101
|
Pancreatic Cancer Associated Fibroblasts (CAF): Under-Explored Target for Pancreatic Cancer Treatment. Cancers (Basel) 2020; 12:cancers12051347. [PMID: 32466266 PMCID: PMC7281461 DOI: 10.3390/cancers12051347] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/12/2020] [Accepted: 05/19/2020] [Indexed: 02/07/2023] Open
Abstract
Pancreatic cancer is the 4th leading cause of cancer deaths in the United States. The pancreatic cancer phenotype is primarily a consequence of oncogenes disturbing the resident pancreas parenchymal cell repair program. Many solid tumor types including pancreatic cancer have severe tumor fibrosis called desmoplasia. Desmoplastic stroma is coopted by the tumor as a support structure and CAFs aid in tumor growth, invasion, and metastases. This stroma is caused by cancer associated fibroblasts (CAFs), which lay down extensive connective tissue in and around the tumor cells. CAFs represent a heterogeneous population of cells that produce various paracrine molecules such as transforming growth factor-beta (TGF-beta) and platelet derived growth factors (PDGFs) that aid tumor growth, local invasion, and development of metastases. The hard, fibrotic shell of desmoplasia serves as a barrier to the infiltration of both chemo- and immunotherapy drugs and host immune cells to the tumor. Although there have been recent improvements in chemotherapy and surgical techniques for management of pancreatic cancer, the majority of patients will die from this disease. Therefore, new treatment strategies are clearly needed. CAFs represent an under-explored potential therapeutic target. This paper discusses what we know about the role of CAFs in pancreatic cancer cell growth, invasion, and metastases. Additionally, we present different strategies that are being and could be explored as anti-CAF treatments for pancreatic cancer.
Collapse
|
102
|
Altered expression of fibroblast activation protein-α (FAP) in colorectal adenoma-carcinoma sequence and in lymph node and liver metastases. Aging (Albany NY) 2020; 12:10337-10358. [PMID: 32428869 PMCID: PMC7346028 DOI: 10.18632/aging.103261] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 04/20/2020] [Indexed: 12/24/2022]
Abstract
Colorectal cancer (CRC) is a major health problem in elderly people because of its high incidence and high mortality rate. Despite early screening programs, more than half of CRC patients are diagnosed at advanced stages. Fibroblast activation protein-α (FAP) expression in cancer-associated fibroblasts (CAFs) has been associated with a higher risk of metastases and poor survival. Here, we have analyzed the immunohistochemical expression of FAP in 41 adenoma-carcinoma sequences. In addition, FAP expression was analyzed individually and in combination with β-catenin (BCAT), CD44 and Cyclin-D1 expression in primary tumors and in their corresponding lymph node and liver metastases (n=294). Finally, soluble FAP (sFAP) levels in plasma from CRC patients (n=127) were also analyzed by ELISA. FAP was expressed only in CRC tissue and its expression level was found to be higher in tumors exhibiting deeper local invasion and poorer cancer cell differentiation. FAP and concomitant nuclear BCAT expression in cancer cells at the infiltrating front of primary tumors and in lymph node metastases was independently associated with 5- and 10-year cancer specific and disease-free survival. Moreover, lower sFAP levels correlated with poorer survival. These findings support the potential importance of FAP as a biomarker of CRC development and progression.
Collapse
|
103
|
Stopa KB, Kusiak AA, Szopa MD, Ferdek PE, Jakubowska MA. Pancreatic Cancer and Its Microenvironment-Recent Advances and Current Controversies. Int J Mol Sci 2020; 21:E3218. [PMID: 32370075 PMCID: PMC7246785 DOI: 10.3390/ijms21093218] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) causes annually well over 400,000 deaths world-wide and remains one of the major unresolved health problems. This exocrine pancreatic cancer originates from the mutated epithelial cells: acinar and ductal cells. However, the epithelia-derived cancer component forms only a relatively small fraction of the tumor mass. The majority of the tumor consists of acellular fibrous stroma and diverse populations of the non-neoplastic cancer-associated cells. Importantly, the tumor microenvironment is maintained by dynamic cell-cell and cell-matrix interactions. In this article, we aim to review the most common drivers of PDAC. Then we summarize the current knowledge on PDAC microenvironment, particularly in relation to pancreatic cancer therapy. The focus is placed on the acellular stroma as well as cell populations that inhabit the matrix. We also describe the altered metabolism of PDAC and characterize cellular signaling in this cancer.
Collapse
Affiliation(s)
- Kinga B. Stopa
- Malopolska Centre of Biotechnology, Jagiellonian University, ul. Gronostajowa 7A, 30-387 Krakow, Poland;
| | - Agnieszka A. Kusiak
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387 Krakow, Poland; (A.A.K.); (M.D.S.)
| | - Mateusz D. Szopa
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387 Krakow, Poland; (A.A.K.); (M.D.S.)
| | - Pawel E. Ferdek
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387 Krakow, Poland; (A.A.K.); (M.D.S.)
| | - Monika A. Jakubowska
- Malopolska Centre of Biotechnology, Jagiellonian University, ul. Gronostajowa 7A, 30-387 Krakow, Poland;
| |
Collapse
|
104
|
Single-cell EMT-related transcriptional analysis revealed intra-cluster heterogeneity of tumor cell clusters in epithelial ovarian cancer ascites. Oncogene 2020; 39:4227-4240. [PMID: 32284541 DOI: 10.1038/s41388-020-1288-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 02/05/2023]
Abstract
Malignant ascites of epithelial ovarian cancer is a metastatic tumor microenvironment in which large amounts of disseminated single cells (DSCs) and disseminated tumor cell clusters (DTCCs) are commonly observed. The tumor cell clusters are known to be more aggressive than individual tumor cells in cancer metastasis; however, little is known about the mechanism. Applying single-cell epithelial-to-mesenchymal transition (EMT)-related transcriptional analysis in 120 DSCs and 195 intra-cluster cells from 27 DTCCs, we demonstrated that DTCCs were heterogeneous cellular units comprised of epithelial tumor cells, leukocytes, and cancer-associated fibroblasts (CAFs). Through the analysis of intra-DTCC heterogeneity, we identified that CAFs induced EMT of tumor cells via TGFβ signaling within the DTCC microenvironment. The activation of EMT program, in particular the upregulation of ZEB2, enabled the acquisition of additional chemoresistance and metastasis abilities of the intra-DTCC tumor cells, which resulted in the aggressiveness of DTCCs.
Collapse
|
105
|
Schreier S, Triampo W. The Blood Circulating Rare Cell Population. What is it and What is it Good For? Cells 2020; 9:cells9040790. [PMID: 32218149 PMCID: PMC7226460 DOI: 10.3390/cells9040790] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/13/2020] [Accepted: 03/16/2020] [Indexed: 02/06/2023] Open
Abstract
Blood contains a diverse cell population of low concentration hematopoietic as well as non-hematopoietic cells. The majority of such rare cells may be bone marrow-derived progenitor and stem cells. This paucity of circulating rare cells, in particular in the peripheral circulation, has led many to believe that bone marrow as well as other organ-related cell egress into the circulation is a response to pathological conditions. Little is known about this, though an increasing body of literature can be found suggesting commonness of certain rare cell types in the peripheral blood under physiological conditions. Thus, the isolation and detection of circulating rare cells appears to be merely a technological problem. Knowledge about rare cell types that may circulate the blood stream will help to advance the field of cell-based liquid biopsy by supporting inter-platform comparability, making use of biological correct cutoffs and “mining” new biomarkers and combinations thereof in clinical diagnosis and therapy. Therefore, this review intends to lay ground for a comprehensive analysis of the peripheral blood rare cell population given the necessity to target a broader range of cell types for improved biomarker performance in cell-based liquid biopsy.
Collapse
Affiliation(s)
- Stefan Schreier
- School of Bioinnovation and Bio-based Product Intelligence, Faculty of Science, Mahidol University, Rama VI Rd, Bangkok 10400, Thailand;
- Thailand Center of Excellence in Physics, Ministry of Higher Education, Science, Research and Innovation, 328 Si Ayutthaya Road, Bangkok 10400, Thailand
| | - Wannapong Triampo
- Thailand Center of Excellence in Physics, Ministry of Higher Education, Science, Research and Innovation, 328 Si Ayutthaya Road, Bangkok 10400, Thailand
- Department of Physics, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Correspondence:
| |
Collapse
|
106
|
Ortiz-Otero N, Clinch AB, Hope J, Wang W, Reinhart-King CA, King MR. Cancer associated fibroblasts confer shear resistance to circulating tumor cells during prostate cancer metastatic progression. Oncotarget 2020; 11:1037-1050. [PMID: 32256977 PMCID: PMC7105166 DOI: 10.18632/oncotarget.27510] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 02/06/2020] [Indexed: 12/13/2022] Open
Abstract
Previous studies have demonstrated that CTCs do not travel in the bloodstream alone, but rather are accompanied by clusters of stromal cells such as cancer associated fibroblasts (CAFs). Our laboratory has confirmed the presence of CAFs in the peripheral blood of prostate cancer (PC) patients. The observation that CAFs disseminate with CTCs prompts the examination of the role of CAFs in CTC survival under physiological shear stress during the dissemination process using a clinically relevant, three-dimensional (3D) co-culture model. In this study, we found that "reactive CAFs" induce shear resistance to prostate tumor cells via intercellular contact and soluble derived factors. In addition, these reactive CAFs conserve the proliferative capability of tumor cells in the presence of high magnitude fluid shear stress (FSS). This reactive CAF phenotype emerges from normal fibroblasts (NF), which take on the CAF phenotype when co-cultured with tumor cells. The reactive CAFs showed higher expression of α-smooth muscle actin (α-SMA) and fibroblast activation protein (FAP) compared to differentiated CAFs, when co-cultured with PC cells at the same experimental conditions. Together, we found that the activation mechanism of NF to CAF comprises different stages that progress from a reactive to quiescent cellular state in which these two states are differentiated by the fluctuation of intensity in CAF markers. Here we determined that a reactive state of CAFs proved to be important for supporting tumor cell survival and proliferation. These findings suggest the use of CAFs as a marker for cancer progression and a potential target for novel cancer therapeutics to treat metastatic disease.
Collapse
Affiliation(s)
- Nerymar Ortiz-Otero
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14850, USA
| | - Andrea B Clinch
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37202, USA
| | - Jacob Hope
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37202, USA
| | - Wenjun Wang
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37202, USA
| | | | - Michael R King
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37202, USA
| |
Collapse
|
107
|
The Cancer Stem Cell in Hepatocellular Carcinoma. Cancers (Basel) 2020; 12:cancers12030684. [PMID: 32183251 PMCID: PMC7140091 DOI: 10.3390/cancers12030684] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 12/11/2022] Open
Abstract
The recognition of intra-tumoral cellular heterogeneity has given way to the concept of the cancer stem cell (CSC). According to this concept, CSCs are able to self-renew and differentiate into all of the cancer cell lineages present within the tumor, placing the CSC at the top of a hierarchical tree. The observation that these cells—in contrast to bulk tumor cells—are able to exclusively initiate new tumors, initiate metastatic spread and resist chemotherapy implies that CSCs are solely responsible for tumor recurrence and should be therapeutically targeted. Toward this end, dissecting and understanding the biology of CSCs should translate into new clinical therapeutic approaches. In this article, we review the CSC concept in cancer, with a special focus on hepatocellular carcinoma.
