101
|
Yu CY, Liu BH, Tang SY, Liang RY, Hsu KH, Chuang SM. HR23A-knockdown lung cancer cells exhibit epithelial-to-mesenchymal transition and gain stemness properties through increased Twist1 stability. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:118537. [DOI: 10.1016/j.bbamcr.2019.118537] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 07/16/2019] [Accepted: 08/24/2019] [Indexed: 10/26/2022]
|
102
|
Zhou Y, Zhou Y, Wang K, Li T, Zhang M, Yang Y, Wang R, Hu R. ROCK2 Confers Acquired Gemcitabine Resistance in Pancreatic Cancer Cells by Upregulating Transcription Factor ZEB1. Cancers (Basel) 2019; 11:cancers11121881. [PMID: 31783584 PMCID: PMC6966455 DOI: 10.3390/cancers11121881] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 11/20/2019] [Indexed: 12/22/2022] Open
Abstract
Resistance to chemotherapy is a major clinical challenge in the treatment of pancreatic ductal adenocarcinoma (PDAC). Here, we provide evidence that Rho associated coiled-coil containing protein kinase 2 (ROCK2) maintains gemcitabine resistance in gemcitabine resistant pancreatic cancer cells (GR cells). Pharmacological inhibition or gene silencing of ROCK2 markedly sensitized GR cells to gemcitabine by suppressing the expression of zinc-finger-enhancer binding protein 1 (ZEB1). Mechanically, ROCK2-induced sp1 phosphorylation at Thr-453 enhanced the ability of sp1 binding to ZEB1 promoter regions in a p38-dependent manner. Moreover, transcriptional activation of ZEB1 facilitated GR cells to repair gemcitabine-mediated DNA damage via ATM/p-CHK1 signaling pathway. Our findings demonstrate the essential role of ROCK2 in EMT-induced gemcitabine resistance in pancreatic cancer cells and provide strong evidence for the clinical application of fasudil, a ROCK2 inhibitor, in gemcitabine-refractory PDAC.
Collapse
Affiliation(s)
- Yang Zhou
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (Y.Z.); (Y.Z.); (K.W.); (T.L.); (M.Z.); (Y.Y.); (R.W.)
| | - Yunjiang Zhou
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (Y.Z.); (Y.Z.); (K.W.); (T.L.); (M.Z.); (Y.Y.); (R.W.)
| | - Keke Wang
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (Y.Z.); (Y.Z.); (K.W.); (T.L.); (M.Z.); (Y.Y.); (R.W.)
| | - Tao Li
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (Y.Z.); (Y.Z.); (K.W.); (T.L.); (M.Z.); (Y.Y.); (R.W.)
| | - Minda Zhang
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (Y.Z.); (Y.Z.); (K.W.); (T.L.); (M.Z.); (Y.Y.); (R.W.)
| | - Yunjia Yang
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (Y.Z.); (Y.Z.); (K.W.); (T.L.); (M.Z.); (Y.Y.); (R.W.)
| | - Rui Wang
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (Y.Z.); (Y.Z.); (K.W.); (T.L.); (M.Z.); (Y.Y.); (R.W.)
| | - Rong Hu
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (Y.Z.); (Y.Z.); (K.W.); (T.L.); (M.Z.); (Y.Y.); (R.W.)
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- Correspondence: ; Tel.: +86-25-8327-1126; Fax: +86-25-8332-1714
| |
Collapse
|
103
|
Chaudhary A, Kalra RS, Malik V, Katiyar SP, Sundar D, Kaul SC, Wadhwa R. 2, 3-Dihydro-3β-methoxy Withaferin-A Lacks Anti-Metastasis Potency: Bioinformatics and Experimental Evidences. Sci Rep 2019; 9:17344. [PMID: 31757995 PMCID: PMC6874665 DOI: 10.1038/s41598-019-53568-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 10/30/2019] [Indexed: 01/05/2023] Open
Abstract
Withaferin-A is a withanolide, predominantly present in Ashwagandha (Withania somnifera). It has been shown to possess anticancer activity in a variety of human cancer cells in vitro and in vivo. Molecular mechanism of such cytotoxicity has not yet been completely understood. Withaferin-A and Withanone were earlier shown to activate p53 tumor suppressor and oxidative stress pathways in cancer cells. 2,3-dihydro-3β-methoxy analogue of Withaferin-A (3βmWi-A) was shown to lack cytotoxicity and well tolerated at higher concentrations. It, on the other hand, protected normal cells against oxidative, chemical and UV stresses through induction of anti-stress and pro-survival signaling. We, in the present study, investigated the effect of Wi-A and 3βmWi-A on cell migration and metastasis signaling. Whereas Wi-A binds to vimentin and heterogeneous nuclear ribonucleoprotein K (hnRNP-K) with high efficacy and downregulates its effector proteins, MMPs and VEGF, involved in cancer cell metastasis, 3βmWi-A was ineffective. Consistently, Wi-A, and not 3βmWi-A, caused reduction in cytoskeleton proteins (Vimentin, N-Cadherin) and active protease (u-PA) that are essential for three key steps of cancer cell metastasis (EMT, increase in cell migration and invasion).
Collapse
Affiliation(s)
- Anupama Chaudhary
- DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, 305 8565, Japan
| | - Rajkumar S Kalra
- DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, 305 8565, Japan
| | - Vidhi Malik
- Department of Biochemical Engineering & Biotechnology, DAILAB, Indian Institute of Technology (IIT)-Delhi, Hauz Khas, New Delhi, 110 016, India
| | - Shashank P Katiyar
- Department of Biochemical Engineering & Biotechnology, DAILAB, Indian Institute of Technology (IIT)-Delhi, Hauz Khas, New Delhi, 110 016, India
| | - Durai Sundar
- Department of Biochemical Engineering & Biotechnology, DAILAB, Indian Institute of Technology (IIT)-Delhi, Hauz Khas, New Delhi, 110 016, India.
| | - Sunil C Kaul
- DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, 305 8565, Japan.
| | - Renu Wadhwa
- DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, 305 8565, Japan.
| |
Collapse
|
104
|
Yao N, Fu Y, Chen L, Liu Z, He J, Zhu Y, Xia T, Wang S. Long non-coding RNA NONHSAT101069 promotes epirubicin resistance, migration, and invasion of breast cancer cells through NONHSAT101069/miR-129-5p/Twist1 axis. Oncogene 2019; 38:7216-7233. [PMID: 31444414 DOI: 10.1038/s41388-019-0904-5] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 06/09/2019] [Accepted: 07/17/2019] [Indexed: 12/17/2022]
Abstract
Drug resistance, including epirubicin-based therapeutic resistance, is one of the major reasons responsible for the unfavorable prognosis of patients diagnosed with breast cancer (BC). Acquired chemoresistance and metastatic properties have been identified to be closely associated with the process of epithelial-mesenchymal transition (EMT). Recently, dysregulation of long non-coding RNAs (lncRNAs) have been increasingly reported to perform promotive or suppressive functions in chemoresistance and EMT process in multiple cancers. However, relevant novel lncRNA participating in epirubicin resistance and EMT and its underlying molecular mechanisms remain unknown in BC. Herein, we established the epirubicin-resistant breast cancer cell subline (MCF-7/ADR), which presented mesenchymal phenotype and increased metastatic potential. A panel of differentially expressed lncRNAs, including 268 upregulated and 49 downregulated lncRNAs, were identified by high-flux microarray investigation in MCF-7 and MCF-7/ADR cells. The novel lncRNA NONHSAT101069 was significantly overexpressed in BC specimens, BC cell lines, and epirubicin-resistant cell sublines. The knockdown of NONHSAT101069 significantly repressed, whereas overexpression of NONHSAT101069 promoted the epirubicin resistance, migration, invasion and EMT process of BC cells both in vitro and in vivo. Further mechanism-related researches uncovered that NONHSAT101069 functioned as a ceRNA (competing endogenous RNA) via sponging miR-129-5p. Twist1 was a direct downstream protein of NONHSAT101069/miR-129-5p axis in BC cells. To conclude, NONHSAT101069 was upregulated in BC tissues and promoted epirubicin resistance, migration and invasion of BC cells via regulation of NONHSAT101069/miR-129-5p/Twist1 axis, highlighting its potential as an oncogene and a therapeutic biomarker for BC.
Collapse
Affiliation(s)
- Na Yao
- Breast Disease Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, P. R. China
- Department of Thyroid & Breast Surgery, The Affiliated Hospital of Nanjing University of TCM, Wuxi City Hospital of TCM, Wuxi, 214000, Jiangsu Province, P. R. China
| | - Yue Fu
- Department of General Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, 213000, Jiangsu Province, P. R. China
| | - Lie Chen
- Breast Disease Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, P. R. China
| | - Zhao Liu
- Department of Thyroid & Breast Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 222100, Jiangsu Province, P. R. China
| | - Jing He
- Department of Surgical Oncology, The Affiliated Hospital of Jiangnan University, Wuxi, 214000, Jiangsu Province, P. R. China
| | - Yichao Zhu
- Department of Physiology, Nanjing Medical University, Nanjing, 211166, Jiangsu Province, P. R. China.
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu Province, P. R. China.
| | - Tiansong Xia
- Breast Disease Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, P. R. China.
| | - Shui Wang
- Breast Disease Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, P. R. China.
| |
Collapse
|
105
|
Abstract
Cancer stem cells (CSC) are a subpopulation of tumor cells that have superior capacities of self-renewal, metastatic dissemination, and chemoresistance. These characteristics resemble, to some extent, the outcome of certain biological processes, including epithelial-mesenchymal transition (EMT), autophagy, and cellular stress response. Indeed, it has been shown that the stimuli that induce these processes and CSC are overlapping, and CSC and tumor cells that underwent EMT or autophagy are much alike. However, as the cross talk between CSC, EMT, autophagy, and cellular stress is further explored, these processes are also found to have an opposing role in CSC, depending on the condition and status of cells. This contextual effect is likely due to overwhelming reliance on CSC markers for their identification, and/or discrepancies in recognition of CSC as a particular cell population or cellular state. In this review, we summarize how EMT, autophagy, and cellular stress response are tied or unwound with CSC. We also discuss the current view of CSC theory evolved from the emphasis of heterogenicity and plasticity of CSC.
Collapse
Affiliation(s)
- Kai-Feng Hung
- Department of Medical Research, Division of Translational Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Dentistry, School of Dentistry, National Yang-Ming University, Taipei, Taiwan, ROC
| | - Ting Yang
- Department of Medical Research, Division of Translational Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Shou-Yen Kao
- Department of Dentistry, School of Dentistry, National Yang-Ming University, Taipei, Taiwan, ROC
- Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| |
Collapse
|
106
|
Kim AR, Gu MJ. The clinicopathologic significance of Notch3 expression in prostate cancer. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:3535-3541. [PMID: 31934201 PMCID: PMC6949809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 07/22/2019] [Indexed: 06/10/2023]
Abstract
The Notch3 signaling pathway plays an important role in oncogenesis, tumor maintenance, and resistance to chemotherapy in human cancers. However, its role in prostate cancer (PC) is less clear. In this study, we investigated a total of 142 PC patients who underwent radical prostatectomy and examined the expression of Notch3 in PC cells using immunohistochemistry on tissue microarrays and evaluated their clinicopathological significance. The overexpression of Notch3 was observed in 22 (15.5%) out of 142 PC cases. The overexpression of Notch3 was significantly associated with lymph node metastasis (P = 0.013), higher pT stages (P = 0.033), higher pathological tumor stages (P = 0.034), and higher grades groups (P = 0.025). However, the overexpression of Notch3 was not correlated with lympho-vascular invasion, neural invasion, extra-prostatic extension, or the serum prostate-specific antigen level. This study demonstrates that Notch3 plays an oncogenic function in PC and the overexpression of Notch3 is correlated with invasiveness, metastasis, and higher Gleason grades, reflecting the features of aggressive tumors in PC, and could be an important biomarker and a possible therapeutic target. Further studies evaluating the association between Notch3 expression and survival are required.
Collapse
Affiliation(s)
- Ae Ri Kim
- Department of Pathology, Daegu Fatima HospitalDaegu, South Korea
| | - Mi Jin Gu
- Department of Pathology, Yeungnam University College of MedicineDaegu, South Korea
| |
Collapse
|
107
|
EMT and Stemness-Key Players in Pancreatic Cancer Stem Cells. Cancers (Basel) 2019; 11:cancers11081136. [PMID: 31398893 PMCID: PMC6721598 DOI: 10.3390/cancers11081136] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 08/01/2019] [Accepted: 08/06/2019] [Indexed: 12/15/2022] Open
Abstract
Metastasis and tumor progression are the major cause of death in patients suffering from pancreatic ductal adenocarcinoma. Tumor growth and especially dissemination are typically associated with activation of an epithelial-to-mesenchymal transition (EMT) program. This phenotypic transition from an epithelial to a mesenchymal state promotes migration and survival both during development and in cancer progression. When re-activated in pathological contexts such as cancer, this type of developmental process confers additional stemness properties to specific subsets of cells. Cancer stem cells (CSCs) are a subpopulation of cancer cells with stem-like features that are responsible for the propagation of the tumor as well as therapy resistance and cancer relapse, but also for circulating tumor cell release and metastasis. In support of this concept, EMT transcription factors generate cells with stem cell properties and mediate chemoresistance. However, their role in pancreatic ductal adenocarcinoma metastasis remains controversial. As such, a better characterization of CSC populations will be crucial in future development of therapies targeting these cells. In this review, we will discuss the latest updates on the mechanisms common to pancreas development and CSC-mediated tumor progression.
