- Department of Surgery, The University of Tokushima, Tokushima, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
138
|
Park SY, Seo AN, Jung HY, Gwak JM, Jung N, Cho NY, Kang GH. Alu and LINE-1 hypomethylation is associated with HER2 enriched subtype of breast cancer. PLoS One 2014; 9:e100429. [PMID: 24971511 PMCID: PMC4074093 DOI: 10.1371/journal.pone.0100429] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 05/28/2014] [Indexed: 01/31/2023] Open
Abstract
The changes in DNA methylation status in cancer cells are characterized by hypermethylation of promoter CpG islands and diffuse genomic hypomethylation. Alu and long interspersed nucleotide element-1 (LINE-1) are non-coding genomic repetitive sequences and methylation of these elements can be used as a surrogate marker for genome-wide methylation status. This study was designed to evaluate the changes of Alu and LINE-1 hypomethylation during breast cancer progression from normal to pre-invasive lesions and invasive breast cancer (IBC), and their relationship with characteristics of IBC. We analyzed the methylation status of Alu and LINE-1 in 145 cases of breast samples including normal breast tissue, atypical ductal hyperplasia/flat epithelial atypia (ADH/FEA), ductal carcinoma in situ (DCIS) and IBC, and another set of 129 cases of IBC by pyrosequencing. Alu methylation showed no significant changes during multistep progression of breast cancer, although it tended to decrease during the transition from DCIS to IBC. In contrast, LINE-1 methylation significantly decreased from normal to ADH/FEA, while it was similar in ADH/FEA, DCIS and IBC. In IBC, Alu hypomethylation correlated with negative estrogen receptor (ER) status, and LINE-1 hypomethylation was associated with negative ER status, ERBB2 (HER2) amplification and p53 overexpression. Alu and LINE-1 methylation status was significantly different between breast cancer subtypes, and the HER2 enriched subtype had lowest methylation levels. In survival analyses, low Alu methylation status tended to be associated with poor disease-free survival of the patients. Our findings suggest that LINE-1 hypomethylation is an early event and Alu hypomethylation is probably a late event during breast cancer progression, and prominent hypomethylation of Alu and LINE-1 in HER2 enriched subtype may be related to chromosomal instability of this specific subtype.
Collapse
Affiliation(s)
- So Yeon Park
- Department of Pathology, Seoul National University College of Medicine, Jongno-gu, Seoul, Korea
- Department of Pathology, Seoul National University Bundang Hospital, Bundang-gu, Seongnam, Gyeonggi, Korea
| | - An Na Seo
- Department of Pathology, Seoul National University Bundang Hospital, Bundang-gu, Seongnam, Gyeonggi, Korea
| | - Hae Yoen Jung
- Department of Pathology, Seoul National University Bundang Hospital, Bundang-gu, Seongnam, Gyeonggi, Korea
| | - Jae Moon Gwak
- Department of Pathology, Seoul National University College of Medicine, Jongno-gu, Seoul, Korea
| | - Namhee Jung
- Laboratory of Epigenetics, Cancer Research Institute, Seoul National University, Jongno-gu, Seoul, Korea
| | - Nam-Yun Cho
- Laboratory of Epigenetics, Cancer Research Institute, Seoul National University, Jongno-gu, Seoul, Korea
| | - Gyeong Hoon Kang
- Department of Pathology, Seoul National University College of Medicine, Jongno-gu, Seoul, Korea
- Laboratory of Epigenetics, Cancer Research Institute, Seoul National University, Jongno-gu, Seoul, Korea
- * E-mail:
| |
Collapse
|
139
|
Parrott BB, Bowden JA, Kohno S, Cloy-McCoy JA, Hale MD, Bangma JT, Rainwater TR, Wilkinson PM, Kucklick JR, Guillette LJ. Influence of tissue, age, and environmental quality on DNA methylation in Alligator mississippiensis. Reproduction 2014; 147:503-13. [DOI: 10.1530/rep-13-0498] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Epigenetic modifications are key mediators of the interactions between the environment and an organism's genome. DNA methylation represents the best-studied epigenetic modification to date and is known to play key roles in regulating transcriptional activity and promoting chromosome stability. Our laboratory has previously demonstrated the utility of the American alligator (Alligator mississippiensis) as a sentinel species to investigate the persistent effects of environmental contaminant exposure on reproductive health. Here, we incorporate a liquid chromatography–tandem mass spectrometry method to directly measure the total (global) proportion of 5-methyl-2′-deoxycytidine (5mdC) in ovarian and whole blood DNA from alligators. Global DNA methylation in ovaries was significantly elevated in comparison with that of whole blood. However, DNA methylation appeared similar in juvenile alligators reared under controlled laboratory conditions but originating from three sites with dissimilar environmental qualities, indicating an absence of detectable site-of-origin effects on persistent levels of global 5mdC content. Analyses of tissues across individuals revealed a surprising lack of correlation between global methylation levels in blood and ovary. In addition, global DNA methylation in blood samples from juvenile alligators was elevated compared with those from adults, suggesting that age, as observed in mammals, may negatively influence global DNA methylation levels in alligators. To our knowledge, this is the first study examining global levels of DNA methylation in the American alligator and provides a reference point for future studies examining the interplay of epigenetics and environmental factors in a long-lived sentinel species.