Collapse
|
108
|
Pattern of expression of immune- and stroma-associated genes in blood of mice with experimental B16 melanoma. UKRAINIAN BIOCHEMICAL JOURNAL 2020. [DOI: 10.15407/ubj92.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
109
|
Follain G, Herrmann D, Harlepp S, Hyenne V, Osmani N, Warren SC, Timpson P, Goetz JG. Fluids and their mechanics in tumour transit: shaping metastasis. Nat Rev Cancer 2020; 20:107-124. [PMID: 31780785 DOI: 10.1038/s41568-019-0221-x] [Citation(s) in RCA: 225] [Impact Index Per Article: 56.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/21/2019] [Indexed: 02/07/2023]
Abstract
Metastasis is a dynamic succession of events involving the dissemination of tumour cells to distant sites within the body, ultimately reducing the survival of patients with cancer. To colonize distant organs and, therefore, systemically disseminate within the organism, cancer cells and associated factors exploit several bodily fluid systems, which provide a natural transportation route. Indeed, the flow mechanics of the blood and lymphatic circulatory systems can be co-opted to improve the efficiency of cancer cell transit from the primary tumour, extravasation and metastatic seeding. Flow rates, vessel size and shear stress can all influence the survival of cancer cells in the circulation and control organotropic seeding patterns. Thus, in addition to using these fluids as a means to travel throughout the body, cancer cells exploit the underlying physical forces within these fluids to successfully seed distant metastases. In this Review, we describe how circulating tumour cells and tumour-associated factors leverage bodily fluids, their underlying forces and imposed stresses during metastasis. As the contribution of bodily fluids and their mechanics raises interesting questions about the biology of the metastatic cascade, an improved understanding of this process might provide a new avenue for targeting cancer cells in transit.
Collapse
Affiliation(s)
- Gautier Follain
- INSERM UMR_S1109, Tumor Biomechanics, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - David Herrmann
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Sébastien Harlepp
- INSERM UMR_S1109, Tumor Biomechanics, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Vincent Hyenne
- INSERM UMR_S1109, Tumor Biomechanics, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- CNRS SNC 505, Strasbourg, France
| | - Naël Osmani
- INSERM UMR_S1109, Tumor Biomechanics, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Sean C Warren
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Paul Timpson
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales, Australia.
- St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia.
| | - Jacky G Goetz
- INSERM UMR_S1109, Tumor Biomechanics, Strasbourg, France.
- Université de Strasbourg, Strasbourg, France.
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France.
| |
Collapse
|
110
|
Steinbichler TB, Savic D, Dudás J, Kvitsaridze I, Skvortsov S, Riechelmann H, Skvortsova II. Cancer stem cells and their unique role in metastatic spread. Semin Cancer Biol 2020; 60:148-156. [PMID: 31521746 DOI: 10.1016/j.semcancer.2019.09.007] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/10/2019] [Accepted: 09/11/2019] [Indexed: 12/19/2022]
Abstract
Cancer stem cells (CSC) possess abilities generally associated with embryonic or adult stem cells, especially self-renewal and differentiation, but also dormancy and cellular plasticity that allow adaption to new environmental circumstances. These abilities are ideal prerequisites for the successful establishment of metastasis. This review highlights the role of CSCs in every step of the metastatic cascade from cancer cell invasion into blood vessels, survival in the blood stream, attachment and extravasation as well as colonization of the host organ and subsequent establishment of distant macrometastasis.
Collapse
Affiliation(s)
| | - Dragana Savic
- Department of Therapeutic Radiology and Oncology, Medical University of Innsbruck, Innsbruck, Austria; EXTRO-Lab, Tyrolean Cancer Research Institute, Innsbruck, Austria
| | - József Dudás
- Department of Otorhinolaryngology, Medical University of Innsbruck, Innsbruck, Austria
| | - Irma Kvitsaridze
- Department of Therapeutic Radiology and Oncology, Medical University of Innsbruck, Innsbruck, Austria; EXTRO-Lab, Tyrolean Cancer Research Institute, Innsbruck, Austria
| | - Sergej Skvortsov
- Department of Therapeutic Radiology and Oncology, Medical University of Innsbruck, Innsbruck, Austria; EXTRO-Lab, Tyrolean Cancer Research Institute, Innsbruck, Austria
| | - Herbert Riechelmann
- Department of Otorhinolaryngology, Medical University of Innsbruck, Innsbruck, Austria
| | - Ira-Ida Skvortsova
- Department of Therapeutic Radiology and Oncology, Medical University of Innsbruck, Innsbruck, Austria; EXTRO-Lab, Tyrolean Cancer Research Institute, Innsbruck, Austria.
| |
Collapse
|
111
|
Raskov H, Orhan A, Salanti A, Gögenur I. Premetastatic niches, exosomes and circulating tumor cells: Early mechanisms of tumor dissemination and the relation to surgery. Int J Cancer 2020; 146:3244-3255. [PMID: 31808150 DOI: 10.1002/ijc.32820] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/15/2019] [Accepted: 11/29/2019] [Indexed: 12/12/2022]
Abstract
The physiological stress response to surgery promotes wound healing and functional recovery and includes the activation of neural, inflammatory and proangiogenic signaling pathways. Paradoxically, the same pathways also promote metastatic spread and growth of residual cancer. Human and animal studies show that cancer surgery can increase survival, migration and proliferation of residual tumor cells. To secure the survival and growth of disseminated tumor cells, the formation of premetastatic niches in target organs involves a complex interplay between microenvironment, immune system, circulating tumor cells, as well as chemical mediators and exosomes secreted by the primary tumor. This review describes the current understanding of the early mechanisms of dissemination, as well as how surgery may facilitate disease progression.
Collapse
Affiliation(s)
- Hans Raskov
- Center for Surgical Science, Zealand University Hospital, Køge, Denmark
| | - Adile Orhan
- Center for Surgical Science, Zealand University Hospital, Køge, Denmark.,Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ali Salanti
- Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Ismail Gögenur
- Center for Surgical Science, Zealand University Hospital, Køge, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
112
|
Herrera M, Galindo-Pumariño C, García-Barberán V, Peña C. A Snapshot of The Tumor Microenvironment in Colorectal Cancer: The Liquid Biopsy. Int J Mol Sci 2019; 20:ijms20236016. [PMID: 31795332 PMCID: PMC6929174 DOI: 10.3390/ijms20236016] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/22/2019] [Accepted: 11/25/2019] [Indexed: 12/12/2022] Open
Abstract
The molecular profile of liquid biopsies is emerging as an alternative to tissue biopsies in the clinical management of malignant diseases. In colorectal cancer, significant liquid biopsy-based biomarkers have demonstrated an ability to discriminate between asymptomatic cancer patients and healthy controls. Furthermore, this non-invasive approach appears to provide relevant information regarding the stratification of tumors with different prognoses and the monitoring of treatment responses. This review focuses on the tumor microenvironment components which are detected in blood samples of colorectal cancer patients and might represent potential biomarkers. Exosomes released by tumor and stromal cells play a major role in the modulation of cancer progression in the primary tumor microenvironment and in the formation of an inflammatory pre-metastatic niche. Stromal cells-derived exosomes are involved in driving mechanisms that promote tumor growth, migration, metastasis, and drug resistance, therefore representing substantial signaling mediators in the tumor-stroma interaction. Besides, recent findings of specifically packaged exosome cargo in Cancer-Associated Fibroblasts of colorectal cancer patients identify novel exosomal biomarkers with potential clinical applicability. Furthermore, additional different signals emitted from the tumor microenvironment and also detectable in the blood, such as soluble factors and non-tumoral circulating cells, arise as novel promising biomarkers for cancer diagnosis, prognosis, and treatment response prediction. The therapeutic potential of these factors is still limited, and studies are in their infancy. However, innovative strategies aiming at the inhibition of tumor progression by systemic exosome depletion, exosome-mediated circulating tumor cell capturing, and exosome-drug delivery systems are currently being studied and may provide considerable advantages in the near future.
Collapse
Affiliation(s)
- Mercedes Herrera
- Department of Oncology-Pathology, Karolinska Institutet, 17177 Stockholm, Sweden;
| | - Cristina Galindo-Pumariño
- Medical Oncology Department, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Alcalá University, 28034 Madrid, Spain;
- Centro de Investigación Biomédica en Red de Cancer (CIBERONC), 28029 Madrid, Spain
| | - Vanesa García-Barberán
- Centro de Investigación Biomédica en Red de Cancer (CIBERONC), 28029 Madrid, Spain
- Laboratorio de Oncología Molecular, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain
- Correspondence: (V.G.-B.); (C.P.)
| | - Cristina Peña
- Medical Oncology Department, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Alcalá University, 28034 Madrid, Spain;
- Centro de Investigación Biomédica en Red de Cancer (CIBERONC), 28029 Madrid, Spain
- Correspondence: (V.G.-B.); (C.P.)
| |
Collapse
|
113
|
Development of a Stromal Microenvironment Experimental Model Containing Proto-Myofibroblast Like Cells and Analysis of Its Crosstalk with Melanoma Cells: A New Tool to Potentiate and Stabilize Tumor Suppressor Phenotype of Dermal Myofibroblasts. Cells 2019; 8:cells8111435. [PMID: 31739477 PMCID: PMC6912587 DOI: 10.3390/cells8111435] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/08/2019] [Accepted: 11/12/2019] [Indexed: 12/11/2022] Open
Abstract
Melanoma is one of the most aggressive solid tumors and includes a stromal microenvironment that regulates cancer growth and progression. The components of stromal microenvironment such as fibroblasts, fibroblast aggregates and cancer-associated fibroblasts (CAFs) can differently influence the melanoma growth during its distinct stages. In this work, we have developed and studied a stromal microenvironment model, represented by fibroblasts, proto-myofibroblasts, myofibroblasts and aggregates of inactivated myofibroblasts, such as spheroids. In particular, we have generated proto-myofibroblasts from primary cutaneous myofibroblasts. The phenotype of proto-myofibroblasts is characterized by a dramatic reduction of α-smooth muscle actin (α-SMA) and cyclooxygenase-2 (COX-2) protein levels, as well as an enhancement of cell viability and migratory capability compared with myofibroblasts. Furthermore, proto-myofibroblasts display the mesenchymal marker vimentin and less developed stress fibers, with respect to myofibroblasts. The analysis of crosstalk between the stromal microenvironment and A375 or A2058 melanoma cells has shown that the conditioned medium of proto-myofibroblasts is cytotoxic, mainly for A2058 cells, and dramatically reduces the migratory capability of both cell lines compared with the melanoma-control conditioned medium. An array analysis of proto-myofibroblast and melanoma cell-conditioned media suggests that lower levels of some cytokines and growth factors in the conditioned medium of proto-myofibroblasts could be associated with their anti-tumor activity. Conversely, the conditioned media of melanoma cells do not influence the cell viability, outgrowth, and migration of proto-myofibroblasts from spheroids. Interestingly, the conditioned medium of proto-myofibroblasts does not alter the cell viability of both BJ-5ta fibroblast cells and myofibroblasts. Hence, proto-myofibroblasts could be useful in the study of new therapeutic strategies targeting melanoma.
Collapse
|
114
|
Pereira BA, Vennin C, Papanicolaou M, Chambers CR, Herrmann D, Morton JP, Cox TR, Timpson P. CAF Subpopulations: A New Reservoir of Stromal Targets in Pancreatic Cancer. Trends Cancer 2019; 5:724-741. [PMID: 31735290 DOI: 10.1016/j.trecan.2019.09.010] [Citation(s) in RCA: 193] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 09/16/2019] [Accepted: 09/26/2019] [Indexed: 02/06/2023]
Abstract
Cancer-associated fibroblasts (CAFs) are one of the most significant components in the tumour microenvironment (TME), where they can perform several protumourigenic functions. Several studies have recently reported that CAFs are more heterogenous and plastic than was previously thought. As such, there has been a shift in the field to study CAF subpopulations and the emergent functions of these subsets in tumourigenesis. In this review, we explore how different aspects of CAF heterogeneity are defined and how these manifest in multiple cancers, with a focus on pancreatic ductal adenocarcinoma (PDAC). We also discuss therapeutic approaches to selectively target protumourigenic CAF functions, while avoiding normal fibroblasts, providing insight into the future of stromal targeting for the treatment of PDAC and other solid tumours.