Collapse
|
108
|
Panda M, Biswal BK. Cell signaling and cancer: a mechanistic insight into drug resistance. Mol Biol Rep 2019; 46:5645-5659. [PMID: 31280421 DOI: 10.1007/s11033-019-04958-6] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 06/27/2019] [Indexed: 12/22/2022]
Abstract
Drug resistance is a major setback for advanced therapeutics in multiple cancers. The increasing prevalence of this resistance is a growing concern and bitter headache for the researchers since a decade. Hence, it is essential to revalidate the existing strategies available for cancer treatment and to look after a novel therapeutic approach for target based killing of cancer cells at the genetic level. This review outlines the different mechanisms enabling resistance including drug efflux, drug target alternation, alternative splicing, the release of the extracellular vesicle, tumor heterogeneity, epithelial-mesenchymal transition, tumor microenvironment, the secondary mutation in the receptor, epigenetic alternation, heterodimerization of receptors, amplification of target and amplification of components rather than the target. Furthermore, existing evidence and the role of various signaling pathways like EGFR, Ras, PI3K/Akt, Wnt, Notch, TGF-β, Integrin-ECM signaling in drug resistance are explained. Lastly, the prevention of this resistance by a contemporary therapeutic strategy, i.e., a combination of specific signaling pathway inhibitors and the cocktail of a cancer drug is summarized showing the new treatment strategies.
Collapse
Affiliation(s)
- Munmun Panda
- Cancer Drug Resistance Laboratory, Department of Life Science, National Institute of Technology, Sundargarh, Rourkela, Odisha, 769008, India
| | - Bijesh K Biswal
- Cancer Drug Resistance Laboratory, Department of Life Science, National Institute of Technology, Sundargarh, Rourkela, Odisha, 769008, India.
| |
Collapse
|
109
|
miRNA Predictors of Pancreatic Cancer Chemotherapeutic Response: A Systematic Review and Meta-Analysis. Cancers (Basel) 2019; 11:cancers11070900. [PMID: 31252688 PMCID: PMC6678460 DOI: 10.3390/cancers11070900] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/13/2019] [Accepted: 06/21/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND pancreatic cancer (PC) has increasing incidence and mortality in developing countries, and drug resistance is a significant hindrance to the efficacy of successful treatment. The objective of this systematic review and meta-analysis was to evaluate the association between miRNAs and response to chemotherapy in pancreatic cancer patients. METHODS the systematic review and meta-analysis was based on articles collected from a thorough search of PubMed and Science Direct databases for publications spanning from January 2008 to December 2018. The articles were screened via a set of inclusion and exclusion criteria based on the preferred reporting items for systematic review and meta-analysis (PRISMA) guidelines. Data was extracted, collated and tabulated in MS Excel for further synthesis. Hazard ratio (HR) was selected as the effect size metric to be pooled across studies for the meta-analysis, with the random effects model being applied. Subgroup analysis was also conducted, and the presence of publication bias in the selected studies was assessed. Publication bias of the included studies was quantified. FINDINGS of the 169 articles screened, 43 studies were included in our systematic review and 13 articles were included in the meta-analysis. Gemcitabine was observed to be the principal drug used in a majority of the studies. A total of 48 miRNAs have been studied, and 18 were observed to have possible contributions to chemoresistance, while 15 were observed to have possible contributions to chemosensitivity. 41 drug-related genetic pathways have been identified, through which the highlighted miRNA may be affecting chemosensitivity/resistance. The pooled HR value for overall survival was 1.603; (95% Confidence Interval (CI) 1.2-2.143; p-value: 0.01), with the subgroup analysis for miR-21 showing HR for resistance of 2.061; 95% CI 1.195-3.556; p-value: 0.09. INTERPRETATION our results highlight multiple miRNAs that have possible associations with modulation of chemotherapy response in pancreatic cancer patients. Further studies are needed to discover the molecular mechanisms underlying these associations before they can be suggested for use as biomarkers of response to chemotherapeutic interventions in pancreatic cancer.
Collapse
|
110
|
Liu J, Liu S, Deng X, Rao J, Huang K, Xu G, Wang X. MicroRNA-582-5p suppresses non-small cell lung cancer cells growth and invasion via downregulating NOTCH1. PLoS One 2019; 14:e0217652. [PMID: 31170211 PMCID: PMC6553855 DOI: 10.1371/journal.pone.0217652] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 05/15/2019] [Indexed: 12/18/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is the most common cancer worldwide. MicroRNAs have been shown to be correlated with biological processes of various tumors. In this study, we observed that the expression of miR-582-5p was lower in NSCLC tissues than that in para-carcinoma tissues. Ectopic expression of miR-582-5p significantly inhibited NCI-H358 cell proliferation and invasion. Knockdown of miR-582-5p showed the opposite results, with cell growth rate and the invasive capacity of PC-9 cells enhanced. Furthermore, we elucidated that NOTCH1 is a target of miR-582-5p and there is an inverse correlation between miR-582-5p and NOTCH1 expression in NSCLC tissues. Overexpression of NOTCH1 in miR-582-5p-overexpressing NCI-H358 cells could partially reverse the inhibition of cell proliferation and invasion by miR-582-5p. Thus, our research demonstrated that miR-582-5p suppresses NSCLC cell lines’ growth and invasion via targeting oncoprotein NOTCH1 and restoration of miR-582-5p might be feasible therapeutic strategy for NSCLC.
Collapse
Affiliation(s)
- Jianghong Liu
- Department of Pharmacy, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Shengshuo Liu
- School of Pharmacy, Henan University, Kaifeng, Henan, China
| | - Xiaoyan Deng
- Department of Endocrinology, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Jiaoyu Rao
- Department of Pharmacology, College of Pharmacy, Jinan University, Guangzhou, China
| | - Kaiyuan Huang
- Department of Pharmacy, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Gengrui Xu
- Department of Pharmacy, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Xiaokang Wang
- Department of Pharmacy, Shenzhen Longhua District Central Hospital, Shenzhen, China
- * E-mail:
| |
Collapse
|
111
|
Chen Y, LeBleu VS, Carstens JL, Sugimoto H, Zheng X, Malasi S, Saur D, Kalluri R. Dual reporter genetic mouse models of pancreatic cancer identify an epithelial-to-mesenchymal transition-independent metastasis program. EMBO Mol Med 2019; 10:emmm.201809085. [PMID: 30120146 PMCID: PMC6180301 DOI: 10.15252/emmm.201809085] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Epithelial‐to‐mesenchymal transition (EMT) is a recognized eukaryotic cell differentiation program that is also observed in association with invasive tumors. Partial EMT program in carcinomas imparts cancer cells with mesenchymal‐like features and is proposed as essential for metastasis. Precise determination of the frequency of partial EMT program in cancer cells in tumors and its functional role in metastases needs unraveling. Here, we employed mesenchymal cell reporter mice driven by αSMA‐Cre and Fsp1‐Cre with genetically engineered mice that develop spontaneous pancreatic ductal adenocarcinoma (PDAC) to monitor partial EMT program. Both αSMA‐ and Fsp1‐Cre‐mediated partial EMT programs were observed in the primary tumors. The established metastases were primarily composed of cancer cells without evidence for a partial EMT program, as assessed by our fate mapping approach. In contrast, metastatic cancer cells exhibiting a partial EMT program were restricted to isolated single cancer cells or micrometastases (3–5 cancer cells). Collectively, our studies identify large metastatic nodules with preserved epithelial phenotype and potentially unravel a novel metastasis program in PDAC.
Collapse
Affiliation(s)
- Yang Chen
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Valerie S LeBleu
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Julienne L Carstens
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hikaru Sugimoto
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiaofeng Zheng
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shruti Malasi
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dieter Saur
- Department of Medicine II Klinikum rechts der Isar, Technische Universität München, München, Germany.,German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Raghu Kalluri
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
112
|
Jia D, Li X, Bocci F, Tripathi S, Deng Y, Jolly MK, Onuchic JN, Levine H. Quantifying Cancer Epithelial-Mesenchymal Plasticity and its Association with Stemness and Immune Response. J Clin Med 2019; 8:E725. [PMID: 31121840 PMCID: PMC6572429 DOI: 10.3390/jcm8050725] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/14/2019] [Accepted: 05/20/2019] [Indexed: 12/19/2022] Open
Abstract
Cancer cells can acquire a spectrum of stable hybrid epithelial/mesenchymal (E/M) states during epithelial-mesenchymal transition (EMT). Cells in these hybrid E/M phenotypes often combine epithelial and mesenchymal features and tend to migrate collectively commonly as small clusters. Such collectively migrating cancer cells play a pivotal role in seeding metastases and their presence in cancer patients indicates an adverse prognostic factor. Moreover, cancer cells in hybrid E/M phenotypes tend to be more associated with stemness which endows them with tumor-initiation ability and therapy resistance. Most recently, cells undergoing EMT have been shown to promote immune suppression for better survival. A systematic understanding of the emergence of hybrid E/M phenotypes and the connection of EMT with stemness and immune suppression would contribute to more effective therapeutic strategies. In this review, we first discuss recent efforts combining theoretical and experimental approaches to elucidate mechanisms underlying EMT multi-stability (i.e., the existence of multiple stable phenotypes during EMT) and the properties of hybrid E/M phenotypes. Following we discuss non-cell-autonomous regulation of EMT by cell cooperation and extracellular matrix. Afterwards, we discuss various metrics that can be used to quantify EMT spectrum. We further describe possible mechanisms underlying the formation of clusters of circulating tumor cells. Last but not least, we summarize recent systems biology analysis of the role of EMT in the acquisition of stemness and immune suppression.
Collapse
Affiliation(s)
- Dongya Jia
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA.
| | - Xuefei Li
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA.
| | - Federico Bocci
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA.
- Department of Chemistry, Rice University, Houston, TX 77005, USA.
| | - Shubham Tripathi
- PhD Program in Systems, Synthetic, and Physical Biology, Rice University, Houston, TX 77005, USA.
| | - Youyuan Deng
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA.
- Applied Physics Graduate Program, Rice University, Houston, TX 77005, USA.
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India.
| | - José N Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA.
- Department of Chemistry, Rice University, Houston, TX 77005, USA.
- Department of Biosciences, Rice University, Houston, TX 77005, USA.
- Department of Physics and Astronomy, Rice University, Houston, TX 77005, USA.
| | - Herbert Levine
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA.
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA.
- Department of Physics, Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|
113
|
Lee J, Kim DH, Kim JH. Combined administration of naringenin and hesperetin with optimal ratio maximizes the anti-cancer effect in human pancreatic cancer via down regulation of FAK and p38 signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 58:152762. [PMID: 31005717 DOI: 10.1016/j.phymed.2018.11.022] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 11/16/2018] [Accepted: 11/17/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND We have previously reported the functional anti-cancer effects of the products of enzymatic hydrolysis of Citrus unshiu peel (εCUP) and fermented extraction of Citrus unshiu peel (ƒCUP) in human pancreatic cancer. Despite their different characteristics and effects, the underlying mechanism remains elusive. PURPOSE In this study, we further demonstrate the impact of ingredient contents of Citrus unshiu peel on the cancer's natural features. METHODS Anti-pancreatic cancer activities following combined treatment of naringenin and hesperetin were demonstrated in vitro and in vivo experiments. RESULTS Combined treatment with naringenin and hesperetin inhibited the growth of human pancreatic cancer cells (εCUP mimic condition, p < 0.001 for Miapaca-2 cells) through induction of caspase-3 cleavage compared to separate treatment with naringenin or hesperetin. Combined treatment with naringenin and hesperetin also inhibited the migration (εCUP mimic condition, p < 0.001 for Panc-1 cells) of human pancreatic cancer cells. The εCUP mimic condition had the most effective anti-cancer features; in contrast, which had no inhibitory effect on growth and migration of normal cells (HUVECs and Detroit551 cells). In addition, εCUP mimic condition inhibited the phosphorylation of focal adhesion kinase (FAK) and p38 signaling compared with separate treatment with naringenin or hesperetin. Of note, εCUP mimic condition showed a prominent anti-growth effect (p < 0.001) compared with control or ƒCUP mimic condition in vivo xenograft models. CONCLUSION These results suggest that combined treatment with naringenin and hesperetin might be a promising anti-cancer strategy for pancreatic cancers without eliciting toxicity on normal cells.
