101
|
Chu X, Yang Y, Tian X. Crosstalk between Pancreatic Cancer Cells and Cancer-Associated Fibroblasts in the Tumor Microenvironment Mediated by Exosomal MicroRNAs. Int J Mol Sci 2022; 23:ijms23179512. [PMID: 36076911 PMCID: PMC9455258 DOI: 10.3390/ijms23179512] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/15/2022] [Accepted: 08/19/2022] [Indexed: 01/18/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most malignant digestive tumors, characterized by a low rate of early diagnosis, strong invasiveness, and early metastasis. The abundant stromal cells, dense extracellular matrix, and lack of blood supply in PDAC limit the penetration of chemotherapeutic drugs, resulting in poor efficacy of the current treatment regimens. Cancer-associated fibroblasts (CAFs) are the major stromal cells in the tumor microenvironment. Tumor cells can secrete exosomes to promote the generation of activated CAFs, meanwhile exosomes secreted by CAFs help promote tumor progression. The aberrant expression of miRNAs in exosomes is involved in the interaction between tumor cells and CAFs, which provides the possibility for the application of exosomal miRNAs in the diagnosis and treatment of PDAC. The current article reviews the mechanism of exosomal miRNAs in the crosstalk between PDAC cells and CAFs in the tumor microenvironment, in order to improve the understanding of TME regulation and provide evidence for designing diagnostic and therapeutic targets against exosome miRNA in human PDAC.
Collapse
|
102
|
Chijimatsu R, Kobayashi S, Takeda Y, Kitakaze M, Tatekawa S, Arao Y, Nakayama M, Tachibana N, Saito T, Ennishi D, Tomida S, Sasaki K, Yamada D, Tomimaru Y, Takahashi H, Okuzaki D, Motooka D, Ohshiro T, Taniguchi M, Suzuki Y, Ogawa K, Mori M, Doki Y, Eguchi H, Ishii H. Establishment of a reference single-cell RNA sequencing dataset for human pancreatic adenocarcinoma. iScience 2022; 25:104659. [PMID: 35847558 PMCID: PMC9283889 DOI: 10.1016/j.isci.2022.104659] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/14/2022] [Accepted: 06/17/2022] [Indexed: 11/28/2022] Open
Abstract
Single-cell RNA sequencing (scRNAseq) has been used to assess the intra-tumor heterogeneity and microenvironment of pancreatic ductal adenocarcinoma (PDAC). However, previous knowledge is not fully universalized. Here, we built a single cell atlas of PDAC from six datasets containing over 70 samples and >130,000 cells, and demonstrated its application to the reanalysis of the previous bulk transcriptomic cohorts and inferring cell-cell communications. The cell decomposition of bulk transcriptomics using scRNAseq data showed the cellular heterogeneity of PDAC; moreover, high levels of tumor cells and fibroblasts were indicative of poor-prognosis. Refined tumor subtypes signature indicated the tumor cell dynamics in intra-tumor and their specific regulatory network. We further identified functionally distinct tumor clusters that had close interaction with fibroblast subtypes via different signaling pathways dependent on subtypes. Our analysis provided a reference dataset for PDAC and showed its utility in research on the microenvironment of intra-tumor heterogeneity.
Collapse
Affiliation(s)
- Ryota Chijimatsu
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan
- Center for Comprehensive Genomic Medicine, Okayama University Hospital, Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Shogo Kobayashi
- Department of Gastroenterology, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan
| | - Yu Takeda
- Department of Gastroenterology, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan
| | - Masatoshi Kitakaze
- Department of Gastroenterology, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan
| | - Shotaro Tatekawa
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan
| | - Yasuko Arao
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan
| | - Mika Nakayama
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan
| | - Naohiro Tachibana
- Department of Orthopaedic Surgery, Section of Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Taku Saito
- Department of Orthopaedic Surgery, Section of Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Daisuke Ennishi
- Center for Comprehensive Genomic Medicine, Okayama University Hospital, Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Shuta Tomida
- Center for Comprehensive Genomic Medicine, Okayama University Hospital, Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Kazuki Sasaki
- Department of Gastroenterology, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan
| | - Daisaku Yamada
- Department of Gastroenterology, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan
| | - Yoshito Tomimaru
- Department of Gastroenterology, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan
| | - Hidenori Takahashi
- Department of Gastroenterology, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan
| | - Daisuke Okuzaki
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Daisuke Motooka
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Takahito Ohshiro
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Osaka, Ibaraki 567-0047, Japan
| | - Masateru Taniguchi
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Osaka, Ibaraki 567-0047, Japan
| | - Yutaka Suzuki
- Laboratory of Systems Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha, Kashiwa-shi, Chiba 272-8562, Japan
| | - Kazuhiko Ogawa
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan
| | - Masaki Mori
- Department of Gastroenterology, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan
- Tokai University Graduate School of Medicine, Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| | - Yuichiro Doki
- Department of Gastroenterology, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterology, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan
| | - Hideshi Ishii
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan
| |
Collapse
|
103
|
Heterogeneity of Cancer-Associated Fibroblasts and the Tumor Immune Microenvironment in Pancreatic Cancer. Cancers (Basel) 2022; 14:cancers14163994. [PMID: 36010986 PMCID: PMC9406547 DOI: 10.3390/cancers14163994] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/16/2022] [Accepted: 08/16/2022] [Indexed: 12/31/2022] Open
Abstract
Simple Summary Stroma-targeting therapy in pancreatic ductal adenocarcinoma (PDAC) has been extensively investigated, but no candidates have shown efficacy at the clinical trial stage. Studies of cancer-associated fibroblast (CAF) depletion in a mouse model suggested that CAFs have not only tumor-promoting function but also tumor-suppressive activity. Recently, single-cell RNA sequencing (scRNA-seq) has revealed the complex tumor microenvironment within PDAC, and subpopulations of functionally distinct CAFs and their association with tumor immunity have been reported. However, the existence of tumor suppressive CAFs and CAFs involved in the maintenance of PDAC differentiation has also been reported. In the future, therapeutic strategies should be developed considering these CAF subpopulations, with the hope of improving the prognosis of PDAC. Abstract Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers, with a 5-year survival rate of 9%. Cancer-associated fibroblasts (CAFs) have historically been considered tumor-promoting. However, multiple studies reporting that suppression of CAFs in PDAC mouse models resulted in more aggressive tumors and worse prognosis have suggested the existence of a tumor-suppressive population within CAFs, leading to further research on heterogeneity within CAFs. In recent years, the benefits of cancer immunotherapy have been reported in various carcinomas. Unfortunately, the efficacy of immunotherapies in PDAC has been limited, and the CAF-driven cancer immunosuppressive microenvironment has been suggested as the cause. Thus, clarification of heterogeneity within the tumor microenvironment, including CAFs and tumor immunity, is urgently needed to establish effective therapeutic strategies for PDAC. In this review, we report the latest findings on the heterogeneity of CAFs and the functions of each major CAF subtype, which have been revealed by single-cell RNA sequencing in recent years. We also describe reports of tumor-suppressive CAF subtypes and the existence of CAFs that maintain a differentiated PDAC phenotype and review the potential for targeted therapy.
Collapse
|
104
|
Rix LLR, Sumi NJ, Hu Q, Desai B, Bryant AT, Li X, Welsh EA, Fang B, Kinose F, Kuenzi BM, Chen YA, Antonia SJ, Lovly CM, Koomen JM, Haura EB, Marusyk A, Rix U. IGF-binding proteins secreted by cancer-associated fibroblasts induce context-dependent drug sensitization of lung cancer cells. Sci Signal 2022; 15:eabj5879. [PMID: 35973030 PMCID: PMC9528501 DOI: 10.1126/scisignal.abj5879] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Cancer-associated fibroblasts (CAFs) in the tumor microenvironment are often linked to drug resistance. Here, we found that coculture with CAFs or culture in CAF-conditioned medium unexpectedly induced drug sensitivity in certain lung cancer cell lines. Gene expression and secretome analyses of CAFs and normal lung-associated fibroblasts (NAFs) revealed differential abundance of insulin-like growth factors (IGFs) and IGF-binding proteins (IGFBPs), which promoted or inhibited, respectively, signaling by the receptor IGF1R and the kinase FAK. Similar drug sensitization was seen in gefitinib-resistant, EGFR-mutant PC9GR lung cancer cells treated with recombinant IGFBPs. Conversely, drug sensitivity was decreased by recombinant IGFs or conditioned medium from CAFs in which IGFBP5 or IGFBP6 was silenced. Phosphoproteomics and receptor tyrosine kinase (RTK) array analyses indicated that exposure of PC9GR cells to CAF-conditioned medium also inhibited compensatory IGF1R and FAK signaling induced by the EGFR inhibitor osimertinib. Combined small-molecule inhibition of IGF1R and FAK phenocopied the CAF-mediated effects in culture and increased the antitumor effect of osimertinib in mice. Cells that were osimertinib resistant and had MET amplification or showed epithelial-to-mesenchymal transition also displayed residual sensitivity to IGFBPs. Thus, CAFs promote or reduce drug resistance in a context-dependent manner, and deciphering the relationship between the differential content of CAF secretomes and the signaling dependencies of the tumor may reveal effective combination treatment strategies.