Collapse
|
140
|
Baba Y, Watanabe M, Murata A, Shigaki H, Miyake K, Ishimoto T, Iwatsuki M, Iwagami S, Yoshida N, Oki E, Sakamaki K, Nakao M, Baba H. LINE-1 hypomethylation, DNA copy number alterations, and CDK6 amplification in esophageal squamous cell carcinoma. Clin Cancer Res 2014; 20:1114-24. [PMID: 24423610 DOI: 10.1158/1078-0432.ccr-13-1645] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE Global DNA hypomethylation plays a crucial role in genomic instability and carcinogenesis. DNA methylation of the long interspersed nucleotide element-1, L1 (LINE-1) repetitive element is a good indicator of the global DNA methylation level, and is attracting interest as a useful marker for predicting cancer prognosis. Our previous study using more than 200 esophageal squamous cell carcinoma (ESCC) specimens demonstrated the significant relationship between LINE-1 hypomethylation and poor prognosis. However, the mechanism by which LINE-1 hypomethylation affects aggressive tumor behavior has yet to be revealed. EXPERIMENTAL DESIGN To examine the relationship between LINE-1 hypomethylation and DNA copy number variations, we investigated LINE-1-hypomethylated and LINE-1-hypermethylated ESCC tumors by comparative genomic hybridization array. RESULTS LINE-1-hypomethylated tumors showed highly frequent genomic gains at various loci containing candidate oncogenes such as CDK6. LINE-1 methylation levels were significantly associated with CDK6 mRNA and CDK6 protein expression levels in ESCC specimens. In our cohort of 129 patients with ESCC, cases with CDK6-positive expression experienced worse clinical outcome compared with those with CDK6-negative expression, supporting the oncogenic role of CDK6 in ESCC. In addition, we found that the prognostic impact of LINE-1 hypomethylation might be attenuated by CDK6 expression. CONCLUSION LINE-1 hypomethylation (i.e., global DNA hypomethylation) in ESCC might contribute to the acquisition of aggressive tumor behavior through genomic gains of oncogenes such as CDK6.