Collapse
Affiliation(s)
- Brooke A Pereira
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales 2010, Australia; St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales 2010, Australia
| | - Claire Vennin
- Division of Molecular Pathology, Netherlands Cancer Institute (NKI), 1066 CX Amsterdam, The Netherlands
| | - Michael Papanicolaou
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales 2010, Australia; School of Life Sciences, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Cecilia R Chambers
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales 2010, Australia; St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales 2010, Australia
| | - David Herrmann
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales 2010, Australia; St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales 2010, Australia
| | - Jennifer P Morton
- Cancer Department, Cancer Research UK Beatson Institute, Glasgow G61 1BD, UK; Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Thomas R Cox
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales 2010, Australia; St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales 2010, Australia.
| | - Paul Timpson
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales 2010, Australia; St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales 2010, Australia.
| |
Collapse
|
115
|
An Y, Liu F, Chen Y, Yang Q. Crosstalk between cancer-associated fibroblasts and immune cells in cancer. J Cell Mol Med 2019; 24:13-24. [PMID: 31642585 PMCID: PMC6933413 DOI: 10.1111/jcmm.14745] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 08/12/2019] [Accepted: 08/25/2019] [Indexed: 12/21/2022] Open
Abstract
Multiple studies have shown that cancer‐associated fibroblasts (CAFs) play an important role in tumour progression, including carcinogenesis, invasion, metastasis and the chemoresistance of cancer cells. Immune cells, including macrophages, natural killer cells, dendritic cells and T cells, play a dual role in the tumour microenvironment. Although increasing research has focused on studying interactions between distinct cells in the tumour microenvironment, the complex relationships between CAFs and immune cells remain unclear and need further study. Here, we summarize our current understanding of crosstalk between CAFs and immune cells, which may help clarify their diagnostic and therapeutic value in tumour progression.
Collapse
Affiliation(s)
- Yuanyuan An
- Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, Shenyang, P.R. China
| | - Fengtian Liu
- Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, Shenyang, P.R. China
| | - Ying Chen
- Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, Shenyang, P.R. China
| | - Qing Yang
- Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, Shenyang, P.R. China
| |
Collapse
|
116
|
Teeuwssen M, Fodde R. Cell Heterogeneity and Phenotypic Plasticity in Metastasis Formation: The Case of Colon Cancer. Cancers (Basel) 2019; 11:cancers11091368. [PMID: 31540068 PMCID: PMC6770401 DOI: 10.3390/cancers11091368] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/09/2019] [Accepted: 09/11/2019] [Indexed: 12/12/2022] Open
Abstract
The adenoma-to-carcinoma progression in colon cancer is driven by a sequential accumulation of genetic alterations at specific tumor suppressors and oncogenes. In contrast, the multistage route from the primary site to metastasis formation is underlined by phenotypic plasticity, i.e., the capacity of disseminated tumor cells to undergo transiently and reversible transformations in order to adapt to the ever-changing environmental contexts. Notwithstanding the considerable body of evidence in support of the role played by epithelial-to-mesenchymal transition (EMT)/mesenchymal-to-epithelial transition (MET) in metastasis, its rate-limiting function, the detailed underlying cellular and molecular mechanisms, and the extension of the necessary morphologic and epigenetic changes are still a matter of debate. Rather than leading to a complete epithelial or mesenchymal state, the EMT/MET-program generates migrating cancer cells displaying intermediate phenotypes featuring both epithelial and mesenchymal characteristics. In this review, we will address the role of colon cancer heterogeneity and phenotypic plasticity in metastasis formation and the contribution of EMT to these processes. The alleged role of hybrid epithelial/mesenchymal (E/M) in collective and/or single-cell migration during local dissemination at the primary site and more systemic spreading will also be highlighted.
Collapse
Affiliation(s)
- Miriam Teeuwssen
- Department of Pathology, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands.
| | - Riccardo Fodde
- Department of Pathology, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands.
| |
Collapse
|
117
|
Garner KEL, Hull NJ, Sims AH, Lamb R, Clarke RB. The Milk Protein Alpha-Casein Suppresses Triple Negative Breast Cancer Stem Cell Activity Via STAT and HIF-1alpha Signalling Pathways in Breast Cancer Cells and Fibroblasts. J Mammary Gland Biol Neoplasia 2019; 24:245-256. [PMID: 31529195 DOI: 10.1007/s10911-019-09435-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 08/22/2019] [Indexed: 12/22/2022] Open
Abstract
Triple negative breast cancer (TNBC) is the most lethal breast cancer subtype. Extended periods of lactation protect against breast cancer development, but the mechanisms underlying this protection are unknown. We examined the effects of the milk protein alpha-casein over expression in the triple negative MDA-MB-231 breast cancer cell line. The effects of recombinant alpha-casein added exogenously to MDA-MB-231 breast cancer cells, and immortalised human fibroblasts were also investigated. We used transcriptional reporters to understand the signalling pathways downstream of alpha-casein in breast cancer cells and these fibroblasts that were activated by breast cancer cells. To extend our findings to the clinical setting, we analysed public gene expression datasets to further understand the relevance of these signalling pathways in triple negative breast cancer cells and patient samples. Finally, we used small molecular inhibitors to target relevant pathways and highlight these as potential candidates for the treatment of TN breast cancer. High levels of alpha-casein gene expression were predictive of good prognosis across 263 TNBC patient tumour samples. Alpha-casein over expression or exogenous addition reduces cancer stem cell (CSC) activity. HIF-1alpha was identified to be a key downstream target of alpha-casein, in both breast cancer cells and activated fibroblasts, and STAT transcription factors to be upstream of HIF-1alpha. Interestingly, HIF-1alpha is regulated by STAT3 in breast cancer cells, but STAT1 is the regulator of HIF-1alpha in activated fibroblasts. In analysis of 573 TNBC patient samples, alpha-casein expression, inversely correlated to HIF-1alpha, STAT3 and STAT1. STAT1 and STAT3 inhibitors target HIF-1alpha signalling in activated fibroblasts and MDA-MB-231 breast cancer cells respectively, and also abrogate CSC activities. Our findings provide an explanation for the protective effects of lactation in TNBC. Clinical data correlates high alpha-casein expression with increased recurrence-free survival in TNBC patients. Mechanistically, alpha-casein reduces breast cancer stem cell activity in vitro, and STAT3 and STAT1 were identified as regulators of pro-tumorigenic HIF-1alpha signalling in breast cancer cells and fibroblasts respectively.
Collapse
Affiliation(s)
- Kirsten E L Garner
- Faculty of Biology, Medicine and Health, Michael Smith Building, University of Manchester, Dover Street, Manchester, M13 9PT, UK.
- Breast Biology Group, Breast Cancer Now Research Unit, Division of Cancer Sciences, Manchester Cancer Research Centre, University of Manchester, Manchester, M20 4GJ, UK.
| | - Nathan J Hull
- Breast Biology Group, Breast Cancer Now Research Unit, Division of Cancer Sciences, Manchester Cancer Research Centre, University of Manchester, Manchester, M20 4GJ, UK
| | - Andrew H Sims
- Applied Bioinformatics of Cancer Institute of Genetics and Molecular Medicine, University of Edinburgh Cancer Research UK Centre, Edinburgh, UK
| | - Rebecca Lamb
- Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Robert B Clarke
- Breast Biology Group, Breast Cancer Now Research Unit, Division of Cancer Sciences, Manchester Cancer Research Centre, University of Manchester, Manchester, M20 4GJ, UK
| |
Collapse
|
118
|
Zhao Y, Li J, Li D, Wang Z, Zhao J, Wu X, Sun Q, Lin PP, Plum P, Damanakis A, Gebauer F, Zhou M, Zhang Z, Schlösser H, Jauch KW, Nelson PJ, Bruns CJ. Tumor biology and multidisciplinary strategies of oligometastasis in gastrointestinal cancers. Semin Cancer Biol 2019; 60:334-343. [PMID: 31445220 DOI: 10.1016/j.semcancer.2019.08.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 08/20/2019] [Indexed: 12/11/2022]
Abstract
More than 70% of gastrointestinal (GI) cancers are diagnosed with metastases, leading to poor prognosis. For some cancer patients with limited sites of metastatic tumors, the term oligometastatic disease (OMD) has been coined as opposed to systemic polymetastasis (PMD) disease. Stephan Paget first described an organ-specific pattern of metastasis in 1889, now known as the "seed and soil" theory where distinct cancer types are found to metastasize to different tumor-specific sites. Our understanding of the biology of tumor metastasis and specifically the molecular mechanisms driving their formation are still limited, in particular, as it relates to the genesis of oligometastasis. In the following review, we discuss recent advances in general understanding of this metastatic behavior including the role of specific signaling pathways, various molecular features and biomarkers, as well as the interaction of carcinoma cells with their tissue microenvironments (both primary and metastatic niches). The unique features that underlie OMD provide potential targets for localized therapy. As it relates to clinical practice, OMD is emerging as treatable with surgical resection and/or other local therapy options. Strategies currently being applied in the clinical management of OMD will be discussed including surgical, radiation-based therapy, ablation procedures, and the results of emerging clinical trials involving immunotherapy.
Collapse
Affiliation(s)
- Yue Zhao
- Department of General, Visceral und Tumor Surgery, University Hospital Cologne, Kerpener Straße 62, 50937, Cologne, Germany; Department of General, Visceral und Vascular Surgery, Otto von Guericke University, Magdeburg, Germany.
| | - Jiahui Li
- Department of General, Visceral und Tumor Surgery, University Hospital Cologne, Kerpener Straße 62, 50937, Cologne, Germany
| | - Dai Li
- Department of General, Visceral und Tumor Surgery, University Hospital Cologne, Kerpener Straße 62, 50937, Cologne, Germany; Department of Anethesiology, Changhai Hospital, Naval Medical University, Shanghai, PR China
| | - Zhefang Wang
- Department of General, Visceral und Tumor Surgery, University Hospital Cologne, Kerpener Straße 62, 50937, Cologne, Germany
| | - Jiangang Zhao
- Department of General, Visceral und Tumor Surgery, University Hospital Cologne, Kerpener Straße 62, 50937, Cologne, Germany; Department of General, Visceral und Vascular Surgery, Ludwig-Maximilian-University (LMU), Munich, Germany
| | - Xiaolin Wu
- Department of General, Visceral und Tumor Surgery, University Hospital Cologne, Kerpener Straße 62, 50937, Cologne, Germany
| | - Qiye Sun
- Department of General, Visceral und Tumor Surgery, University Hospital Cologne, Kerpener Straße 62, 50937, Cologne, Germany
| | | | - Patrick Plum
- Department of General, Visceral und Tumor Surgery, University Hospital Cologne, Kerpener Straße 62, 50937, Cologne, Germany; Institute for Pathology, University Hospital Cologne, Cologne, Germany
| | - Alexander Damanakis
- Department of General, Visceral und Tumor Surgery, University Hospital Cologne, Kerpener Straße 62, 50937, Cologne, Germany
| | - Florian Gebauer
- Department of General, Visceral und Tumor Surgery, University Hospital Cologne, Kerpener Straße 62, 50937, Cologne, Germany
| | - Menglong Zhou
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Zhen Zhang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Hans Schlösser
- Department of General, Visceral und Tumor Surgery, University Hospital Cologne, Kerpener Straße 62, 50937, Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany; Center for Integrated Oncology (CIO) Achen, Bonn, Cologne and Düsseldorf, Cologne, Germany
| | - Karl-Walter Jauch
- Department of General, Visceral und Vascular Surgery, Ludwig-Maximilian-University (LMU), Munich, Germany
| | - Peter J Nelson
- Department of Internal Medicine IV, University Hospital of Munich, Ludwig-Maximilians-University Munich, Germany
| | - Christiane J Bruns
- Department of General, Visceral und Tumor Surgery, University Hospital Cologne, Kerpener Straße 62, 50937, Cologne, Germany; Center for Integrated Oncology (CIO) Achen, Bonn, Cologne and Düsseldorf, Cologne, Germany.
| |
Collapse
|
119
|
Balancing cancer immunotherapy and immune-related adverse events: The emerging role of regulatory T cells. J Autoimmun 2019; 104:102310. [PMID: 31421963 DOI: 10.1016/j.jaut.2019.102310] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 07/24/2019] [Indexed: 02/06/2023]
Abstract
Advances in our understanding οf tumor immunity have prompted a paradigm shift in oncology, with the emergence of immunotherapy, where therapeutic agents are used to target immune cells rather than cancer cells. A real breakthrough in the field of immunotherapy came with the use of immune checkpoint inhibitors (ICI), namely antagonistic antibodies that block key immune regulatory molecules (checkpoint molecules), such as cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4), programmed cell death protein (PD-1) and its ligand PD-L1, that under physiologic conditions suppress T cell effector function. However, despite the enormous success, a significant proportion of patients do not respond, while responses are frequently accompanied by life-threatening autoimmune related adverse events (irAEs). A major impediment in the effectiveness of ICI immunotherapy is the tumoral resistance, which is dependent on the immunosuppressive nature of tumor microenvironment (TME). Regulatory T cells (Tregs) are among the most abundant suppressive cells in the TME and their presence has been correlated with tumor progression, invasiveness as well as metastasis. Tregs are characterized by the expression of the transcription factor Foxp3 and various mechanisms ranging from cell-to-cell contact to secretion of inhibitory molecules have been implicated in their function. Notably, Tregs amply express most of the checkpoint molecules such as CTLA4, PD1 and LAG3 and therefore represent a direct target of ICI immunotherapy. Taking into consideration the critical role of Tregs in maintenance of immune homeostasis and avoidance of autoimmunity it is plausible that targeting of Tregs by ICI immunotherapy results in the development of irAEs. Since the use of ICI becomes common, and new immune checkpoint molecules are currently under clinical trials for the treatment of cancer, the occurrence of irAEs is expected to dramatically rise. Herein we review the current literature focusing on the role of Tregs in cancer evolution, ICI response and development of irAEs. Unraveling the complex mechanisms that hinder the tumor immune surveillance and in particular how ICI immunotherapy imprint on Treg activities to promote cancer regression while avoid development of irAEs, will empower the design of novel immunotherapeutic modalities in cancer with increased efficacy and diminished adverse events.
