101
|
Hu Y, Deng H, Xu S, Zhang J. MicroRNAs Regulate Mitochondrial Function in Cerebral Ischemia-Reperfusion Injury. Int J Mol Sci 2015; 16:24895-917. [PMID: 26492239 PMCID: PMC4632781 DOI: 10.3390/ijms161024895] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Accepted: 10/08/2015] [Indexed: 01/30/2023] Open
Abstract
Cerebral ischemia-reperfusion injury involves multiple independently fatal terminal pathways in the mitochondria. These pathways include the reactive oxygen species (ROS) generation caused by changes in mitochondrial membrane potential and calcium overload, resulting in apoptosis via cytochrome c (Cyt c) release. In addition, numerous microRNAs are associated with the overall process. In this review, we first briefly summarize the mitochondrial changes in cerebral ischemia-reperfusion and then describe the possible molecular mechanism of miRNA-regulated mitochondrial function, which likely includes oxidative stress and energy metabolism, as well as apoptosis. On the basis of the preceding analysis, we conclude that studies of microRNAs that regulate mitochondrial function will expedite the development of treatments for cerebral ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Yue Hu
- Graduate School, Tianjin University of Traditional Chinese Medicine, 312 An Shan Xi Road, Nan Kai District, Tianjin 300193, China.
| | - Hao Deng
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, 314 An Shan Xi Road, Nan Kai District, Tianjin 300193, China.
| | - Shixin Xu
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, 314 An Shan Xi Road, Nan Kai District, Tianjin 300193, China.
| | - Junping Zhang
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, 314 An Shan Xi Road, Nan Kai District, Tianjin 300193, China.
| |
Collapse
|
102
|
Ras oncogene-mediated progressive silencing of extracellular superoxide dismutase in tumorigenesis. BIOMED RESEARCH INTERNATIONAL 2015; 2015:780409. [PMID: 26550576 PMCID: PMC4624945 DOI: 10.1155/2015/780409] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 08/31/2015] [Indexed: 02/03/2023]
Abstract
Extracellular superoxide dismutase (SOD3) is a secreted enzyme that uses superoxide anion as a substrate in a dismutase reaction that results in the formation of hydrogen peroxide. Both of these reactive oxygen species affect growth signaling in cells. Although SOD3 has growth-supporting characteristics, the expression of SOD3 is downregulated in epithelial cancer cells. In the current work, we studied the mechanisms regulating SOD3 expression in vitro using thyroid cell models representing different stages of thyroid cancer. We demonstrate that a low level of RAS activation increases SOD3 mRNA synthesis that then gradually decreases with increasing levels of RAS activation and the decreasing degree of differentiation of the cancer cells. Our data indicate that SOD3 regulation can be divided into two classes. The first class involves RAS–driven reversible regulation of SOD3 expression that can be mediated by the following mechanisms: RAS GTPase regulatory genes that are responsible for SOD3 self-regulation; RAS-stimulated p38 MAPK activation; and RAS-activated increased expression of the mir21 microRNA, which inversely correlates with sod3 mRNA expression. The second class involves permanent silencing of SOD3 mediated by epigenetic DNA methylation in cells that represent more advanced cancers. Therefore, the work suggests that SOD3 belongs to the group of ras oncogene-silenced genes.
Collapse
|
103
|
Xu S, Ding N, Pei H, Hu W, Wei W, Zhang X, Zhou G, Wang J. MiR-21 is involved in radiation-induced bystander effects. RNA Biol 2015; 11:1161-70. [PMID: 25483031 DOI: 10.4161/rna.34380] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Radiation-induced bystander effects are well-established phenomena, in which DNA damage responses are induced not only in the directly irradiated cells but also in the non-irradiated bystander cells through intercellular signal transmission. Recent studies hint that bystander effects are possibly mediated via small non-coding RNAs, especially microRNAs. Thus, more details about the roles of microRNA in bystander effects are urgently needed to be elucidated. Here we demonstrated that bystander effects were induced in human fetal lung MRC-5 fibroblasts through medium-mediated way by different types of radiation. We identified a set of differentially expressed microRNAs in the cell culture medium after irradiation, among which the up-regulation of miR-21 was further verified with qRT-PCR. In addition, we found significant upregulation of miR-21 in both directly irradiated cells and bystander cells, which was confirmed by the expression of miR-21 precursor and its target genes. Transfection of miR-21 mimics into non-irradiated MRC-5 cells caused bystander-like effects. Taken together, our data reveals that miR-21 is involved in radiation-induced bystander effects. Elucidation of such a miRNA-mediated bystander effect is of utmost importance in understanding the biological processes related to ionizing radiation and cell-to-cell communication.
Collapse
Affiliation(s)
- Shuai Xu
- a Department of Space Radiobiology; Key Laboratory of Heavy Ion Radiation Biology and Medicine; Institute of Modern Physics; Chinese Academy of Sciences ; Lanzhou , P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
104
|
Li Z, Doho G, Zheng X, Jella KK, Li S, Wang Y, Dynan WS. Co-culturing with High-Charge and Energy Particle Irradiated Cells Increases Mutagenic Joining of Enzymatically Induced DNA Double-Strand Breaks in Nonirradiated Cells. Radiat Res 2015; 184:249-58. [PMID: 26284422 DOI: 10.1667/rr14092.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Cell populations that have been exposed to high-charge and energy (HZE) particle radiation, and then challenged by expression of a rare-cutting nuclease, show an increased frequency of deletions and translocations originating at the enzyme cut sites. Here, we examine whether this effect also occurs in nonirradiated cells that have been co-cultured with irradiated cells. Human cells were irradiated with 0.3-1.0 Gy of either 600 MeV/u (56)Fe or 1,000 MeV/u (48)Ti ions or with 0.3-3.0 Gy of 320 kV X rays. These were co-cultured with I-SceI-expressing reporter cells at intervals up to 21 days postirradiation. Co-culture with HZE-irradiated cells led to an increase in the frequency of I-SceI-stimulated translocations and deletions in the nonirradiated cells. The effect size was similar to that seen previously in directly irradiated populations (maximum effect in bystander cells of 1.7- to 4-fold depending on ion and end point). The effect was not observed when X-ray-irradiated cells were co-cultured with nonirradiated cells, but was correlated with an increase in γ-H2AX foci-positive cells in the nonirradiated population, suggesting the presence of genomic stress. Transcriptional profiling of a directly irradiated cell population showed that many genes for cytokines and other secretory proteins were persistently upregulated, but their induction was not well correlated with functional effects on repair in co-cultured cells, suggesting that this transcriptional response alone is not sufficient to evoke the effect. The finding that HZE-irradiated cells influence the DNA double-strand break repair fidelity in their nonirradiated neighbors has implications for risk in the space radiation environment.
Collapse
Affiliation(s)
- Zhentian Li
- a Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, Georgia.,d The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, P. R. China.,f Department of Neuroscience and Regenerative Medicine, Georgia Regents University, Augusta, Georgia
| | - Gregory Doho
- b Department of Emory Integrated Genomics Core, Emory University, Atlanta, Georgia
| | - Xuan Zheng
- e Zhongnan Hospital, Wuhan University, Wuhan, P. R. China
| | - Kishore Kumar Jella
- a Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Shuyi Li
- a Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, Georgia.,c Department of Biochemistry, Emory University, Atlanta, Georgia
| | - Ya Wang
- a Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - William S Dynan
- a Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, Georgia.,c Department of Biochemistry, Emory University, Atlanta, Georgia
| |
Collapse
|
105
|
Tian W, Yin X, Wang L, Wang J, Zhu W, Cao J, Yang H. The key role of miR-21-regulated SOD2 in the medium-mediated bystander responses in human fibroblasts induced by α-irradiated keratinocytes. Mutat Res 2015; 780:77-85. [PMID: 26302379 DOI: 10.1016/j.mrfmmm.2015.08.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 07/24/2015] [Accepted: 08/10/2015] [Indexed: 12/22/2022]
Abstract
Radiation-induced bystander effect (RIBE) is well accepted in the radiation research field by now, but the underlying molecular mechanisms for better understanding this phenomenon caused by intercellular communication and intracellular signal transduction are still incomplete. Although our previous study has demonstrated an important role of miR-21 of unirradiated bystander cells in RIBEs, the direct evidence for the hypothesis that RIBE is epigenetically regulated is still limited and how miR-21 mediates RIBEs is unknown. Reactive oxygen species (ROS) have been demonstrated to be involved in RIBEs, however, the roles of anti-oxidative stress system of cells in RIBEs are unclear. Using transwell insert co-culture system, we investigated medium-mediated bystander responses in WS1 human fibroblasts after co-culture with HaCaT keratinocytes traversed by α-particles. Results showed that the ROS levels in unirradiated bystander WS1 cells were significantly elevated after 30min of co-culture, and 53BP1 foci, a surrogate marker of DNA damage, were obviously induced after 3h of co-culture. This indicates the occurrence of oxidative stress and DNA damage in bystander WS1 cells after co-culture with irradiated keratinocytes. Furthermore, the expression of miR-21 was increased in bystander WS1 cells, downregulation of miR-21 eliminated the bystander responses, overexpression of miR-21 alone could induce bystander-like oxidative stress and DNA damage in WS1 cells. These data indicate an important mediating role of miR-21 in RIBEs. In addition, MnSOD or SOD2 in WS1 cells was involved in the bystander effects, overexpression of SOD2 abolished the bystander oxidative stress and DNA damage, indicating that SOD2 was critical to the induction of RIBEs. Moreover, we found that miR-21 regulated SOD2, suggesting that miR-21 might mediate bystander responses through its regulation on SOD2. In conclusion, this study revealed a profound role of miR-21-regulated SOD2 of unirradiated WS1 cells in bystander effects induced by α-irradiated HaCaT keratinocytes.