Collapse
Affiliation(s)
- Jungwhoi Lee
- Department of Biotechnology, College of Applied Life Science, SARI, Jeju National University, Jeju 63243, Republic of Korea; Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju 63243, Republic of Korea.
| | - Da-Hye Kim
- Department of Biotechnology, College of Applied Life Science, SARI, Jeju National University, Jeju 63243, Republic of Korea; Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju 63243, Republic of Korea
| | - Jae Hoon Kim
- Department of Biotechnology, College of Applied Life Science, SARI, Jeju National University, Jeju 63243, Republic of Korea; Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju 63243, Republic of Korea.
| |
Collapse
|
114
|
Varamo C, Peraldo-Neia C, Ostano P, Basiricò M, Raggi C, Bernabei P, Venesio T, Berrino E, Aglietta M, Leone F, Cavalloni G. Establishment and Characterization of a New Intrahepatic Cholangiocarcinoma Cell Line Resistant to Gemcitabine. Cancers (Basel) 2019; 11:cancers11040519. [PMID: 30979003 PMCID: PMC6520787 DOI: 10.3390/cancers11040519] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/05/2019] [Accepted: 04/07/2019] [Indexed: 12/19/2022] Open
Abstract
Intrahepatic cholangiocarcinoma (ICC) is one of the most lethal liver cancers. Late diagnosis and chemotherapy resistance contribute to the scarce outfit and poor survival. Resistance mechanisms are still poorly understood. Here, we established a Gemcitabine (GEM) resistant model, the MT-CHC01R1.5 cell line, obtained by a GEM gradual exposure (up to 1.5 µM) of the sensitive counterpart, MT-CHC01. GEM resistance was irreversible, even at high doses. The in vitro and in vivo growth was slower than MT-CHC01, and no differences were highlighted in terms of migration and invasion. Drug prediction analysis suggested that Paclitaxel and Doxycycline might overcome GEM resistance. Indeed, in vitro MT-CHC01R1.5 growth was reduced by Paclitaxel and Doxycycline. Importantly, Doxycycline pretreatment at very low doses restored GEM sensitivity. To assess molecular mechanisms underlying the acquisition of GEM resistance, a detailed analysis of the transcriptome in MT-CHC01R1.5 cells versus the corresponding parental counterpart was performed. Transcriptomic analysis showed that most up-regulated genes were involved in cell cycle regulation and in the DNA related process, while most down-regulated genes were involved in the response to stimuli, xenobiotic metabolism, and angiogenesis. Furthermore, additional panels of drug resistance and epithelial to mesenchymal transition genes (n = 168) were tested by qRT-PCR and the expression of 20 genes was affected. Next, based on a comparison between qRT-PCR and microarray data, a list of up-regulated genes in MT-CHC01R1.5 was selected and further confirmed in a primary cell culture obtained from an ICC patient resistant to GEM. In conclusion, we characterized a new GEM resistance ICC model that could be exploited either to study alternative mechanisms of resistance or to explore new therapies.
Collapse
Affiliation(s)
- Chiara Varamo
- Department of Oncology, University of Turin, 10100 Torino, Italy.
- Laboratory of Tumor Inflammation and Angiogenesis, Department of Oncology, Center for Cancer Biology, KU Leuven, B3000 Leuven, Belgium.
| | | | - Paola Ostano
- Cancer Genomics Lab, Fondazione Edo ed Elvo Tempia, 13900 Biella, Italy.
| | - Marco Basiricò
- Division of Medical Oncology, Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Torino, Italy.
| | - Chiara Raggi
- Center for Autoimmune Liver Diseases, Humanitas Clinical and Research Center, 20089 Rozzano, Italy.
- Dept. Medicina Sperimentale e Clinica, Università di Firenze, 50100 Florence, Italy.
| | - Paola Bernabei
- Flow Cytometry Center, Candiolo Cancer Institute FPO-IRCCS, 10060 Candiolo, Torino, Italy.
| | - Tiziana Venesio
- Molecular Pathology Lab, Unit of Pathology, Candiolo Cancer Institute FPO-IRCCS, 10060 Candiolo, Torino, Italy.
| | - Enrico Berrino
- Molecular Pathology Lab, Unit of Pathology, Candiolo Cancer Institute FPO-IRCCS, 10060 Candiolo, Torino, Italy.
- Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126 Turin, Italy.
| | - Massimo Aglietta
- Department of Oncology, University of Turin, 10100 Torino, Italy.
- Division of Medical Oncology, Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Torino, Italy.
| | - Francesco Leone
- Department of Oncology, University of Turin, 10100 Torino, Italy.
- Division of Medical Oncology, Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Torino, Italy.
| | - Giuliana Cavalloni
- Division of Medical Oncology, Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Torino, Italy.
| |
Collapse
|
115
|
Ordonez LD, Hay T, McEwen R, Polanska UM, Hughes A, Delpuech O, Cadogan E, Powell S, Dry J, Tornillo G, Silcock L, Leo E, O’Connor MJ, Clarke AR, Smalley MJ. Rapid activation of epithelial-mesenchymal transition drives PARP inhibitor resistance in Brca2-mutant mammary tumours. Oncotarget 2019; 10:2586-2606. [PMID: 31080552 PMCID: PMC6498996 DOI: 10.18632/oncotarget.26830] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 03/23/2019] [Indexed: 01/06/2023] Open
Abstract
Tumours defective in the DNA homologous recombination repair pathway can be effectively treated with poly (ADP-ribose) polymerase (PARP) inhibitors; these have proven effective in clinical trials in patients with BRCA gene function-defective cancers. However, resistance observed in both pre-clinical and clinical studies is likely to impact on this treatment strategy. Over-expression of phosphoglycoprotein (P-gp) has been previously suggested as a mechanism of resistance to the PARP inhibitor olaparib in mouse models of Brca1/2-mutant breast cancer. Here, we report that in a Brca2 model treated with olaparib, P-gp upregulation is observed but is not sufficient to confer resistance. Furthermore, resistant/relapsed tumours do not show substantial changes in PK/PD of olaparib, do not downregulate PARP1 or re-establish double stranded DNA break repair by homologous recombination, all previously suggested as mechanisms of resistance. However, resistance is strongly associated with epithelial-mesenchymal transition (EMT) and treatment-naïve tumours given a single dose of olaparib upregulate EMT markers within one hour. Therefore, in this model, olaparib resistance is likely a product of an as-yet unidentified mechanism associated with rapid transition to the mesenchymal phenotype.
Collapse
Affiliation(s)
- Liliana D. Ordonez
- European Cancer Stem Cell Research Institute, Cardiff University, Cardiff, UK
| | - Trevor Hay
- European Cancer Stem Cell Research Institute, Cardiff University, Cardiff, UK
| | - Robert McEwen
- Oncology, IMED Biotech Unit, AstraZeneca, Cambridge, UK
| | | | - Adina Hughes
- Oncology, IMED Biotech Unit, AstraZeneca, Cambridge, UK
| | - Oona Delpuech
- Oncology, IMED Biotech Unit, AstraZeneca, Cambridge, UK
| | | | - Steve Powell
- Oncology, IMED Biotech Unit, AstraZeneca, Cambridge, UK
| | - Jonathan Dry
- Oncology, IMED Biotech Unit, AstraZeneca, Waltham, MA, USA
| | - Giusy Tornillo
- European Cancer Stem Cell Research Institute, Cardiff University, Cardiff, UK
| | - Lucy Silcock
- European Cancer Stem Cell Research Institute, Cardiff University, Cardiff, UK
| | | | | | - Alan R. Clarke
- European Cancer Stem Cell Research Institute, Cardiff University, Cardiff, UK
- Posthumous authorship
| | - Matthew J. Smalley
- European Cancer Stem Cell Research Institute, Cardiff University, Cardiff, UK
| |
Collapse
|
116
|
Jiang X, Hou D, Wei Z, Zheng S, Zhang Y, Li J. Extracellular and intracellular microRNAs in pancreatic cancer: from early diagnosis to reducing chemoresistance. ACTA ACUST UNITED AC 2019. [DOI: 10.1186/s41544-019-0014-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
117
|
Sonbol MB, Ahn DH, Bekaii-Saab T. Therapeutic Targeting Strategies of Cancer Stem Cells in Gastrointestinal Malignancies. Biomedicines 2019; 7:biomedicines7010017. [PMID: 30857342 PMCID: PMC6466109 DOI: 10.3390/biomedicines7010017] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/04/2019] [Accepted: 03/09/2019] [Indexed: 01/05/2023] Open
Abstract
Cancer stem cells (CSCs) are thought to be a distinct population of cells within a tumor mass that are capable of asymmetric division and known to have chemoresistant characteristics. The description and identification of CSC models in cancer growth and recurrence has inspired the design of novel treatment strategies to overcome treatment resistance by targeting both CSCs and non-CSC tumor cells. Several cellular signaling pathways have been described as playing a role in the induction and maintenance of stemness in CSCs, such as the Wnt/β-catenin, Notch, STAT3, and Hedgehog pathways. In this review, we aim to review some of the ongoing CSC therapeutic targeting strategies in gastrointestinal malignancies.
Collapse
Affiliation(s)
| | - Daniel H Ahn
- Mayo Clinic Cancer Center, Mayo Clinic, Phoenix, AZ 85054, USA.
| | | |
Collapse
|
118
|
Huang R, Nie W, Yao K, Chou J. Depletion of the lncRNA RP11-567G11.1 inhibits pancreatic cancer progression. Biomed Pharmacother 2019; 112:108685. [PMID: 30802827 DOI: 10.1016/j.biopha.2019.108685] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 02/12/2019] [Accepted: 02/12/2019] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Pancreatic cancer is one of the most lethal malignancies, as demonstrated by its 5-year survival rate of less than 10%. The poor response of pancreatic cancer to conventional therapeutics, especially against cancer stem cells (CSCs), is the primary obstacle to improving patient survival. Emerging evidence indicates that the long non-coding RNA (lncRNA) RP11-567G11.1 is up-regulated in pancreatic cancer tissues and that its expression is associated with poor prognosis. This study aimed to elucidate the mechanism by which RP11-567G11.1 influences survival in pancreatic cancer. METHODS We evaluated the expression of RP11-567G11.1 in pancreatic cancer tissues via in situ hybridization. We also constructed RP11-567G11.1 knockdown cell models and used CCK8 and flow cytometry to detect the function of this lncRNA. Western blotting and qPCR were used to detect the expression levels of factors related to RP11-567G11.1. RESULTS The results illustrated that RP11-567G11.1 was significantly up-regulated in poorly differentiated pancreatic cancer tissues as compared to its expression in non-tumor tissues. Additionally, depletion of RP11-567G11.1 in pancreatic cancer cells inhibited proliferation and cell cycle progression, induced apoptosis, suppressed the stem cell-like phenotype, and increased sensitivity to gemcitabine. Also depletion of RP11-567G11.1 in pancreatic cancer cells inhibited factors downstream of the NOTCH signaling pathway. CONCLUSION RP11-567G11.1 plays a crucial role in pancreatic cancer. Importantly, depletion of RP11-567G11.1 boosts the sensitivity of pancreatic cancer cells to gemcitabine, suggesting that this lncRNA is a promising target for pancreatic cancer treatment.
Collapse
Affiliation(s)
- Ranglang Huang
- Department of General Surgery, The Third Xiangya Hospital of Central South University, China; Department of Anesthesia, The Third Xiangya Hospital of Central South University, China
| | - Wanpin Nie
- Department of General Surgery, The Third Xiangya Hospital of Central South University, China; Department of Anesthesia, The Third Xiangya Hospital of Central South University, China
| | - Kai Yao
- Department of General Surgery, The Third Xiangya Hospital of Central South University, China; Department of Anesthesia, The Third Xiangya Hospital of Central South University, China
| | - Jing Chou
- Department of General Surgery, The Third Xiangya Hospital of Central South University, China; Department of Anesthesia, The Third Xiangya Hospital of Central South University, China.
| |
Collapse
|
119
|
Bulle A, Dekervel J, Libbrecht L, Nittner D, Deschuttere L, Lambrecht D, Van Cutsem E, Verslype C, van Pelt J. Gemcitabine induces Epithelial-to-Mesenchymal Transition in patient-derived pancreatic ductal adenocarcinoma xenografts. Am J Transl Res 2019; 11:765-779. [PMID: 30899378 PMCID: PMC6413274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 12/23/2018] [Indexed: 06/09/2023]
Abstract
There is a lack of well-characterized models for pancreatic ductal adenocarcinoma (PDAC). PDAC itself is unique because of its pronounced tumor microenvironment that influences tumor progression, behavior and therapeutic resistance. Here we investigated, in patient-derived tumor xenograft (PDTX) models developed from fine needle biopsies, the cancer cells behavior, Epithelial-to-Mesenchymal Transition (EMT) and drug response. For this, we studied two behaviorally distinct PDTX models. Tumor volume measurement, histology, immuno-histochemical staining, RT-qPCR, RNA sequencing and Western blotting were used to further characterize these models and investigate the effect of two classes of drugs (gemcitabine and acriflavine (HIF-inhibitor)). The models recapitulated the corresponding primary tumors. The growth-rate of the poorly differentiated tumor (PAC010) was faster than that of the moderately differentiated tumor (PAC006) (P<0.05). The PAC010 model showed increased cell proliferation (Ki-67 staining) and markers indicating survival (increased p-AKT, p-ERK and p-NF-kB65 and suppression of cleaved PARP). Gene and protein analysis showed higher expression of mesenchymal markers in PAC010 model (e.g. VIM, SNAI2). Pathway analysis demonstrated activation of processes related to EMT, tumor progression and aggressiveness in PAC010. Gemcitabine treatment resulted in shrinking of the tumor volume and reduced proliferation in both models. Importantly, gemcitabine treatment significantly enhanced the expression of mesenchymal marker supportive of metastatic behavior and of survival pathways, particularly in the non-aggressive PAC006 model. Acriflavine had little effect on tumor growth in both models. In conclusion, we observed in this unique model of PDAC, a clear link between EMT and poor tumor differentiation and found that gemcitabine can increase EMT.