Collapse
|
120
|
Zhang YF, Zhou YZ, Zhang B, Huang SF, Li PP, He XM, Cao GD, Kang MX, Dong X, Wu YL. Pancreatic cancer-derived exosomes promoted pancreatic stellate cells recruitment by pancreatic cancer. J Cancer 2019; 10:4397-4407. [PMID: 31413760 PMCID: PMC6691697 DOI: 10.7150/jca.27590] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 06/15/2019] [Indexed: 12/13/2022] Open
Abstract
Cancer-associated fibroblasts (CAFs), which are an important component of the tumor microenvironment, have been identified in the blood circulation of patients with cancer metastasis, and metastatic cancer cells can recruit circulating CAFs. However, primary carcinoma sites usually regulate the behavior of metastatic cancer cells through exosomes. Here, we hypothesized that cancer-derived exosomes could enhance CAF recruitment. Exosomes secreted by pancreatic cancer cells (PANC-1 and MIA PaCa-2) were isolated and characterized. The ability of pancreatic cancer to recruit pancreatic stellate cells (PSCs) was assessed with Transwell assays in vitro and bioluminescent imaging in a mouse model in vivo, and the underlying molecular mechanism was also investigated. The results showed that pancreatic cancer cell-derived exosomes (Exo-Pan and Exo-Mia) promoted the pancreatic cancer recruitment of PSCs. This effect was mediated partially by the transfer of the exosomal protein Lin28B to the recipient cells to activate the Lin28B/let-7/HMGA2/PDGFB signaling pathway. These results suggested that exosomes derived from local cancer could promote the formation of distant metastases through transferring the exosomal protein Lin28B to the metastatic cancer cells.
Collapse
Affiliation(s)
- Yue-Feng Zhang
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P.R. China
| | - Yi-Zhao Zhou
- Department of Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Cancer Institute, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Bo Zhang
- Department of Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Shi-Fei Huang
- Department of Surgery, Traditional Chinese Medical Hospital of Hangzhou, Hangzhou, Zhejiang, P.R. China
| | - Peng-Ping Li
- Department of Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Cancer Institute, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Xiao-Man He
- Department of Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Cancer Institute, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Guo-Dong Cao
- Department of Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Cancer Institute, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Mu-Xing Kang
- Department of Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Cancer Institute, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Xin Dong
- Department of Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
- Department of General Surgery, Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, P.R. China
| | - Yu-Lian Wu
- Department of Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| |
Collapse
|
121
|
Gieniec KA, Butler LM, Worthley DL, Woods SL. Cancer-associated fibroblasts-heroes or villains? Br J Cancer 2019; 121:293-302. [PMID: 31289350 PMCID: PMC6738083 DOI: 10.1038/s41416-019-0509-3] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 05/19/2019] [Accepted: 05/22/2019] [Indexed: 01/05/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs) were originally presumed to represent a homogeneous population uniformly driving tumorigenesis, united by their morphology and peritumoural location. Our understanding of CAFs has since been shaped by sophisticated in vitro and in vivo experiments, pathological association and, more recently, ablation, and it is now widely appreciated that CAFs form a group of highly heterogeneous cells with no single overarching marker. Studies have demonstrated that the CAF population contains different subtypes based on the expression of marker proteins with the capacity to promote or inhibit cancer, with their biological role as accomplices or adversaries dependent on many factors, including the cancer stage. So, while CAFs have been endlessly shown to promote the growth, survival and spread of tumours via improvements in functionality and an altered secretome, they are also capable of retarding tumorigenesis via largely unknown mechanisms. It is important to reconcile these disparate results so that the functions of, or factors produced by, tumour-promoting subtypes can be specifically targeted to improve cancer patient outcomes. This review will dissect out CAF complexity and CAF-directed cancer treatment strategies in order to provide a case for future, rational therapies.
Collapse
Affiliation(s)
- Krystyna A Gieniec
- School of Medicine, University of Adelaide, Adelaide, SA, Australia.,Precision Medicine, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Lisa M Butler
- School of Medicine, University of Adelaide, Adelaide, SA, Australia.,Precision Medicine, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Daniel L Worthley
- Precision Medicine, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Susan L Woods
- School of Medicine, University of Adelaide, Adelaide, SA, Australia. .,Precision Medicine, South Australian Health and Medical Research Institute, Adelaide, SA, Australia.
| |
Collapse
|
122
|
Welch DR, Hurst DR. Defining the Hallmarks of Metastasis. Cancer Res 2019; 79:3011-3027. [PMID: 31053634 PMCID: PMC6571042 DOI: 10.1158/0008-5472.can-19-0458] [Citation(s) in RCA: 383] [Impact Index Per Article: 76.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/12/2019] [Accepted: 03/14/2019] [Indexed: 12/24/2022]
Abstract
Metastasis is the primary cause of cancer morbidity and mortality. The process involves a complex interplay between intrinsic tumor cell properties as well as interactions between cancer cells and multiple microenvironments. The outcome is the development of a nearby or distant discontiguous secondary mass. To successfully disseminate, metastatic cells acquire properties in addition to those necessary to become neoplastic. Heterogeneity in mechanisms involved, routes of dissemination, redundancy of molecular pathways that can be utilized, and the ability to piggyback on the actions of surrounding stromal cells makes defining the hallmarks of metastasis extraordinarily challenging. Nonetheless, this review identifies four distinguishing features that are required: motility and invasion, ability to modulate the secondary site or local microenvironments, plasticity, and ability to colonize secondary tissues. By defining these first principles of metastasis, we provide the means for focusing efforts on the aspects of metastasis that will improve patient outcomes.
Collapse
Affiliation(s)
- Danny R Welch
- Department of Cancer Biology and The University of Kansas Cancer Center, The University of Kansas Medical Center, Kansas City, Kansas.
| | - Douglas R Hurst
- Department of Pathology and Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama.
| |
Collapse
|
123
|
Chen Z, Yan X, Li K, Ling Y, Kang H. Stromal fibroblast-derived MFAP5 promotes the invasion and migration of breast cancer cells via Notch1/slug signaling. Clin Transl Oncol 2019; 22:522-531. [PMID: 31190277 DOI: 10.1007/s12094-019-02156-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 06/05/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND The tumor microenvironment (TME) regulates tumor progression, and cancer-associated fibroblasts (CAFs) are the primary stromal components of the TME, with the potential to drive tumor metastasis via the secretion of paracrine factors, but the specific mechanisms driving this process have not been defined. METHODS Proteins secreted from CAFs and normal fibroblasts (NFs) were analyzed via proteomic analysis (fold change > 2, p < 0.05) to identify tumor-promoting proteins secreted by CAFs. RESULTS Proteomic analysis revealed that microfibrillar-associated protein 5 (MFAP5) is preferentially expressed and secreted by CAFs relative to NFs, which was confirmed by Western blotting and RT-qPCR. Transwell and wound healing assays confirmed that MFAP5 is secreted by CAFs, and drives the invasion and migration of MCF7 breast cancer cells. We further found that in MCF7 cells MFAP5 promoted epithelial-mesenchymal transition, activating Notch1 signaling and consequently upregulating NICD1 and slug. When Notch1 was knocked down in MCF7 cells, the ability of MFAP5 to promote invasion and migration decreased. CONCLUSION CAFs promote cancer cells invasion and migration via MFAP5 secretion and activation of the Notch1/slug signaling. These data highlight this pathway as a therapeutic target to disrupt tumor progression through the interference of CAF-tumor crosstalk.
Collapse
Affiliation(s)
- Z Chen
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - X Yan
- School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - K Li
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Y Ling
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - H Kang
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
124
|
Abstract
Cancers are not composed merely of cancer cells alone; instead, they are complex 'ecosystems' comprising many different cell types and noncellular factors. The tumour stroma is a critical component of the tumour microenvironment, where it has crucial roles in tumour initiation, progression, and metastasis. Most anticancer therapies target cancer cells specifically, but the tumour stroma can promote the resistance of cancer cells to such therapies, eventually resulting in fatal disease. Therefore, novel treatment strategies should combine anticancer and antistromal agents. Herein, we provide an overview of the advances in understanding the complex cancer cell-tumour stroma interactions and discuss how this knowledge can result in more effective therapeutic strategies, which might ultimately improve patient outcomes.
Collapse
|
125
|
Guo Q, Huang F, Goncalves C, Del Rincón SV, Miller WH. Translation of cancer immunotherapy from the bench to the bedside. Adv Cancer Res 2019; 143:1-62. [PMID: 31202357 DOI: 10.1016/bs.acr.2019.03.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The tremendous success of immune checkpoint blockades has revolutionized cancer management. Our increased understanding of the cell types that compose the tumor microenvironment (TME), including those of the innate and adaptive immune system, has helped to shape additional immune modulatory strategies in cancer care. Pre-clinical and clinical investigations targeting novel checkpoint interactions and key pathways that regulate cancer immunity continue to increase rapidly. Various combinatorial drug regimens are being tested in attempt to achieve durable response and survival rates of patients with cancer. This review provides an overview of specific components of the TME, an introduction to novel immune checkpoints, followed by a survey of present day and future combination immune modulatory therapies. The idea that the immune system can recognize and destroy tumor cells was first described in the cancer immunosurveillance hypothesis of Burnet and Thomas. However, early experimental evidence failed to support the concept. It was not until the late 1990s when seminal papers clearly showed the existence of cancer immunosurveillance, leading to the cancer immunoediting hypothesis. In this century, progress in the understanding of negative regulators of the immune response led to the discovery that inhibition of these regulators in patients with cancer could lead to dramatic and durable remissions. Drs. Tasuku Honjo and James P. Allison were awarded the Nobel Prize in 2018 for their pioneering work in this field. We now see rapid advances in cancer immunology and emerging effective therapies revolutionizing cancer care across tumor types in the clinic, while pre-clinical research is moving from a focus on the malignant cells themselves to dissect the highly heterogenic and complex multi-cellular tumor microenvironment (TME).