Collapse
Affiliation(s)
- Wenqian Tian
- School of Radiation Medicine and Protection, Medical College of Soochow University/Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu Province 215123, PR China
| | - Xiaoming Yin
- School of Radiation Medicine and Protection, Medical College of Soochow University/Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu Province 215123, PR China
| | - Longxiao Wang
- School of Radiation Medicine and Protection, Medical College of Soochow University/Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu Province 215123, PR China
| | - Jingdong Wang
- School of Radiation Medicine and Protection, Medical College of Soochow University/Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu Province 215123, PR China
| | - Wei Zhu
- School of Radiation Medicine and Protection, Medical College of Soochow University/Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu Province 215123, PR China
| | - Jianping Cao
- School of Radiation Medicine and Protection, Medical College of Soochow University/Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu Province 215123, PR China
| | - Hongying Yang
- School of Radiation Medicine and Protection, Medical College of Soochow University/Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu Province 215123, PR China; Institute of Radiotherapy & Oncology, Soochow University.
| |
Collapse
|
106
|
MicroRNAs in tumor angiogenesis. Life Sci 2015; 136:28-35. [PMID: 26144623 DOI: 10.1016/j.lfs.2015.06.025] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 06/03/2015] [Accepted: 06/30/2015] [Indexed: 01/07/2023]
Abstract
As it is necessary for tumor growth, angiogenesis has been an attractive target for drug therapy. Accumulating evidences indicate that microRNAs (miRNAs), which are short non-coding RNAs, delicately regulate the angiogenic signals through targeting angiogenic factors and protein kinases. They can modulate pro-angiogenic signals induced by vascular endothelial growth factor (VEGF) and anti-angiogenic signals induced by thrombospondin-1 (TSP-1), and therefore promote or inhibit tumor angiogenesis. Receptor tyrosine kinases (RTKs) and hypoxia inducible factor (HIF) are also targeted by miRNAs. Moreover, miRNAs crosstalk with reactive oxygen species (ROS) influencing tumor angiogenesis. It is critical to understand the role of miRNAs in tumor angiogenesis due to their therapeutic potential to improve outcome for cancer patients. The following review discusses the current state of knowledge related to tumor angiogenesis-regulatory miRNAs and their targets.
Collapse
|
107
|
Song J, Yoon D, Christensen RD, Horvathova M, Thiagarajan P, Prchal JT. HIF-mediated increased ROS from reduced mitophagy and decreased catalase causes neocytolysis. J Mol Med (Berl) 2015; 93:857-66. [PMID: 26017143 DOI: 10.1007/s00109-015-1294-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 04/15/2015] [Accepted: 05/12/2015] [Indexed: 02/02/2023]
Abstract
UNLABELLED During prolonged hypoxia, hypoxia-inducible factors (HIFs) mediate an increase in erythropoiesis, leading to an increased red blood cell (RBC) mass and polycythemia. Upon return to normoxia, the increased RBC mass is abruptly overcorrected by the preferential destruction of hypoxia-formed young RBCs, a phenomenon termed neocytolysis. The molecular and biochemical mechanisms involved in neocytolysis are unknown. We developed a murine model of neocytolysis by exposing mice to 12 % oxygen for 10 days followed by return to normoxia. Upon return to normoxia, there was excessive accumulation of reactive oxygen species (ROS) in RBCs from an increased reticulocyte mitochondrial mass correlating with decreased Bnip3L transcripts (Bnip3L mediates reticulocyte mitophagy) and reduced catalase activity. During hypoxia, upregulated miR-21 resulted in low catalase activity in young RBCs. Furthermore, neocytolysis was attenuated by antioxidants and plasma catalase and blunted in mice that had constitutively high expression of HIFs. Among human neonates studied, we report data supporting the existence of neocytolysis during the first week of life. Together, these experiments indicate that the major mechanisms causing neocytolysis involve (1) production of young RBCs with low catalase during hypoxia and (2) lysis of the young RBCs after return to normoxia, mediated by ROS from an increased mitochondrial mass. KEY MESSAGES We report a mouse model of neocytolysis. Neocytolysis is caused by excessive ROS formation mediated by HIF. ROS is generated from increased mitochondria in reticulocytes. Hypoxia-generated RBCs have low catalase and are preferentially destroyed. Reduced catalase is regulated by increased microRNA-21.
Collapse
Affiliation(s)
- Jihyun Song
- Division of Hematology, School of Medicine, University of Utah, Salt Lake City, UT, 84132, USA
| | | | | | | | | | | |
Collapse
|
108
|
Chen Z, Dai T, Chen X, Tan L, Shi C. Activation and regulation of the granulation tissue derived cells with stemness-related properties. Stem Cell Res Ther 2015; 6:85. [PMID: 25925316 PMCID: PMC4446126 DOI: 10.1186/s13287-015-0070-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 10/23/2014] [Accepted: 03/30/2015] [Indexed: 01/13/2023] Open
Abstract
INTRODUCTION Skin as the largest and easily accessible organ of the body represents an abundant source of adult stem cells. Among them, dermal stem cells hold great promise in tissue repair and the skin granulation tissue has been recently proposed as a promising source of dermal stem cells, but their biological characteristics have not been well investigated. METHODS The 5-bromo-2'-deoxyuridine (BrdU) lineage tracing approach was employed to chase dermal stem cells in vivo. Granulation tissue derived cells (GTCs) were isolated and their in vitro proliferation, self-renewing, migration, and multi-differentiation capabilities were assessed. Combined radiation and skin wound model was used to investigate the therapeutic effects of GTCs. MicroRNA-21 (miR-21) antagomir was used to antagonize miR-21 expression. Reactive oxygen species (ROS) were scavenged by N-acetyl cysteine (NAC). RESULTS The quiescent dermal stem/progenitor cells were activated to proliferate upon injury and enriched in granulation tissues. GTCs exhibited enhanced proliferation, colony formation and multi-differentiation capacities. Topical transplantation of GTCs into the combined radiation and skin wound mice accelerated wound healing and reduced tissue fibrosis. Blockade of the miR-21 expression in GTCs inhibited cell migration and differentiation, but promoted cell proliferation and self-renewing at least partially via a ROS dependent pathway. CONCLUSIONS The granulation tissue may represent an alternative adult stem cell source in tissue replacement therapy and miR-21 mediated ROS generation negatively regulates the stemness-related properties of granulation tissue derived cells.
Collapse
Affiliation(s)
- Zelin Chen
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China.
| | - Tingyu Dai
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China.
| | - Xia Chen
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China.
| | - Li Tan
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China.
| | - Chunmeng Shi
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China.
| |
Collapse
|
109
|
Antioxidant Mechanisms and ROS-Related MicroRNAs in Cancer Stem Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:425708. [PMID: 26064420 PMCID: PMC4429193 DOI: 10.1155/2015/425708] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 03/19/2015] [Accepted: 04/16/2015] [Indexed: 02/07/2023]
Abstract
Increasing evidence indicates that most of the tumors are sustained by a distinct population of cancer stem cells (CSCs), which are responsible for growth, metastasis, invasion, and recurrence. CSCs are typically characterized by self-renewal, the key biological process allowing continuous tumor proliferation, as well as by differentiation potential, which leads to the formation of the bulk of the tumor mass. CSCs have several advantages over the differentiated cancer cell populations, including the resistance to radio- and chemotherapy, and their gene-expression programs have been shown to correlate with poor clinical outcome, further supporting the relevance of stemness properties in cancer. The observation that CSCs possess enhanced mechanisms of protection from reactive oxygen species (ROS) induced stress and a different metabolism from the differentiated part of the tumor has paved the way to develop drugs targeting CSC specific signaling. In this review, we describe the role of ROS and of ROS-related microRNAs in the establishment and maintenance of self-renewal and differentiation capacities of CSCs.
Collapse
|
110
|
Cha HJ, Lee OK, Kim SY, Ko JM, Kim SY, Son JH, Han HJ, Li S, Kim SY, Ahn KJ, An IS, An S, Bae S. MicroRNA expression profiling of p-phenylenediamine treatment in human keratinocyte cell line. Mol Cell Toxicol 2015. [DOI: 10.1007/s13273-015-0003-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
111
|
Ouyang YB, Stary CM, White RE, Giffard RG. The use of microRNAs to modulate redox and immune response to stroke. Antioxid Redox Signal 2015; 22:187-202. [PMID: 24359188 PMCID: PMC4281877 DOI: 10.1089/ars.2013.5757] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
SIGNIFICANCE Cerebral ischemia is a major cause of death and disability throughout the world, yet therapeutic options remain limited. The interplay between the cellular redox state and the immune response plays a critical role in determining the extent of neural cell injury after ischemia and reperfusion. Excessive amounts of reactive oxygen species (ROS) generated by mitochondria and other sources act both as triggers and effectors of inflammation. This review will focus on the interplay between these two mechanisms. RECENT ADVANCES MicroRNAs (miRNAs) are important post-transcriptional regulators that interact with multiple target messenger RNAs coordinately regulating target genes, including those involved in controlling mitochondrial function, redox state, and inflammatory pathways. This review will focus on the regulation of mitochondria, ROS, and inflammation by miRNAs in the chain of deleterious intra- and intercellular events that lead to brain cell death after cerebral ischemia. CRITICAL ISSUES Although pretreatment using miRNAs was effective in cerebral ischemia in rodents, testing treatment after the onset of ischemia is an essential next step in the development of acute stroke treatment. In addition, miRNA formulation and delivery into the CNS remain a challenge in the clinical translation of miRNA therapy. FUTURE DIRECTIONS Future research should focus on post-treatment and potential clinical use of miRNAs.