Collapse
Affiliation(s)
- Yoshifumi Baba
- Authors' Affiliations: Department of Gastroenterological Surgery, Graduate School of Medical Sciences; Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto; Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka; and Department of Biostatistics and Epidemiology, Yokohama City University Medical Center, Yokohama, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
141
|
Mancikova V, Buj R, Castelblanco E, Inglada-Pérez L, Diez A, de Cubas AA, Curras-Freixes M, Maravall FX, Mauricio D, Matias-Guiu X, Puig-Domingo M, Capel I, Bella MR, Lerma E, Castella E, Reverter JL, Peinado MÁ, Jorda M, Robledo M. DNA methylation profiling of well-differentiated thyroid cancer uncovers markers of recurrence free survival. Int J Cancer 2014; 135:598-610. [PMID: 24382797 DOI: 10.1002/ijc.28703] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 12/19/2013] [Indexed: 01/08/2023]
Abstract
Thyroid cancer is a heterogeneous disease with several subtypes characterized by cytological, histological and genetic alterations, but the involvement of epigenetics is not well understood. Here, we investigated the role of aberrant DNA methylation in the development of well-differentiated thyroid tumors. We performed genome-wide DNA methylation profiling in the largest well-differentiated thyroid tumor series reported to date, comprising 83 primary tumors as well as 8 samples of adjacent normal tissue. The epigenetic profiles were closely related to not only tumor histology but also the underlying driver mutation; we found that follicular tumors had higher levels of methylation, which seemed to accumulate in a progressive manner along the tumorigenic process from adenomas to carcinomas. Furthermore, tumors harboring a BRAF or RAS mutation had a larger number of hypo- or hypermethylation events, respectively. The aberrant methylation of several candidate genes potentially related to thyroid carcinogenesis was validated in an independent series of 52 samples. Furthermore, through the integration of methylation and transcriptional expression data, we identified genes whose expression is associated with the methylation status of their promoters. Finally, by integrating clinical follow-up information with methylation levels we propose etoposide-induced 2.4 and Wilms tumor 1 as novel prognostic markers related to recurrence-free survival. This comprehensive study provides insights into the role of DNA methylation in well-differentiated thyroid cancer development and identifies novel markers associated with recurrence-free survival.
Collapse
Affiliation(s)
- Veronika Mancikova
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
142
|
Moon JW, Lee SK, Lee JO, Kim N, Lee YW, Kim SJ, Kang HJ, Kim J, Kim HS, Park SH. Identification of novel hypermethylated genes and demethylating effect of vincristine in colorectal cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2014; 33:4. [PMID: 24393480 PMCID: PMC3923411 DOI: 10.1186/1756-9966-33-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 01/02/2014] [Indexed: 12/29/2022]
Abstract
BACKGROUND Colorectal cancer (CRC) arises as a consequence of genetic events such as gene mutation and epigenetic alteration. The aim of this study was to identify new hypermethylated candidate genes and methylation-based therapeutic targets using vincristine in CRC. METHODS We analyzed the methylation status of 27,578 CpG sites spanning more than 14,000 genes in CRC tissues compared with adjacent normal tissues and normal colon tissues using Illumina bead chip array. Twenty-one hypermethylated genes and 18 CpG island methylator phenotype markers were selected as candidate genes. The methylation status of 39 genes was validated by quantitative methylation-specific polymerase chain reaction in CRC tissues, adjacent normal tissues, normal colon cells, and three CRC cell lines. Of these, 29 hypermethylated candidate genes were investigated using the demethylating effects of 5-aza-2'-deoxycytidine (5-aza-dC) and vincristine in CRC cells. RESULTS Thirty-two out of 39 genes were hypermethylated in CRC tissues compared with adjacent normal tissues. Vincristine induced demethylation of methylated genes in CRC cells to the same extent as 5-aza-dC. The mRNA expression of AKR1B1, CHST10, ELOVL4, FLI1, SOX5, STK33, and ZNF304 was restored by treatment with 5-aza-dC and vincristine. CONCLUSION These results suggest that these novel hypermethylated genes AKR1B1, CHST10, ELOVL4, SOX5, STK33, and ZNF304 may be potential methylation biomarkers and therapeutic targets of vincristine in CRC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Sun-Hwa Park
- Department of Anatomy, Institute of Human Genetics, Korea University College of Medicine, 126-1, Anam-dong 5-ga, Seongbuk-gu, Seoul 136-705, Republic of Korea.
| |
Collapse
|
143
|
Abstract
The promise of precision medicine is now a clinical reality. Advances in our understanding of the molecular genetics of colorectal cancer (CRC) are leading to the development of a variety of biomarkers that are being used as early detection markers, prognostic markers, and markers for predicting treatment responses. This is no more evident than in the recent advances in testing CRCs for specific molecular alterations in order to guide treatment with the monoclonal antibody therapies cetuximab and panitumumab, which target the epidermal growth factor receptor. In this review, we update a prior review published in 2010 and describe our current understanding of the molecular pathogenesis of CRC and how these alterations relate to emerging biomarkers for early detection and risk stratification (diagnostic markers), prognosis (prognostic markers), and the prediction of treatment responses (predictive markers).