Collapse
Affiliation(s)
- Ashenafi Bulle
- Laboratory of Clinical Digestive Oncology, Department of Oncology, KU Leuven & University Hospitals Leuven and Leuven Cancer Institute (LKI)Leuven, Belgium
| | - Jeroen Dekervel
- Laboratory of Clinical Digestive Oncology, Department of Oncology, KU Leuven & University Hospitals Leuven and Leuven Cancer Institute (LKI)Leuven, Belgium
| | - Louis Libbrecht
- Department of Pathology, University Hospital Saint-LucBrussels, Belgium
| | - David Nittner
- Laboratory of Translational Genetics, Department of Oncology, KU Leuven and Vesalius Research Center for Cancer Biology, VIBLeuven, Belgium
| | - Lise Deschuttere
- Laboratory of Clinical Digestive Oncology, Department of Oncology, KU Leuven & University Hospitals Leuven and Leuven Cancer Institute (LKI)Leuven, Belgium
| | - Diether Lambrecht
- Laboratory of Translational Genetics, Department of Oncology, KU Leuven and Vesalius Research Center for Cancer Biology, VIBLeuven, Belgium
| | - Eric Van Cutsem
- Laboratory of Clinical Digestive Oncology, Department of Oncology, KU Leuven & University Hospitals Leuven and Leuven Cancer Institute (LKI)Leuven, Belgium
| | - Chris Verslype
- Laboratory of Clinical Digestive Oncology, Department of Oncology, KU Leuven & University Hospitals Leuven and Leuven Cancer Institute (LKI)Leuven, Belgium
| | - Jos van Pelt
- Laboratory of Clinical Digestive Oncology, Department of Oncology, KU Leuven & University Hospitals Leuven and Leuven Cancer Institute (LKI)Leuven, Belgium
| |
Collapse
|
120
|
Nozaki M, Yabuta N, Fukuzawa M, Mukai S, Okamoto A, Sasakura T, Fukushima K, Naito Y, Longmore GD, Nojima H. LATS1/2 kinases trigger self-renewal of cancer stem cells in aggressive oral cancer. Oncotarget 2019; 10:1014-1030. [PMID: 30800215 PMCID: PMC6383686 DOI: 10.18632/oncotarget.26583] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 12/27/2018] [Indexed: 12/20/2022] Open
Abstract
Cancer stem cells (CSCs), which play important roles in tumor initiation and progression, are resistant to many types of therapies. However, the regulatory mechanisms underlying CSC-specific properties, including self-renewal, are poorly understood. Here, we found that LATS1/2, the core Hippo pathway-kinases, were highly expressed in the oral squamous cell carcinoma line SAS, which exhibits high capacity of CSCs, and that depletion of these kinases prevented SAS cells from forming spheres under serum-free conditions. Detailed examination of the expression and activation of LATS kinases and related proteins over a time course of sphere formation revealed that LATS1/2 were more highly expressed and markedly activated before initiation of self-renewal. Moreover, TAZ, SNAIL, CHK1/2, and Aurora-A were expressed in hierarchical, oscillating patterns during sphere formation, suggesting that the process consists of four sequential steps. Our results indicate that LATS1/2 trigger self-renewal of CSCs by regulating the Hippo pathway, the EMT, and cell division.
Collapse
Affiliation(s)
- Masami Nozaki
- Department of Cell Biology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Norikazu Yabuta
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan.,Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Moe Fukuzawa
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Satomi Mukai
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan.,Division of Cancer Biology, Aichi Cancer Center Research Institute, Chikusa-ku, Nagoya City, Aichi 464-8681, Japan
| | - Ayumi Okamoto
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Towa Sasakura
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kohshiro Fukushima
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yoko Naito
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan.,Division of Cancer Cell Regulation, Aichi Cancer Center Research Institute, Chikusa-ku, Nagoya City, Aichi 464-8681, Japan
| | | | - Hiroshi Nojima
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
121
|
Liu J, Ke F, Cheng H, Zhou J. Traditional Chinese medicine as targeted treatment for epithelial-mesenchymal transition-induced cancer progression. J Cell Biochem 2019; 120:1068-1079. [PMID: 30431663 DOI: 10.1002/jcb.27588] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 08/08/2018] [Indexed: 01/24/2023]
Abstract
The epithelial-mesenchymal transition (EMT) program, which loosens cell-cell adhesion complexes, endows cells with enhanced migratory and invasive properties. Furthermore, this process facilitates both the development of drug resistance and immunosuppression by tumor cells, which preclude the successful treatment of cancer. Recent research has demonstrated that many signaling pathways are involved in EMT progression. In addition, cancer stem cells (CSCs), vasculogenic mimicry (VM) and the tumor-related immune microenvironment all play important roles in tumor formation. However, there are few reports on the relationships between EMT and these factors. In addition, in recent years, traditional Chinese medicine (TCM) has developed a unique system for treating cancer. In this review, we summarize the crucial signaling pathways associated with the EMT process in cancer patients and discuss the interconnections between EMT and other molecular factors (such as CSCs, VM, and the tumor-related immune microenvironment). We attempt to identify common regulators that might be potential therapeutic targets to thereby optimize tumor treatment. In addition, we outline recent research on TCM approaches that target EMT and thereby provide a foundation for further research on the exact mechanisms by which TCMs affect EMT in cancer.
Collapse
Affiliation(s)
- Jianrong Liu
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, China
| | - Fei Ke
- Department of Pathology, Jiangsu Province Hospital of TCM, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Haibo Cheng
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing, China
| | - Jinrong Zhou
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
122
|
Fu Y, Lu R, Cui J, Sun H, Yang H, Meng Q, Wu S, Aschner M, Li X, Chen R. Inhibition of ATP citrate lyase (ACLY) protects airway epithelia from PM 2.5-induced epithelial-mesenchymal transition. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 167:309-316. [PMID: 30343145 DOI: 10.1016/j.ecoenv.2018.10.033] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 10/03/2018] [Accepted: 10/10/2018] [Indexed: 05/05/2023]
Abstract
Epidemiological studies have associated ambient fine particulate matter (PM2.5) exposure with lung cancer, in which epithelial-mesenchymal transition (EMT) is an initial process. Thus, it is important to identify the key molecule or pathway involved in the PM2.5 induced EMT. Human bronchial epithelial (HBE) cells were exposed to PM2.5 (100 or 500 μg/ml) for 30 passages and analyzed by metabolomics to identify the alteration of metabolites related to PM2.5 exposure. The expression levels of EMT markers were evaluated by qRT-PCR and Western blot assays in HBE cells and murine lung tissues. Reduced epithelial markers, increased mesenchymal markers expression levels and increased capacity of metastasis were observed in PM2.5-exposed HBE cells. Metabolomics analysis suggested upregulation of citrate acid with fold change (FC) of 2.89 or 4.18 in 100 or 500 μg/ml PM2.5 treated HBE cells. For both of the in vitro and in vivo study, the up-regulation of ATP citrate lyase (ACLY) was confirmed following PM2.5 exposure. Importantly, ACLY knockdown in HBE cells reversed EMT, migration and invasion capacities in HBE cells induced by PM2.5. Taken together, our data suggest that inhibition of ACLY demonstrates a protection against PM2.5-induced EMT, providing a concern on the molecular mechanisms of PM2.5-associated pulmonary disorders.
Collapse
Affiliation(s)
- You Fu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; School of Continuing Education, Nanjing Medical University, Nanjing 211166, China
| | - Runze Lu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Jian Cui
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Hao Sun
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Hongbao Yang
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, China
| | - Qingtao Meng
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Shenshen Wu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Forchheimer 209, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Xiaobo Li
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Rui Chen
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 511436, China.
| |
Collapse
|
123
|
Ma L, Fan Z, Du G, Wang H. Leptin-elicited miRNA-342-3p potentiates gemcitabine resistance in pancreatic ductal adenocarcinoma. Biochem Biophys Res Commun 2019; 509:845-853. [PMID: 30638935 DOI: 10.1016/j.bbrc.2019.01.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 01/06/2019] [Indexed: 12/16/2022]
Abstract
Although obesity (characterized by high levels of serum leptin) and deregulated expression of miRNAs are both functionally implicated in the pathogenesis of chemoresistance of pancreatic ductal adenocarcinoma (PDAC), the mechanistic link synchronize these two factors remain poorly understood. Here, we show that expression levels of obesity-associated miR-342-3p were significantly upregulated in gemcitabine (GEM)-resistant PDAC tissues and cells, and this upregulation was associated with poor postchemotherapy prognosis. Using pharmacological approaches, we observed that crosstalk between leptin and Notch signaling pathways regulated fundamentally the miR-342-3p expression in GEM-resistant PDAC cells. Functionally, forced expression of miR-342-3p exhibited a prosurvival effect and potentiated GEM resistance, whereas inhibition of miR-342-3p expression noticeably ameliorated chemosensitivity in GEM-resistant PDAC cells. By employing bioinformatics analysis, point mutation and luciferase reporter assays, we further identified the 3'-UTR of tumor suppressor Krüppel-like factor 6 (KLF6) as the direct target of miR-342-3p. Therapeutically, stable expression of the exogenous KLF6 was sufficient to abrogate the pro-survival effects of miR-342-3p in GEM-treated PDAC cells. Taken together, these results suggest that leptin-elicited miR-342-3p upregulation mediates, at least partially, the GEM resistance through inhibition of KLF6 signaling in PDAC. Considering the indispensable function of miR-342-3p during adipogenesis, this obesity-associated miRNA may operate as a novel posttranscriptional integrator linking lipid homeostasis and pancreatic chemoresistance.
Collapse
Affiliation(s)
- Longyang Ma
- Department of Acute Care Surgery, Shaanxi Provincial People's Hospital, Xi'an, 710068, China
| | - Zhiyong Fan
- Department of Hepatobiliary Surgery, Shaanxi Provincial People's Hospital, Xi'an, 710068, China
| | - Gongliang Du
- Department of Acute Care Surgery, Shaanxi Provincial People's Hospital, Xi'an, 710068, China
| | - Hui Wang
- Department of Acute Care Surgery, Shaanxi Provincial People's Hospital, Xi'an, 710068, China.
| |
Collapse
|
124
|
Toward understanding cancer stem cell heterogeneity in the tumor microenvironment. Proc Natl Acad Sci U S A 2019; 116:148-157. [PMID: 30587589 PMCID: PMC6320545 DOI: 10.1073/pnas.1815345116] [Citation(s) in RCA: 214] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The epithelial-mesenchymal transition (EMT) and cancer stem cell (CSC) formation are two paramount processes driving tumor progression, therapy resistance, and cancer metastasis. Recent experiments show that cells with varying EMT and CSC phenotypes are spatially segregated in the primary tumor. The underlying mechanisms generating such spatiotemporal dynamics in the tumor microenvironment, however, remain largely unexplored. Here, we show through a mechanism-based dynamical model that the diffusion of EMT-inducing signals such as TGF-β, together with noncell autonomous control of EMT and CSC decision making via the Notch signaling pathway, can explain experimentally observed disparate localization of subsets of CSCs with varying EMT phenotypes in the tumor. Our simulations show that the more mesenchymal CSCs lie at the invasive edge, while the hybrid epithelial/mesenchymal (E/M) CSCs reside in the tumor interior. Further, motivated by the role of Notch-Jagged signaling in mediating EMT and stemness, we investigated the microenvironmental factors that promote Notch-Jagged signaling. We show that many inflammatory cytokines such as IL-6 that can promote Notch-Jagged signaling can (i) stabilize a hybrid E/M phenotype, (ii) increase the likelihood of spatial proximity of hybrid E/M cells, and (iii) expand the fraction of CSCs. To validate the predicted connection between Notch-Jagged signaling and stemness, we knocked down JAG1 in hybrid E/M SUM149 human breast cancer cells in vitro. JAG1 knockdown significantly restricted tumor organoid formation, confirming the key role that Notch-Jagged signaling can play in tumor progression. Together, our integrated computational-experimental framework reveals the underlying principles of spatiotemporal dynamics of EMT and CSCs.