Collapse
Affiliation(s)
- Yi-Bing Ouyang
- Department of Anesthesia, Stanford University School of Medicine , Stanford, California
| | | | | | | |
Collapse
|
112
|
Chan B, Manley J, Lee J, Singh SR. The emerging roles of microRNAs in cancer metabolism. Cancer Lett 2015; 356:301–8. [DOI: 10.1016/j.canlet.2014.10.011] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 10/09/2014] [Indexed: 12/13/2022]
|
113
|
Dymacek J, Snyder-Talkington BN, Porter DW, Mercer RR, Wolfarth MG, Castranova V, Qian Y, Guo NL. mRNA and miRNA regulatory networks reflective of multi-walled carbon nanotube-induced lung inflammatory and fibrotic pathologies in mice. Toxicol Sci 2014; 144:51-64. [PMID: 25527334 DOI: 10.1093/toxsci/kfu262] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Multi-walled carbon nanotubes (MWCNTs) are known for their transient inflammatory and progressive fibrotic pulmonary effects; however, the mechanisms underlying these pathologies are unknown. In this study, we used time-series microarray data of global lung mRNA and miRNA expression isolated from C57BL/6J mice exposed by pharyngeal aspiration to vehicle or 10, 20, 40, or 80 µg MWCNT at 1, 7, 28, or 56 days post-exposure to determine miRNA and mRNA regulatory networks that are potentially involved in MWCNT-induced inflammatory and fibrotic lung etiology. Using a non-negative matrix factorization method, we determined mRNAs and miRNAs with expression profiles associated with pathology patterns of MWCNT-induced inflammation (based on bronchoalveolar lavage score) and fibrosis (based on Sirius Red staining measured with quantitative morphometric analysis). Potential binding targets between pathology-related mRNAs and miRNAs were identified using Ingenuity Pathway Analysis and the miRTarBase, miRecords, and TargetScan databases. Using these experimentally validated and predicted binding targets, we were able to build molecular signaling networks that are potentially reflective of and play a role in MWCNT-induced lung inflammatory and fibrotic pathology. As understanding the regulatory networks between mRNAs and miRNAs in different disease states would be beneficial for understanding the complex mechanisms of pathogenesis, these identified genes and pathways may be useful for determining biomarkers of MWCNT-induced lung inflammation and fibrosis for early detection of disease.
Collapse
Affiliation(s)
- Julian Dymacek
- *Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, West Virginia 26506-6070, Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, West Virginia 26506 and Department of Occupational and Environmental Health Science, School of Public Health, Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, West Virginia 26506-9300
| | - Brandi N Snyder-Talkington
- *Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, West Virginia 26506-6070, Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, West Virginia 26506 and Department of Occupational and Environmental Health Science, School of Public Health, Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, West Virginia 26506-9300
| | - Dale W Porter
- *Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, West Virginia 26506-6070, Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, West Virginia 26506 and Department of Occupational and Environmental Health Science, School of Public Health, Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, West Virginia 26506-9300
| | - Robert R Mercer
- *Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, West Virginia 26506-6070, Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, West Virginia 26506 and Department of Occupational and Environmental Health Science, School of Public Health, Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, West Virginia 26506-9300
| | - Michael G Wolfarth
- *Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, West Virginia 26506-6070, Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, West Virginia 26506 and Department of Occupational and Environmental Health Science, School of Public Health, Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, West Virginia 26506-9300
| | - Vincent Castranova
- *Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, West Virginia 26506-6070, Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, West Virginia 26506 and Department of Occupational and Environmental Health Science, School of Public Health, Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, West Virginia 26506-9300
| | - Yong Qian
- *Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, West Virginia 26506-6070, Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, West Virginia 26506 and Department of Occupational and Environmental Health Science, School of Public Health, Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, West Virginia 26506-9300
| | - Nancy L Guo
- *Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, West Virginia 26506-6070, Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, West Virginia 26506 and Department of Occupational and Environmental Health Science, School of Public Health, Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, West Virginia 26506-9300
| |
Collapse
|
114
|
Castellone MD, Langella A, Cantara S, Laurila JP, Laatikainen LE, Bellelli R, Pacini F, Salvatore M, Laukkanen MO. Extracellular superoxide dismutase induces mouse embryonic fibroblast proliferative burst, growth arrest, immortalization, and consequent in vivo tumorigenesis. Antioxid Redox Signal 2014; 21:1460-74. [PMID: 24328532 DOI: 10.1089/ars.2013.5475] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
AIMS Rat sarcoma virus (RAS)-induced tumorigenesis has been suggested to follow a three-stage model consisting of an initial RAS activation, senescence induction, and evasion of p53-dependent senescence checkpoints. While reactive oxygen species act as second messengers in RAS-induced senescence, they are also involved in oncogenic transformation by inducing proliferation and promoting mutations. In the current work, we investigated the role of extracellular superoxide dismutase (SOD3) in RAS-induced senescence and immortalization in vitro and in vivo. We used a mouse embryonic fibroblast (MEF) primary cell model along with immortalized and transformed human cell lines derived from papillary and anaplastic thyroid cancer. RESULTS Based on our data, sod3 RNA interference in H-RasV12-transduced cells markedly inhibited cell growth, while sod3 over-expression in MEFs initially caused a proliferative burst followed by the activation of DNA damage checkpoints, induction of p53-p21 signal transduction, and senescence. Subsequently, sod3-transduced MEF cells developed co-operative p21-p16 down-regulation and acquired transformed cell characteristics such as increased telomerase activity, loss of contact inhibition, growth in low-nutrient conditions, and in vivo tumorigenesis. Interestingly, as previously reported with RAS, we showed a dose-dependent response to SOD3 in vitro and in vivo involving transcriptional and non-transcriptional regulatory mechanisms. INNOVATION SOD3 may mediate H-RasV12-induced initiation of primary cell immortalization. CONCLUSIONS Our results indicate that SOD3 influences growth signaling in primary and cancer cells downstream of the ras oncogene and could serve as a therapy target at an early tumorigenesis phase.
Collapse
Affiliation(s)
- Maria Domenica Castellone
- 1 Department of Molecular Medicine and Medical Biotechnologies, Institute of Experimental Endocrinology and Oncology (CNR), University of Naples Federico II , Naples, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
115
|
Jin LH, Wei C. Role of MicroRNAs in the Warburg Effect and Mitochondrial Metabolism in Cancer. Asian Pac J Cancer Prev 2014; 15:7015-9. [DOI: 10.7314/apjcp.2014.15.17.7015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
116
|
Abstract
SIGNIFICANCE Chronic hypoxia can drive maladaptive responses in numerous organ systems, leading to a multitude of chronic mammalian diseases. Oxygen homeostasis is intimately linked with mitochondrial metabolism, and dysfunction in these systems can combine to form the backbone of hypoxic-ischemic injury in multiple tissue beds. Increased appreciation of the crucial roles of hypoxia-associated miRNA (hypoxamirs) in metabolism adds a new dimension to our understanding of the regulation of hypoxia-induced disease. RECENT ADVANCES Myriad factors related to glycolysis (e.g., aldolase A and hexokinase II), tricarboxylic acid cycle function (e.g., glutaminase and iron-sulfur cluster assembly protein 1/2), and apoptosis (e.g., p53) have been recently implicated as targets of hypoxamirs. In addition, several hypoxamirs have been implicated in the regulation of the master transcription factor of hypoxia, hypoxia-inducible factor-1α, clarifying how the cellular program of hypoxia is sustained and resolved. CRITICAL ISSUES Central to the discussion of metabolic change in hypoxia is the Warburg effect, a shift toward anaerobic metabolism that persists after normal oxygen levels have been restored. Many newly discovered targets of hypoxia-driven microRNA converge on pathways known to be involved in this pathological phenomenon and the apoptosis-resistant phenotype associated with it. FUTURE DIRECTIONS The often synergistic functions of miRNA may make them ideal therapeutic targets. The use of antisense inhibitors is currently being considered in diseases in which hypoxia and metabolic dysregulation predominate. In addition, exploration of pleiotripic miRNA functions will likely continue to offer unique insights into the mechanistic relationships of their downstream target pathways and associated hypoxic phenotypes.