Collapse
Affiliation(s)
- Qianyu Guo
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada; Jewish General Hospital, Segal Cancer Centre, Department of Oncology, Montreal, QC, Canada
| | - Fan Huang
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada; Jewish General Hospital, Segal Cancer Centre, Department of Oncology, Montreal, QC, Canada
| | - Christophe Goncalves
- Jewish General Hospital, Segal Cancer Centre, Department of Oncology, Montreal, QC, Canada
| | - Sonia V Del Rincón
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada; Jewish General Hospital, Segal Cancer Centre, Department of Oncology, Montreal, QC, Canada
| | - Wilson H Miller
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada; Jewish General Hospital, Segal Cancer Centre, Department of Oncology, Montreal, QC, Canada; Rossy Cancer Network, Montreal, QC, Canada.
| |
Collapse
|
126
|
Abstract
The tumour microenvironment, also termed the tumour stroma or tumour mesenchyme, includes fibroblasts, immune cells, blood vessels and the extracellular matrix and substantially influences the initiation, growth and dissemination of gastrointestinal cancer. Cancer-associated fibroblasts (CAFs) are one of the critical components of the tumour mesenchyme and not only provide physical support for epithelial cells but also are key functional regulators in cancer, promoting and retarding tumorigenesis in a context-dependent manner. In this Review, we outline the emerging understanding of gastrointestinal CAFs with a particular emphasis on their origin and heterogeneity, as well as their function in cancer cell proliferation, tumour immunity, angiogenesis, extracellular matrix remodelling and drug resistance. Moreover, we discuss the clinical implications of CAFs as biomarkers and potential targets for prevention and treatment of patients with gastrointestinal cancer.
Collapse
|
127
|
Abstract
Circulating tumor cells (CTCs) play a central role in tumor dissemination and metastases, which are ultimately responsible for most cancer deaths. Technologies that allow for identification and enumeration of rare CTC from cancer patients' blood have already established CTC as an important clinical biomarker for cancer diagnosis and prognosis. Indeed, current efforts to robustly characterize CTC as well as the associated cells of the tumor microenvironment such as circulating cancer associated fibroblasts (cCAF), are poised to unmask key insights into the metastatic process. Ultimately, the clinical utility of CTC will be fully realized once CTC can be reliably cultured and proliferated as a biospecimen for precision management of cancer patients, and for discovery of novel therapeutics. In this review, we highlight the latest CTC capture and analyses technologies, and discuss in vitro strategies for culturing and propagating CTC.
Collapse
Affiliation(s)
- Ashutosh Agarwal
- Assistant Professor, Department of Biomedical Engineering, Department of Pathology & Laboratory Medicine, University of Miami
| | - Marija Balic
- Associate Professor, Division of Oncology, Department of Internal Medicine, Research Unit Circulating Tumor Cells and Cancer Stem Cells, Medical University of Graz, Austria
| | - Dorraya El-Ashry
- Associate Professor, Department of Laboratory Medicine and Pathology, University of Minnesota
| | - Richard J. Cote
- Professor and Joseph R. Coulter Jr. Chair, Department of Pathology & Laboratory Medicine, Director, John T. Macdonald Foundation Biomedical Nanotechnology Institute (BioNIUM), University of Miami Miller School of Medicine
| |
Collapse
|
128
|
Integrative diagnosis of cancer by combining CTCs and associated peripheral blood cells in liquid biopsy. Clin Transl Oncol 2018; 21:828-835. [PMID: 30569214 DOI: 10.1007/s12094-018-02004-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 12/04/2018] [Indexed: 12/13/2022]
Abstract
Circulating tumor cells (CTCs), as cells shed from solid tumor into the vasculature, play a significant role in tumor metastasis. In the peripheral blood, immune cells and stromal cells can interact with CTCs and influence their biological behaviors of survival, proliferation, dissemination, and immune evasion. These peripheral blood cells can evolve synergistically with CTCs to constitute the liquid microenvironment which is essential for tumor progression. Here, we review the mechanisms of peripheral blood cells interacting with CTCs and uncover their effects on both CTCs and tumor metastasis. Then, we introduce the applications of these CTC-associated peripheral blood cells in the clinical setting. Besides, some peripheral blood cell subsets are of additional clinical values to CTCs in cancer diagnosis and prognosis. To improve the clinical utility of CTCs, an integrative analysis of CTCs and associated peripheral blood cells should be advocated for, which could provide a novel insight into tumor biology and offer comprehensive information in cancer diagnosis, prognosis, and therapy efficacy evaluation.
Collapse
|
129
|
Lemaire CA, Liu SZ, Wilkerson CL, Ramani VC, Barzanian NA, Huang KW, Che J, Chiu MW, Vuppalapaty M, Dimmick AM, Carlo DD, Kochersperger ML, Crouse SC, Jeffrey SS, Englert RF, Hengstler S, Renier C, Sollier-Christen E. Fast and Label-Free Isolation of Circulating Tumor Cells from Blood: From a Research Microfluidic Platform to an Automated Fluidic Instrument, VTX-1 Liquid Biopsy System. SLAS Technol 2018; 23:16-29. [PMID: 29355087 DOI: 10.1177/2472630317738698] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Tumor tissue biopsies are invasive, costly, and collect a limited cell population not completely reflective of patient cancer cell diversity. Circulating tumor cells (CTCs) can be isolated from a simple blood draw and may be representative of the diverse biology from multiple tumor sites. The VTX-1 Liquid Biopsy System was designed to automate the isolation of clinically relevant CTC populations, making the CTCs available for easy analysis. We present here the transition from a cutting-edge microfluidic innovation in the lab to a commercial, automated system for isolating CTCs directly from whole blood. As the technology evolved into a commercial system, flexible polydimethylsiloxane microfluidic chips were replaced by rigid poly(methyl methacrylate) chips for a 2.2-fold increase in cell recovery. Automating the fluidic processing with the VTX-1 further improved cancer cell recovery by nearly 1.4-fold, with a 2.8-fold decrease in contaminating white blood cells and overall improved reproducibility. Two isolation protocols were optimized that favor either the cancer cell recovery (up to 71.6% recovery) or sample purity (≤100 white blood cells/mL). The VTX-1's performance was further tested with three different spiked breast or lung cancer cell lines, with 69.0% to 79.5% cell recovery. Finally, several cancer research applications are presented using the commercial VTX-1 system.
Collapse
Affiliation(s)
| | - Sean Z Liu
- 1 Vortex Biosciences Inc., Menlo Park, CA, USA
| | | | - Vishnu C Ramani
- 2 Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | | | | | - James Che
- 1 Vortex Biosciences Inc., Menlo Park, CA, USA
| | | | | | | | - Dino Di Carlo
- 3 Department of Bioengineering, Department of Mechanical and Aerospace Engineering, California NanoSystems Institute, and Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA
| | | | | | - Stefanie S Jeffrey
- 2 Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | | | | | | | | |
Collapse
|
130
|
McCarthy JB, El-Ashry D, Turley EA. Corrigendum: Hyaluronan, Cancer-Associated Fibroblasts and the Tumor Microenvironment in Malignant Progression. Front Cell Dev Biol 2018; 6:112. [PMID: 30310812 PMCID: PMC6168026 DOI: 10.3389/fcell.2018.00112] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 08/22/2018] [Indexed: 02/02/2023] Open
Affiliation(s)
- James B McCarthy
- Department of Laboratory Medicine and Pathology, Masonic Comprehensive Cancer Center, Minneapolis, MN, United States
| | - Dorraya El-Ashry
- Department of Laboratory Medicine and Pathology, Masonic Comprehensive Cancer Center, Minneapolis, MN, United States
| | - Eva A Turley
- London Regional Cancer Program, Department of Oncology, Biochemistry and Surgery, Schulich School of Medicine and Dentistry, Lawson Health Research Institute, Western University, London, ON, Canada
| |
Collapse
|
131
|
Metabolic Reprogramming of Cancer Associated Fibroblasts: The Slavery of Stromal Fibroblasts. BIOMED RESEARCH INTERNATIONAL 2018; 2018:6075403. [PMID: 29967776 PMCID: PMC6008683 DOI: 10.1155/2018/6075403] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 05/02/2018] [Indexed: 12/18/2022]
Abstract
Cancer associated fibroblasts (CAFs) are the main stromal cell type of solid tumour microenvironment and undergo an activation process associated with secretion of growth factors, cytokines, and paracrine interactions. One of the important features of solid tumours is the metabolic reprogramming that leads to changes of bioenergetics and biosynthesis in both tumour cells and CAFs. In particular, CAFs follow the evolution of tumour disease and acquire a catabolic phenotype: in tumour tissues, cancer cells and tumour microenvironment form a network where the crosstalk between cancer cells and CAFs is associated with cell metabolic reprogramming that contributes to CAFs activation, cancer growth, and progression and evasion from cancer therapies. In this regard, the study of CAFs metabolic reprogramming could contribute to better understand their activation process, the interaction between stroma, and cancer cells and could offer innovative tools for the development of new therapeutic strategies able to eradicate the protumorigenic activity of CAFs. Therefore, this review focuses on CAFs metabolic reprogramming associated with both differentiation process and cancer and stromal cells crosstalk. Finally, therapeutic responses and potential anticancer strategies targeting CAFs metabolic reprogramming are reviewed.
Collapse
|
132
|
McCarthy JB, El-Ashry D, Turley EA. Hyaluronan, Cancer-Associated Fibroblasts and the Tumor Microenvironment in Malignant Progression. Front Cell Dev Biol 2018; 6:48. [PMID: 29868579 PMCID: PMC5951929 DOI: 10.3389/fcell.2018.00048] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 04/13/2018] [Indexed: 12/16/2022] Open
Abstract
This review summarizes the roles of CAFs in forming a “cancerized” fibrotic stroma favorable to tumor initiation and dissemination, in particular highlighting the functions of the extracellular matrix component hyaluronan (HA) in these processes. The structural complexity of the tumor and its host microenvironment is now well appreciated to be an important contributing factor to malignant progression and resistance-to-therapy. There are multiple components of this complexity, which include an extensive remodeling of the extracellular matrix (ECM) and associated biomechanical changes in tumor stroma. Tumor stroma is often fibrotic and rich in fibrillar type I collagen and hyaluronan (HA). Cancer-associated fibroblasts (CAFs) are a major source of this fibrotic ECM. CAFs organize collagen fibrils and these biomechanical alterations provide highways for invading carcinoma cells either under the guidance of CAFs or following their epithelial to mesenchymal transition (EMT). The increased HA metabolism of a tumor microenvironment instructs carcinoma initiation and dissemination by performing multiple functions. The key effects of HA reviewed here are its role in activating CAFs in pre-malignant and malignant stroma, and facilitating invasion by promoting motility of both CAFs and tumor cells, thus facilitating their invasion. Circulating CAFs (cCAFs) also form heterotypic clusters with circulating tumor cells (CTC), which are considered to be pre-cursors of metastatic colonies. cCAFs are likely required for extravasation of tumors cells and to form a metastatic niche suitable for new tumor colony growth. Therapeutic interventions designed to target both HA and CAFs in order to limit tumor spread and increase response to current therapies are discussed.
Collapse
Affiliation(s)
- James B McCarthy
- Department of Laboratory Medicine and Pathology, Masonic Comprehensive Cancer Center, Minneapolis, MN, United States
| | - Dorraya El-Ashry
- Department of Laboratory Medicine and Pathology, Masonic Comprehensive Cancer Center, Minneapolis, MN, United States
| | - Eva A Turley
- London Regional Cancer Program, Department of Oncology, Biochemistry and Surgery, Schulich School of Medicine and Dentistry, Lawson Health Research Institute, Western University, London, ON, Canada
| |
Collapse
|
133
|
Wilhelm I, Fazakas C, Molnár K, Végh AG, Haskó J, Krizbai IA. Foe or friend? Janus-faces of the neurovascular unit in the formation of brain metastases. J Cereb Blood Flow Metab 2018; 38:563-587. [PMID: 28920514 PMCID: PMC5888855 DOI: 10.1177/0271678x17732025] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/13/2017] [Accepted: 08/21/2017] [Indexed: 12/11/2022]
Abstract
Despite the potential obstacle represented by the blood-brain barrier for extravasating malignant cells, metastases are more frequent than primary tumors in the central nervous system. Not only tightly interconnected endothelial cells can hinder metastasis formation, other cells of the brain microenvironment (like astrocytes and microglia) can also be very hostile, destroying the large majority of metastatic cells. However, malignant cells that are able to overcome these harmful mechanisms may benefit from the shielding and even support provided by cerebral endothelial cells, astrocytes and microglia, rendering the brain a sanctuary site against anti-tumor strategies. Thus, cells of the neurovascular unit have a Janus-faced attitude towards brain metastatic cells, being both destructive and protective. In this review, we present the main mechanisms of brain metastasis formation, including those involved in extravasation through the brain vasculature and survival in the cerebral environment.