Collapse
Affiliation(s)
- Lily L. Remsing Rix
- Department of Drug Discovery, Moffitt Cancer Center, Tampa, Florida 33612, USA
| | - Natalia J. Sumi
- Department of Drug Discovery, Moffitt Cancer Center, Tampa, Florida 33612, USA.,Cancer Biology Ph.D. Program, University of South Florida, Tampa, FL 33620, USA
| | - Qianqian Hu
- Department of Drug Discovery, Moffitt Cancer Center, Tampa, Florida 33612, USA.,Cancer Biology Ph.D. Program, University of South Florida, Tampa, FL 33620, USA
| | - Bina Desai
- Department of Drug Discovery, Moffitt Cancer Center, Tampa, Florida 33612, USA.,Cancer Biology Ph.D. Program, University of South Florida, Tampa, FL 33620, USA
| | - Annamarie T. Bryant
- Department of Drug Discovery, Moffitt Cancer Center, Tampa, Florida 33612, USA
| | - Xueli Li
- Department of Drug Discovery, Moffitt Cancer Center, Tampa, Florida 33612, USA
| | - Eric A. Welsh
- Biostatistics and Bioinformatics Shared Resource, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Bin Fang
- Proteomics and Metabolomics Core, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Fumi Kinose
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Brent M. Kuenzi
- Department of Drug Discovery, Moffitt Cancer Center, Tampa, Florida 33612, USA.,Cancer Biology Ph.D. Program, University of South Florida, Tampa, FL 33620, USA
| | - Y. Ann Chen
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL 33612, USA,Department of Oncologic Sciences, University of South Florida, Tampa, FL 33620, USA
| | - Scott J. Antonia
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Christine M. Lovly
- Department of Medicine, Vanderbilt University Medical Center; Nashville, TN 37232, USA
| | - John M. Koomen
- Department of Oncologic Sciences, University of South Florida, Tampa, FL 33620, USA,Department of Molecular Oncology, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Eric B. Haura
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Andriy Marusyk
- Department of Oncologic Sciences, University of South Florida, Tampa, FL 33620, USA,Department of Cancer Physiology, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Uwe Rix
- Department of Drug Discovery, Moffitt Cancer Center, Tampa, Florida 33612, USA.,Department of Oncologic Sciences, University of South Florida, Tampa, FL 33620, USA,Corresponding author.
| |
Collapse
|
105
|
Peng H, Zhu E, Zhang Y. Advances of cancer-associated fibroblasts in liver cancer. Biomark Res 2022; 10:59. [PMID: 35971182 PMCID: PMC9380339 DOI: 10.1186/s40364-022-00406-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/01/2022] [Indexed: 12/24/2022] Open
Abstract
Liver cancer is one of the most common malignant tumors worldwide, it is ranked sixth in incidence and fourth in mortality. According to the distinct origin of malignant tumor cells, liver cancer is mainly divided into hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA). Since most cases are diagnosed at an advanced stage, the prognosis of liver cancer is poor. Tumor growth depends on the dynamic interaction of various cellular components in the tumor microenvironment (TME). As the most abundant components of tumor stroma, cancer-associated fibroblasts (CAFs) have been involved in the progression of liver cancer. The interplay between CAFs and tumor cells, immune cells, or vascular endothelial cells in the TME through direct cell-to-cell contact or indirect paracrine interaction, affects the initiation and development of tumors. Additionally, CAFs are not a homogeneous cell population in liver cancer. Recently, single-cell sequencing technology has been used to help better understand the diversity of CAFs in liver cancer. In this review, we mainly update the knowledge of CAFs both in HCC and CCA, including their cell origins, chemoresistance, tumor stemness induction, tumor immune microenvironment formation, and the role of tumor cells on CAFs. Understanding the context-dependent role of different CAFs subsets provides new strategies for precise liver cancer treatment.
Collapse
Affiliation(s)
- Hao Peng
- Medical School, Southeast University, Nanjing, 210009, China
| | - Erwei Zhu
- The Second People's Hospital of Lianyungang (The Oncology Hospital of Lianyungang), Lianyungang, 222006, China
| | - Yewei Zhang
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210009, China.
| |
Collapse
|
106
|
Shiraki Y, Mii S, Esaki N, Enomoto A. Possible disease-protective roles of fibroblasts in cancer and fibrosis and their therapeutic application. NAGOYA JOURNAL OF MEDICAL SCIENCE 2022; 84:484-496. [PMID: 36237894 PMCID: PMC9529631 DOI: 10.18999/nagjms.84.3.484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/06/2022] [Indexed: 11/28/2022]
Abstract
Cancer and fibrotic diseases are characterized by continuous inflammation, tissue wounds, and injuries. Cancer is a "wound that does not heal," and the uncontrolled proliferation of cancer cells disrupts normal tissue integrity and induces stromal fibroinflammatory reactions. Fibroblasts proliferate extensively in the stroma, playing a major role in the development of these diseases. There has been considerable evidence that fibroblasts contribute to fibrosis and tissue stiffening and promote disease progression via multiple mechanisms. However, recent emerging findings, mainly derived from single-cell transcriptomic analysis, indicated that fibroblasts are functionally heterogeneous, leading to the hypothesis that both disease-promoting and -restraining fibroblasts exist. We recently showed that a fibroblast population, defined by the expression of the glycosylphosphatidylinositol-anchored membrane protein Meflin may suppress but not promote fibrotic response and disease progression in cancer and fibrotic diseases. Although currently hypothetical, the primary function of Meflin-positive fibroblasts may be tissue repair after injury and cancer initiation occurred. This observation has led to the proposal of a potential therapy that converts the phenotype of fibroblasts from pro-tumor to anti-tumor. In this short review, we summarize our recent findings on the function of Meflin in the context of cancer and fibrotic diseases and discuss how we can utilize this knowledge on fibroblasts in translational medicine. We also discuss several aspects of the interpretation of survival analysis data, such as Kaplan-Meier analysis, to address the function of specific genes expressed in fibroblasts.
Collapse
Affiliation(s)
- Yukihiro Shiraki
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shinji Mii
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Nobutoshi Esaki
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Atsushi Enomoto
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
107
|
Martinelli S, Amore F, Mello T, Mannelli M, Maggi M, Rapizzi E. Metformin Treatment Induces Different Response in Pheochromocytoma/Paraganglioma Tumour Cells and in Primary Fibroblasts. Cancers (Basel) 2022; 14:cancers14143471. [PMID: 35884532 PMCID: PMC9320533 DOI: 10.3390/cancers14143471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 11/22/2022] Open
Abstract
Simple Summary Pheochromocytoma/paragangliomas (PPGLs) are neuroendocrine tumours and are often non-metastatic. However, no effective treatment is available for their metastatic form. Recent studies have shown that metformin exhibits antiproliferative activity in many human cancers, including PPGLs. Nevertheless, no data are available concerning whether metformin is also able to inhibit PPGL metastatic spread. A tumour is a very complex system, comprising not only cancer cells, but also other cells that all together form the so-called tumour microenvironment. Cancer-associated fibroblasts are residential or recruited fibroblasts, transformed by cancer cells, to promote tumour growth and spread. Therefore, the interplay between tumour cells and cancer-associated fibroblasts has become an interesting target for cancer therapy. Here, we demonstrate that metformin has different effects on cancer cells and fibroblasts, providing evidence that metformin may hold promise for altering tumour microenvironment homeostasis. Improving our knowledge on malignant tumour microenvironment properties could lead to develop complementary strategies to target tumour spread and progression. Abstract Pheochromocytoma/paragangliomas (PPGLs) are neuroendocrine tumours, often non-metastatic, but without available effective treatment for their metastatic form. Recent studies have shown that metformin exhibits antiproliferative activity in many human cancers, including PPGLs. Nevertheless, no data are available on the role of metformin on PPGL cells (two-dimension, 2D) and spheroids (three-dimension, 3D) migration/invasion. In this study, we observed that metformin exerts an antiproliferative effect on 2D and 3D cultures of pheochromocytoma mouse tumour tissue (MTT), either silenced or not for the SDHB subunit. However, metformin did not affect MTT migration. On the other hand, metformin did not have a short-term effect on the proliferation of mouse primary fibroblasts, but significantly decreased their ability to migrate. Although the metabolic changes induced by metformin were similar between MTT and fibroblasts (i.e., an overall decrease of ATP production and an increase in intracellular lactate concentration) the activated signalling pathways were different. Indeed, after metformin administration, MTT showed a reduced phosphorylation of Akt and Erk1/2, while fibroblasts exhibited a downregulation of N-Cadherin and an upregulation of E-Cadherin. Herein, we demonstrated that metformin has different effects on cell growth and spread depending on the cell type nature, underlining the importance of the tumour microenvironment in dictating the drug response.