Collapse
|
125
|
Mu W, Wang Z, Zöller M. Ping-Pong-Tumor and Host in Pancreatic Cancer Progression. Front Oncol 2019; 9:1359. [PMID: 31921628 PMCID: PMC6927459 DOI: 10.3389/fonc.2019.01359] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 11/18/2019] [Indexed: 12/12/2022] Open
Abstract
Metastasis is the main cause of high pancreatic cancer (PaCa) mortality and trials dampening PaCa mortality rates are not satisfying. Tumor progression is driven by the crosstalk between tumor cells, predominantly cancer-initiating cells (CIC), and surrounding cells and tissues as well as distant organs, where tumor-derived extracellular vesicles (TEX) are of major importance. A strong stroma reaction, recruitment of immunosuppressive leukocytes, perineural invasion, and early spread toward the peritoneal cavity, liver, and lung are shared with several epithelial cell-derived cancer, but are most prominent in PaCa. Here, we report on the state of knowledge on the PaCIC markers Tspan8, alpha6beta4, CD44v6, CXCR4, LRP5/6, LRG5, claudin7, EpCAM, and CD133, which all, but at different steps, are engaged in the metastatic cascade, frequently via PaCIC-TEX. This includes the contribution of PaCIC markers to TEX biogenesis, targeting, and uptake. We then discuss PaCa-selective features, where feedback loops between stromal elements and tumor cells, including distorted transcription, signal transduction, and metabolic shifts, establish vicious circles. For the latter particularly pancreatic stellate cells (PSC) are responsible, furnishing PaCa to cope with poor angiogenesis-promoted hypoxia by metabolic shifts and direct nutrient transfer via vesicles. Furthermore, nerves including Schwann cells deliver a large range of tumor cell attracting factors and Schwann cells additionally support PaCa cell survival by signaling receptor binding. PSC, tumor-associated macrophages, and components of the dysplastic stroma contribute to perineural invasion with signaling pathway activation including the cholinergic system. Last, PaCa aggressiveness is strongly assisted by the immune system. Although rich in immune cells, only immunosuppressive cells and factors are recovered in proximity to tumor cells and hamper effector immune cells entering the tumor stroma. Besides a paucity of immunostimulatory factors and receptors, immunosuppressive cytokines, myeloid-derived suppressor cells, regulatory T-cells, and M2 macrophages as well as PSC actively inhibit effector cell activation. This accounts for NK cells of the non-adaptive and cytotoxic T-cells of the adaptive immune system. We anticipate further deciphering the molecular background of these recently unraveled intermingled phenomena may turn most lethal PaCa into a curatively treatable disease.
Collapse
Affiliation(s)
- Wei Mu
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Wei Mu
| | - Zhe Wang
- Department of Oncology, The First Affiliated Hospital of Guangdong, Pharmaceutical University, Guangzhou, China
| | - Margot Zöller
- Department of Oncology, The First Affiliated Hospital of Guangdong, Pharmaceutical University, Guangzhou, China
| |
Collapse
|
126
|
Abstract
OBJECTIVES Epithelial-mesenchymal transition (EMT) plays an important role in the progression, metastasis, and chemoresistance of pancreatic duct adenocarcinoma (PDAC); however, the expression of EMT markers and their clinical significance in PDAC patients who received neoadjuvant therapy (NAT) are unclear. METHODS We examined the expression of EMT markers, including Zeb-1 (zinc finger E-box-binding homeobox 1), E-cadherin, and vimentin by immunohistochemistry in 120 PDAC patients who received NAT and pancreatectomy from 1999 to 2007. The results were correlated with clinicopathologic parameters and survival. RESULTS Among 120 cases, 45 (37.5%) and 14 (11.7%) were positive for Zeb-1 and vimentin, respectively, and 25 (20.8%) were E-cadherin-low. The median overall survival and disease-free survival were 35.3 (standard deviation [SD], 2.8) and 15.9 (SD, 3.6) months, respectively, in vimentin-negative group compared with 16.1 (SD, 1.1) (P = 0.03) and 7.0 (SD, 1.1) months (P = 0.02) in the vimentin-positive group. In multivariate analysis, vimentin expression was an independent predictor of shorter disease-free survival (hazard ratio, 2.50; 95% confidence interval, 1.31-4.78; P = 0.016) and overall survival (hazard ratio, 2.55; 95% confidence interval, 1.33-4.89; P = 0.01). CONCLUSIONS Epithelial-mesenchymal transition markers are frequently expressed in treated PDAC. Vimentin expression is a prognostic biomarker for survival in PDAC patients who received NAT.
Collapse
|
127
|
Swayden M, Iovanna J, Soubeyran P. Pancreatic cancer chemo-resistance is driven by tumor phenotype rather than tumor genotype. Heliyon 2018; 4:e01055. [PMID: 30582059 PMCID: PMC6299038 DOI: 10.1016/j.heliyon.2018.e01055] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 09/28/2018] [Accepted: 12/12/2018] [Indexed: 12/12/2022] Open
Abstract
Pancreatic Ductal Adenocarcinoma (PDAC) is one of the deadliest forms of cancer. A major reason for this situation is the fact that these tumors are already resistant or become rapidly resistant to all conventional therapies. Like any transformation process, initiation and development of PDCA are driven by a well known panel of genetic alterations, few of them are shared with most cancers, but many mutations are specific to PDAC and are partially responsible for the great inter-tumor heterogeneity. Importantly, this knowledge has been inefficient in predicting response to anticancer therapy, or in establishing diagnosis and prognosis. Hence, the pre-existing or rapidly acquired resistance of pancreatic cancer cells to therapeutic drugs rely on other parameters and features developed by the cells and/or the micro-environment, that are independent of their genetic profiles. This review sheds light on all major phenotypic, non genetic, alterations known to play important roles in PDAC cells resistance to treatments and therapeutic escape.
Collapse
Affiliation(s)
| | | | - Philippe Soubeyran
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| |
Collapse
|
128
|
Wang H, Unternaehrer JJ. Epithelial-mesenchymal Transition and Cancer Stem Cells: At the Crossroads of Differentiation and Dedifferentiation. Dev Dyn 2018; 248:10-20. [DOI: 10.1002/dvdy.24678] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 05/29/2018] [Accepted: 09/27/2018] [Indexed: 12/12/2022] Open
Affiliation(s)
- Hanmin Wang
- Division of Biochemistry, Department of Basic Sciences; Loma Linda University; Loma Linda California
| | - Juli J. Unternaehrer
- Division of Biochemistry, Department of Basic Sciences; Loma Linda University; Loma Linda California
| |
Collapse
|
129
|
Awasthi S, Singhal SS, Singhal J, Nagaprashantha L, Li H, Yuan YC, Liu Z, Berz D, Igid H, Green WC, Tijani L, Tonk V, Rajan A, Awasthi Y, Singh SP. Anticancer activity of 2'-hydroxyflavanone towards lung cancer. Oncotarget 2018; 9:36202-36219. [PMID: 30546837 PMCID: PMC6281421 DOI: 10.18632/oncotarget.26329] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 10/21/2018] [Indexed: 12/12/2022] Open
Abstract
In previous studies, we found that 2'-hydroxyflavonone (2HF), a citrus flavonoid, inhibits the growth of renal cell carcinoma in a VHL-dependent manner. This was associated with the inhibition of glutathione S-transferases (GSTs), the first step enzyme of the mercapturic acid pathway that catalyzes formation of glutathione-electrophile conjugates (GS-E). We studied 2HF in small cell (SCLC) and non-small cell (NSCLC) lung cancer cell lines for sensitivity to 2HF antineoplastic activity and to determine the role of the GS-E transporter Rlip (Ral-interacting protein; RLIP76; RALBP1) in the mechanism of action of 2HF. Our results show that 2HF induced apoptosis in both histological types of lung cancer and inhibited proliferation and growth through suppression of CDK4, CCNB1, PIK3CA, AKT and RPS6KB1 (P70S6K) signaling. Increased E-cadherin and reduced fibronectin and vimentin indicated inhibition of epithelial-mesenchymal transition. Additionally, 2HF inhibited efflux of doxorubicin and increased its accumulation in the cells, but did not add to the transport inhibitory effect of anti-Rlip antibodies alone. Binding of Rlip to 2HF was evident from successful purification of Rlip by 2HF affinity chromatography. Consistent with increased drug accumulation, combined treatment with 1-chloro-2, 4-dinitrobenzene, reduced the GI50 of 2HF by an order of magnitude. Results of in-vivo nude mouse xenograft studies of SCLC and NSCLC, which showed that orally administered 2HF inhibited growth of both histological types of lung cancer, confirmed in-vitro study results. Our result suggest that Rlip inhibition is likely a mechanism of action. Our findings are basis of proposing 2HF as therapeutic or preventative drug for lung cancer.
Collapse
Affiliation(s)
- Sanjay Awasthi
- Division of Hematology and Oncology, Department of Internal Medicine, Texas Tech Health Sciences Center, Lubbock, TX 79430, USA
| | - Sharad S. Singhal
- Department of Medical Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Jyotsana Singhal
- Department of Medical Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Lokesh Nagaprashantha
- Department of Medical Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Hongzhi Li
- Bioinformatics Core Facility, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Yate-Ching Yuan
- Bioinformatics Core Facility, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Zheng Liu
- Bioinformatics Core Facility, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - David Berz
- Beverly Hills Cancer Center, Los Angeles, CA 90211, USA
| | - Henry Igid
- Division of Hematology and Oncology, Department of Internal Medicine, Texas Tech Health Sciences Center, Lubbock, TX 79430, USA
| | - William C. Green
- Division of Hematology and Oncology, Department of Internal Medicine, Texas Tech Health Sciences Center, Lubbock, TX 79430, USA
| | - Lukman Tijani
- Division of Hematology and Oncology, Department of Internal Medicine, Texas Tech Health Sciences Center, Lubbock, TX 79430, USA
| | - Vijay Tonk
- Department of Pediatrics, Texas Tech Health Sciences Center, Lubbock, TX 79430, USA
| | - Aditya Rajan
- Division of Hematology and Oncology, Department of Internal Medicine, Texas Tech Health Sciences Center, Lubbock, TX 79430, USA
| | - Yogesh Awasthi
- Department of Biochemistry and Molecular Biology, the University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Sharda P. Singh
- Division of Hematology and Oncology, Department of Internal Medicine, Texas Tech Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
130
|
Pancreatic Cancer and Obesity: Molecular Mechanisms of Cell Transformation and Chemoresistance. Int J Mol Sci 2018; 19:ijms19113331. [PMID: 30366466 PMCID: PMC6274743 DOI: 10.3390/ijms19113331] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 09/27/2018] [Accepted: 10/22/2018] [Indexed: 12/14/2022] Open
Abstract
Cancer and obesity are the two major epidemics of the 21st century. Pancreatic ductal adenocarcinoma (PDAC) is one of the leading causes of death, with a five-year overall survival rate of only 8%. Its incidence and mortality have increased in recent years, and this cancer type is expected to be among the top five leading causes of cancer-related death by 2030 in the United States (US). In the last three decades, the prevalence of overweight people has boosted with a consequent increase in obesity-related diseases. Considerable epidemiologic evidence correlates overweight and obese conditions to an increased risk of several types of cancer, including PDAC. Besides being a risk factor for multiple metabolic disorders, the tumor-promoting effects of obesity occur at the local level via inflammatory mediators that are associated with adipose inflammation and metabolic or hormones mediators and microbiota dysbiosis. Although an excess of body mass index (BMI) represents the second most modifiable risk factor for PDAC with an increased cancer related-death of more than 20–40%, still little is known about the molecular mechanisms that underlie this strong association. In this review, we focused on the role of obesity as a preventable risk factor of PDAC, discussing the molecular mechanisms linking obesity to cancer initiation and progression. Moreover, we highlighted the role of obesity in defining chemoresistance, showing how a high BMI can actually reduce response to chemotherapy.
Collapse
|
131
|
Wang M, Qiu R, Yu S, Xu X, Li G, Gu R, Tan C, Zhu W, Shen B. Paclitaxel‑resistant gastric cancer MGC‑803 cells promote epithelial‑to‑mesenchymal transition and chemoresistance in paclitaxel‑sensitive cells via exosomal delivery of miR‑155‑5p. Int J Oncol 2018; 54:326-338. [PMID: 30365045 PMCID: PMC6254863 DOI: 10.3892/ijo.2018.4601] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 09/26/2018] [Indexed: 01/06/2023] Open
Abstract
Paclitaxel is a first-line chemotherapeutic agent for gastric cancer; however, resistance limits its effectiveness. Investigation into the underlying mechanisms of paclitaxel resistance is urgently required. In the present study, a paclitaxel-resistant gastric cancer cell line (MGC-803R) was generated with a morphological phenotype of epithelial-to-mesenchymal transition (EMT) and increased expression levels of microRNA (miR)-155-5p. MGC-803R cell-derived exosomes were effectively taken up by paclitaxel-sensitive MGC-803S cells, which exhibited EMT and chemoresistance phenotypes. miR-155-5p was enriched in MGC-803R-exosomes and could be delivered into MGC-803S cells. miR-155-5p overexpression in MGC-803S cells via transfection with mimics resulted in similar phenotypic effects as treatment with MGC-803R exosome and increased miR-155-5p content in MGC-803S exosomes, which then capable of inducing the malignant phenotype in the sensitive cells. GATA binding protein 3 (GATA3) and tumor protein p53-inducible nuclear protein 1 (TP53INP1) were identified as targets of miR-155-5p. Exosomal miR-155-5p inhibited these targets by directly targeting their 3′ untranslated regions. Knockdown of miR-155-5p was observed to reverse the EMT and chemoresistant phenotypes of MGC-803R cells, potentially via GATA3 and TP53INP1 upregulation, which inhibited MGC-803R-exosomes from inducing the malignant phenotype. These results demonstrated that exosomal delivery of miR-155-5p may induce EMT and chemoresistant phenotypes from paclitaxel-resistant gastric cancer cells to the sensitive cells, which may be mediated by GATA3 and TP53INP1 suppression. Targeting miR-155-5p may thus be a promising strategy to overcome paclitaxel resistance in gastric cancer.