Collapse
Affiliation(s)
- Katherine A Cottrill
- Division of Cardiovascular Medicine, Department of Medicine, Harvard Medical School, Brigham and Women's Hospital , Boston, Massachusetts
| | | | | |
Collapse
|
117
|
Meseguer S, Martínez-Zamora A, García-Arumí E, Andreu AL, Armengod ME. The ROS-sensitive microRNA-9/9* controls the expression of mitochondrial tRNA-modifying enzymes and is involved in the molecular mechanism of MELAS syndrome. Hum Mol Genet 2014; 24:167-84. [PMID: 25149473 DOI: 10.1093/hmg/ddu427] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Mitochondrial dysfunction activates mitochondria-to-nucleus signaling pathways whose components are mostly unknown. Identification of these components is important to understand the molecular mechanisms underlying mitochondrial diseases and to discover putative therapeutic targets. MELAS syndrome is a rare neurodegenerative disease caused by mutations in mitochondrial (mt) DNA affecting mt-tRNA(Leu(UUR)). Patient and cybrid cells exhibit elevated oxidative stress. Moreover, mutant mt-tRNAs(Leu(UUR)) lack the taurine-containing modification normally present at the wobble uridine (U34) of wild-type mt-tRNA(Leu(UUR)), which is considered an etiology of MELAS. However, the molecular mechanism is still unclear. We found that MELAS cybrids exhibit a significant decrease in the steady-state levels of several mt-tRNA-modification enzymes, which is not due to transcriptional regulation. We demonstrated that oxidative stress mediates an NFkB-dependent induction of microRNA-9/9*, which acts as a post-transcriptional negative regulator of the mt-tRNA-modification enzymes GTPBP3, MTO1 and TRMU. Down-regulation of these enzymes by microRNA-9/9* affects the U34 modification status of non-mutant tRNAs and contributes to the MELAS phenotype. Anti-microRNA-9 treatments of MELAS cybrids reverse the phenotype, whereas miR-9 transfection of wild-type cells mimics the effects of siRNA-mediated down-regulation of GTPBP3, MTO1 and TRMU. Our data represent the first evidence that an mt-DNA disease can directly affect microRNA expression. Moreover, we demonstrate that the modification status of mt-tRNAs is dynamic and that cells respond to stress by modulating the expression of mt-tRNA-modifying enzymes. microRNA-9/9* is a crucial player in mitochondria-to-nucleus signaling as it regulates expression of nuclear genes in response to changes in the functional state of mitochondria.
Collapse
Affiliation(s)
- Salvador Meseguer
- Laboratory of RNA Modification and Mitochondrial Diseases, Centro de Investigación Príncipe Felipe, Valencia 46012, Spain
| | - Ana Martínez-Zamora
- Laboratory of RNA Modification and Mitochondrial Diseases, Centro de Investigación Príncipe Felipe, Valencia 46012, Spain
| | - Elena García-Arumí
- Hospital Universitari Vall d'Hebron, Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona 08035, Spain Biomedical Research Networking Centre for Rare Diseases (CIBERER) (node U701), Barcelona, Spain and
| | - Antonio L Andreu
- Hospital Universitari Vall d'Hebron, Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona 08035, Spain Biomedical Research Networking Centre for Rare Diseases (CIBERER) (node U701), Barcelona, Spain and
| | - M-Eugenia Armengod
- Laboratory of RNA Modification and Mitochondrial Diseases, Centro de Investigación Príncipe Felipe, Valencia 46012, Spain CIBERER (node U721), Valencia, Spain
| |
Collapse
|
118
|
miRNAs in tumor radiation response: bystanders or participants? Trends Mol Med 2014; 20:529-39. [PMID: 25153824 DOI: 10.1016/j.molmed.2014.07.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 07/18/2014] [Accepted: 07/18/2014] [Indexed: 12/21/2022]
Abstract
There is increasing interest in defining a functional association between miRNAs and tumor radiation response, with the double aim of rationally designing miRNA-based strategies to increase patient radiosensitivity and identifying novel biomarkers of treatment response. Although it has been demonstrated that several miRNAs directly regulate the expression of components of cell pathways relevant to radiosensitivity, and miRNA expression profiles change upon irradiation, understanding the causal role exerted by individual miRNAs in determining tumor radiation response is still at an early stage. Based on available experimental and clinical evidence, we discuss here the potential of miRNAs as targets and/or tools for modulating radioresponsivity at the clinical level, as well as possible predictive biomarkers, underlining present limits and future perspectives.
Collapse
|
119
|
Jiang Y, Chen X, Tian W, Yin X, Wang J, Yang H. The role of TGF-β1-miR-21-ROS pathway in bystander responses induced by irradiated non-small-cell lung cancer cells. Br J Cancer 2014; 111:772-80. [PMID: 24992582 PMCID: PMC4134503 DOI: 10.1038/bjc.2014.368] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 05/23/2014] [Accepted: 06/06/2014] [Indexed: 12/18/2022] Open
Abstract
Background: Many studies have indicated an important implication of radiation-induced bystander effects (RIBEs) in cancer radiotherapy, but the detailed signalling remains unclear. Methods: The roles of tumour growth factor-beta1 (TGF-β1) and miR-21 in medium-mediated RIBEs in H1299 non-small-cell lung cancer cells were investigated using DNA damage, changes in proliferation and levels of reactive oxygen species (ROS) as end points. SB431542, a specific inhibitor of TGF-β type 1 receptor kinases, was used to inhibit TGF-β1 pathways in irradiated and bystander cells. Exogenous miR-21 regulation was achieved through inhibitor or mimic transfection. Results: Compared with relative sham-radiation-conditioned medium, radiation-conditioned medium (RCM) from irradiated cells 1 h post radiation (1-h RCM) caused an increase in ROS levels and DNA damage in bystander cells, while 18-h RCM induced cell cycle delay and proliferation inhibition. All these effects were eliminated by TGF-βR1 inhibition. One-hour RCM upregulated miR-21 expression in bystander cells, and miR-21 inhibitor abolished bystander oxidative stress and DNA damage. Eighteen-hour RCM downregulated miR-21 of bystander cells, and miR-21 mimic eliminated bystander proliferation inhibition. Furthermore, the dysregulation of miR-21 was attenuated by TGF-βR1 inhibition. Conclusions: The TGF-β1–miR-21–ROS pathway of bystander cells has an important mediating role in RIBEs in H1299 cells.
Collapse
Affiliation(s)
- Y Jiang
- 1] School of Radiation Medicine and Protection, Medical College of Soochow University/School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu Province 215123, China [2] Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions and School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou 215123, China
| | - X Chen
- 1] School of Radiation Medicine and Protection, Medical College of Soochow University/School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu Province 215123, China [2] Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions and School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou 215123, China
| | - W Tian
- 1] School of Radiation Medicine and Protection, Medical College of Soochow University/School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu Province 215123, China [2] Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions and School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou 215123, China
| | - X Yin
- 1] School of Radiation Medicine and Protection, Medical College of Soochow University/School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu Province 215123, China [2] Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions and School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou 215123, China
| | - J Wang
- 1] School of Radiation Medicine and Protection, Medical College of Soochow University/School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu Province 215123, China [2] Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions and School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou 215123, China
| | - H Yang
- 1] School of Radiation Medicine and Protection, Medical College of Soochow University/School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu Province 215123, China [2] Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions and School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou 215123, China
| |
Collapse
|
120
|
Hu B, Ying X, Wang J, Piriyapongsa J, Jordan IK, Sheng J, Yu F, Zhao P, Li Y, Wang H, Ng WL, Hu S, Wang X, Wang C, Zheng X, Li W, Curran WJ, Wang Y. Identification of a tumor-suppressive human-specific microRNA within the FHIT tumor-suppressor gene. Cancer Res 2014; 74:2283-94. [PMID: 24556720 DOI: 10.1158/0008-5472.can-13-3279] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Loss or attenuated expression of the tumor-suppressor gene FHIT is associated paradoxically with poor progression of human tumors. Fhit promotes apoptosis and regulates reactive oxygen species; however, the mechanism by which Fhit inhibits tumor growth in animals remains unclear. In this study, we used a multidisciplinary approach based on bioinformatics, small RNA library screening, human tissue analysis, and a xenograft mouse model to identify a novel member of the miR-548 family in the fourth intron of the human FHIT gene. Characterization of this human-specific microRNA illustrates the importance of this class of microRNAs in tumor suppression and may influence interpretation of Fhit action in human cancer.
Collapse
Affiliation(s)
- Baocheng Hu
- Authors' Affiliations: Department of Medical Molecular Biology, Beijing Institute of Biotechnology; Center of Computational Biology, Beijing Institute of Basic Medical Sciences; Department of Pathology, Chinese PLA General Hospital; Department of Biochemistry and Molecular Biology, Beijing Institute of Radiation Medicine, Beijing, China; Department of Radiation Oncology, Emory University School of Medicine, Winship Cancer Institute of Emory University; School of Biology, Georgia Institute of Technology, Atlanta, Georgia; Department of Cancer Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania; and Genome Institute, National Center for Genetic Engineering and Biotechnology, Pathumthani, Thailand
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
121
|
Abstract
SIGNIFICANCE The well-studied sequences in the human genome are those of protein-coding genes, which account for only 1%-2% of the total genome. However, with the advent of high-throughput transcriptome sequencing technology, we now know that about 90% of our genome is extensively transcribed and that the vast majority of them are transcribed into noncoding RNAs (ncRNAs). It is of great interest and importance to decipher the functions of these ncRNAs in humans. RECENT ADVANCES In the last decade, it has become apparent that ncRNAs play a crucial role in regulating gene expression in normal development, in stress responses to internal and environmental stimuli, and in human diseases. CRITICAL ISSUES In addition to those constitutively expressed structural RNA, such as ribosomal and transfer RNAs, regulatory ncRNAs can be classified as microRNAs (miRNAs), Piwi-interacting RNAs (piRNAs), small interfering RNAs (siRNAs), small nucleolar RNAs (snoRNAs), and long noncoding RNAs (lncRNAs). However, little is known about the biological features and functional roles of these ncRNAs in DNA repair and genome instability, although a number of miRNAs and lncRNAs are regulated in the DNA damage response. FUTURE DIRECTIONS A major goal of modern biology is to identify and characterize the full profile of ncRNAs with regard to normal physiological functions and roles in human disorders. Clinically relevant ncRNAs will also be evaluated and targeted in therapeutic applications.