Collapse
Affiliation(s)
- Serena Martinelli
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy; (S.M.); (F.A.); (T.M.); (M.M.); (M.M.)
- Centro di Ricerca e Innovazione Sulle Patologie Surrenaliche, AOU Careggi, 50134 Florence, Italy
- ENS@T Center of Excellence, 50134 Florence, Italy
| | - Francesca Amore
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy; (S.M.); (F.A.); (T.M.); (M.M.); (M.M.)
| | - Tommaso Mello
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy; (S.M.); (F.A.); (T.M.); (M.M.); (M.M.)
| | - Massimo Mannelli
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy; (S.M.); (F.A.); (T.M.); (M.M.); (M.M.)
- Centro di Ricerca e Innovazione Sulle Patologie Surrenaliche, AOU Careggi, 50134 Florence, Italy
- ENS@T Center of Excellence, 50134 Florence, Italy
| | - Mario Maggi
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy; (S.M.); (F.A.); (T.M.); (M.M.); (M.M.)
- Centro di Ricerca e Innovazione Sulle Patologie Surrenaliche, AOU Careggi, 50134 Florence, Italy
- ENS@T Center of Excellence, 50134 Florence, Italy
| | - Elena Rapizzi
- Centro di Ricerca e Innovazione Sulle Patologie Surrenaliche, AOU Careggi, 50134 Florence, Italy
- ENS@T Center of Excellence, 50134 Florence, Italy
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
- Correspondence: ; Tel.: +39-055-2758245
| |
Collapse
|
108
|
Tanaka R, Kimura K, Eguchi S, Ohira G, Tanaka S, Amano R, Tanaka H, Yashiro M, Ohira M, Kubo S. Interleukin-8 produced from cancer-associated fibroblasts suppresses proliferation of the OCUCh-LM1 cancer cell line. BMC Cancer 2022; 22:748. [PMID: 35804329 PMCID: PMC9270823 DOI: 10.1186/s12885-022-09847-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/30/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cancer-associated fibroblasts (CAFs) play an important role in cancer growth by interacting with cancer cells, but their effects differ depending on the type of cancer. This study investigated the role of CAFs in biliary tract cancers (BTCs), compared with pancreatic ductal adenocarcinoma (PDAC) as a comparison cohort. METHODS We retrospectively evaluated alpha-smooth muscle actin (αSMA) expression in CAFs from 114 cases of PDAC and 154 cases of BTCs who underwent surgical treatment at our institution from 1996 to 2017. CAFs were isolated from resected specimens of BTC and PDAC, and tested for the effects of their supernatants and cytokines on cancer cell proliferation. RESULTS PDAC patients with positive αSMA expression showed significantly shorter overall survival and recurrence-free survival than αSMA-negative patients (p = 0.003, p = 0.009, respectively). BTC patients with positive αSMA expression showed better recurrence-free survival than αSMA-negative patients (p = 0.03). CAF-conditioned medium suppressed the proliferation of cancer cells for only OCUCh-LM1 cells and not PDAC cells. Blockage of Interleukin-8 (IL-8) or its receptor C-X-C motif chemokine receptor 2 (CXCR2) by antibodies canceled the suppressive effect of the IL-8. CONCLUSIONS CAFs are a good prognostic factor in BTC, but not for PDAC. Moreover, CAF-produced Interleukin-8 suppresses the proliferation of OCUCh-LM1 cell lines.
Collapse
Affiliation(s)
- Ryota Tanaka
- Department of Hepato-Biliary-Pancreatic Surgery, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abenoku, Osaka, 545-8585, Japan
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Kenjiro Kimura
- Department of Hepato-Biliary-Pancreatic Surgery, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abenoku, Osaka, 545-8585, Japan.
| | - Shimpei Eguchi
- Department of Hepato-Biliary-Pancreatic Surgery, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abenoku, Osaka, 545-8585, Japan
| | - Go Ohira
- Department of Hepato-Biliary-Pancreatic Surgery, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abenoku, Osaka, 545-8585, Japan
| | - Shogo Tanaka
- Department of Hepato-Biliary-Pancreatic Surgery, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abenoku, Osaka, 545-8585, Japan
| | - Ryosuke Amano
- Department of Hepato-Biliary-Pancreatic Surgery, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abenoku, Osaka, 545-8585, Japan
| | - Hiroaki Tanaka
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Masakazu Yashiro
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
- Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka, Japan
- Cancer Center for Translational Research, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Masaichi Ohira
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Shoji Kubo
- Department of Hepato-Biliary-Pancreatic Surgery, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abenoku, Osaka, 545-8585, Japan
| |
Collapse
|
109
|
Ando R, Sakai A, Iida T, Kataoka K, Mizutani Y, Enomoto A. Good and Bad Stroma in Pancreatic Cancer: Relevance of Functional States of Cancer-Associated Fibroblasts. Cancers (Basel) 2022; 14:cancers14143315. [PMID: 35884375 PMCID: PMC9317763 DOI: 10.3390/cancers14143315] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/02/2022] [Accepted: 07/04/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Recent progress in research on the biology of cancer-associated fibroblasts (CAFs) in pancreatic ductal adenocarcinoma (PDAC) indicates their diverse states and plasticity, which may lead to good and bad stroma, suppressing and promoting cancer progression, respectively. The characteristics of the stroma differ spatially, even within the same tumors, based on the balance between cancer-restraining CAF and cancer-promoting CAF proliferation at the site. These heterogeneous CAFs also influence the sensitivity of PDAC to anticancer therapeutics. Further preclinical and clinical studies will advance our understanding of the roles of CAFs in disease progression and aid the development of therapeutics that modulate or ameliorate the tumor microenvironment in PDAC. Abstract A well-known feature of human pancreatic ductal adenocarcinoma (PDAC) is the extensive proliferation of cancer-associated fibroblasts (CAFs) and highly fibrotic stroma. Recent evidence, based mainly on single-cell analyses, has identified various subsets of CAFs in PDAC mouse models. However, we do not know how these CAF subsets are involved in the progression and drug resistance of human PDAC. Additionally, it remains unclear whether these diverse CAFs have distinct origins and are indicators of genuinely distinct CAF lineages or reflect different states of the same CAFs depending on the tumor microenvironment. Interestingly, recent preclinical studies have started to characterize the nature of cancer-restraining CAFs and have identified their markers Meflin and collagen type I alpha 1. These studies have led to the development of strategies to induce changes in CAF phenotypes using chemical reagents or recombinant viruses, and some of them have been tested in clinical studies. These strategies have the unique potential to convert the so-called bad stroma to good stroma and may also have therapeutic implications for non-cancer diseases such as fibrotic diseases. Together with recently developed sophisticated strategies that specifically target distinct CAF subsets via adoptive cell transfer therapy, vaccination, and antibody–drug conjugates, any future findings arising from these clinical efforts may expand our understanding of the significance of CAF diversity in human PDAC.
Collapse
Affiliation(s)
- Ryota Ando
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; (R.A.); (A.S.); (T.I.); (K.K.); (Y.M.)
| | - Akihiro Sakai
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; (R.A.); (A.S.); (T.I.); (K.K.); (Y.M.)
| | - Tadashi Iida
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; (R.A.); (A.S.); (T.I.); (K.K.); (Y.M.)
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Kunio Kataoka
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; (R.A.); (A.S.); (T.I.); (K.K.); (Y.M.)
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Yasuyuki Mizutani
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; (R.A.); (A.S.); (T.I.); (K.K.); (Y.M.)
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Atsushi Enomoto
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; (R.A.); (A.S.); (T.I.); (K.K.); (Y.M.)
- Correspondence: ; Tel.: +81-52-744-2093
| |
Collapse
|
110
|
Ohara Y, Valenzuela P, Hussain SP. The interactive role of inflammatory mediators and metabolic reprogramming in pancreatic cancer. Trends Cancer 2022; 8:556-569. [PMID: 35525794 PMCID: PMC9233125 DOI: 10.1016/j.trecan.2022.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/08/2022] [Accepted: 03/15/2022] [Indexed: 10/18/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by its highly reactive inflammatory desmoplastic stroma with evidence of an extensive tumor stromal interaction largely mediated by inflammatory factors. KRAS mutation and inflammatory signaling promote protumorigenic events, including metabolic reprogramming with several inter-regulatory crosstalks to fulfill the high demand of energy and regulate oxidative stress for tumor growth and progression. Notably, the more aggressive molecular subtype of PDAC enhances influx of glycolytic intermediates. This review focuses on the interactive role of inflammatory signaling and metabolic reprogramming with emerging evidence of crosstalk, which supports the development, progression, and therapeutic resistance of PDAC. Understanding the emerging crosstalk between inflammation and metabolic adaptations may identify potential targets and develop novel therapeutic approaches for PDAC.