Collapse
Affiliation(s)
- Imola Wilhelm
- Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
- Institute of Life Sciences, Vasile Goldiş Western University of Arad, Arad, Romania
| | - Csilla Fazakas
- Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Kinga Molnár
- Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Attila G Végh
- Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - János Haskó
- Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - István A Krizbai
- Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
- Institute of Life Sciences, Vasile Goldiş Western University of Arad, Arad, Romania
| |
Collapse
|
134
|
Fitches A. Molecular Med TRI-CON, 11–16 February 2018, San Francisco, USA. Mol Diagn Ther 2018; 22:255-258. [DOI: 10.1007/s40291-018-0326-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
135
|
Sun Y, Wang R, Qiao M, Xu Y, Guan W, Wang L. Cancer associated fibroblasts tailored tumor microenvironment of therapy resistance in gastrointestinal cancers. J Cell Physiol 2018; 233:6359-6369. [PMID: 29334123 DOI: 10.1002/jcp.26433] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 01/05/2018] [Indexed: 02/06/2023]
Abstract
Gastrointestinal cancers (GI), are a group of highly aggressive malignancies with heavy cancer-related mortalities. Even if continued development of therapy methods, therapy resistance has been a great obstruction for cancer treatment and thereby inevitably leads to depressed final mortality. Peritumoral cancer associated fibroblasts (CAFs), a versatile population assisting cancer cells to build a facilitated tumor microenvironment (TME), has been demonstrated exerting a promotion influence on cancer proliferation, migration, invasion, metastasis, and also therapy resistance. In this review, we provide an update progress in describing how CAFs mediate therapy resistance in GI by various means, meanwhile highlight the crosstalk between CAFs and cancer cells and present some vital signaling pathways activated by CAFs in this resistant process. Furthermore, we discuss the current advances in adopting novel drugs against CAFs and how the knowledge contributing to improved therapy efficacy in clinical practice. In sum, CAFs create a therapy-resistant TME in several aspects of GI progression, although some key problems about distinguishing CAFs subpopulations and controversial issues on pleiotropic CAFs in medication need to be solved for subsequent clinical application. Predictably, targeting therapy-resistant CAFs is a promising adjunctive treatment to benefit GI patients.
Collapse
Affiliation(s)
- Yeqi Sun
- Department of Pathology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ruifen Wang
- Department of Pathology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Meng Qiao
- Department of Pathology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yanchun Xu
- Department of Pathology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wenbin Guan
- Department of Pathology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lifeng Wang
- Department of Pathology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
136
|
Mong J, Tan MH. Size-Based Enrichment Technologies for Non-cancerous Tumor-Derived Cells in Blood. Trends Biotechnol 2018; 36:511-522. [PMID: 29559166 DOI: 10.1016/j.tibtech.2018.02.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 02/19/2018] [Accepted: 02/21/2018] [Indexed: 01/09/2023]
Abstract
Enumeration of circulating tumor cells (CTCs) in the bloodstream can predict prognosis and survival in cancer patients. However, CTC rarity and heterogeneity pose challenges in using them as biomarkers. Recent publications have reported new classes of circulating, non-cancerous tumor-derived cells present in cancer patients but not in healthy controls; these include cancer-associated macrophages, tumor-endothelial clusters (TECs), and cancer-associated fibroblasts (CAFs). Well-established marker-dependent CTC enrichment technologies will miss this group of circulating cells. To maximize our chance of finding useful circulating biomarkers in cancer patients, we propose the use of size-based enrichment technologies to isolate both cancerous and non-cancerous cells in circulation. We review their biological properties and discuss device features to consider in their enrichment.
Collapse
Affiliation(s)
- Jamie Mong
- Biodevices and Diagnostics, Institute of Bioengineering and Nanotechnology, Singapore 138669, Singapore
| | - Min-Han Tan
- Biodevices and Diagnostics, Institute of Bioengineering and Nanotechnology, Singapore 138669, Singapore; National Cancer Centre Singapore, Singapore 169610, Singapore; Sengkang General Hospital, Singapore 544886, Singapore; Concord Cancer Hospital, Singapore 289891, Singapore.
| |
Collapse
|
137
|
Vennin C, Murphy KJ, Morton JP, Cox TR, Pajic M, Timpson P. Reshaping the Tumor Stroma for Treatment of Pancreatic Cancer. Gastroenterology 2018; 154:820-838. [PMID: 29287624 DOI: 10.1053/j.gastro.2017.11.280] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 11/14/2017] [Accepted: 11/16/2017] [Indexed: 12/16/2022]
Abstract
Pancreatic cancer is accompanied by a fibrotic reaction that alters interactions between tumor cells and the stroma to promote tumor progression. Consequently, strategies to target the tumor stroma might be used to treat patients with pancreatic cancer. We review recently developed approaches for reshaping the pancreatic tumor stroma and discuss how these might improve patient outcomes. We also describe relationships between the pancreatic tumor extracellular matrix, the vasculature, the immune system, and metabolism, and discuss the implications for the development of stromal compartment-specific therapies.
Collapse
Affiliation(s)
- Claire Vennin
- The Garvan Institute of Medical Research, Sydney, New South Wales, Australia; The Kinghorn Cancer Center, Sydney, New South Wales, Australia; St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Kendelle J Murphy
- The Garvan Institute of Medical Research, Sydney, New South Wales, Australia; The Kinghorn Cancer Center, Sydney, New South Wales, Australia; St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Jennifer P Morton
- Cancer Research UK, The Beatson Institute for Cancer Research, Glasgow, Scotland, United Kingdom
| | - Thomas R Cox
- The Garvan Institute of Medical Research, Sydney, New South Wales, Australia; The Kinghorn Cancer Center, Sydney, New South Wales, Australia; St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Marina Pajic
- The Garvan Institute of Medical Research, Sydney, New South Wales, Australia; The Kinghorn Cancer Center, Sydney, New South Wales, Australia; St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia.
| | - Paul Timpson
- The Garvan Institute of Medical Research, Sydney, New South Wales, Australia; The Kinghorn Cancer Center, Sydney, New South Wales, Australia; St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia.
| |
Collapse
|
138
|
Škovierová H, Okajčeková T, Strnádel J, Vidomanová E, Halašová E. Molecular regulation of epithelial-to-mesenchymal transition in tumorigenesis (Review). Int J Mol Med 2017; 41:1187-1200. [PMID: 29286071 PMCID: PMC5819928 DOI: 10.3892/ijmm.2017.3320] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 11/23/2017] [Indexed: 12/13/2022] Open
Abstract
Numerous studies over the past two decades have focused on the epithelial-to-mesenchymal transition (EMT) and its role in the development of metastasis. Certain studies highlighted the importance of EMT in the dissemination of tumor cells and metastasis of epithelium-derived carcinomas. Tumor metastasis is a multistep process during which tumor cells change their morphology, and start to migrate and invade distant sites. The present review discusses the current understanding of the molecular mechanisms contributing to EMT in embryogenesis, fibrosis and tumorigenesis. Additionally, the signaling pathways that initiate EMT through transcriptional factors responsible for the activation and suppression of various genes associated with cancer cell migration were investigated. Furthermore, the important role of the epigenetic modifications that regulate EMT and the reverse process, mesenchymal-to-epithelial transition (MET) are discussed. MicroRNAs are key regulators of various intracellular processes and current knowledge of EMT has significantly improved due to microRNA characterization. Their effect on signaling pathways and the ensuing events that occur during EMT at the molecular level is becoming increasingly recognized. The current review also highlights the role of circulating tumor cells (CTCs) and CTC clusters, and their ability to form metastases. In addition, the biological properties of different types of circulating cells based on their tumor-forming potential are compared.
Collapse
Affiliation(s)
- Henrieta Škovierová
- Biomedical Center Martin, Department of Molecular Medicine, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin 03601, Slovakia
| | - Terézia Okajčeková
- Biomedical Center Martin, Department of Molecular Medicine, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin 03601, Slovakia
| | - Ján Strnádel
- Biomedical Center Martin, Department of Molecular Medicine, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin 03601, Slovakia
| | - Eva Vidomanová
- Biomedical Center Martin, Department of Molecular Medicine, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin 03601, Slovakia
| | - Erika Halašová
- Biomedical Center Martin, Department of Molecular Medicine, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin 03601, Slovakia
| |
Collapse
|
139
|
Liu HE, Triboulet M, Zia A, Vuppalapaty M, Kidess-Sigal E, Coller J, Natu VS, Shokoohi V, Che J, Renier C, Chan NH, Hanft VR, Jeffrey SS, Sollier-Christen E. Workflow optimization of whole genome amplification and targeted panel sequencing for CTC mutation detection. NPJ Genom Med 2017; 2:34. [PMID: 29263843 PMCID: PMC5677973 DOI: 10.1038/s41525-017-0034-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 08/29/2017] [Accepted: 09/11/2017] [Indexed: 12/30/2022] Open
Abstract
Genomic characterization of circulating tumor cells (CTCs) may prove useful as a surrogate for conventional tissue biopsies. This is particularly important as studies have shown different mutational profiles between CTCs and ctDNA in some tumor subtypes. However, isolating rare CTCs from whole blood has significant hurdles. Very limited DNA quantities often can't meet NGS requirements without whole genome amplification (WGA). Moreover, white blood cells (WBC) germline contamination may confound CTC somatic mutation analyses. Thus, a good CTC enrichment platform with an efficient WGA and NGS workflow are needed. Here, Vortex label-free CTC enrichment platform was used to capture CTCs. DNA extraction was optimized, WGA evaluated and targeted NGS tested. We used metastatic colorectal cancer (CRC) as the clinical target, HCT116 as the corresponding cell line, GenomePlex® and REPLI-g as the WGA methods, GeneRead DNAseq Human CRC Panel as the 38 gene panel. The workflow was further validated on metastatic CRC patient samples, assaying both tumor and CTCs. WBCs from the same patients were included to eliminate germline contaminations. The described workflow performed well on samples with sufficient DNA, but showed bias for rare cells with limited DNA input. REPLI-g provided an unbiased amplification on fresh rare cells, enabling an accurate variant calling using the targeted NGS. Somatic variants were detected in patient CTCs and not found in age matched healthy donors. This demonstrates the feasibility of a simple workflow for clinically relevant monitoring of tumor genetics in real time and over the course of a patient's therapy using CTCs.