Collapse
Affiliation(s)
- William M Grady
- 1Clinical Research Division, Fred Hutchison Cancer Research Center, Seattle, Washington, USA
| | | |
Collapse
|
144
|
van Kempen PMW, Noorlag R, Braunius WW, Stegeman I, Willems SM, Grolman W. Differences in methylation profiles between HPV-positive and HPV-negative oropharynx squamous cell carcinoma: a systematic review. Epigenetics 2013; 9:194-203. [PMID: 24169583 DOI: 10.4161/epi.26881] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Oropharyngeal squamous cell carcinoma (OPSCC) is associated with human papillomavirus (HPV). HPV-positive OPSCC is considered a distinct molecular entity with a better prognosis than HPV-negative cases of OPSCC. However, the exact pathogenic mechanisms underlying the differences in clinical and molecular behavior between HPV-positive and HPV-negative OPSCC remain poorly understood. Epigenetic events play an important role in the development of cancer. Hypermethylation of DNA in promoter regions and global hypomethylation are 2 epigenetic changes that have been frequently observed in human cancers. It is suggested that heterogeneous epigenetic changes play a role in the clinical and biological differences between HPV-positive and HPV-negative tumors. Unraveling the differences in methylation profiles of HPV-associated OPSCC may provide for promising clinical applications and may pave the road for personalized cancer treatment. This systematic review aims to assess the current state of knowledge regarding differences in promoter hypermethylation and global methylation between HPV-positive and HPV-negative OPSCC.
Collapse
Affiliation(s)
- Pauline M W van Kempen
- Department of Otorhinolaryngology-Head and Neck Surgery; University Medical Center Utrecht; Utrecht; the Netherlands
| | - Rob Noorlag
- Department of Oral and Maxillofacial Surgery; University Medical Center Utrecht; Utrecht, the Netherlands
| | - Weibel W Braunius
- Department of Otorhinolaryngology-Head and Neck Surgery; University Medical Center Utrecht; Utrecht; the Netherlands
| | - Inge Stegeman
- Department of Otorhinolaryngology-Head and Neck Surgery; University Medical Center Utrecht; Utrecht; the Netherlands; Brain Center Rudolf Magnus; University Medical Center Utrecht; the Netherlands
| | - Stefan M Willems
- Department of Pathology; University Medical Center Utrecht; Utrecht, the Netherlands; Department of Molecular Carcinogenesis; Netherlands Cancer Institute; Amsterdam, the Netherlands
| | - Wilko Grolman
- Department of Otorhinolaryngology-Head and Neck Surgery; University Medical Center Utrecht; Utrecht; the Netherlands; Brain Center Rudolf Magnus; University Medical Center Utrecht; the Netherlands
| |
Collapse
|
145
|
Bajpai M, Kessel R, Bhagat T, Nischal S, Yu Y, Verma A, Das KM. High resolution integrative analysis reveals widespread genetic and epigenetic changes after chronic in-vitro acid and bile exposure in Barrett's epithelium cells. Genes Chromosomes Cancer 2013; 52:1123-32. [PMID: 24123713 DOI: 10.1002/gcc.22106] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 07/31/2013] [Accepted: 08/01/2013] [Indexed: 12/12/2022] Open
Abstract
Barrett's epithelium (BE) is a premalignant condition resulting from chronic gastroesophageal reflux that may progress to esophageal adenocarcinoma (EAC). Early intervention holds promise in preventing BE progression. However, identification of high-risk BE patients remains challenging due to inadequate biomarkers for early diagnosis. We investigated the effect of prolonged chronic acid and bile exposure on transcriptome, methylome, and mutatome of cells in an in-vitro BE carcinogenesis (BEC) model. Twenty weeks acid and bile exposed cells from the BEC model (BEC20w) were compared with their naïve predecessors HiSeq Illumina based RNA sequencing was performed on RNA from both the cells for gene expression and mutational analysis. HELP Tagging Assay was performed for DNA methylation analysis. Ingenuity pathway, Gene Ontology, and KEGG PATHWAY analyses were then performed on datasets. Widespread aberrant genetic and epigenetic changes were observed in the BEC20w cells. Combinatorial analyses revealed 433 from a total of 863 downregulated genes had accompanying hypermethylation of promoters. Simultaneously, 690 genes from a total of 1,492 were upregulated with accompanying promoter hypomethylation. In addition, 763 mutations were identified on 637 genes. Ingenuity pathway analysis, Gene Ontology, and KEGG PATHWAY analyses associated the genetic and epigenetic changes in BEC20w cells with cellular and biological functions. Integration of high resolution comparative analyses of naïve BAR-T and BEC20w cells revealed striking genetic and epigenetic changes induced by chronic acid and bile exposure that may disrupt normal cellular functions and promote carcinogenesis. This novel study reveals several potential targets for future biomarkers and therapeutic development.