Collapse
Affiliation(s)
- Yuuki Ohara
- Pancreatic Cancer Section, Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Paloma Valenzuela
- Pancreatic Cancer Section, Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - S Perwez Hussain
- Pancreatic Cancer Section, Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
111
|
Boyd LNC, Andini KD, Peters GJ, Kazemier G, Giovannetti E. Heterogeneity and plasticity of cancer-associated fibroblasts in the pancreatic tumor microenvironment. Semin Cancer Biol 2022; 82:184-196. [PMID: 33737108 DOI: 10.1016/j.semcancer.2021.03.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/17/2021] [Accepted: 03/10/2021] [Indexed: 12/12/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease with a notably poor prognosis, in urgent need of improved treatment strategies. The desmoplastic PDAC tumor microenvironment (TME), marked by a high concentration of cancer-associated-fibroblasts (CAFs), is a dynamic part of PDAC pathophysiology which occasions a variety of effects throughout the course of pancreatic tumorigenesis and disease evolution. A better understanding of the desmoplastic TME and CAF biology in particular, should provide new opportunities for improving therapeutics. That CAFs have a tumor-supportive role in oncogenesis is well known, yet research evidence has shown that CAFs also have tumor-repressive functions. In this review, we seek to clarify the intriguing heterogeneity and plasticity of CAFs and their ambivalent role in PDAC tumorigenesis and progression. Additionally, we provide recommendations to advance the implementation of CAF-directed PDAC care. An improved understanding of CAFs' origins, spatial location, functional diversity, and marker determination, as well as CAF behavior during the course of PDAC progression and metastasis will provide essential knowledge for the future improvement of therapeutic strategies for patients suffering from PDAC.
Collapse
Affiliation(s)
- Lenka N C Boyd
- Department of Surgery, Cancer Center Amsterdam, Amsterdam UMC, VU University, De Boelelaan 1118, 1081 HZ, Postbus 7057, 1007 MB, Amsterdam, the Netherlands; Department of Medical Oncology, Lab of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University, De Boelelaan 1118, 1081 HZ, Postbus 7057, 1007 MB, Amsterdam, the Netherlands.
| | - Katarina D Andini
- Department of Medical Oncology, Lab of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University, De Boelelaan 1118, 1081 HZ, Postbus 7057, 1007 MB, Amsterdam, the Netherlands.
| | - Godefridus J Peters
- Department of Medical Oncology, Lab of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University, De Boelelaan 1118, 1081 HZ, Postbus 7057, 1007 MB, Amsterdam, the Netherlands; Department of Biochemistry, Medical University of Gdansk, Marii Skłodowskiej-Curie 3a, 80-210, Gdańsk, Poland.
| | - Geert Kazemier
- Department of Surgery, Cancer Center Amsterdam, Amsterdam UMC, VU University, De Boelelaan 1118, 1081 HZ, Postbus 7057, 1007 MB, Amsterdam, the Netherlands.
| | - Elisa Giovannetti
- Department of Medical Oncology, Lab of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University, De Boelelaan 1118, 1081 HZ, Postbus 7057, 1007 MB, Amsterdam, the Netherlands; Cancer Pharmacology Lab, AIRC Start-Up Unit, Fondazione Pisana per la Scienza, Via Ferruccio Giovannini, 13, 56017, San Giuliano Terme PI, Pisa, Italy.
| |
Collapse
|
112
|
Menezes S, Okail MH, Jalil SMA, Kocher HM, Cameron AJM. Cancer-associated fibroblasts in pancreatic cancer: new subtypes, new markers, new targets. J Pathol 2022; 257:526-544. [PMID: 35533046 PMCID: PMC9327514 DOI: 10.1002/path.5926] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 11/29/2022]
Abstract
Cancer-associated fibroblasts (CAFs) have conflicting roles in the suppression and promotion of cancer. Current research focuses on targeting the undesirable properties of CAFs, while attempting to maintain tumour-suppressive roles. CAFs have been widely associated with primary or secondary therapeutic resistance, and strategies to modify CAF function have therefore largely focussed on their combination with existing therapies. Despite significant progress in preclinical studies, clinical translation of CAF targeted therapies has achieved limited success. Here we will review our emerging understanding of heterogeneous CAF populations in tumour biology and use examples from pancreatic ductal adenocarcinoma to explore why successful clinical targeting of protumourigenic CAF functions remains elusive. Single-cell technologies have allowed the identification of CAF subtypes with a differential impact on prognosis and response to therapy, but currently without clear consensus. Identification and pharmacological targeting of CAF subtypes associated with immunotherapy response offers new hope to expand clinical options for pancreatic cancer. Various CAF subtype markers may represent biomarkers for patient stratification, to obtain enhanced response with existing and emerging combinatorial therapeutic strategies. Thus, CAF subtyping is the next frontier in understanding and exploiting the tumour microenvironment for therapeutic benefit. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Shinelle Menezes
- Barts Cancer Institute, Queen Mary, University of London, John Vane Science CentreLondonUK
| | - Mohamed Hazem Okail
- Barts Cancer Institute, Queen Mary, University of London, John Vane Science CentreLondonUK
| | - Siti Munira Abd Jalil
- Barts Cancer Institute, Queen Mary, University of London, John Vane Science CentreLondonUK
| | - Hemant M Kocher
- Barts Cancer Institute, Queen Mary, University of London, John Vane Science CentreLondonUK
- Barts and the London HPB Centre, The Royal London HospitalBarts Health NHS TrustLondonUK
| | - Angus J M Cameron
- Barts Cancer Institute, Queen Mary, University of London, John Vane Science CentreLondonUK
| |
Collapse
|
113
|
cGAS-STING signaling encourages immune cell overcoming of fibroblast barricades in pancreatic cancer. Sci Rep 2022; 12:10466. [PMID: 35773436 PMCID: PMC9247053 DOI: 10.1038/s41598-022-14297-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 06/03/2022] [Indexed: 12/01/2022] Open
Abstract
Immune checkpoint blockade (ICB) treatment improves the prognosis of several types of solid tumors, however, responsiveness to ICB therapy remains low in pancreatic ductal adenocarcinoma (PDACs), which has a rich tumor microenvironment (TME). The TME is composed of various stromal cells, including cancer-associated fibroblasts (CAFs), which contribute to the establishment of an immunosuppressive microenvironment. The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway is an innate immune pathway that results in the upregulation of immune cell recruiting-cytokines and anti-tumor efficacy. In this study, we aimed to investigate the impact of cGAS-STING expression and the presence of CAFs upon immune cell infiltration in PDACs. cGAS and STING co-expressing PDAC cases showed favorable survival, with many cytotoxic CD8 + T cell infiltrations from the stromal component adjacent to the cancer cells toward cancer cells, but not in cGAS-STING signaling defected PDAC cases. The signatures of tumor-restrain CAFs were expressed in tumors with cGAS-STING signaling. Finally, transwell co-culture experiments demonstrated that immune cell infiltration was impeded by the presence of CAFs, but not by activation of cGAS-STING signaling. In conclusion, pro-infiltration signals, such as cGAS-STING, and characterization of CAFs are crucial in defeating CAF barricades and encouraging immune cell infiltration in PDACs.
Collapse
|
114
|
Suzuki A, Sakamoto K, Nakahara Y, Enomoto A, Hino J, Ando A, Inoue M, Shiraki Y, Omote N, Kusaka M, Fukihara J, Hashimoto N. BMP3b is a Novel Anti-Fibrotic Molecule Regulated by Meflin in Lung Fibroblasts. Am J Respir Cell Mol Biol 2022; 67:446-458. [PMID: 35728045 DOI: 10.1165/rcmb.2021-0484oc] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Fibroblasts play a central role in the lung fibrotic process. Our recent study identified a novel subpopulation of lung fibroblasts expressing meflin, anti-fibrotic properties of which were confirmed by murine lung fibrosis model. Meflin expressing fibroblasts were resistant to fibrogenesis induced by transforming growth factor-β (TGF-β), but its underlying mechanisms remain unknown. In this study, evaluation of a silica-nanoparticles-induced lung fibrosis model confirmed the antifibrotic effect of meflin via the regulation of TGF-β signaling. We conducted comparative gene expression profiling in lung fibroblasts, which identified growth differentiation factor 10 (Gdf10) encoding bone morphogenic protein 3b (BMP3b) as the most down-regulated gene in meflin-deficient cells under the profibrotic condition with TGF-β. We hypothesized that BMP3b can be an effector molecule playing an anti-fibrotic role downstream of meflin. As suggested by single-cell transcriptomic data, restricted expressions of Gdf10 (Bmp3b) in stromal cells including fibroblasts were confirmed. We examined possible anti-fibrotic properties of BMP3b in lung fibroblasts and demonstrated that Bmp3b-null fibroblasts were more susceptible to TGF-β-induced fibrogenic changes. Furthermore, Bmp3b-null mice exhibited exaggerated lung fibrosis induced by silica-nanoparticles in vivo. We also demonstrated that treatment with recombinant BMP3B was effective against TGF-β-induced fibrogenesis in fibroblasts, especially in the suppression of excessive extracellular matrix production. These lines of evidence suggested that BMP3b is a novel humoral effector molecule regulated by meflin which exerts anti-fibrotic properties in lung fibroblasts. Supplementation of BMP3B could be a novel therapeutic strategy for fibrotic lung diseases.