Collapse
Affiliation(s)
| | - Melanie Triboulet
- Department of Surgery, Stanford University School of Medicine, Stanford, CA USA
| | - Amin Zia
- Stanford Center for Genomics and Personalized Medicine, Stanford University, Stanford, CA USA
| | | | - Evelyn Kidess-Sigal
- Department of Surgery, Stanford University School of Medicine, Stanford, CA USA
- Department of Medicine, Division of Hepatology and Gastroenterology, Charité University Hospital, Berlin, Germany
| | - John Coller
- Stanford Functional Genomics Facility, Stanford University, Stanford, CA USA
| | - Vanita S. Natu
- Stanford Functional Genomics Facility, Stanford University, Stanford, CA USA
| | - Vida Shokoohi
- Stanford Functional Genomics Facility, Stanford University, Stanford, CA USA
| | - James Che
- Vortex Biosciences, Inc., Menlo Park, CA USA
| | | | - Natalie H. Chan
- Department of Surgery, Stanford University School of Medicine, Stanford, CA USA
| | - Violet R. Hanft
- Department of Surgery, Stanford University School of Medicine, Stanford, CA USA
| | - Stefanie S. Jeffrey
- Department of Surgery, Stanford University School of Medicine, Stanford, CA USA
| | | |
Collapse
|
140
|
Wang M, Zhang J, Huang Y, Ji S, Shao G, Feng S, Chen D, Zhao K, Wang Z, Wu A. Cancer-Associated Fibroblasts Autophagy Enhances Progression of Triple-Negative Breast Cancer Cells. Med Sci Monit 2017; 23:3904-3912. [PMID: 28802099 PMCID: PMC5565237 DOI: 10.12659/msm.902870] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Cancer-associated fibroblasts (CAFs) are key factors in malignant tumor initiation, progression, and metastasis. However, the effect of CAFs autophagy on triple-negative breast cancer (TNBC) cells is not clear. In this study, the growth effect of TNBC cells regulated by CAFs autophagy was evaluated. MATERIAL AND METHODS CAFs were obtained from invasive TNBC tumors and identified by Western blot and immunofluorescence staining assay. CAFs were co-cultured with TNBC cells, and migration and invasion were evaluated by Matrigel-coated Transwell and Transwell inserts. TNBC cells growth was detected by MTT assay, and epithelial-mesenchymal transition (EMT) regulated by CAFs was evaluated by Western blot assay. RESULTS CAFs were identified by the high expression of α-smooth muscle actin (α-SMA) protein. Autophagy-relevant Beclin 1 and LC3-II/I protein conversion levels in CAFs were higher than those in NFs (P<0.05). TNBC cells migration, invasion, and proliferation levels were significantly improved in the CAFs-conditioned medium (CAFs-CM) group, compared with the other 3 groups (P<0.05). TNBC cells vimentin and N-cadherin protein levels were upregulated and E-cadherin protein level was downregulated in the CAFs-CM group compared with the control group (P<0.05). Further study indicated b-catenin and P-GSK-3β protein levels, which are the key proteins in the Wnt/β-catenin pathway, were upregulated in the CAFs-CM group compared with the control group (P<0.05). CONCLUSIONS Our data demonstrated CAFs autophagy can enhance TNBC cell migration, invasion, and proliferation, and CAFs autophagy can induce TNBC cells to engage in the EMT process through the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Mengchuan Wang
- Department of General Surgery, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China (mainland)
| | - Jian Zhang
- Department of General Surgery, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China (mainland)
| | - Yizhe Huang
- Department of General Surgery, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China (mainland)
| | - Shufeng Ji
- Department of General Surgery, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China (mainland)
| | - Guoli Shao
- Department of General Surgery, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China (mainland)
| | - Shaobo Feng
- Department of General Surgery, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China (mainland)
| | - Danxun Chen
- Department of General Surgery, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China (mainland)
| | - Kankan Zhao
- Department of General Surgery, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China (mainland)
| | - Zixiang Wang
- Department of General Surgery, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China (mainland)
| | - Aiguo Wu
- Department of General Surgery, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China (mainland)
| |
Collapse
|
141
|
Choi IY, Karpus ON, Turner JD, Hardie D, Marshall JL, de Hair MJH, Maijer KI, Tak PP, Raza K, Hamann J, Buckley CD, Gerlag DM, Filer A. Stromal cell markers are differentially expressed in the synovial tissue of patients with early arthritis. PLoS One 2017; 12:e0182751. [PMID: 28793332 PMCID: PMC5549962 DOI: 10.1371/journal.pone.0182751] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 07/23/2017] [Indexed: 12/28/2022] Open
Abstract
Introduction Previous studies have shown increased expression of stromal markers in synovial tissue (ST) of patients with established rheumatoid arthritis (RA). Here, ST expression of stromal markers in early arthritis in relationship to diagnosis and prognostic outcome was studied. Methods ST from 56 patients included in two different early arthritis cohorts and 7 non-inflammatory controls was analysed using immunofluorescence to detect stromal markers CD55, CD248, fibroblast activation protein (FAP) and podoplanin. Diagnostic classification (gout, psoriatic arthritis, unclassified arthritis (UA), parvovirus associated arthritis, reactive arthritis and RA), disease outcome (resolving vs persistent) and clinical variables were determined at baseline and after follow-up, and related to the expression of stromal markers. Results We observed expression of all stromal markers in ST of early arthritis patients, independent of diagnosis or prognostic outcome. Synovial expression of FAP was significantly higher in patients developing early RA compared to other diagnostic groups and non-inflammatory controls. In RA FAP protein was expressed in both lining and sublining layers. Podoplanin expression was higher in all early inflammatory arthritis patients than controls, but did not differentiate diagnostic outcomes. Stromal marker expression was not associated with prognostic outcomes of disease persistence or resolution. There was no association with clinical or sonographic variables. Conclusions Stromal cell markers CD55, CD248, FAP and podoplanin are expressed in ST in the earliest stage of arthritis. Baseline expression of FAP is higher in early synovitis patients who fulfil classification criteria for RA over time. These results suggest that significant fibroblast activation occurs in RA in the early window of disease.
Collapse
Affiliation(s)
- Ivy Y. Choi
- Division of Clinical Immunology and Rheumatology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Olga N. Karpus
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Jason D. Turner
- Rheumatology Research Group, Institute of Inflammation and Ageing, The University of Birmingham, United Kingdom
| | - Debbie Hardie
- Rheumatology Research Group, Institute of Inflammation and Ageing, The University of Birmingham, United Kingdom
| | - Jennifer L. Marshall
- Rheumatology Research Group, Institute of Inflammation and Ageing, The University of Birmingham, United Kingdom
| | - Maria J. H. de Hair
- Division of Clinical Immunology and Rheumatology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Karen I. Maijer
- Division of Clinical Immunology and Rheumatology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Paul P. Tak
- Division of Clinical Immunology and Rheumatology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Karim Raza
- Rheumatology Research Group, Institute of Inflammation and Ageing, The University of Birmingham, United Kingdom
- Sandwell and West Birmingham Hospitals NHS Trust, Birmingham, United Kingdom
| | - Jörg Hamann
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Christopher D. Buckley
- Rheumatology Research Group, Institute of Inflammation and Ageing, The University of Birmingham, United Kingdom
| | - Danielle M. Gerlag
- Division of Clinical Immunology and Rheumatology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- * E-mail: (DMG); (AF)
| | - Andrew Filer
- Rheumatology Research Group, Institute of Inflammation and Ageing, The University of Birmingham, United Kingdom
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
- * E-mail: (DMG); (AF)
| |
Collapse
|
142
|
Witek MA, Aufforth RD, Wang H, Kamande JW, Jackson JM, Pullagurla SR, Hupert ML, Usary J, Wysham WZ, Hilliard D, Montgomery S, Bae-Jump V, Carey LA, Gehrig PA, Milowsky MI, Perou CM, Soper JT, Whang YE, Yeh JJ, Martin G, Soper SA. Discrete microfluidics for the isolation of circulating tumor cell subpopulations targeting fibroblast activation protein alpha and epithelial cell adhesion molecule. NPJ Precis Oncol 2017; 1. [PMID: 29657983 PMCID: PMC5871807 DOI: 10.1038/s41698-017-0028-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Circulating tumor cells consist of phenotypically distinct subpopulations that originate from the tumor microenvironment. We report a circulating tumor cell dual selection assay that uses discrete microfluidics to select circulating tumor cell subpopulations from a single blood sample; circulating tumor cells expressing the established marker epithelial cell adhesion molecule and a new marker, fibroblast activation protein alpha, were evaluated. Both circulating tumor cell subpopulations were detected in metastatic ovarian, colorectal, prostate, breast, and pancreatic cancer patients and 90% of the isolated circulating tumor cells did not co-express both antigens. Clinical sensitivities of 100% showed substantial improvement compared to epithelial cell adhesion molecule selection alone. Owing to high purity (>80%) of the selected circulating tumor cells, molecular analysis of both circulating tumor cell subpopulations was carried out in bulk, including next generation sequencing, mutation analysis, and gene expression. Results suggested fibroblast activation protein alpha and epithelial cell adhesion molecule circulating tumor cells are distinct subpopulations and the use of these in concert can provide information needed to navigate through cancer disease management challenges.
Collapse
Affiliation(s)
- Małgorzata A Witek
- Department of Chemistry, The University of Kansas, Lawrence, KS 66047, USA.,Center of Biomodular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, KS 66047, USA.,Department of Biomedical Engineering, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Rachel D Aufforth
- Department of Surgery, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Hong Wang
- Department of Biomedical Engineering, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Joyce W Kamande
- Department of Biomedical Engineering, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Joshua M Jackson
- Department of Chemistry, The University of Kansas, Lawrence, KS 66047, USA.,Center of Biomodular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, KS 66047, USA
| | - Swathi R Pullagurla
- Department of Chemistry, The University of Kansas, Lawrence, KS 66047, USA.,Center of Biomodular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, KS 66047, USA
| | - Mateusz L Hupert
- Department of Biomedical Engineering, The University of North Carolina, Chapel Hill, NC 27599, USA.,BioFluidica, Inc., c/o Carolina Kick-Start, 321 Bondurant Hall, Chapel Hill NC27599, USA
| | - Jerry Usary
- Department of Genetics, The University of North Carolina, Chapel Hill, NC 27599, USA.,Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Weiya Z Wysham
- Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, NC 27599, USA.,Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, UNC-Chapel Hill, NC 27599, USA
| | - Dawud Hilliard
- Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, NC 27599, USA.,Animal Histopathology Core, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Stephanie Montgomery
- Animal Histopathology Core, The University of North Carolina, Chapel Hill, NC 27599, USA.,Department of Pathology and Laboratory Medicine, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Victoria Bae-Jump
- Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, NC 27599, USA.,Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, UNC-Chapel Hill, NC 27599, USA
| | - Lisa A Carey
- Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, NC 27599, USA.,Department of Medicine, Division of Hematology and Oncology, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Paola A Gehrig
- Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, NC 27599, USA.,Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, UNC-Chapel Hill, NC 27599, USA
| | - Matthew I Milowsky
- Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Charles M Perou
- Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - John T Soper
- Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, NC 27599, USA.,Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, UNC-Chapel Hill, NC 27599, USA
| | - Young E Whang
- Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jen Jen Yeh
- Department of Surgery, The University of North Carolina, Chapel Hill, NC 27599, USA.,Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, NC 27599, USA.,Department of Pharmacology, The University of North Carolina, Chapel Hill, NC 27599, USA
| | | | - Steven A Soper
- BioEngineering Program, The University of Kansas, Lawrence, KS 66047, USA.,Department of Mechanical Engineering, The University of Kansas, Lawrence, KS 66047, USA.,Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| |
Collapse
|
143
|
Jackson JM, Witek MA, Kamande JW, Soper SA. Materials and microfluidics: enabling the efficient isolation and analysis of circulating tumour cells. Chem Soc Rev 2017; 46:4245-4280. [PMID: 28632258 PMCID: PMC5576189 DOI: 10.1039/c7cs00016b] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We present a critical review of microfluidic technologies and material effects on the analyses of circulating tumour cells (CTCs) selected from the peripheral blood of cancer patients. CTCs are a minimally invasive source of clinical information that can be used to prognose patient outcome, monitor minimal residual disease, assess tumour resistance to therapeutic agents, and potentially screen individuals for the early diagnosis of cancer. The performance of CTC isolation technologies depends on microfluidic architectures, the underlying principles of isolation, and the choice of materials. We present a critical review of the fundamental principles used in these technologies and discuss their performance. We also give context to how CTC isolation technologies enable downstream analysis of selected CTCs in terms of detecting genetic mutations and gene expression that could be used to gain information that may affect patient outcome.
Collapse
|
144
|
Rawal S, Yang YP, Cote R, Agarwal A. Identification and Quantitation of Circulating Tumor Cells. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2017; 10:321-343. [PMID: 28301753 DOI: 10.1146/annurev-anchem-061516-045405] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Circulating tumor cells (CTCs) are shed from the primary tumor into the circulatory system and act as seeds that initiate cancer metastasis to distant sites. CTC enumeration has been shown to have a significant prognostic value as a surrogate marker in various cancers. The widespread clinical utility of CTC tests, however, is still limited due to the inherent rarity and heterogeneity of CTCs, which necessitate robust techniques for their efficient enrichment and detection. Significant recent advances have resulted in technologies with the ability to improve yield and purity of CTC enrichment as well as detection sensitivity. Current efforts are largely focused on the translation and standardization of assays to fully realize the clinical utility of CTCs. In this review, we aim to provide a comprehensive overview of CTC enrichment and detection techniques with an emphasis on novel approaches for rapid quantification of CTCs.