Collapse
Affiliation(s)
- Manisha Bajpai
- Division of Gastroenterology and Hepatology, Department of Medicine, RUTGERS Robert Wood Johnson Medical School, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ
| | | | | | | | | | | | | |
Collapse
|
146
|
|
147
|
Abstract
LncRNAs (long non-coding RNAs) have emerged as key molecular players in the regulation of gene expression in different biological processes. Their involvement in epigenetic processes includes the recruitment of histone-modifying enzymes and DNA methyltransferases, leading to the establishment of chromatin conformation patterns that ultimately result in the fine control of genes. Some of these genes are related to tumorigenesis and it is well documented that the misregulation of epigenetic marks leads to cancer. In this review, we highlight how some of the lncRNAs implicated in cancer are involved in the epigenetic control of gene expression. While very few lncRNAs have already been identified as players in determining the cancer-survival outcome in a number of different cancer types, for most of the lncRNAs associated with epigenetic regulation only their altered pattern of expression in cancer is demonstrated. Thanks to their tissue-specificity features, lncRNAs have already been proposed as diagnostic markers in specific cancer types. We envision the discovery of a wealth of novel spliced and unspliced intronic lncRNAs involved in epigenetic networks or in highly location-specific epigenetic control, which might be predominantly altered in specific cancer subtypes. We expect that the characterization of new lncRNA (long non-coding RNA)-protein and lncRNA-DNA interactions will contribute to the discovery of potential lncRNA targets for use in therapies against cancer.
Collapse
|
148
|
Cui Y, Cho IH, Chowdhury B, Irudayaraj J. Real-time dynamics of methyl-CpG-binding domain protein 3 and its role in DNA demethylation by fluorescence correlation spectroscopy. Epigenetics 2013; 8:1089-100. [PMID: 23974971 DOI: 10.4161/epi.25958] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
With unprecedented development in technology, epigenetics is recognized as a substantial and flexible regulatory pathway for phenotyping. Cytosine methylation and its subsequent oxidization have attracted significant attention due to their direct impact on gene regulation, in association with methyl-CpG-binding domain proteins (MBDs) and transcription related factors. In this study we record the dynamics of DNA demethylation using the recombinant MBD3-GFP protein in living cells under hypoxia and Decitabine treatment using Fluorescence Correlation Spectroscopy (FCS) by monitoring the diffusion dynamics of MBD3. Our study shows a DNA-replication-independent decrease of 5-methylcytosine (5mC)/5-hydroxymethylcytosine (5hmC) under hypoxia vs. a dependent decrease under Decitabine treatment. Further, we define a significantly faster diffusion of MBD3 in the nucleus as a precursory event for active demethylation rather than the Decitabine induced passive demethylation. By monitoring the diffusion of bound and unbound MBD3 in the nucleus we were able to identify and characterize hypoxia-sensitive cells from insensitive/tolerant cells, as well as the respective contribution to active demethylation in a time-dependent manner. Last, we quantitatively describe the concurrent decreasing trend in all of the three oxidized products of 5mC, which points to the potential involvement of ten-eleven-translocation proteins (TETs) in hypoxia induced active demethylation. Overall, for the first time we correlate the dynamic process of DNA demethylation with the biophysical properties of the corresponding DNA binding proteins in live single cells by single molecule spectroscopy.