Collapse
Affiliation(s)
- Atsushi Suzuki
- Nagoya University Graduate School of Medicine, Department of Respiratory Medicine, Nagoya, Japan
| | - Koji Sakamoto
- Nagoya University Graduate School of Medicine, Department of Respiratory Medicine, Nagoya, Japan;
| | - Yoshio Nakahara
- Nagoya University Graduate School of Medicine Faculty of Medicine, 36589, Department of Respiratory Medicine, Nagoya, Japan
| | - Atsushi Enomoto
- Nagoya University Graduate School of Medicine, Department of Pathology, Nagoya, Japan
| | - Jun Hino
- National Cerebral and Cardiovascular Center Research Institute, Department of Biochemistry, Suita, Japan
| | - Akira Ando
- Nagoya University Graduate School of Medicine, Department of Respiratory Medicine, Nagoya, Japan
| | - Masahide Inoue
- Nagoya University Graduate School of Medicine Faculty of Medicine, 36589, Department of Respiratory medicine, Nagoya, Japan
| | - Yukihiro Shiraki
- Nagoya University Graduate School of Medicine Faculty of Medicine, 36589, Department of Pathology, Nagoya, Japan
| | - Norihito Omote
- Nagoya University Graduate School of Medicine Faculty of Medicine, 36589, Department of Respiratory Medicine, Nagoya, Japan
| | - Masahiro Kusaka
- Nagoya University Graduate School of Medicine, Department of Respiratory Medicine, Nagoya, Japan
| | - Jun Fukihara
- Nagoya University Graduate School of Medicine, Department of Respiratory Medicine, Nagoya, Japan
| | - Naozumi Hashimoto
- Nagoya University Graduate School of Medicine, Department of Respiratory Medicine, Nagoya, Japan
| |
Collapse
|
115
|
Götze J, Nitschke C, Uzunoglu FG, Pantel K, Sinn M, Wikman H. Tumor-Stroma Interaction in PDAC as a New Approach for Liquid Biopsy and its Potential Clinical Implications. Front Cell Dev Biol 2022; 10:918795. [PMID: 35712663 PMCID: PMC9197075 DOI: 10.3389/fcell.2022.918795] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/05/2022] [Indexed: 12/29/2022] Open
Abstract
The extremely poor prognosis for patients with pancreatic ductal adenocarcinoma (PDAC) has remained unchanged for decades. As a hallmark of PDAC histology, the distinct desmoplastic response in the tumor microenvironment is considered a key factor exerting pro- and antitumor effects. Increasing emphasis has been placed on cancer-associated fibroblasts (CAFs), whose heterogeneity and functional diversity is reflected in the numerous subtypes. The myofibroblastic CAFs (myCAFs), inflammatory CAFs (iCAFs) and antigen presenting CAFs (apCAFs) are functionally divergent CAF subtypes with tumor promoting as well as repressing effects. Precise knowledge of the underlying interactions is the basis for a variety of treatment approaches, which are subsumed under the term antistromal therapy. Clinical implementation is still pending due to the lack of benefit-as well as paradoxical preclinical findings. While the prominent significance of CAFs in the immediate environment of the tumor is becoming clear, less is known about the circulating (c)CAFs. cCAFs are of particular interest as they seem not only to be potential new liquid biopsy biomarkers but also to support the survival of circulating tumor cells (CTC) in the bloodstream. In PDAC, CTCs correlate with an unfavorable outcome and can also be employed to monitor treatment response, but the current clinical relevance is limited. In this review, we discuss CTCs, cCAFs, secretomes that include EVs or fragments of collagen turnover as liquid biopsy biomarkers, and clinical approaches to target tumor stroma in PDAC.
Collapse
Affiliation(s)
- Julian Götze
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, University Cancer Center Hamburg, Hamburg, Germany.,Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christine Nitschke
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Faik G Uzunoglu
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Klaus Pantel
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marianne Sinn
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, University Cancer Center Hamburg, Hamburg, Germany
| | - Harriet Wikman
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
116
|
Li J, Guo T. Role of Peritoneal Mesothelial Cells in the Progression of Peritoneal Metastases. Cancers (Basel) 2022; 14:2856. [PMID: 35740521 PMCID: PMC9221366 DOI: 10.3390/cancers14122856] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/19/2022] [Accepted: 06/06/2022] [Indexed: 11/17/2022] Open
Abstract
Peritoneal metastatic cancer comprises a heterogeneous group of primary tumors that originate in the peritoneal cavity or metastasize into the peritoneal cavity from a different origin. Metastasis is a characteristic of end-stage disease, often indicative of a poor prognosis with limited treatment options. Peritoneal mesothelial cells (PMCs) are a thin layer of cells present on the surface of the peritoneum. They display differentiated characteristics in embryonic development and adults, representing the first cell layer encountering peritoneal tumors to affect their progression. PMCs have been traditionally considered a barrier to the intraperitoneal implantation and metastasis of tumors; however, recent studies indicate that PMCs can either inhibit or actively promote tumor progression through distinct mechanisms. This article presents a review of the role of PMCs in the progression of peritoneum implanted tumors, offering new ideas for therapeutic targets and related research.
Collapse
Affiliation(s)
- Junliang Li
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730030, China;
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou 730030, China
- The First School of Clinical Medical, Gansu University of Chinese Medicine, Lanzhou 730030, China
| | - Tiankang Guo
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730030, China;
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou 730030, China
| |
Collapse
|
117
|
McAndrews KM, Chen Y, Darpolor JK, Zheng X, Yang S, Carstens JL, Li B, Wang H, Miyake T, de Sampaio PC, Kirtley ML, Natale M, Wu CC, Sugimoto H, LeBleu VS, Kalluri R. Identification of Functional Heterogeneity of Carcinoma-Associated Fibroblasts with Distinct IL6-Mediated Therapy Resistance in Pancreatic Cancer. Cancer Discov 2022; 12:1580-1597. [PMID: 35348629 PMCID: PMC9399904 DOI: 10.1158/2159-8290.cd-20-1484] [Citation(s) in RCA: 134] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 09/07/2021] [Accepted: 03/23/2022] [Indexed: 11/16/2022]
Abstract
The tumor microenvironment in pancreatic ductal adenocarcinoma (PDAC) involves a significant accumulation of fibroblasts as part of the host response to cancer. Using single-cell RNA sequencing, multiplex immunostaining, and several genetic mouse models, we identify carcinoma-associated fibroblasts (CAF) with opposing functions in PDAC progression. Depletion of fibroblast activation protein (FAP)+ CAFs results in increased survival, in contrast to depletion of alpha smooth muscle actin (αSMA)+ CAFs, which leads to decreased survival. Tumor-promoting FAP+ CAFs (TP-CAF) and tumor-restraining αSMA+ CAFs (TR-CAF) differentially regulate cancer-associated pathways and accumulation of regulatory T cells. Improved efficacy of gemcitabine is observed when IL6 is deleted from αSMA+ CAFs but not from FAP+ CAFs using dual-recombinase genetic PDAC models. Improved gemcitabine efficacy due to lack of IL6 synergizes with anti-PD-1 immunotherapy to significantly improve survival of PDAC mice. Our study identifies functional heterogeneity of CAFs in PDAC progression and their different roles in therapy response. SIGNIFICANCE PDAC is associated with accumulation of dense stroma consisting of fibroblasts and extracellular matrix that regulate tumor progression. Here, we identify two distinct populations of fibroblasts with opposing roles in the progression and immune landscape of PDAC. Our findings demonstrate that fibroblasts are functionally diverse with therapeutic implications. This article is highlighted in the In This Issue feature, p. 1397.
Collapse
Affiliation(s)
- Kathleen M. McAndrews
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yang Chen
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - J. Kebbeh Darpolor
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiaofeng Zheng
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sujuan Yang
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Julienne L. Carstens
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bingrui Li
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Huamin Wang
- Department of Anatomical Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Toru Miyake
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Pedro Correa de Sampaio
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michelle L. Kirtley
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mariangela Natale
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chia-Chin Wu
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hikaru Sugimoto
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Valerie S. LeBleu
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Kellogg School of Management, Northwestern University, Evanston, IL, USA
| | - Raghu Kalluri
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Bioengineering, Rice University, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
118
|
Chen YI, Chang CC, Hsu MF, Jeng YM, Tien YW, Chang MC, Chang YT, Hu CM, Lee WH. Homophilic ATP1A1 binding induces activin A secretion to promote EMT of tumor cells and myofibroblast activation. Nat Commun 2022; 13:2945. [PMID: 35618735 PMCID: PMC9135720 DOI: 10.1038/s41467-022-30638-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 05/09/2022] [Indexed: 12/30/2022] Open
Abstract
Tumor cells with diverse phenotypes and biological behaviors are influenced by stromal cells through secretory factors or direct cell-cell contact. Pancreatic ductal adenocarcinoma (PDAC) is characterized by extensive desmoplasia with fibroblasts as the major cell type. In the present study, we observe enrichment of myofibroblasts in a juxta-tumoral position with tumor cells undergoing epithelial-mesenchymal transition (EMT) that facilitates invasion and correlates with a worse clinical prognosis in PDAC patients. Direct cell-cell contacts forming heterocellular aggregates between fibroblasts and tumor cells are detected in primary pancreatic tumors and circulating tumor microemboli (CTM). Mechanistically, ATP1A1 overexpressed in tumor cells binds to and reorganizes ATP1A1 of fibroblasts that induces calcium oscillations, NF-κB activation, and activin A secretion. Silencing ATP1A1 expression or neutralizing activin A secretion suppress tumor invasion and colonization. Taken together, these results elucidate the direct interplay between tumor cells and bound fibroblasts in PDAC progression, thereby providing potential therapeutic opportunities for inhibiting metastasis by interfering with these cell-cell interactions.