Collapse
Affiliation(s)
- Mei Wang
- Department of Oncology, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu 210009, P.R. China
| | - Rong Qiu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Shaorong Yu
- Department of Oncology, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu 210009, P.R. China
| | - Xiaoyue Xu
- Department of Oncology, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu 210009, P.R. China
| | - Gang Li
- Department of Oncology, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu 210009, P.R. China
| | - Rongmin Gu
- Department of Oncology, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu 210009, P.R. China
| | - Caihong Tan
- Department of Pharmacy, The Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Wei Zhu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Bo Shen
- Department of Oncology, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu 210009, P.R. China
| |
Collapse
|
132
|
Liu X, Han X, Wan X, He C, Wang Y, Mao A, Yu F, Zhou T, Feng L, Zhang P, Jin J, Ma X. SPZ1 is critical for chemoresistance and aggressiveness in drug-resistant breast cancer cells. Biochem Pharmacol 2018; 156:43-51. [PMID: 30076850 DOI: 10.1016/j.bcp.2018.07.046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 07/31/2018] [Indexed: 12/24/2022]
Abstract
It is believed that chemotherapeutic agents can enhance the malignancy of treated cancer cells in clinical situations, which is a major problem for chemotherapy. However, the underlying molecular mechanisms are still not fully understood. Here, we demonstrated that chemotherapy up-regulates the levels of spermatogenic bHLH transcription factor zip 1 (SPZ1), and knockdown of SPZ1 in drug resistant breast cancers showed that SPZ1 is critical for regulating the chemoresistance, migration, invasion and epithelial-mesenchymal transition (EMT) in a Twist1-dependent manner. Moreover, suppressing SPZ1-Twist1 axis decreased the growth of tumor xenografts. Notably, we found a positive correlation between SPZ1 and Twist1 in breast cancer samples from patients with anthracycline or taxane-based chemotherapy. Thus, our results revealed a novel role of SPZ1 as an inducer of chemoresistance and aggressiveness under chemotherapy, and this suggests that therapeutic targeting of SPZ1 may not only enhance the sensitivity of breast cancer to chemotherapy, but also suppress breast cancer invasion and metastases.
Collapse
Affiliation(s)
- Xiaoyu Liu
- School of Medicine and School of Pharmaceutical Sciences, Jiangnan University, Wuxi, China; School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiping Han
- School of Medicine and School of Pharmaceutical Sciences, Jiangnan University, Wuxi, China
| | - Xu Wan
- School of Medicine and School of Pharmaceutical Sciences, Jiangnan University, Wuxi, China
| | - Chao He
- Department of Emergency and Critical Care, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Yan Wang
- Key Laboratory of Cardiovascular Medicine and Clinical Pharmacology of Shanxi Province, Taiyuan, China
| | - Aiqin Mao
- School of Medicine and School of Pharmaceutical Sciences, Jiangnan University, Wuxi, China
| | - Fan Yu
- School of Medicine and School of Pharmaceutical Sciences, Jiangnan University, Wuxi, China
| | - Tingting Zhou
- School of Medicine and School of Pharmaceutical Sciences, Jiangnan University, Wuxi, China
| | - Lei Feng
- School of Medicine and School of Pharmaceutical Sciences, Jiangnan University, Wuxi, China
| | - Peng Zhang
- School of Medicine and School of Pharmaceutical Sciences, Jiangnan University, Wuxi, China.
| | - Jian Jin
- School of Medicine and School of Pharmaceutical Sciences, Jiangnan University, Wuxi, China.
| | - Xin Ma
- School of Medicine and School of Pharmaceutical Sciences, Jiangnan University, Wuxi, China.
| |
Collapse
|
133
|
Jolly MK, Somarelli JA, Sheth M, Biddle A, Tripathi SC, Armstrong AJ, Hanash SM, Bapat SA, Rangarajan A, Levine H. Hybrid epithelial/mesenchymal phenotypes promote metastasis and therapy resistance across carcinomas. Pharmacol Ther 2018; 194:161-184. [PMID: 30268772 DOI: 10.1016/j.pharmthera.2018.09.007] [Citation(s) in RCA: 224] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cancer metastasis and therapy resistance are the major unsolved clinical challenges, and account for nearly all cancer-related deaths. Both metastasis and therapy resistance are fueled by epithelial plasticity, the reversible phenotypic transitions between epithelial and mesenchymal phenotypes, including epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET). EMT and MET have been largely considered as binary processes, where cells detach from the primary tumor as individual units with many, if not all, traits of a mesenchymal cell (EMT) and then convert back to being epithelial (MET). However, recent studies have demonstrated that cells can metastasize in ways alternative to traditional EMT paradigm; for example, they can detach as clusters, and/or occupy one or more stable hybrid epithelial/mesenchymal (E/M) phenotypes that can be the end point of a transition. Such hybrid E/M cells can integrate various epithelial and mesenchymal traits and markers, facilitating collective cell migration. Furthermore, these hybrid E/M cells may possess higher tumor-initiation and metastatic potential as compared to cells on either end of the EMT spectrum. Here, we review in silico, in vitro, in vivo and clinical evidence for the existence of one or more hybrid E/M phenotype(s) in multiple carcinomas, and discuss their implications in tumor-initiation, tumor relapse, therapy resistance, and metastasis. Together, these studies drive the emerging notion that cells in a hybrid E/M phenotype may occupy 'metastatic sweet spot' in multiple subtypes of carcinomas, and pathways linked to this (these) hybrid E/M state(s) may be relevant as prognostic biomarkers as well as a promising therapeutic targets.
Collapse
Affiliation(s)
- Mohit Kumar Jolly
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA.
| | - Jason A Somarelli
- Duke Cancer Institute and Department of Medicine, Duke University Medical Center, Durham, USA
| | - Maya Sheth
- Duke Cancer Institute and Department of Medicine, Duke University Medical Center, Durham, USA
| | - Adrian Biddle
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Satyendra C Tripathi
- Department of Clinical Cancer Prevention, UT MD Anderson Cancer Center, Houston, USA
| | - Andrew J Armstrong
- Duke Cancer Institute and Department of Medicine, Duke University Medical Center, Durham, USA
| | - Samir M Hanash
- Department of Clinical Cancer Prevention, UT MD Anderson Cancer Center, Houston, USA
| | - Sharmila A Bapat
- National Center for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune, India
| | - Annapoorni Rangarajan
- Department of Molecular Reproduction, Development & Genetics, Indian Institute of Science, Bangalore, India
| | - Herbert Levine
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA.
| |
Collapse
|
134
|
Miyatake Y, Kuribayashi-Shigetomi K, Ohta Y, Ikeshita S, Subagyo A, Sueoka K, Kakugo A, Amano M, Takahashi T, Okajima T, Kasahara M. Visualising the dynamics of live pancreatic microtumours self-organised through cell-in-cell invasion. Sci Rep 2018; 8:14054. [PMID: 30232338 PMCID: PMC6145923 DOI: 10.1038/s41598-018-32122-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 09/03/2018] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) reportedly progresses very rapidly through the initial carcinogenesis stages including DNA damage and disordered cell death. However, such oncogenic mechanisms are largely studied through observational diagnostic methods, partly because of a lack of live in vitro tumour imaging techniques. Here we demonstrate a simple live-tumour in vitro imaging technique using micro-patterned plates (micro/nanoplates) that allows dynamic visualisation of PDAC microtumours. When PDAC cells were cultured on a micro/nanoplate overnight, the cells self-organised into non-spheroidal microtumours that were anchored to the micro/nanoplate through cell-in-cell invasion. This self-organisation was only efficiently induced in small-diameter rough microislands. Using a time-lapse imaging system, we found that PDAC microtumours actively stretched to catch dead cell debris via filo/lamellipoedia and suction, suggesting that they have a sophisticated survival strategy (analogous to that of starving animals), which implies a context for the development of possible therapies for PDACs. The simple tumour imaging system visualises a potential of PDAC cells, in which the aggressive tumour dynamics reminds us of the need to review traditional PDAC pathogenesis.
Collapse
Affiliation(s)
- Yukiko Miyatake
- Department of Pathology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan.
| | - Kaori Kuribayashi-Shigetomi
- Institute for the Advancement of Higher Education, Hokkaido University, Sapporo, Japan.
- Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Japan.
| | - Yusuke Ohta
- Department of Pathology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Shunji Ikeshita
- Department of Pathology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Agus Subagyo
- Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Japan
- Creative Research Institution Sousei, Hokkaido University, Sapporo, Japan
| | - Kazuhisa Sueoka
- Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Japan
| | - Akira Kakugo
- Faculty of Science, Hokkaido University, Sapporo, Japan
| | - Maho Amano
- Research Development Section, Hokkaido University, Sapporo, Japan
| | | | - Takaharu Okajima
- Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Japan
| | - Masanori Kasahara
- Department of Pathology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
135
|
Zhang QA, Yang XH, Chen D, Yan X, Jing FC, Liu HQ, Zhang R. miR-34 increases in vitro PANC-1 cell sensitivity to gemcitabine via targeting Slug/PUMA. Cancer Biomark 2018; 21:755-762. [PMID: 29355113 DOI: 10.3233/cbm-170289] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
miR-34 was deregulated in tumor tissues compared with corresponding noncancerous tissue samples. Furthermore, miR-34 may contribute to cancer-stromal interaction associated with cancer progression. However, whether miR-34 could decrease chemoresistance of cancer cells to chemotherapeutic agent remains unclear. In our study, we examined whether overexpression of miR-34 could sensitize gemcitabine -mediated apoptosis in human pancreatic cancer PANC-1 cells. We found that miR-34 markedly induced gemcitabine -mediated apoptosis in PANC-1 cells. miR-34 induced down-regulation of Slug expression and upregulation of p53 up-regulated modulator of apoptosis (PUMA) expression. The over-expression of Slug or downregulation of PUMA by Slug cDNA or PUMA siRNA transfection markedly blocked miR-34-induced gemcitabine sensitization. Furthermore, miR-34 induced PUMA expression by downregulation of Slug. Taken together, our study demonstrates that miR-34 enhances sensitization against gemcitabine-mediated apoptosis through the down-regulation of Slug expression, and up-regulation of Slug-dependent PUMA expression.
Collapse
Affiliation(s)
- Qing-An Zhang
- Department of Clinical Laboratory, The Central Hospital of Linyi, Yishui, Shandong, China.,Department of Clinical Laboratory, The Central Hospital of Linyi, Yishui, Shandong, China
| | - Xu-Hai Yang
- Department of Oncology, Yantaiyuhuangding Hospital, Yantai, Shandong, China
| | - Dong Chen
- Department of General Surgery, The Affiliated Hospital of Qingdao University, Qingdao,Shandong, China
| | - Xiang Yan
- Department of Oncology, Yantaiyuhuangding Hospital, Yantai, Shandong, China
| | - Fu-Chun Jing
- Department of Gastroenterology, Taian Central Hospital, Taian, Shandong, China
| | - Hong-Qian Liu
- Department Pharmacy, The Central Hospital of Linyi, Yishui, Shandong, China
| | - Ronghua Zhang
- Department of Clinical Laboratory, The Central Hospital of Linyi, Yishui, Shandong, China
| |
Collapse
|
136
|
Micropillar-based culture platform induces epithelial-mesenchymal transition in the alveolar epithelial cell line. J Biomed Mater Res A 2018; 106:3165-3174. [DOI: 10.1002/jbm.a.36511] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 07/01/2018] [Accepted: 07/12/2018] [Indexed: 12/20/2022]
|
137
|
Kurata T, Fushida S, Kinoshita J, Oyama K, Yamaguchi T, Okazaki M, Miyashita T, Tajima H, Ninomiya I, Ohta T. Low-dose eribulin mesylate exerts antitumor effects in gastric cancer by inhibiting fibrosis via the suppression of epithelial-mesenchymal transition and acts synergistically with 5-fluorouracil. Cancer Manag Res 2018; 10:2729-2742. [PMID: 30147370 PMCID: PMC6101023 DOI: 10.2147/cmar.s167846] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background Characterized by aggressive proliferation, extensive stromal fibrosis, and resulting drug resistance, peritoneal dissemination in gastric cancer remains associated with poor prognosis. Interaction between cancer and stromal cells accelerates tumor progression via epithelial–mesenchymal transition (EMT), which is one of the major causes of tissue fibrosis, and human peritoneal mesothelial cells (HPMCs) play important roles as cancer stroma in peritoneal dissemination. Transforming growth factor-β (TGF-β) has a pivotal function in the progression of EMT, and Smad proteins play an important role in the TGF-β signaling pathway. Eribulin mesylate (eribulin), a nontaxane microtubule dynamics inhibitor used for the treatment of advanced breast cancer, inhibits EMT changes in triple-negative breast cancer cells. We examined its ability to inhibit tumor progression and EMT changes resulting from the interaction between gastric cancer cells and HPMCs and to act synergistically with 5-fluorouracil (5-FU), a key drug for gastric cancer. Materials and methods Proliferation of gastric cancer cells and HPMCs isolated from healthy omentum was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Following gastric cancer cell/HPMC coculture, EMT markers were detected by immunofluorescence, immunohistochemistry, and Western blotting; invasion assays were performed; and TGF-β and Smad phosphorylation were assessed by Western blotting and enzyme-linked immunosorbent assay. A mouse fibrotic tumor xenograft model was established using gastric cancer cell/HPMC cocultures. The effect of eribulin and/or 5-FU was tested in each case. Results Eribulin significantly suppressed gastric cancer cell proliferation and EMT changes in MKN-45 gastric cancer cells and HPMCs induced by their interaction in vitro. Eribulin inhibited EMT at much lower concentrations (≥0.5 nM for MKN-45 and ≥0.1 nM for HPMCs) than its half maximal inhibitory concentrations (2.2 nM for MKN-45 and 8.1 nM for HPMCs), and this resulted, at least partly, from the downregulation of TGF-β/Smad signaling. Eribulin administration of ≥0.1 mg/kg suppressed tumor progression (0.1 mg/kg, p=0.02), and fibrosis was inhibited by lower dose (0.05 mg/kg, p=0.008) in the xenograft model. Furthermore, 0.05 mg/kg administration with 5-FU brought about synergistic antitumor effects (p=0.006). Conclusion Low-dose eribulin combined with 5-FU might be a promising therapy for peritoneal dissemination in gastric cancer.