Collapse
Affiliation(s)
- Guohui Wan
- 1 Department of Cancer Biology, The University of Texas MD Anderson Cancer Center , Houston, Texas
| | | | | | | | | |
Collapse
|
122
|
Ng WL, Chen G, Wang M, Wang H, Story M, Shay JW, Zhang X, Wang J, Amin ARMR, Hu B, Cucinotta FA, Wang Y. OCT4 as a target of miR-34a stimulates p63 but inhibits p53 to promote human cell transformation. Cell Death Dis 2014; 5:e1024. [PMID: 24457968 PMCID: PMC4040665 DOI: 10.1038/cddis.2013.563] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 12/14/2013] [Accepted: 12/17/2013] [Indexed: 01/07/2023]
Abstract
Human cell transformation is a key step for oncogenic development, which involves multiple pathways; however, the mechanism remains unclear. To test our hypothesis whether cell oncogenic transformation shares some mechanisms with the process of reprogramming non-stem cells to induced pluripotent stem cells (iPSC), we studied the relationship among the key factors for promoting or inhibiting iPSC in radiation-transformed human epithelial cell lines derived from different tissues (lung, breast and colon). We unexpectedly found that p63 and OCT4 were highly expressed (accompanied by low expressed p53 and miR-34a) in all transformed cell lines examined when compared with their non-transformed counterparts. We further elucidated the relationship of these factors: the 3p strand of miR-34a directly targeted OCT4 by binding to the 3′ untranslated region (3′-UTR) of OCT4 and, OCT4, in turn, stimulated p63 but inhibited p53 expression by binding to a specific region of the p63 or p53 promoter. Moreover, we revealed that the effects of OCT4 on promoting cell oncogenic transformation were by affecting p63 and p53. These results support that a positive loop exists in human cells: OCT4 upregulation as a consequence of inhibition of miR-34a, promotes p63 but suppresses p53 expression, which further stimulates OCT4 upregulation by downregulating miR-34a. This functional loop contributes significantly to cell transformation and, most likely, also to the iPSC process.
Collapse
Affiliation(s)
- W L Ng
- Department of Radiation Oncology, Emory University School of Medicine, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - G Chen
- Department of Radiation Oncology, Emory University School of Medicine, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - M Wang
- Division of Space Life Sciences, Universities Space Research Association, Houston, TX, USA
| | - H Wang
- Department of Radiation Oncology, Emory University School of Medicine, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - M Story
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX, USA
| | - J W Shay
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - X Zhang
- Department of Radiation Oncology, Emory University School of Medicine, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - J Wang
- Department of Radiation Oncology, Emory University School of Medicine, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - A R M R Amin
- Department of Hematology and Oncology, Emory University School of Medicine, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - B Hu
- 1] Department of Radiation Oncology, Emory University School of Medicine, Winship Cancer Institute of Emory University, Atlanta, GA, USA [2] Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing, China
| | - F A Cucinotta
- Department of Health Physics and Diagnostic Sciences, University of Nevada, Las Vegas, NV, USA
| | - Y Wang
- Department of Radiation Oncology, Emory University School of Medicine, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| |
Collapse
|
123
|
Chaudhry MA. Radiation-induced microRNA: Discovery, functional analysis, and cancer radiotherapy. J Cell Biochem 2014; 115:436-49. [DOI: 10.1002/jcb.24694] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 10/10/2013] [Indexed: 12/26/2022]
Affiliation(s)
- M. Ahmad Chaudhry
- Department of Medical Laboratory and Radiation Sciences; University of Vermont; Burlington Vermont 05405
| |
Collapse
|
124
|
Bao B, Azmi AS, Li Y, Ahmad A, Ali S, Banerjee S, Kong D, Sarkar FH. Targeting CSCs in tumor microenvironment: the potential role of ROS-associated miRNAs in tumor aggressiveness. Curr Stem Cell Res Ther 2014; 9:22-35. [PMID: 23957937 PMCID: PMC4493722 DOI: 10.2174/1574888x113089990053] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 08/01/2013] [Accepted: 08/06/2013] [Indexed: 02/07/2023]
Abstract
Reactive oxygen species (ROS) have been widely considered as critical cellular signaling molecules involving in various biological processes such as cell growth, differentiation, proliferation, apoptosis, and angiogenesis. The homeostasis of ROS is critical to maintain normal biological processes. Increased production of ROS, namely oxidative stress, due to either endogenous or exogenous sources causes irreversible damage of bio-molecules such as DNA, proteins, lipids, and sugars, leading to genomic instability, genetic mutation, and altered gene expression, eventually contributing to tumorigenesis. A great amount of experimental studies in vitro and in vivo have produced solid evidence supporting that oxidative stress is strongly associated with increased tumor cell growth, treatment resistance, and metastasis, and all of which contribute to tumor aggressiveness. More recently, the data have indicated that altered production of ROS is also associated with cancer stem cells (CSCs), epithelial-to-mesenchymal transition (EMT), and hypoxia, the most common features or phenomena in tumorigenesis and tumor progression. However, the exact mechanism by which ROS is involved in the regulation of CSC and EMT characteristics as well as hypoxia- and, especially, HIF-mediated pathways is not well known. Emerging evidence suggests the role of miRNAs in tumorigenesis and progression of human tumors. Recently, the data have indicated that altered productions of ROS are associated with deregulated expression of miRNAs, suggesting their potential roles in the regulation of ROS production. Therefore, targeting ROS mediated through the deregulation of miRNAs by novel approaches or by naturally occurring anti-oxidant agents such as genistein could provide a new therapeutic approach for the prevention and/or treatment of human malignancies. In this article, we will discuss the potential role of miRNAs in the regulation of ROS production during tumorigenesis. Finally, we will discuss the role of genistein, as a potent anti-tumor agent in the regulation of ROS production during tumorigenesis and tumor development.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Fazlul H Sarkar
- Departments of Pathology and Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, 740 HWCRC, 4100 John R Street, Detroit, MI 48201, USA.
| |
Collapse
|
125
|
Klammer H, Mladenov E, Li F, Iliakis G. Bystander effects as manifestation of intercellular communication of DNA damage and of the cellular oxidative status. Cancer Lett 2013; 356:58-71. [PMID: 24370566 DOI: 10.1016/j.canlet.2013.12.017] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 12/13/2013] [Accepted: 12/14/2013] [Indexed: 12/30/2022]
Abstract
It is becoming increasingly clear that cells exposed to ionizing radiation (IR) and other genotoxic agents (targeted cells) can communicate their DNA damage response (DDR) status to cells that have not been directly irradiated (bystander cells). The term radiation-induced bystander effects (RIBE) describes facets of this phenomenon, but its molecular underpinnings are incompletely characterized. Consequences of DDR in bystander cells have been extensively studied and include transformation and mutation induction; micronuclei, chromosome aberration and sister chromatid exchange formation; as well as modulations in gene expression, proliferation and differentiation patterns. A fundamental question arising from such observations is why targeted cells induce DNA damage in non-targeted, bystander cells threatening thus their genomic stability and risking the induction of cancer. Here, we review and synthesize available literature to gather support for a model according to which targeted cells modulate as part of DDR their redox status and use it as a source to generate signals for neighboring cells. Such signals can be either small molecules transported to adjacent non-targeted cells via gap-junction intercellular communication (GJIC), or secreted factors that can reach remote, non-targeted cells by diffusion or through the circulation. We review evidence that such signals can induce in the recipient cell modulations of redox status similar to those seen in the originating targeted cell - occasionally though self-amplifying feedback loops. The resulting increase of oxidative stress in bystander cells induces, often in conjunction with DNA replication, the observed DDR-like responses that are at times strong enough to cause apoptosis. We reason that RIBE reflect the function of intercellular communication mechanisms designed to spread within tissues, or the entire organism, information about DNA damage inflicted to individual, constituent cells. Such responses are thought to protect the organism by enhancing repair in a community of cells and by eliminating severely damaged cells.