Collapse
Affiliation(s)
- Yi-Ing Chen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Chin-Chun Chang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
- Master Program for Cancer Biology and Drug Discovery, China Medical University and Academia Sinica, Taichung, Taiwan
| | - Min-Fen Hsu
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Yung-Ming Jeng
- Department of Pathology, National Taiwan University Hospital, Graduate Institute of Pathology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Wen Tien
- Department of Surgery, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ming-Chu Chang
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Yu-Ting Chang
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chun-Mei Hu
- Genomics Research Center, Academia Sinica, Taipei, Taiwan.
| | - Wen-Hwa Lee
- Genomics Research Center, Academia Sinica, Taipei, Taiwan.
- Drug Development Center, China Medical University, Taichung, Taiwan.
- Department of Biological Chemistry, University of California, Irvine, USA.
| |
Collapse
|
119
|
Yang M, Li D, Jiang Z, Li C, Ji S, Sun J, Chang Y, Ruan S, Wang Z, Liang R, Dai X, Li B, Zhao H. TGF-β-induced FLRT3 attenuation is essential for cancer-associated fibroblast-mediated epithelial-mesenchymal transition in colorectal cancer. Mol Cancer Res 2022; 20:1247-1259. [PMID: 35560224 DOI: 10.1158/1541-7786.mcr-21-0924] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 04/04/2022] [Accepted: 05/11/2022] [Indexed: 12/24/2022]
Abstract
Cancer-associated fibroblasts (CAFs) constitute a major component of the tumor microenvironment. The effects of CAFs on the progression of colorectal cancer (CRC) remain controversial. In this study, we found the ectopic overexpression of Fibronectin leucine-rich transmembrane protein 3 (FLRT3) inhibited the process of Epithelial-mesenchymal transition (EMT), as well as the proliferation, migration, invasion, and promote apoptosis of CRC cells, whereas silencing FLRT3 expression resulted in the opposite phenomenon. FLRT3 downregulation was associated with a poor prognosis in CRC. Also, FLRT3 expression was significantly related to some clinicopathological factors, including T stage (p=0.037), N stage (p=0.042), and E-cadherin (p=0.002) level. Via univariate and multivariate analyses, M stage (p<0.0001), FLRT3 (p=0.044), and E-cadherin (p=0.003) were associated with overall survival and were independent prognostic factors for it. Mechanistically, CAFs secreted TGF-β, which downregulated FLRT3 expression by activating SMAD4 to promote aggressive phenotypes in CRC cells. Moreover, FLRT3 repressed tumorigenesis and lung metastasis, which could be reversed by LY2109761, a dual inhibitor of TGF-β receptor type I and II. Treatment with LY2109761 increased IFN-γ expression in CD8+ T cells and reduced the number of regulatory T cells in the tumor microenvironment. Taken together, we revealed the metastasis-suppressive function of FLRT3, which was attenuated during the CAFs-mediated activation of the TGF-β/SMAD4 signaling pathway to promote EMT in CRC. LY2109761 that significantly inhibited metastasis could be a new treatment option for advanced CRC. Implications: CAFs enhance CRC aggressiveness by reducing FLRT3 expression through activating TGF-β/SMAD4 signaling pathway. CAFs-targeted therapy and/or LY2109761 were promising treatments for CRC.
Collapse
Affiliation(s)
- Mengdi Yang
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, shanghai, China
| | - Dan Li
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhiyuan Jiang
- Shanghai Cancer Institute, Renji Hospital, Jiaotong University School of Medicine, Shanghai, China
| | - Changcan Li
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Suyuan Ji
- School of Life Sciences, Xiamen Univeristy, Xiamen, Fujian, China
| | - Jing Sun
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, shanghai, China
| | - Yujie Chang
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, shanghai, China
| | - Shunyi Ruan
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, shanghai, China
| | - Zhiyu Wang
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, shanghai, China
| | - Rui Liang
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xueyu Dai
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Li
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Zhao
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, shanghai, China
| |
Collapse
|
120
|
Szymoński K, Milian-Ciesielska K, Lipiec E, Adamek D. Current Pathology Model of Pancreatic Cancer. Cancers (Basel) 2022; 14:2321. [PMID: 35565450 PMCID: PMC9105915 DOI: 10.3390/cancers14092321] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/29/2022] [Accepted: 05/05/2022] [Indexed: 02/01/2023] Open
Abstract
Pancreatic cancer (PC) is one of the most aggressive and lethal malignant neoplasms, ranking in seventh place in the world in terms of the incidence of death, with overall 5-year survival rates still below 10%. The knowledge about PC pathomechanisms is rapidly expanding. Daily reports reveal new aspects of tumor biology, including its molecular and morphological heterogeneity, explain complicated "cross-talk" that happens between the cancer cells and tumor stroma, or the nature of the PC-associated neural remodeling (PANR). Staying up-to-date is hard and crucial at the same time. In this review, we are focusing on a comprehensive summary of PC aspects that are important in pathologic reporting, impact patients' outcomes, and bring meaningful information for clinicians. Finally, we show promising new trends in diagnostic technologies that might bring a difference in PC early diagnosis.
Collapse
Affiliation(s)
- Krzysztof Szymoński
- Department of Pathomorphology, Jagiellonian University Medical College, 31-531 Cracow, Poland;
- Department of Pathomorphology, University Hospital, 30-688 Cracow, Poland;
| | | | - Ewelina Lipiec
- M. Smoluchowski Institute of Physics, Jagiellonian University, 30-348 Cracow, Poland;
| | - Dariusz Adamek
- Department of Pathomorphology, Jagiellonian University Medical College, 31-531 Cracow, Poland;
| |
Collapse
|
121
|
Iida T, Mizutani Y, Esaki N, Ponik SM, Burkel BM, Weng L, Kuwata K, Masamune A, Ishihara S, Haga H, Kataoka K, Mii S, Shiraki Y, Ishikawa T, Ohno E, Kawashima H, Hirooka Y, Fujishiro M, Takahashi M, Enomoto A. Pharmacologic conversion of cancer-associated fibroblasts from a protumor phenotype to an antitumor phenotype improves the sensitivity of pancreatic cancer to chemotherapeutics. Oncogene 2022; 41:2764-2777. [PMID: 35414659 DOI: 10.1038/s41388-022-02288-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 03/05/2022] [Accepted: 03/18/2022] [Indexed: 12/17/2022]
Abstract
Previous therapeutic attempts to deplete cancer-associated fibroblasts (CAFs) or inhibit their proliferation in pancreatic ductal adenocarcinoma (PDAC) were not successful in mice or patients. Thus, CAFs may be tumor suppressive or heterogeneous, with distinct cancer-restraining and -promoting CAFs (rCAFs and pCAFs, respectively). Here, we showed that induced expression of the glycosylphosphatidylinositol-anchored protein Meflin, a rCAF-specific marker, in CAFs by genetic and pharmacological approaches improved the chemosensitivity of mouse PDAC. A chemical library screen identified Am80, a synthetic, nonnatural retinoid, as a reagent that effectively induced Meflin expression in CAFs. Am80 administration improved the sensitivity of PDAC to chemotherapeutics, accompanied by increases in tumor vessel area and intratumoral drug delivery. Mechanistically, Meflin was involved in the suppression of tissue stiffening by interacting with lysyl oxidase to inhibit its collagen crosslinking activity. These data suggested that modulation of CAF heterogeneity may represent a strategy for PDAC treatment.