Collapse
Affiliation(s)
- Siddarth Rawal
- Department of Pathology, DJTMF Biomedical Nanotechnology Institute, University of Miami, Coral Gables, Florida 33146
| | - Yu-Ping Yang
- Department of Pathology, DJTMF Biomedical Nanotechnology Institute, University of Miami, Coral Gables, Florida 33146
- Department of Biochemistry and Molecular Biology, University of Miami, Coral Gables, Florida 33146
| | - Richard Cote
- Department of Pathology, DJTMF Biomedical Nanotechnology Institute, University of Miami, Coral Gables, Florida 33146
- Department of Biochemistry and Molecular Biology, University of Miami, Coral Gables, Florida 33146
| | - Ashutosh Agarwal
- Department of Pathology, DJTMF Biomedical Nanotechnology Institute, University of Miami, Coral Gables, Florida 33146
- Department of Biomedical Engineering, University of Miami, Coral Gables, Florida 33146;
| |
Collapse
|
145
|
Zhao L, Ji G, Le X, Luo Z, Wang C, Feng M, Xu L, Zhang Y, Lau WB, Lau B, Yang Y, Lei L, Yang H, Xuan Y, Chen Y, Deng X, Yi T, Yao S, Zhao X, Wei Y, Zhou S. An integrated analysis identifies STAT4 as a key regulator of ovarian cancer metastasis. Oncogene 2017; 36:3384-3396. [PMID: 28114283 DOI: 10.1038/onc.2016.487] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 10/26/2016] [Accepted: 11/21/2016] [Indexed: 02/05/2023]
Abstract
Epithelial ovarian cancer (EOC) is one of the most common gynecological cancers, with diagnosis often at a late stage. Metastasis is a major cause of death in patients with EOC, but the underlying molecular mechanisms remain obscure. Here, we utilized an integrated approach to find potential key transcription factors involved in ovarian cancer metastasis and identified STAT4 as a critical player in ovarian cancer metastasis. We found that activated STAT4 was overexpressed in epithelial cells of ovarian cancer and STAT4 overexpression was associated with poor outcome of ovarian cancer patients, which promoted metastasis of ovarian cancer in both in vivo and in vitro. Although STAT4 mediated EOC metastasis via inducing epithelial-to-mesenchymal transition (EMT) of ovarian cancer cells in vivo, STAT4 failed to induce EMT directly in vitro, suggesting that STAT4 might mediate EMT process via cancer-stroma interactions. Further functional analysis revealed that STAT4 overexpression induced normal omental fibroblasts and adipose- and bone marrow-derived mesenchymal stem cells to obtain cancer-associated fibroblasts (CAF)-like features via induction of tumor-derived Wnt7a. Reciprocally, increased production of CAF-induced CXCL12, IL6 and VEGFA within tumor microenvironment could enable peritoneal metastasis of ovarian cancer via induction of EMT program. In summary, our study established a model that STAT4 promotes ovarian cancer metastasis via tumor-derived Wnt7a-induced activation of CAFs.
Collapse
Affiliation(s)
- L Zhao
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second Hospital and State Key Laboratory of Biotherapy/Collaborative Innovation Center, West China Hospital, Sichuan University, Chengdu, China
| | - G Ji
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second Hospital and State Key Laboratory of Biotherapy/Collaborative Innovation Center, West China Hospital, Sichuan University, Chengdu, China
| | - X Le
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second Hospital and State Key Laboratory of Biotherapy/Collaborative Innovation Center, West China Hospital, Sichuan University, Chengdu, China
| | - Z Luo
- College of Biological Sciences, Sichuan University, Chengdu, China
| | - C Wang
- College of Biological Sciences, Sichuan University, Chengdu, China
| | - M Feng
- Department of Pathology, West China Second Hospital, Sichuan University, Chengdu, China
| | - L Xu
- Department of Pathology, West China Second Hospital, Sichuan University, Chengdu, China
| | - Y Zhang
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second Hospital and State Key Laboratory of Biotherapy/Collaborative Innovation Center, West China Hospital, Sichuan University, Chengdu, China
| | - W B Lau
- Department of Emergency Medicine, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - B Lau
- Department of Surgery, Emergency Medicine, Kaiser Santa Clara Medical Center, Affiliate of Stanford University, Santa Clara, CA, USA
| | - Y Yang
- West China School of Medicine, Sichuan University, Chengdu, China
| | - L Lei
- West China School of Medicine, Sichuan University, Chengdu, China
| | - H Yang
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Y Xuan
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second Hospital and State Key Laboratory of Biotherapy/Collaborative Innovation Center, West China Hospital, Sichuan University, Chengdu, China
| | - Y Chen
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - X Deng
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - T Yi
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second Hospital and State Key Laboratory of Biotherapy/Collaborative Innovation Center, West China Hospital, Sichuan University, Chengdu, China
| | - S Yao
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second Hospital and State Key Laboratory of Biotherapy/Collaborative Innovation Center, West China Hospital, Sichuan University, Chengdu, China
| | - X Zhao
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second Hospital and State Key Laboratory of Biotherapy/Collaborative Innovation Center, West China Hospital, Sichuan University, Chengdu, China
| | - Y Wei
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second Hospital and State Key Laboratory of Biotherapy/Collaborative Innovation Center, West China Hospital, Sichuan University, Chengdu, China
| | - S Zhou
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second Hospital and State Key Laboratory of Biotherapy/Collaborative Innovation Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
146
|
Hong Y, Fang F, Zhang Q. Circulating tumor cell clusters: What we know and what we expect (Review). Int J Oncol 2016; 49:2206-2216. [PMID: 27779656 PMCID: PMC5117994 DOI: 10.3892/ijo.2016.3747] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 10/14/2016] [Indexed: 12/11/2022] Open
Abstract
The major cause of cancer-associated mortality is tumor metastasis, a disease that is far from understood. Many studies have observed circulating tumor cells (CTCs) in patients' circulation systems, and a few latest investigations showed that CTC clusters have a potentially high capacity of metastasis. The capture and analysis of CTC clusters offer new insights into tumor metastasis and can facilitate the development of cancer treatments. We reviewed the research history of the CTC clusters, as well as the technologies used for detecting and isolating CTC clusters. In addition, we discuss the characteristics of CTC clusters and their roles in tumor dissemination. Clinical relevance of CTC clusters was also implicated in currently limited data. Moving forward, the next frontier in this field is to develop more efficient capture methods and decipher conundrums of characterization of CTC clusters. This will ultimately identify the clinical value of CTC clusters as a biomarker and therapeutic target.
Collapse
Affiliation(s)
- Yupeng Hong
- Department of Oncology, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| | - Francia Fang
- Trinity College of Arts and Sciences, Duke University, Durham, NC 27710, USA
| | - Qi Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| |
Collapse
|
147
|
Labovsky V, Martinez LM, Calcagno MDL, Davies KM, García-Rivello H, Wernicke A, Feldman L, Giorello MB, Matas A, Borzone FR, Howard SC, Chasseing NA. Interleukin-6 receptor in spindle-shaped stromal cells, a prognostic determinant of early breast cancer. Tumour Biol 2016; 37:13377-13384. [PMID: 27460086 DOI: 10.1007/s13277-016-5268-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 07/15/2016] [Indexed: 02/06/2023] Open
Abstract
Spindle-shaped stromal cells, like carcinoma-associated fibroblasts and mesenchymal stem cells, influence tumor behavior and can serve as parameters in the clinical diagnosis, therapy, and prognosis of early breast cancer. Therefore, the aim of this study is to explore the clinicopathological significance of tumor necrosis factor-related apoptosis-induced ligand (TRAIL) receptors (Rs) 2 and 4 (TRAIL-R2 and R4), and interleukin-6 R (IL-6R) in spindle-shaped stromal cells, not associated with the vasculature, as prognostic determinants of early breast cancer patients. Receptors are able to trigger the migratory activity, among other functions, of these stromal cells. We conducted immunohistochemical analysis for the expression of these receptors in spindle-shaped stromal cells, not associated with the vasculature, of primary tumors from early invasive breast cancer patients, and analyzed their association with clinicopathological characteristics. Here, we demonstrate that the elevated levels of TRAIL-R2, TRAIL-R4, and IL-6R in these stromal cells were significantly associated with a higher risk of metastatic occurrence (p = 0.034, 0.026, and 0.006; respectively). Moreover, high expression of TRAIL-R4 was associated with shorter disease-free survival and metastasis-free survival (p = 0.013 and 0.019; respectively). Also, high expression of IL-6R was associated with shorter disease-free survival, metastasis-free survival, and overall survival (p = 0.003, 0.001, and 0.003; respectively). Multivariate analysis showed that IL-6R expression was an independent prognostic factor for disease-free survival and metastasis-free survival (p = 0.035). This study is the first to demonstrate that high levels of IL-6R expression in spindle-shaped stromal cells, not associated with the vasculature, could be used to identify early breast cancer patients with poor outcomes.
Collapse
Affiliation(s)
- Vivian Labovsky
- Laboratorio de Inmunohematología, Instituto de Biología y Medicina Experimental (IBYME) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Vuelta de Obligado 2490, CP 1428, Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Leandro Marcelo Martinez
- Laboratorio de Inmunohematología, Instituto de Biología y Medicina Experimental (IBYME) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Vuelta de Obligado 2490, CP 1428, Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - María de Luján Calcagno
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 954, CP 1113, Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Kevin Mauro Davies
- Departamento de Anatomía Patológica, Hospital Italiano, Juan Domingo Perón 4190, CP 1181, Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Hernán García-Rivello
- Departamento de Anatomía Patológica, Hospital Italiano, Juan Domingo Perón 4190, CP 1181, Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Alejandra Wernicke
- Departamento de Anatomía Patológica, Hospital Italiano, Juan Domingo Perón 4190, CP 1181, Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Leonardo Feldman
- Departamento de Trasplante de Medula Ósea, Fundación Favaloro, Solís 443, CP 1428, Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - María Belén Giorello
- Laboratorio de Inmunohematología, Instituto de Biología y Medicina Experimental (IBYME) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Vuelta de Obligado 2490, CP 1428, Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Ayelén Matas
- Laboratorio de Inmunohematología, Instituto de Biología y Medicina Experimental (IBYME) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Vuelta de Obligado 2490, CP 1428, Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Francisco Raúl Borzone
- Laboratorio de Inmunohematología, Instituto de Biología y Medicina Experimental (IBYME) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Vuelta de Obligado 2490, CP 1428, Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Scott C Howard
- University of Memphis, 3720 Alumni Ave, 38152, Memphis, TN, USA
| | - Norma Alejandra Chasseing
- Laboratorio de Inmunohematología, Instituto de Biología y Medicina Experimental (IBYME) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Vuelta de Obligado 2490, CP 1428, Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
148
|
Ferreira MM, Ramani VC, Jeffrey SS. Circulating tumor cell technologies †. Mol Oncol 2016; 10:374-94. [PMID: 26897752 PMCID: PMC5528969 DOI: 10.1016/j.molonc.2016.01.007] [Citation(s) in RCA: 359] [Impact Index Per Article: 44.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 01/16/2016] [Accepted: 01/19/2016] [Indexed: 02/08/2023] Open
Abstract
Circulating tumor cells, a component of the “liquid biopsy”, hold great potential to transform the current landscape of cancer therapy. A key challenge to unlocking the clinical utility of CTCs lies in the ability to detect and isolate these rare cells using methods amenable to downstream characterization and other applications. In this review, we will provide an overview of current technologies used to detect and capture CTCs with brief insights into the workings of individual technologies. We focus on the strategies employed by different platforms and discuss the advantages of each. As our understanding of CTC biology matures, CTC technologies will need to evolve, and we discuss some of the present challenges facing the field in light of recent data encompassing epithelial‐to‐mesenchymal transition, tumor‐initiating cells, and CTC clusters. We present a comprehensive overview of CTC detection and capture technologies. We provide a conceptual description of strategies used in different technologies. We highlight the key features of individual technologies. We discuss CTC technology performance in the context of clinical studies.
Collapse
Affiliation(s)
- Meghaan M Ferreira
- Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Vishnu C Ramani
- Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Stefanie S Jeffrey
- Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|