Collapse
Affiliation(s)
- Holger Klammer
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, Essen, Germany
| | - Emil Mladenov
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, Essen, Germany
| | - Fanghua Li
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, Essen, Germany
| | - George Iliakis
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, Essen, Germany.
| |
Collapse
|
126
|
Jajoo S, Mukherjea D, Kaur T, Sheehan KE, Sheth S, Borse V, Rybak LP, Ramkumar V. Essential role of NADPH oxidase-dependent reactive oxygen species generation in regulating microRNA-21 expression and function in prostate cancer. Antioxid Redox Signal 2013; 19:1863-76. [PMID: 23682737 PMCID: PMC3852344 DOI: 10.1089/ars.2012.4820] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
AIMS Oncogenic microRNAs (miRs) promote tumor growth and invasiveness. One of these, miR-21, contributes to carcinogenesis in prostate and other cancers. In the present study, we tested the hypothesis that NADPH oxidase-dependent reactive oxygen species (ROS) regulate the expression and function of miR-21 and its target proteins, maspin and programmed cell death 4 (PDCD4), in prostate cancer cells. RESULTS The highly aggressive androgen receptor negative PC-3M-MM2 prostate cancer cells demonstrated high expression of miR-21 and p47(phox) (an essential subunit of NADPH oxidase). Using loss-of-function strategy, we showed that transfection of PC-3M-MM2 cells with anti-miR-21- and p47(phox) siRNA (si-p47(phox)) led to reduced expression of miR-21 with concurrent increase in maspin and PDCD4, and decreased the invasiveness of the cells. Tail-vein injections of anti-miR-21- and si-p47(phox)-transfected PC-3M-MM2 cells in severe combined immunodeficient mice reduced lung metastases. Clinical samples from patients with advanced prostate cancer expressed high levels of miR-21 and p47(phox), and low expression of maspin and PDCD4. Finally, ROS activated Akt in these cells, the inhibition of which reduced miR-21 expression. INNOVATION The levels of NADPH oxidase-derived ROS are high in prostate cancer cells, which have been shown to be involved in their growth and migration. This study demonstrates that ROS produced by this pathway is essential for the expression and function of an onco-miR, miR-21, in androgen receptor-negative prostate cancer cells. CONCLUSION These data demonstrate that miR-21 is an important target of ROS, which contributes to the highly invasive and metastatic phenotype of prostate cancer cells.
Collapse
Affiliation(s)
- Sarvesh Jajoo
- 1 Department of Pharmacology, Southern Illinois University School of Medicine , Springfield, Illinois
| | | | | | | | | | | | | | | |
Collapse
|
127
|
miR-21 contributes to xenon-conferred amelioration of renal ischemia-reperfusion injury in mice. Anesthesiology 2013; 119:621-30. [PMID: 23681145 DOI: 10.1097/aln.0b013e318298e5f1] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND MicroRNAs participate in the regulation of numerous physiological and disease processes. The in vivo role of microRNAs in anesthetics-conferred organoprotection is unknown. METHODS Mice were exposed for 2 h to either 70% xenon, or 70% nitrogen, 24 h before the induction of renal ischemia-reperfusion injury. The role of microRNA, miR-21, in renal protection conferred by the delayed xenon preconditioning was examined using in vivo knockdown of miR-21 and analysis of miR-21 target pathways. RESULTS Xenon preconditioning provided morphologic and functional protection against renal ischemia-reperfusion injury (n = 6), characterized by attenuation of renal tubular damage, apoptosis, and oxidative stress. Xenon preconditioning significantly increased the expression of miR-21 in the mouse kidney. A locked nucleic acid-modified anti-miR-21, given before xenon preconditioning, knocked down miR-21 effectively, and exacerbated subsequent renal ischemia-reperfusion injury. Mice treated with anti-miR-21 and ischemia-reperfusion injury showed significantly higher serum creatinine than antiscrambled oligonucleotides-treated mice, 24 h after ischemia-reperfusion (1.37 ± 0.28 vs. 0.81 ± 0.14 mg/dl; n = 5; P < 0.05). Knockdown of miR-21 induced significant up-regulation of programmed cell death protein 4 and phosphatase and tensin homolog deleted on chromosome 10, two proapoptotic target effectors of miR-21, and resulted in significant down-regulation of phosphorylated protein kinase B and increased tubular cell apoptosis. In addition, xenon preconditioning up-regulated hypoxia-inducible factor-1α and its downstream effector vascular endothelial growth factor in a time-dependent manner. Knockdown of miR-21 resulted in a significant decrease of hypoxia-inducible factor-1α. CONCLUSIONS These results indicate that miR-21 contributes to the renoprotective effect of xenon preconditioning.
Collapse
|
128
|
Kirby TJ, McCarthy JJ. MicroRNAs in skeletal muscle biology and exercise adaptation. Free Radic Biol Med 2013; 64:95-105. [PMID: 23872025 PMCID: PMC4867469 DOI: 10.1016/j.freeradbiomed.2013.07.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 07/01/2013] [Accepted: 07/02/2013] [Indexed: 01/01/2023]
Abstract
MicroRNAs (miRNAs) have emerged as important players in the regulation of gene expression, being involved in most biological processes examined to date. The proposal that miRNAs are primarily involved in the stress response of the cell makes miRNAs ideally suited to mediate the response of skeletal muscle to changes in contractile activity. Although the field is still in its infancy, the studies presented in this review highlight the promise that miRNAs will have an important role in mediating the response and adaptation of skeletal muscle to various modes of exercise. The roles of miRNAs in satellite cell biology, muscle regeneration, and various myopathies are also discussed.
Collapse
Affiliation(s)
- Tyler J. Kirby
- Department of Physiology, University of Kentucky Lexington, KY 40516-0298
| | - John J. McCarthy
- Department of Physiology, University of Kentucky Lexington, KY 40516-0298
- Center for Muscle Biology, University of Kentucky Lexington, KY 40516-0298
| |
Collapse
|
129
|
Scott E, Loya K, Mountford J, Milligan G, Baker AH. MicroRNA regulation of endothelial homeostasis and commitment-implications for vascular regeneration strategies using stem cell therapies. Free Radic Biol Med 2013; 64:52-60. [PMID: 23665307 DOI: 10.1016/j.freeradbiomed.2013.04.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 04/22/2013] [Accepted: 04/30/2013] [Indexed: 11/23/2022]
Abstract
Human embryonic (hESC) and induced pluripotent (hiPSC) stem cells have broad therapeutic potential in the treatment of a range of diseases, including those of the vascular system. Both hESCs and hiPSCs have the capacity for indefinite self-renewal, in addition to their ability to differentiate into any adult cell type. These cells could provide a potentially unlimited source of cells for transplantation and, therefore, provide novel treatments, e.g. in the production of endothelial cells for vascular regeneration. MicroRNAs are short, noncoding RNAs that act posttranscriptionally to control gene expression and thereby exert influence over a wide range of cellular processes, including maintenance of pluripotency and differentiation. Expression patterns of these small RNAs are tissue specific, and changes in microRNA levels have often been associated with disease states in humans, including vascular pathologies. Here, we review the roles of microRNAs in endothelial cell function and vascular disease, as well as their role in the differentiation of pluripotent stem cells to the vascular endothelial lineage. Furthermore, we discuss the therapeutic potential of stem cells and how knowledge and manipulation of microRNAs in stem cells may enhance their capacity for vascular regeneration.
Collapse
Affiliation(s)
- Elizabeth Scott
- Institute of Cardiovascular and Medical Sciences, British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow G12 8TA, UK
| | | | | | | | | |
Collapse
|
130
|
Cheng X, Ku CH, Siow RCM. Regulation of the Nrf2 antioxidant pathway by microRNAs: New players in micromanaging redox homeostasis. Free Radic Biol Med 2013; 64:4-11. [PMID: 23880293 DOI: 10.1016/j.freeradbiomed.2013.07.025] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Revised: 07/16/2013] [Accepted: 07/16/2013] [Indexed: 01/27/2023]
Abstract
MicroRNAs are now thought to play a central role in the regulation of many diverse aspects of cell biology; however, it remains to be fully elucidated how microRNAs can orchestrate cellular redox homeostasis, which plays a central role in a multitude of physiological and pathophysiological processes. The redox-sensitive transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) serves as a "master regulator" of cell survival through the coordinated induction of phase II and antioxidant defense enzymes to counteract oxidative stress and modulate redox signaling events. MicroRNAs are able to "fine-tune" the regulation of processes including those directly interacting with the Nrf2 pathway and the generation of reactive oxygen species (ROS). This review highlights that cellular redox homeostasis can be regulated by microRNAs through their modulation of Nrf2-driven antioxidant gene expression as well as key enzymes that generate ROS, which in turn can alter the biogenesis and processing of microRNAs. Therefore redox sensitive microRNAs or "redoximiRs" add an important regulatory mechanism for redox signaling beyond the well-characterized actions of Nrf2. The potential exists for microRNA-based therapies where diminished antioxidant defenses and dysregulated redox signaling can lead to cardiovascular diseases, cancers, neurodegeneration, and accelerated aging.