Collapse
Affiliation(s)
- Tadashi Iida
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yasuyuki Mizutani
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Nobutoshi Esaki
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Suzanne M Ponik
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Brian M Burkel
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Liang Weng
- Department of Oncology, Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, China
| | - Keiko Kuwata
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Japan
| | - Atsushi Masamune
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | - Hisashi Haga
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Kunio Kataoka
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shinji Mii
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yukihiro Shiraki
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takuya Ishikawa
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Eizaburo Ohno
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroki Kawashima
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Endoscopy, Nagoya University Hospital, Nagoya, Japan
| | - Yoshiki Hirooka
- Department of Gastroenterology and Hepatology, Fujita Health University, Toyoake, Aichi, Japan
| | - Mitsuhiro Fujishiro
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masahide Takahashi
- International Center for Cell and Gene Therapy, Fujita Health University, Toyoake, Japan
| | - Atsushi Enomoto
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| |
Collapse
|
122
|
Liu S, Suhail Y, Novin A, Perpetua L, Kshitiz. Metastatic Transition of Pancreatic Ductal Cell Adenocarcinoma Is Accompanied by the Emergence of Pro-Invasive Cancer-Associated Fibroblasts. Cancers (Basel) 2022; 14:2197. [PMID: 35565326 PMCID: PMC9104173 DOI: 10.3390/cancers14092197] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/24/2022] [Accepted: 04/25/2022] [Indexed: 02/08/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs) are now appreciated as key regulators of cancer metastasis, particularly in cancers with high stromal content, e.g., pancreatic ductal cell carcinoma (PDAC). However, it is not yet well understood if fibroblasts are always primed to be cooperative in PDAC transition to metastasis, if they undergo transformation which ensures their cooperativity, and if such transformations are cancer-driven or intrinsic to fibroblasts. We performed a fibroblast-centric analysis of PDAC cancer, as it transitioned from the primary site to trespass stromal compartment reaching the lymph node using published single-cell RNA sequencing data by Peng et al. We have characterized the change in fibroblast response to cancer from a normal wound healing response in the initial stages to the emergence of subclasses with myofibroblast and inflammatory fibroblasts such as signatures. We have previously posited "Evolved Levels of Invasibility (ELI)", a framework describing the evolution of stromal invasability as a selected phenotype, which explains the large and correlated reduction in stromal invasion by placental trophoblasts and cancer cells in certain mammals. Within PDAC samples, we found large changes in fibroblast subclasses at succeeding stages of PDAC progression, with the emergence of specific subclasses when cancer trespasses stroma to metastasize to proximal lymph nodes (stage IIA to IIB). Surprisingly, we found that the initial metastatic transition is accompanied by downregulation of ELI-predicted pro-resistive genes, and the emergence of a subclass of fibroblasts with ELI-predicted increased invasibility. Interestingly, this trend was also observed in stellate cells. Using a larger cohort of bulk RNAseq data from The Cancer Genome Atlas for PDAC cancers, we confirmed that genes describing this emergent fibroblast subclass are also correlated with lymph node metastasis of cancer cells. Experimental testing of selected genes characterizing pro-resistive and pro-invasive fibroblast clusters confirmed their contribution in regulating stromal invasability as a phenotype. Our data confirm that the complexity of stromal response to cancer is really a function of stage-wise emergence of distinct fibroblast clusters, characterized by distinct gene sets which confer initially a predominantly pro-resistive and then a pro-invasive property to the stroma. Stromal response therefore transitions from being tumor-limiting to a pro-metastatic state, facilitating stromal trespass and the onset of metastasis.
Collapse
Affiliation(s)
- Shaofei Liu
- Department of Biomedical Engineering, University of Connecticut Health, Farmington, CT 06030, USA; (S.L.); (Y.S.); (A.N.)
- Center for Cell Analysis and Modeling, University of Connecticut Health, Farmington, CT 06030, USA
| | - Yasir Suhail
- Department of Biomedical Engineering, University of Connecticut Health, Farmington, CT 06030, USA; (S.L.); (Y.S.); (A.N.)
- Center for Cell Analysis and Modeling, University of Connecticut Health, Farmington, CT 06030, USA
| | - Ashkan Novin
- Department of Biomedical Engineering, University of Connecticut Health, Farmington, CT 06030, USA; (S.L.); (Y.S.); (A.N.)
| | - Lorrie Perpetua
- Research Tissue Repository, University of Connecticut Health, Farmington, CT 06030, USA;
| | - Kshitiz
- Department of Biomedical Engineering, University of Connecticut Health, Farmington, CT 06030, USA; (S.L.); (Y.S.); (A.N.)
- Center for Cell Analysis and Modeling, University of Connecticut Health, Farmington, CT 06030, USA
| |
Collapse
|
123
|
Han L, Seward C, Leone G, Ostrowski MC. Origin, activation and heterogeneity of fibroblasts associated with pancreas and breast cancers. Adv Cancer Res 2022; 154:169-201. [PMID: 35459469 DOI: 10.1016/bs.acr.2022.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Pancreas and breast cancers both contain abundant stromal components within the tumor tissues. A prominent cell type within the stroma is cancer-associated fibroblasts (CAFs). CAFs play critical and complex roles establishing the tumor microenvironment to either promote or prevent tumor progression. Recently, complex genetic models and single cell-based techniques have provided emerging insights on the precise functions and cellular heterogeneity of CAFs. The transformation of normal fibroblasts into CAFs is a key event during tumor initiation and progression. Such coordination between tumor cells and fibroblasts plays an important role in cancer development. Reprograming fibroblasts is currently being explored for therapeutic benefits. In this review, we will discuss recent literature shedding light on the tissues of origin, activation mechanisms, and heterogeneity of CAFs comparing pancreas and breast cancers.
Collapse
Affiliation(s)
- Lu Han
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, United States.
| | - Cara Seward
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, United States
| | - Gustavo Leone
- Department of Biochemistry, Medical College of Wisconsin Cancer Center, Medical college of Wisconsin, Milwaukee, WI, United States
| | - Michael C Ostrowski
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, United States.
| |
Collapse
|
124
|
Masamune A, Hamada S. Editorial: Mechanisms of Inflammation and Fibrosis Interplays in the Digestive Diseases. Front Physiol 2022; 13:906742. [PMID: 35492620 PMCID: PMC9048022 DOI: 10.3389/fphys.2022.906742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 11/13/2022] Open
|
125
|
Liu K, Cui JJ, Zhan Y, Ouyang QY, Lu QS, Yang DH, Li XP, Yin JY. Reprogramming the tumor microenvironment by genome editing for precision cancer therapy. Mol Cancer 2022; 21:98. [PMID: 35410257 PMCID: PMC8996591 DOI: 10.1186/s12943-022-01561-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/11/2022] [Indexed: 12/12/2022] Open
Abstract
The tumor microenvironment (TME) is essential for immune escape by tumor cells. It plays essential roles in tumor development and metastasis. The clinical outcomes of tumors are often closely related to individual differences in the patient TME. Therefore, reprogramming TME cells and their intercellular communication is an attractive and promising strategy for cancer therapy. TME cells consist of immune and nonimmune cells. These cells need to be manipulated precisely and safely to improve cancer therapy. Furthermore, it is encouraging that this field has rapidly developed in recent years with the advent and development of gene editing technologies. In this review, we briefly introduce gene editing technologies and systematically summarize their applications in the TME for precision cancer therapy, including the reprogramming of TME cells and their intercellular communication. TME cell reprogramming can regulate cell differentiation, proliferation, and function. Moreover, reprogramming the intercellular communication of TME cells can optimize immune infiltration and the specific recognition of tumor cells by immune cells. Thus, gene editing will pave the way for further breakthroughs in precision cancer therapy.
Collapse
|
126
|
A novel renal perivascular mesenchymal cell subset gives rise to fibroblasts distinct from classic myofibroblasts. Sci Rep 2022; 12:5389. [PMID: 35354870 PMCID: PMC8967907 DOI: 10.1038/s41598-022-09331-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 03/17/2022] [Indexed: 12/12/2022] Open
Abstract
Perivascular mesenchymal cells (PMCs), which include pericytes, give rise to myofibroblasts that contribute to chronic kidney disease progression. Several PMC markers have been identified; however, PMC heterogeneity and functions are not fully understood. Here, we describe a novel subset of renal PMCs that express Meflin, a glycosylphosphatidylinositol-anchored protein that was recently identified as a marker of fibroblasts essential for cardiac tissue repair. Tracing the lineage of Meflin+ PMCs, which are found in perivascular and periglomerular areas and exhibit renin-producing potential, showed that they detach from the vasculature and proliferate under disease conditions. Although the contribution of Meflin+ PMCs to conventional α-SMA+ myofibroblasts is low, they give rise to fibroblasts with heterogeneous α-SMA expression patterns. Genetic ablation of Meflin+ PMCs in a renal fibrosis mouse model revealed their essential role in collagen production. Consistent with this, human biopsy samples showed that progressive renal diseases exhibit high Meflin expression. Furthermore, Meflin overexpression in kidney fibroblasts promoted bone morphogenetic protein 7 signals and suppressed myofibroblastic differentiation, implicating the roles of Meflin in suppressing tissue fibrosis. These findings demonstrate that Meflin marks a PMC subset that is functionally distinct from classic pericytes and myofibroblasts, highlighting the importance of elucidating PMC heterogeneity.