Collapse
Affiliation(s)
- Toru Kurata
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan,
| | - Sachio Fushida
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan,
| | - Jun Kinoshita
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan,
| | - Katsunobu Oyama
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan,
| | - Takahisa Yamaguchi
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan,
| | - Mitsuyoshi Okazaki
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan,
| | - Tomoharu Miyashita
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan,
| | - Hidehiro Tajima
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan,
| | - Itasu Ninomiya
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan,
| | - Tetsuo Ohta
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan,
| |
Collapse
|
138
|
Abel EV, Goto M, Magnuson B, Abraham S, Ramanathan N, Hotaling E, Alaniz AA, Kumar-Sinha C, Dziubinski ML, Urs S, Wang L, Shi J, Waghray M, Ljungman M, Crawford HC, Simeone DM. HNF1A is a novel oncogene that regulates human pancreatic cancer stem cell properties. eLife 2018; 7:e33947. [PMID: 30074477 PMCID: PMC6122955 DOI: 10.7554/elife.33947] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 08/01/2018] [Indexed: 12/20/2022] Open
Abstract
The biological properties of pancreatic cancer stem cells (PCSCs) remain incompletely defined and the central regulators are unknown. By bioinformatic analysis of a human PCSC-enriched gene signature, we identified the transcription factor HNF1A as a putative central regulator of PCSC function. Levels of HNF1A and its target genes were found to be elevated in PCSCs and tumorspheres, and depletion of HNF1A resulted in growth inhibition, apoptosis, impaired tumorsphere formation, decreased PCSC marker expression, and downregulation of POU5F1/OCT4 expression. Conversely, HNF1A overexpression increased PCSC marker expression and tumorsphere formation in pancreatic cancer cells and drove pancreatic ductal adenocarcinoma (PDA) cell growth. Importantly, depletion of HNF1A in xenografts impaired tumor growth and depleted PCSC marker-positive cells in vivo. Finally, we established an HNF1A-dependent gene signature in PDA cells that significantly correlated with reduced survivability in patients. These findings identify HNF1A as a central transcriptional regulator of PCSC properties and novel oncogene in PDA.
Collapse
Affiliation(s)
- Ethan V Abel
- Department of Molecular and Integrative PhysiologyUniversity of Michigan Health SystemAnn ArborUnited States
- Translational Oncology ProgramUniversity of Michigan Health SystemAnn ArborUnited States
| | - Masashi Goto
- Translational Oncology ProgramUniversity of Michigan Health SystemAnn ArborUnited States
| | - Brian Magnuson
- Translational Oncology ProgramUniversity of Michigan Health SystemAnn ArborUnited States
- Department of Biostatistics, School of Public HealthUniversity of Michigan Health SystemAnn ArborUnited States
| | - Saji Abraham
- Translational Oncology ProgramUniversity of Michigan Health SystemAnn ArborUnited States
| | - Nikita Ramanathan
- Translational Oncology ProgramUniversity of Michigan Health SystemAnn ArborUnited States
| | - Emily Hotaling
- Translational Oncology ProgramUniversity of Michigan Health SystemAnn ArborUnited States
| | - Anthony A Alaniz
- Translational Oncology ProgramUniversity of Michigan Health SystemAnn ArborUnited States
| | - Chandan Kumar-Sinha
- Department of PathologyUniversity of Michigan Health SystemAnn ArborUnited States
| | - Michele L Dziubinski
- Department of Molecular and Integrative PhysiologyUniversity of Michigan Health SystemAnn ArborUnited States
- Translational Oncology ProgramUniversity of Michigan Health SystemAnn ArborUnited States
| | - Sumithra Urs
- Translational Oncology ProgramUniversity of Michigan Health SystemAnn ArborUnited States
| | - Lidong Wang
- Department of SurgeryNew York University Langone HealthNew YorkUnited States
- Perlmutter Cancer CenterNew York University Langone HealthNew YorkUnited states
| | - Jiaqi Shi
- Translational Oncology ProgramUniversity of Michigan Health SystemAnn ArborUnited States
- Department of PathologyUniversity of Michigan Health SystemAnn ArborUnited States
| | - Meghna Waghray
- Translational Oncology ProgramUniversity of Michigan Health SystemAnn ArborUnited States
| | - Mats Ljungman
- Translational Oncology ProgramUniversity of Michigan Health SystemAnn ArborUnited States
- Department of Radiation OncologyUniversity of Michigan Health SystemAnn ArborUnited States
| | - Howard C Crawford
- Department of Molecular and Integrative PhysiologyUniversity of Michigan Health SystemAnn ArborUnited States
- Translational Oncology ProgramUniversity of Michigan Health SystemAnn ArborUnited States
| | - Diane M Simeone
- Department of SurgeryNew York University Langone HealthNew YorkUnited States
- Perlmutter Cancer CenterNew York University Langone HealthNew YorkUnited states
- Department of PathologyNew York University Langone HealthNew YorkUnited States
| |
Collapse
|
139
|
Liu X, Wan X, Kan H, Wang Y, Yu F, Feng L, Jin J, Zhang P, Ma X. Hypoxia-induced upregulation of Orai1 drives colon cancer invasiveness and angiogenesis. Eur J Pharmacol 2018; 832:1-10. [DOI: 10.1016/j.ejphar.2018.05.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/06/2018] [Accepted: 05/08/2018] [Indexed: 10/16/2022]
|
140
|
Janghorban M, Xin L, Rosen JM, Zhang XHF. Notch Signaling as a Regulator of the Tumor Immune Response: To Target or Not To Target? Front Immunol 2018; 9:1649. [PMID: 30061899 PMCID: PMC6055003 DOI: 10.3389/fimmu.2018.01649] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 07/04/2018] [Indexed: 01/05/2023] Open
Abstract
The Notch signaling pathway regulates important cellular processes involved in stem cell maintenance, proliferation, development, survival, and inflammation. These responses to Notch signaling involving both canonical and non-canonical pathways can be spatially and temporally variable and are highly cell-type dependent. Notch signaling can elicit opposite effects in regulating tumorigenicity (tumor-promoting versus tumor-suppressing function) as well as controlling immune cell responses. In various cancer types, Notch signaling elicits a "cancer stem cell (CSC)" phenotype that results in decreased proliferation, but resistance to various therapies, hence potentially contributing to cell dormancy and relapse. CSCs can reshape their niche by releasing paracrine factors and inflammatory cytokines, and the niche in return can support their quiescence and resistance to therapies as well as the immune response. Moreover, Notch signaling is one of the key regulators of hematopoiesis, immune cell differentiation, and inflammation and is implicated in various autoimmune diseases, carcinogenesis (leukemia), and tumor-induced immunosuppression. Notch can control the fate of various T cell types, including Th1, Th2, and the regulatory T cells (Tregs), and myeloid cells including macrophages, dendritic cells, and myeloid-derived suppressor cells (MDSCs). Both MDSCs and Tregs play an important role in supporting tumor cells (and CSCs) and in evading the immune response. In this review, we will discuss how Notch signaling regulates multiple aspects of the tumor-promoting environment by elucidating its role in CSCs, hematopoiesis, normal immune cell differentiation, and subsequently in tumor-supporting immunogenicity.
Collapse
Affiliation(s)
- Mahnaz Janghorban
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, United States
| | - Li Xin
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, United States
| | - Jeffrey M. Rosen
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, United States
| | - Xiang H.-F. Zhang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, United States
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, United States
- McNair Medical Institute, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
141
|
Jolly MK, Mani SA, Levine H. Hybrid epithelial/mesenchymal phenotype(s): The 'fittest' for metastasis? Biochim Biophys Acta Rev Cancer 2018; 1870:151-157. [PMID: 29997040 DOI: 10.1016/j.bbcan.2018.07.001] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/18/2018] [Accepted: 07/02/2018] [Indexed: 12/21/2022]
Abstract
Metastasis is the leading cause of mortality among cancer patients. Dissemination enabled by an epithelial-to-mesenchymal transition (EMT) of carcinoma cells has long been considered to be the predominant mechanism for carcinoma metastasis, based on overexpression studies of many EMT-inducing transcription factors. Individual CTCs - and a binary framework of EMT - have been long considered to be sufficient and necessary condition for metastasis. However, recent studies have shown that collective migration and invasion through tumor buds and clusters of Circulating Tumor Cells (CTCs) as possibly being the prevalent mode of metastasis, although individual CTCs may still contribute to metastasis. These strands and clusters have been proposed to often exhibit a hybrid epithelial/mesenchymal (E/M) phenotype where cells retain epithelial traits of cell-cell adhesion and simultaneously gain mesenchymal characteristics of migration and invasion. To highlight the crucial questions regarding metastasis, we define EMT in a non-binary and context-specific manner, suggest that it can be viewed as a trans-differentiation process, and illustrate the implications of hybrid E/M phenotype(s) and cluster-based dissemination in metastasis.
Collapse
Affiliation(s)
- Mohit Kumar Jolly
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA
| | - Sendurai A Mani
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Herbert Levine
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA; Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
142
|
Miyatake Y, Ohta Y, Ikeshita S, Kasahara M. Anchorage-dependent multicellular aggregate formation induces a quiescent stem-like intractable phenotype in pancreatic cancer cells. Oncotarget 2018; 9:29845-29856. [PMID: 30042817 PMCID: PMC6057455 DOI: 10.18632/oncotarget.25732] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 06/24/2018] [Indexed: 01/11/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal refractory cancers. Aggressive features in PDAC cells have been well studied, but those exhibited by a population of PDAC cells are largely unknown. We show here that coculture with epithelial-like feeder cells confers more malignant phenotypes upon PDAC cells forming anchorage-dependent multicellular aggregates (Ad-MCAs, a behavior of collective cells), in vitro. When CD44v3-10high/CD44slow PDAC cell lines, which exhibited an epithelial phenotype before the onset of epithelial-mesenchymal transition (EMT), were cocultured with a monolayer of HEK293T cells overnight, they formed Ad-MCAs on the feeder layer and acquired gemcitabine resistance. CD44v8-10 expression was dramatically increased and Ki-67 staining decreased, suggesting that PDAC cells forming Ad-MCAs acquired cancer stem cell (CSC)-like intractable properties. We found that highly downregulated genes in PDAC cells cocultured with HEK293T cells were significantly upregulated in malignant lesions from pancreatic cancer patients. Our work implies that PDAC cells forming Ad-MCAs partially return to a normal tissue gene profile before the onset of EMT. The collective cell behavior like Ad-MCA formation by PDAC cells may mimic critical events that occur in cancer cells at the very early phase of metastatic colonization.
Collapse
Affiliation(s)
- Yukiko Miyatake
- Department of Pathology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, 060-8638, Japan
| | - Yusuke Ohta
- Department of Pathology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, 060-8638, Japan
| | - Shunji Ikeshita
- Department of Pathology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, 060-8638, Japan
| | - Masanori Kasahara
- Department of Pathology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, 060-8638, Japan
| |
Collapse
|
143
|
Bocci F, Jolly MK, George JT, Levine H, Onuchic JN. A mechanism-based computational model to capture the interconnections among epithelial-mesenchymal transition, cancer stem cells and Notch-Jagged signaling. Oncotarget 2018; 9:29906-29920. [PMID: 30042822 PMCID: PMC6057462 DOI: 10.18632/oncotarget.25692] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 06/13/2018] [Indexed: 12/18/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) and cancer stem cell (CSCs) formation are two fundamental and well-studied processes contributing to cancer metastasis and tumor relapse. Cells can undergo a partial EMT to attain a hybrid epithelial/mesenchymal (E/M) phenotype or a complete EMT to attain a mesenchymal one. Similarly, cells can reversibly gain or lose 'stemness'. This plasticity in cell states is modulated by signaling pathways such as Notch. However, the interconnections among the cell states enabled by EMT, CSCs and Notch signaling remain elusive. Here, we devise a computational model to investigate the coupling among the core decision-making circuits for EMT, CSCs and Notch. Our model predicts that hybrid E/M cells are most likely to associate with stem-like traits and enhanced Notch-Jagged signaling – a pathway implicated in therapeutic resistance. Further, we show that the position of the 'stemness window' on the 'EMT axis' is varied by altering the coupling strength between EMT and CSC circuits, and/or modulating Notch signaling. Finally, we analyze the gene expression profile of CSCs from several cancer types and observe a heterogeneous distribution along the 'EMT axis', suggesting that different subsets of CSCs may exist with varying phenotypes along the epithelial-mesenchymal axis. We further investigate therapeutic perturbations such as treatment with metformin, a drug associated with decreased cancer incidence and increased lifespan of patients. Our mechanism-based model explains how metformin can both inhibit EMT and blunt the aggressive potential of CSCs simultaneously, by driving the cells out of a hybrid E/M stem-like state with enhanced Notch-Jagged signaling.