Collapse
Affiliation(s)
- Yi Cui
- Biological Engineering and Bindley Bioscience Center, Purdue University; West Lafayette, IN USA
| | - Il-Hoon Cho
- Biological Engineering and Bindley Bioscience Center, Purdue University; West Lafayette, IN USA
| | - Basudev Chowdhury
- Biological Engineering and Bindley Bioscience Center, Purdue University; West Lafayette, IN USA
| | - Joseph Irudayaraj
- Biological Engineering and Bindley Bioscience Center, Purdue University; West Lafayette, IN USA
| |
Collapse
|
149
|
Tänzer M, Liebl M, Quante M. Molecular biomarkers in esophageal, gastric, and colorectal adenocarcinoma. Pharmacol Ther 2013; 140:133-47. [PMID: 23791941 DOI: 10.1016/j.pharmthera.2013.06.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 06/06/2013] [Indexed: 02/06/2023]
Abstract
Cancers of the esophagus, stomach and colon contribute to a major health burden worldwide and over 20% of all cancer deaths. Biomarkers that should indicate pathogenic process and are measureable in an objective manner for these tumors are rare and not established in the clinical setting. In general biomarkers can be very useful for cancer management as they can improve clinical decision-making regarding diagnosis, surveillance, and therapy. Biomarkers can be different types of molecular entities (such as DNA, RNA or proteins), which can be detected, in different tissues or body fluids. However, more important is the type of biomarker itself, which allows diagnostic, prognostic or predictive analyses for different clinical problems. This review aims to systematically summarize the recent findings of genetic and epigenetic markers for gastrointestinal tumors within the last decade. While many biomarkers seem to be very promising, especially if used as panels, further development is urgently needed to address practical considerations of biomarkers in cancer treatment.
Collapse
Affiliation(s)
- Marc Tänzer
- II. Medizinische Klinik, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 München, Germany
| | | | | |
Collapse
|
150
|
Kuasne H, Marchi FA, Rogatto SR, de Syllos Cólus IM. Epigenetic mechanisms in penile carcinoma. Int J Mol Sci 2013; 14:10791-808. [PMID: 23702847 PMCID: PMC3709702 DOI: 10.3390/ijms140610791] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 05/02/2013] [Accepted: 05/09/2013] [Indexed: 11/16/2022] Open
Abstract
Penile carcinoma (PeCa) represents an important public health problem in poor and developing countries. Despite its unpredictable behavior and aggressive treatment, there have only been a few reports regarding its molecular data, especially epigenetic mechanisms. The functional diversity in different cell types is acquired by chromatin modifications, which are established by epigenetic regulatory mechanisms involving DNA methylation, histone acetylation, and miRNAs. Recent evidence indicates that the dysregulation in these processes can result in the development of several diseases, including cancer. Epigenetic alterations, such as the methylation of CpGs islands, may reveal candidates for the development of specific markers for cancer detection, diagnosis and prognosis. There are a few reports on the epigenetic alterations in PeCa, and most of these studies have only focused on alterations in specific genes in a limited number of cases. This review aims to provide an overview of the current knowledge of the epigenetic alterations in PeCa and the promising results in this field. The identification of epigenetically altered genes in PeCa is an important step in understanding the mechanisms involved in this unexplored disease.
Collapse
Affiliation(s)
- Hellen Kuasne
- Department of General Biology, Londrina State University, Londrina, PR 86055-900, Brazil; E-Mails: (H.K.); (I.M.S.C.)
- International Research and Teaching Center, CIPE, AC Camargo Cancer Center, São Paulo, SP 01508-010, Brazil
| | - Fabio Albuquerque Marchi
- Inter-institutional Grad Program on Bioinformatics, Institute of Mathematics and Statistics, USP—São Paulo University, São Paulo, SP 05508-090, Brazil; E-Mail:
| | - Silvia Regina Rogatto
- International Research and Teaching Center, CIPE, AC Camargo Cancer Center, São Paulo, SP 01508-010, Brazil
- Department of Urology, Faculty of Medicine, UNESP, Botucatu, SP 18618-970, Brazil
- Author to whom correspondence should be addressed; E-Mail: or ; Tel.: +55-11-3811-6436; Fax: +55-11-3811-6271
| | - Ilce Mara de Syllos Cólus
- Department of General Biology, Londrina State University, Londrina, PR 86055-900, Brazil; E-Mails: (H.K.); (I.M.S.C.)
| |
Collapse
|