Collapse
Affiliation(s)
- Xinghua Cheng
- Cardiovascular Division, British Heart Foundation Centre for Research Excellence, School of Medicine, King's College London, London, UK
| | | | | |
Collapse
|
131
|
Marin T, Gongol B, Chen Z, Woo B, Subramaniam S, Chien S, Shyy JYJ. Mechanosensitive microRNAs-role in endothelial responses to shear stress and redox state. Free Radic Biol Med 2013; 64:61-8. [PMID: 23727269 PMCID: PMC3762952 DOI: 10.1016/j.freeradbiomed.2013.05.034] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Revised: 05/22/2013] [Accepted: 05/23/2013] [Indexed: 12/22/2022]
Abstract
Endothelial functions are highly regulated by imposed shear stress in vivo. The characteristics of shear stress determine mechanotransduction events that regulate phenotypic outcomes including redox and inflammatory states. Recent data indicate that microRNAs (miRs) in vascular endothelial cells play an essential role in shear stress-regulated endothelial responses. More specifically, atheroprotective pulsatile flow (PS) induces miRs that inhibit mediators of oxidative stress and inflammation while promoting those involved in maintaining vascular homeostasis. Conversely, oscillatory flow (OS) elicits the opposing networks. This is exemplified by the PS-responsive transcription factor Krüppel-like factor 2 (KLF2), which regulates miR expression but is also regulated by OS-sensitive miRs to ultimately regulate the oxidative and inflammatory state of the endothelium. In this review, we outline important findings demonstrating the multifaceted roles of shear stress-regulated miRs in endothelial redox and inflammatory balance. Furthermore, we discuss the use of algorithms in deciphering signaling networks differentially regulated by PS and OS.
Collapse
Affiliation(s)
- Traci Marin
- Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA 92521
| | - Brendan Gongol
- Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA 92521
| | - Zhen Chen
- Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA 92521
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Brian Woo
- Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA 92521
| | - Shankar Subramaniam
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093
| | - Shu Chien
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093
| | - John Y-J Shyy
- Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA 92521
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093
| |
Collapse
|
132
|
Nallamshetty S, Chan SY, Loscalzo J. Hypoxia: a master regulator of microRNA biogenesis and activity. Free Radic Biol Med 2013; 64:20-30. [PMID: 23712003 PMCID: PMC3762925 DOI: 10.1016/j.freeradbiomed.2013.05.022] [Citation(s) in RCA: 218] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 05/01/2013] [Accepted: 05/16/2013] [Indexed: 01/08/2023]
Abstract
Hypoxia, or low oxygen tension, is a unique environmental stress that induces global changes in a complex regulatory network of transcription factors and signaling proteins to coordinate cellular adaptations in metabolism, proliferation, DNA repair, and apoptosis. Several lines of evidence now establish microRNAs (miRNAs), which are short noncoding RNAs that regulate gene expression through posttranscriptional mechanisms, as key elements in this response to hypoxia. Oxygen deprivation induces a distinct shift in the expression of a specific group of miRNAs, termed hypoxamirs, and emerging evidence indicates that hypoxia regulates several facets of hypoxamir transcription, maturation, and function. Transcription factors such as hypoxia-inducible factor are upregulated under conditions of low oxygen availability and directly activate the transcription of a subset of hypoxamirs. Conversely, hypoxia selectively represses other hypoxamirs through less well characterized mechanisms. In addition, oxygen deprivation has been directly implicated in epigenetic modifications such as DNA demethylation that control specific miRNA transcription. Finally, hypoxia also modulates the activity of key proteins that control posttranscriptional events in the maturation and activity of miRNAs. Collectively, these findings establish hypoxia as an important proximal regulator of miRNA biogenesis and function. It will be important for future studies to address the relative contributions of transcriptional and posttranscriptional events in the regulation of specific hypoxamirs and how such miRNAs are coordinated in order to integrate into the complex hierarchical regulatory network induced by hypoxia.
Collapse
Affiliation(s)
- Shriram Nallamshetty
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
- Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Stephen Y. Chan
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Joseph Loscalzo
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
133
|
Akagi I, Okayama H, Schetter AJ, Robles AI, Kohno T, Bowman ED, Kazandjian D, Welsh JA, Oue N, Saito M, Miyashita M, Uchida E, Takizawa T, Takenoshita S, Skaug V, Mollerup S, Haugen A, Yokota J, Harris CC. Combination of protein coding and noncoding gene expression as a robust prognostic classifier in stage I lung adenocarcinoma. Cancer Res 2013; 73:3821-32. [PMID: 23639940 PMCID: PMC6503978 DOI: 10.1158/0008-5472.can-13-0031] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Prognostic tests for patients with early-stage lung cancer may provide needed guidance on postoperative surveillance and therapeutic decisions. We used a novel strategy to develop and validate a prognostic classifier for early-stage lung cancer. Specifically, we focused on 42 genes with roles in lung cancer or cancer prognosis. Expression of these biologically relevant genes and their association with relapse-free survival (RFS) were evaluated using microarray data from 148 patients with stage I lung adenocarcinoma. Seven genes associated with RFS were further examined by quantitative reverse transcription PCR in 291 lung adenocarcinoma tissues from Japan, the United States, and Norway. Only BRCA1, HIF1A, DLC1, and XPO1 were each significantly associated with prognosis in the Japan and US/Norway cohorts. A Cox regression-based classifier was developed using these four genes on the Japan cohort and validated in stage I lung adenocarcinoma from the US/Norway cohort and three publicly available lung adenocarcinoma expression profiling datasets. The results suggest that the classifier is robust across ethnically and geographically diverse populations regardless of the technology used to measure gene expression. We evaluated the combination of the four-gene classifier with miRNA miR-21 (MIR21) expression and found that the combination improved associations with prognosis, which were significant in stratified analyses on stage IA and stage IB patients. Thus, the four coding gene classifier, alone or with miR-21 expression, may provide a clinically useful tool to identify high-risk patients and guide recommendations regarding adjuvant therapy and postoperative surveillance of patients with stage I lung adenocarcinoma.
Collapse
Affiliation(s)
- Ichiro Akagi
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
- Division of Surgery for Organ Function and Biological Regulation, Tokyo
| | - Hirokazu Okayama
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
- Department of Organ Regulatory Surgery, Fukushima Medical University School of Medicine, Fukushima
| | - Aaron J. Schetter
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Ana I. Robles
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Takashi Kohno
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo
| | - Elise D. Bowman
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Dickran Kazandjian
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Judith A. Welsh
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Naohide Oue
- Department of Molecular Pathology, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan
| | - Motonobu Saito
- Department of Organ Regulatory Surgery, Fukushima Medical University School of Medicine, Fukushima
| | - Masao Miyashita
- Division of Surgery for Organ Function and Biological Regulation, Tokyo
| | - Eiji Uchida
- Division of Surgery for Organ Function and Biological Regulation, Tokyo
| | - Toshihiro Takizawa
- Division of Molecular Medicine and Anatomy, Graduate School of Medicine, Nippon Medical School, Tokyo
| | - Seiichi Takenoshita
- Department of Organ Regulatory Surgery, Fukushima Medical University School of Medicine, Fukushima
| | - Vidar Skaug
- Section for Toxicology, Department of Chemical and Biological Working Environment, National Institute of Occupational Health, Oslo, Norway
| | - Steen Mollerup
- Section for Toxicology, Department of Chemical and Biological Working Environment, National Institute of Occupational Health, Oslo, Norway
| | - Aage Haugen
- Section for Toxicology, Department of Chemical and Biological Working Environment, National Institute of Occupational Health, Oslo, Norway
| | - Jun Yokota
- Division of Multistep Carcinogenesis, National Cancer Center Research Institute, Tokyo
| | - Curtis C. Harris
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| |
Collapse
|
134
|
Shi C, Liang Y, Yang J, Xia Y, Chen H, Han H, Yang Y, Wu W, Gao R, Qin H. MicroRNA-21 knockout improve the survival rate in DSS induced fatal colitis through protecting against inflammation and tissue injury. PLoS One 2013; 8:e66814. [PMID: 23826144 PMCID: PMC3691313 DOI: 10.1371/journal.pone.0066814] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Accepted: 05/08/2013] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND MicroRNA-21 (miR-21) is overexpressed in most inflammatory diseases, but its physiological role in gut inflammation and tissue injury is poorly understood. The goal of this work is to understand the role of miR-21 in colitis and damage progression of intestine in a genetically modified murine model. METHODS Experimental colitis was induced in miR-21 KO and wild-type (WT) mice by 3.5% dextran sulphate sodium (DSS) administration for 7 days. Disease activity index(DAI), blood parameters, intestinal permeability, histopathologic injury, cytokine and chemokine production, and epithelial cells apoptosis were examined in colons of miR-21 KO and WT mice. RESULTS miR-21 was overexpressed in intestine of inflammatory bowel diseases (IBD) and acute intestinal obstruction (AIO) patients when compared with normal intestinal tissues. Likewise, miR-21 was up-regulated in colon of IL-10 KO mice when compared with control mice. WT mice rapidly lost weight and were moribund 5 days after treatment with 3.5% DSS, while miR-21 KO mice survived for at least 6 days. Elevated leukocytes and more severe histopathology were observed in WT mice when compared with miR-21 KO mice. Elevated levels of TNF-α and macrophage inflammatory protein-2(MIP-2) in colon culture supernatants from WT mice exhibited significant higher than miR-21 KO mice. Furthermore, CD3 and CD68 positive cells, intestinal permeability and apoptosis of epithelial cells were significantly increased in WT mice when compared with miR-21 KO mice. Finally, we found that miR-21 regulated the intestinal barrier function through modulating the expression of RhoB and CDC42. CONCLUSION Our results suggest that miR-21 is overexpressed in intestinal inflammation and tissue injury, while knockout of miR-21 in mice improve the survival rate in DSS-induced fatal colitis through protecting against inflammation and tissue injury. Therefore, attenuated expression of miR-21 in gut may prevent the onset or progression of inflammatory bowel disease in patients.