Collapse
Affiliation(s)
- Federico Bocci
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA.,Department of Chemistry, Rice University, Houston, TX 77005, USA
| | - Mohit Kumar Jolly
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA
| | - Jason Thomas George
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA.,Department of Bioengineering, Rice University, Houston, TX 77005, USA.,Medical Scientist Training Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Herbert Levine
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA.,Department of Chemistry, Rice University, Houston, TX 77005, USA.,Department of Bioengineering, Rice University, Houston, TX 77005, USA.,Department of Physics and Astronomy, Rice University, Houston, TX 77005, USA
| | - José Nelson Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA.,Department of Chemistry, Rice University, Houston, TX 77005, USA.,Department of Physics and Astronomy, Rice University, Houston, TX 77005, USA.,Department of Biosciences, Rice University, Houston, TX 77005, USA
| |
Collapse
|
144
|
Harbuzariu A, Oprea-Ilies GM, Gonzalez-Perez RR. The Role of Notch Signaling and Leptin-Notch Crosstalk in Pancreatic Cancer. MEDICINES (BASEL, SWITZERLAND) 2018; 5:medicines5030068. [PMID: 30004402 PMCID: PMC6164868 DOI: 10.3390/medicines5030068] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 06/27/2018] [Accepted: 06/29/2018] [Indexed: 02/06/2023]
Abstract
There is accumulating evidence that deregulated Notch signaling affects cancer development, and specifically pancreatic cancer (PC) progression. Notch canonical and non-canonical signaling has diverse impact on PC. Moreover, the actions of RBP-Jk (nuclear partner of activated Notch) independent of Notch signaling pathway seem to affect differently cancer progression. Recent data show that in PC and other cancer types the adipokine leptin can modulate Notch/RBP-Jk signaling, thereby, linking the pandemic obesity with cancer and chemoresistance. The potential pivotal role of leptin on PC, and its connection with Notch signaling and chemoresistance are still not completely understood. In this review, we will describe the most important aspects of Notch-RBP-Jk signaling in PC. Further, we will discuss on studies related to RBP-Jk-independent Notch and Notch-independent RPB-Jk signaling. We will also discuss on the novel crosstalk between leptin and Notch in PC and its implications in chemoresistance. The effects of leptin-Notch/RBP-Jk signaling on cancer cell proliferation, apoptosis, and drug resistance require more investigation. Data from these investigations could help to open unexplored ways to improve PC treatment success that has shown little progress for many years.
Collapse
Affiliation(s)
- Adriana Harbuzariu
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA.
| | | | - Ruben R Gonzalez-Perez
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA.
| |
Collapse
|
145
|
Oba T, Ito KI. Combination of two anti-tubulin agents, eribulin and paclitaxel, enhances anti-tumor effects on triple-negative breast cancer through mesenchymal-epithelial transition. Oncotarget 2018; 9:22986-23002. [PMID: 29796167 PMCID: PMC5955406 DOI: 10.18632/oncotarget.25184] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 04/05/2018] [Indexed: 12/16/2022] Open
Abstract
Improved prognosis for triple-negative breast cancer (TNBC) has currently plateaued and the development of novel therapeutic strategies is required. Therefore, we aimed to explore the anti-tumor effect of eribulin and paclitaxel combination therapy for TNBC. The effect of eribulin and paclitaxel in combination was tested, with both concurrent and sequential administration, using four TNBC cell lines (MDA-MB-231, Hs578T, MDA-MB-157, and Mx-1) in vitro and in an MDA-MB-231 BALB/c-nu/nu mouse xenograft model. The expression of epithelial-mesenchymal phenotypic markers was analyzed by western blotting and immunohistochemical analyses. Simultaneous administration of eribulin and paclitaxel resulted in a synergistic anti-tumor effect with MDA-MB-231 and Hs578T cells, but not MDA-MB-157 and Mx-1 cells, in vitro. Moreover, pre-treatment with one drug significantly enhanced sensitivity to the subsequently administrated second drug in MDA-MB-231 and Hs578T cells. Eribulin increased E-cadherin expression and decreased the expression of mesenchymal markers in MDA-MB-231 and Hs578T cells. In contrast, paclitaxel increased the expression of mesenchymal markers. When epithelial-mesenchymal transition was induced by TGF-β1, eribulin sensitivity was enhanced. In contrast, a TGF-β receptor kinase inhibitor decreased eribulin sensitivity. In MDA-MB-231 tumor-bearing mice, concurrent administration of low doses of eribulin and paclitaxel significantly inhibited tumor growth compared to that with either monotherapy. Moreover, single administration of eribulin before the initiation of paclitaxel treatment decreased vimentin expression and reduced the average tumor volume in a mouse xenograft model. Eribulin and paclitaxel show synergistic anti-tumor effect by altering the epithelial-mesenchymal phenotype. This combination therapy could represent a novel therapeutic strategy for TNBC.
Collapse
Affiliation(s)
- Takaaki Oba
- Division of Breast, Endocrine and Respiratory Surgery, Department of Surgery II, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Japan
| | - Ken-Ichi Ito
- Division of Breast, Endocrine and Respiratory Surgery, Department of Surgery II, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Japan
| |
Collapse
|
146
|
Liu HY, Korc M, Lin CC. Biomimetic and enzyme-responsive dynamic hydrogels for studying cell-matrix interactions in pancreatic ductal adenocarcinoma. Biomaterials 2018; 160:24-36. [PMID: 29353105 PMCID: PMC5815383 DOI: 10.1016/j.biomaterials.2018.01.012] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 01/03/2018] [Accepted: 01/06/2018] [Indexed: 01/18/2023]
Abstract
The tumor microenvironment (TME) governs all aspects of cancer progression and in vitro 3D cell culture platforms are increasingly developed to emulate the interactions between components of the stromal tissues and cancer cells. However, conventional cell culture platforms are inadequate in recapitulating the TME, which has complex compositions and dynamically changing matrix mechanics. In this study, we developed a dynamic gelatin-hyaluronic acid hybrid hydrogel system through integrating modular thiol-norbornene photopolymerization and enzyme-triggered on-demand matrix stiffening. In particular, gelatin was dually modified with norbornene and 4-hydroxyphenylacetic acid to render this bioactive protein photo-crosslinkable (through thiol-norbornene gelation) and responsive to tyrosinase-triggered on-demand stiffening (through HPA dimerization). In addition to the modified gelatin that provides basic cell adhesive motifs and protease cleavable sequences, hyaluronic acid (HA), an essential tumor matrix, was modularly and covalently incorporated into the cell-laden gel network. We systematically characterized macromer modification, gel crosslinking, as well as enzyme-triggered stiffening and degradation. We also evaluated the influence of matrix composition and dynamic stiffening on pancreatic ductal adenocarcinoma (PDAC) cell fate in 3D. We found that either HA-containing matrix or a dynamically stiffened microenvironment inhibited PDAC cell growth. Interestingly, these two factors synergistically induced cell phenotypic changes that resembled cell migration and/or invasion in 3D. Additional mRNA expression array analyses revealed changes unique to the presence of HA, to a stiffened microenvironment, or to the combination of both. Finally, we presented immunostaining and mRNA expression data to demonstrate that these irregular PDAC cell phenotypes were a result of matrix-induced epithelial-mesenchymal transition (EMT).
Collapse
Affiliation(s)
- Hung-Yi Liu
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Murray Korc
- Department of Medicine and Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Indiana University Melvin and Bren Simon Cancer Center, and The Pancreatic Cancer Signature Center, Indianapolis, IN 46202, USA
| | - Chien-Chi Lin
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA; Indiana University Melvin and Bren Simon Cancer Center, and The Pancreatic Cancer Signature Center, Indianapolis, IN 46202, USA; Department of Biomedical Engineering, Purdue School of Engineering & Technology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA.
| |
Collapse
|
147
|
Ding L, Wang C, Cui Y, Han X, Zhou Y, Bai J, Li R. S-phase kinase-associated protein 2 is involved in epithelial-mesenchymal transition in methotrexate-resistant osteosarcoma cells. Int J Oncol 2018; 52:1841-1852. [PMID: 29620168 PMCID: PMC5919717 DOI: 10.3892/ijo.2018.4345] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 03/23/2018] [Indexed: 12/18/2022] Open
Abstract
Osteosarcoma (OS), a common worldwide primary aggressive bone malignancy, arises from primitive transformed cells of mesenchymal origin and usually attacks adolescents and young adults. Methotrexate (MTX) is the anti-folate drug used as a pivotal chemotherapeutic agent in the treatment of OS. However, patients with OS often develop drug resistance, leading to poor treatment outcomes. In the present study, in order to explore the underlying mechanisms responsible for MTX resistance, we established MTX-resistant OS cells using the U2OS and MG63 cell lines and examined whether MTX-resistant OS cells underwent epithelial-mesenchymal transition (EMT) by Transwell assay, wound healing assay, MTT assay, RT-PCR and western blot analysis. We found that the viability of the MTX-resistant cells remained relatively unaltered following further treatment with MTX compared to the parental cells. The resistant cells appeared to possess a mesenchymal phenotype, with an elongated and more spindle-like shape, and acquired enhanced invasive, migratory and attachment abilities. The measurement of EMT markers also supported EMT transition in the MTX-resistant OS cells. Our result further demonstrated that the overexpression of S-phase kinase-associated protein 2 (Skp2) was closely involved in the resistance of OS cells to MTX and in the acquirement of EMT properties. Thus, the pharmacological inhibition of Skp2 may prove to be a novel therapeutic strategy with which to overcome drug resistance in OS.
Collapse
Affiliation(s)
- Lu Ding
- Department of Orthopedics, Fifth Affiliated Hospital, Xinjiang Medical , Urumqi, Xinjiang 830011, P.R. China
| | - Chengwei Wang
- Department of Orthopedics, Sixth Affiliated Hospital, Xinjiang Medical University, Urumqi, Xinjiang 830002, P.R. China
| | - Yong Cui
- Department of Orthopedics, Fifth Affiliated Hospital, Xinjiang Medical , Urumqi, Xinjiang 830011, P.R. China
| | - Xiaoping Han
- Department of Orthopedics, Fifth Affiliated Hospital, Xinjiang Medical , Urumqi, Xinjiang 830011, P.R. China
| | - Yang Zhou
- Department of Orthopedics, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| | - Jingping Bai
- Department of Orthopedics, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| | - Rong Li
- Department of Maternal, Child and Adolescent Health, College of Public Health, Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| |
Collapse
|
148
|
Ayob AZ, Ramasamy TS. Cancer stem cells as key drivers of tumour progression. J Biomed Sci 2018; 25:20. [PMID: 29506506 PMCID: PMC5838954 DOI: 10.1186/s12929-018-0426-4] [Citation(s) in RCA: 597] [Impact Index Per Article: 85.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 03/01/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Cancer stem cells (CSCs) are subpopulations of cancer cells sharing similar characteristics as normal stem or progenitor cells such as self-renewal ability and multi-lineage differentiation to drive tumour growth and heterogeneity. Throughout the cancer progression, CSC can further be induced from differentiated cancer cells via the adaptation and cross-talks with the tumour microenvironment as well as a response from therapeutic pressures, therefore contributes to their heterogeneous phenotypes. Challengingly, conventional cancer treatments target the bulk of the tumour and are unable to target CSCs due to their highly resistance nature, leading to metastasis and tumour recurrence. MAIN BODY This review highlights the roles of CSCs in tumour initiation, progression and metastasis with a focus on the cellular and molecular regulators that influence their phenotypical changes and behaviours in the different stages of cancer progression. We delineate the cross-talks between CSCs with the tumour microenvironment that support their intrinsic properties including survival, stemness, quiescence and their cellular and molecular adaptation in response to therapeutic pressure. An insight into the distinct roles of CSCs in promoting angiogenesis and metastasis has been captured based on in vitro and in vivo evidences. CONCLUSION Given dynamic cellular events along the cancer progression and contributions of resistance nature by CSCs, understanding their molecular and cellular regulatory mechanism in a heterogeneous nature, provides significant cornerstone for the development of CSC-specific therapeutics.
Collapse
Affiliation(s)
- Ain Zubaidah Ayob
- Stem Cell Biology Laboratory, Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603 Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Thamil Selvee Ramasamy
- Stem Cell Biology Laboratory, Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603 Wilayah Persekutuan Kuala Lumpur, Malaysia
- Cell and Molecular Laboratory (CMBL), The Dean’s Office, Faculty of Medicine, University of Malaya, 50603 Wilayah Persekutuan Kuala Lumpur, Malaysia
| |
Collapse
|
149
|
Sulforaphane inhibits human bladder cancer cell invasion by reversing epithelial-to-mesenchymal transition via directly targeting microRNA-200c/ZEB1 axis. J Funct Foods 2018. [DOI: 10.1016/j.jff.2017.12.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
150
|
Barui A, Chowdhury F, Pandit A, Datta P. Rerouting mesenchymal stem cell trajectory towards epithelial lineage by engineering cellular niche. Biomaterials 2018; 156:28-44. [DOI: 10.1016/j.biomaterials.2017.11.036] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 10/22/2017] [Accepted: 11/21/2017] [Indexed: 02/06/2023]
|