Collapse
Affiliation(s)
- Chenzhang Shi
- Department of General Surgery, Affiliated Sixth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yong Liang
- Department of General Surgery, Affiliated Sixth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Yang
- Department of General Surgery, Affiliated Sixth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yang Xia
- Department of General Surgery, Affiliated Sixth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hongqi Chen
- Department of General Surgery, Affiliated Sixth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Huazhong Han
- Department of General Surgery, Affiliated Sixth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yongzhi Yang
- Department of General Surgery, Affiliated Sixth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wen Wu
- Department of General Surgery, Affiliated Sixth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Renyuan Gao
- Department of General Surgery, Affiliated Sixth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Huanlong Qin
- Department of General Surgery, Affiliated Sixth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- * E-mail:
| |
Collapse
|
135
|
Chen L, Zhou JP, Kuang DB, Tang J, Li YJ, Chen XP. 4-HNE increases intracellular ADMA levels in cultured HUVECs: evidence for miR-21-dependent mechanisms. PLoS One 2013; 8:e64148. [PMID: 23717555 PMCID: PMC3661487 DOI: 10.1371/journal.pone.0064148] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Accepted: 04/09/2013] [Indexed: 11/19/2022] Open
Abstract
Objective To investigate whether 4-hydroxynonenal (4-HNE) regulates asymmetric dimethylarginine (ADMA) metabolism through pathway independent of direct adduct formation with ADMA metabolizing enzyme and the involvement of microRNA (miRNA) miR-21 in human umbilical venous endothelial cells (HUVECs). Methods Cultured HUVECs were treated with 4-HNE (at concentrations of 1, 5, and 10 µM, respectively) or 1‰ DMSO (vehicle control) for 24 h. MiR-21 inhibitor (final concentration of 100 nM) was transfected at 1 h before 4-HNE treatment. HUVECs were also transfected with miR-21 (at concentrations of 50 nM and 100 nM) and cultured for 12, 24, and 48 h, respectively. DDAH mRNA and miR-21 expression in the HUVECs were determined by semi-quantitative real time PCR. DDAH1 and DDAH2 protein expression were analyzed by Western blot. ADMA in the cell medium and cell lysates were analyzed by ELISA. ADMA metabolizing activity of the cell lysates was also determined. Results MiR-21 decreased DDAH1 and DDAH2 expression and ADMA metabolic activity significantly, while increased intracellular ADMA accumulation significantly in HUVECs. 10 µM 4-HNE treatment for 24 h increased the expression of miR-21 and intracellular ADMA concentration, decreased the expression of DDAH1/2 mRNA and protein, decreased ADMA metabolizing activity of the cell lysates significantly. MiR-21 inhibitor reversed the inhibitory effects of 4-HNE on DDAH1 expression completely, and partially reversed the changes in ADMA metabolizing activity and intracellular ADMA accumulation challenged by 10 µM 4-HNE. Conclusion 4-HNE down-regulates DDAH1 expression and increases intracellular ADMA accumulation in HUVECs through a miR-21-dependent mechanism.
Collapse
Affiliation(s)
- Lei Chen
- Department of Pharmacology, School of Pharmaceutical Science, Central South University, Changsha, Hunan, China
| | - Ji-Peng Zhou
- Department of Pharmacology, School of Pharmaceutical Science, Central South University, Changsha, Hunan, China
- Pharmacogenetics Research Institute, Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China
| | - Da-Bin Kuang
- Department of Pharmacology, School of Pharmaceutical Science, Central South University, Changsha, Hunan, China
- Pharmacogenetics Research Institute, Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China
| | - Jie Tang
- Pharmacogenetics Research Institute, Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China
| | - Yuan-Jian Li
- Department of Pharmacology, School of Pharmaceutical Science, Central South University, Changsha, Hunan, China
| | - Xiao-Ping Chen
- Department of Pharmacology, School of Pharmaceutical Science, Central South University, Changsha, Hunan, China
- Pharmacogenetics Research Institute, Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China
- * E-mail:
| |
Collapse
|
136
|
Chen D, Cabay RJ, Jin Y, Wang A, Lu Y, Shah-Khan M, Zhou X. MicroRNA Deregulations in Head and Neck Squamous Cell Carcinomas. EJOURNAL OF ORAL MAXILLOFACIAL RESEARCH 2013; 4:e2. [PMID: 24422025 PMCID: PMC3886106 DOI: 10.5037/jomr.2013.4102] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 03/04/2013] [Indexed: 12/26/2022]
Abstract
Objectives Head and neck/oral cancer, predominantly head and neck squamous cell
carcinoma (HNSCC), is the sixth most common cancer in the world. While
substantial advances have been made to define the genomic alterations
associated with head and neck/oral cancer, most studies are focused on
protein coding genes. The aim of this article is to review the current
literature on identified genomic aberrations of non-coding genes (e.g.,
microRNA) in head and neck/oral cancer (HNOC), and their contribution to the
initiation and progression of HNOC. Material and Methods A comprehensive review of the available literature relevant to microRNA
deregulation in HNSCC/HNOC, was undertaken using PubMed, Medline, Scholar
Google and Scopus. Keywords for the search were: microRNA and oral cancer,
microRNA and squamous cell carcinoma, microRNA deregulation and oral cancer,
microRNA and carcinogenesis in the head and neck/oral cavity. Only full
length articles in the English language were included. Results We recently identified a panel of microRNA deregulations that were
consistently observed in HNSCC [Chen et al., Oral Oncol. 2012;48(8):686-91],
including 7 consistently up-regulated microRNAs (miR-21, miR-7, miR-155,
miR-130b, miR-223, miR-34b), and 4 consistently down-regulated microRNAs
(miR-100, miR-99a, miR-125b, miR-375). In this review, we will first provide
an overview on microRNA and HNSCC. We will then provide a comprehensive
review on the roles of microRNA deregulations in HNSCC. The functional
significance of the identified HNSCC-associated microRNAs and a number of
other relevant microRNAs (e.g., miR-138, miR-98, miR-137, miR-193a and
miR-218) will be discussed in detail. Conclusions Based on current literature, microRNA deregulation plays a major role in head
and neck/oral cancer.
Collapse
Affiliation(s)
- Dan Chen
- Center for Molecular Biology of Oral Diseases, College of Dentistry, University of Illinois at Chicago Chicago, Illinois USA. ; Department of Oral and Maxillofacial Surgery, First Affiliated Hospital, Sun Yat-sen University Guangzhou, Guangdong China
| | - Robert J Cabay
- Department of Pathology, College of Medicine, University of Illinois at Chicago Chicago, Illinois USA. ; Department of Oral Medicine and Diagnostic Sciences, College of Dentistry, University of Illinois at Chicago Chicago, Illinois USA
| | - Yi Jin
- Center for Molecular Biology of Oral Diseases, College of Dentistry, University of Illinois at Chicago Chicago, Illinois USA
| | - Anxun Wang
- Department of Oral and Maxillofacial Surgery, First Affiliated Hospital, Sun Yat-sen University Guangzhou, Guangdong China
| | - Yang Lu
- Department of Oral and Maxillofacial Surgery, First Affiliated Hospital, Sun Yat-sen University Guangzhou, Guangdong China. ; Department of Oral and Maxillofacial Surgery, First Affiliated Hospital, Sun Yat-sen University Guangzhou, Guangdong China
| | - Muzaffar Shah-Khan
- Center for Molecular Biology of Oral Diseases, College of Dentistry, University of Illinois at Chicago Chicago, Illinois USA
| | - Xiaofeng Zhou
- Center for Molecular Biology of Oral Diseases, College of Dentistry, University of Illinois at Chicago Chicago, Illinois USA. ; Department of Periodontics, College of Dentistry, University of Illinois at Chicago Chicago, Illinois USA. ; UIC Cancer Center, Graduate College, University of Illinois at Chicago Chicago, Illinois USA
| |
Collapse
|
137
|
MicroRNAs in the ionizing radiation response and in radiotherapy. Curr Opin Genet Dev 2013; 23:12-9. [PMID: 23453900 DOI: 10.1016/j.gde.2013.01.002] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 12/28/2012] [Accepted: 01/09/2013] [Indexed: 12/15/2022]
Abstract
Radiotherapy is a form of cancer treatment that utilizes the ability of ionizing radiation to induce cell inactivation and cell death, generally via inflicting DNA double-strand breaks. However, different tumors and their normal surrounding tissues are not equally sensitive to radiation, posing a major challenge in the field: to seek out factors that influence radiosensitivity. In this review, we summarize the evidence for microRNA (miRNA) involvement in the radioresponse and discuss their potential as radiosensitizers. MicroRNAs are endogenous small, noncoding RNAs that regulate gene expression posttranscriptionally, influencing many processes including, as highlighted here, cellular sensitivity to radiation. Profiling studies demonstrate that miRNA expression levels change in response to radiation, while certain miRNAs, when overexpressed or knocked down, alter radiosensitivity. Finally, we discuss specific miRNA-target pairs that affect response to radiation and DNA damage as good potential targets for modulating radioresponsitivity.
Collapse
|