Collapse
|
127
|
Peritoneal Restoration by Repurposing Vitamin D Inhibits Ovarian Cancer Dissemination via Blockade of the TGF-β1/Thrombospondin-1 Axis. Matrix Biol 2022; 109:70-90. [PMID: 35339636 DOI: 10.1016/j.matbio.2022.03.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 02/09/2022] [Accepted: 03/20/2022] [Indexed: 12/13/2022]
Abstract
PURPOSE Ovarian cancer (OvCa), a lethal gynecological malignancy, disseminates to the peritoneum. Mesothelial cells (MCs) act as barriers in the abdominal cavity, preventing the adhesion of cancer cells. However, in patients with OvCa, they are transformed into cancer-associated mesothelial cells (CAMs) via mesenchymal transition and form a favorable microenvironment for tumors to promote metastasis. However, attempts for restoring CAMs to their original state have been limited. Here, we investigated whether inhibition of mesenchymal transition and restoration of MCs by vitamin D suppressed the OvCa dissemination in vitro and in vivo. METHODS The effect of vitamin D on the mutual association of MCs and OvCa cells was evaluated using in vitro coculture models and in vivo using a xenograft model. RESULTS Vitamin D restored the CAMs, and thrombospondin-1 (component of the extracellular matrix that is clinically associated with poor prognosis and is highly expressed in peritoneally metastasized OvCa) was found to promote OvCa cell adhesion and proliferation. Mechanistically, TGF-β1 secreted from OvCa cells enhanced thrombospondin-1 expression in CAMs via Smad-dependent TGF-β signaling. Vitamin D inhibited mesenchymal transition in MCs and suppressed thrombospondin-1 expression via vitamin D receptor/Smad3 competition, contributing to the marked reduction in peritoneal dissemination in vivo. Importantly, vitamin D restored CAMs from a stabilized mesenchymal state to the epithelial state and normalized thrombospondin-1 expression in preclinical models that mimic cancerous peritonitis in vivo. CONCLUSIONS MCs are key players in OvCa dissemination and peritoneal restoration and normalization of thrombospondin-1 expression by vitamin D may be a novel strategy for preventing OvCa dissemination.
Collapse
|
128
|
Saw PE, Chen J, Song E. Targeting CAFs to overcome anticancer therapeutic resistance. Trends Cancer 2022; 8:527-555. [PMID: 35331673 DOI: 10.1016/j.trecan.2022.03.001] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 03/01/2022] [Accepted: 03/01/2022] [Indexed: 12/20/2022]
Abstract
The view of cancer as a tumor cell-centric disease is now replaced by our understanding of the interconnection and dependency of tumor stroma. Cancer-associated fibroblasts (CAFs), the most abundant stromal cells in the tumor microenvironment (TME), are involved in anticancer therapeutic resistance. As we unearth more solid evidence on the link between CAFs and tumor progression, we gain insight into the role of CAFs in establishing resistance to cancer therapies. Herein, we review the origin, heterogeneity, and function of CAFs, with a focus on how CAF subsets can be used as biomarkers and can contribute to therapeutic resistance in cancer. We also depict current breakthroughs in targeting CAFs to overcome anticancer therapeutic resistance and discuss emerging CAF-targeting modalities.
Collapse
Affiliation(s)
- Phei Er Saw
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Jianing Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Erwei Song
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China; Fountain-Valley Institute for Life Sciences, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.
| |
Collapse
|
129
|
[Research Status of Tumor-associated Fibroblasts Regulating Immune Cells]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2022; 25:207-213. [PMID: 35340164 PMCID: PMC8976201 DOI: 10.3779/j.issn.1009-3419.2022.101.04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Cancer-associated fibroblasts (CAFs) and tumor-infiltrating immune cells are the most essential components of the tumor microenvironment (TME). They communicate with each other in tumor microenvironment and play a critical role in tumorigenesis and development. CAFs are very heterogeneous and different subtypes of CAFs display different functions. At the same time, it can contribute to the regulation of the function of tumor-infiltrating immune cells and eventually result in the carcinogenesis, tumor progression, invasion, metastasis and other biological behaviors of tumors by producting various growth factors and cytokines etc. Based on the current research results at home and abroad, this paper reviews the recent research progress on the regulation of CAFs on infiltrating immune cells in tumor microenvironment.
.
Collapse
|
130
|
Hamada S, Matsumoto R, Masamune A. Pancreatic Stellate Cells and Metabolic Alteration: Physiology and Pathophysiology. Front Physiol 2022; 13:865105. [PMID: 35370770 PMCID: PMC8967348 DOI: 10.3389/fphys.2022.865105] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 02/24/2022] [Indexed: 12/22/2022] Open
Abstract
Pancreatic stellate cells play a pivotal role in the development of pancreatic fibrosis. A wide variety of external stimuli can cause PSC activation accompanied by metabolic changes, which alters the tissue microenvironment by producing extracellular matrix proteins, cytokines, growth factors, and other mediators. Several metabolites aggravate fibrosis and inflammation by acting as key activating factors for PSCs. In other words, PSCs sense systemic metabolic changes. The detrimental effects of PSC activation on normal pancreatic cells, especially islet cells, further complicate metabolic imbalance through the dysregulation of glucose metabolism. PSC activation promotes cancer by altering the metabolism in pancreatic cancer cells, which collaborate with PSCs to efficiently adapt to environmental changes, promoting their growth and survival. This collaboration also contributes to the acquisition of chemoresistance. PSCs sequester chemotherapeutic agents and produce competing molecules as additional resistance mechanisms. The application of these metabolic targets for novel therapeutic strategies is currently being explored. This mini-review summarizes the role of PSCs in metabolic regulation of normal and cancerous cells.
Collapse
|
131
|
Sharma V, Letson J, Furuta S. Fibrous stroma: Driver and passenger in cancer development. Sci Signal 2022; 15:eabg3449. [PMID: 35258999 DOI: 10.1126/scisignal.abg3449] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cumulative evidence shows that fibrogenic stroma and stiff extracellular matrix (ECM) not only result from tumor growth but also play pivotal roles in cellular transformation and tumor initiation. This emerging concept may largely account for the increased cancer risk associated with environmental fibrogenic agents, such as asbestos and silica, and with chronic conditions that are fibrogenic, such as obesity and diabetes. It may also contribute to poor outcomes in patients treated with certain chemotherapeutics that can promote fibrosis, such as bleomycin and methotrexate. Although the mechanistic details of this phenomenon are still being unraveled, we provide an overview of the experimental evidence linking fibrogenic stroma and tumor initiation. In this Review, we will summarize the causes and consequences of fibrous stroma and how this stromal cue is transmitted to the nuclei of parenchymal cells through a physical continuum from the ECM to chromatin, as well as ECM-dependent biochemical signaling that contributes to cellular transformation.
Collapse
Affiliation(s)
- Vandana Sharma
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, 3000 Arlington Ave., Toledo, OH 43614, USA
| | - Joshua Letson
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, 3000 Arlington Ave., Toledo, OH 43614, USA
| | - Saori Furuta
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, 3000 Arlington Ave., Toledo, OH 43614, USA
| |
Collapse
|
132
|
Miyai Y, Sugiyama D, Hase T, Asai N, Taki T, Nishida K, Fukui T, Chen-Yoshikawa TF, Kobayashi H, Mii S, Shiraki Y, Hasegawa Y, Nishikawa H, Ando Y, Takahashi M, Enomoto A. Meflin-positive cancer-associated fibroblasts enhance tumor response to immune checkpoint blockade. Life Sci Alliance 2022; 5:5/6/e202101230. [PMID: 35236758 PMCID: PMC8897596 DOI: 10.26508/lsa.202101230] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 02/18/2022] [Accepted: 02/18/2022] [Indexed: 12/18/2022] Open
Abstract
Meflin/ISLR is the marker of a cancer-associated fibroblast subset that enhances tumor response to immune checkpoint blockade therapy. Cancer-associated fibroblasts (CAFs) are an integral component of the tumor microenvironment (TME). Most CAFs shape the TME toward an immunosuppressive milieu and attenuate the efficacy of immune checkpoint blockade (ICB) therapy. However, the detailed mechanism of how heterogeneous CAFs regulate tumor response to ICB therapy has not been defined. Here, we show that a recently defined CAF subset characterized by the expression of Meflin, a glycosylphosphatidylinositol-anchored protein marker of mesenchymal stromal/stem cells, is associated with survival and favorable therapeutic response to ICB monotherapy in patients with non-small cell lung cancer (NSCLC). The prevalence of Meflin-positive CAFs was positively correlated with CD4-positive T-cell infiltration and vascularization within non-small cell lung cancer tumors. Meflin deficiency and CAF-specific Meflin overexpression resulted in defective and enhanced ICB therapy responses in syngeneic tumors in mice, respectively. These findings suggest the presence of a CAF subset that promotes ICB therapy efficacy, which adds to our understanding of CAF functions and heterogeneity.
Collapse
Affiliation(s)
- Yuki Miyai
- Department of Pathology, Nagoya University Hospital, Nagoya, Japan.,Department of Clinical Oncology and Chemotherapy, Nagoya University Hospital, Nagoya, Japan
| | - Daisuke Sugiyama
- Department of Immunology, Nagoya University Hospital, Nagoya, Japan
| | - Tetsunari Hase
- Department of Respiratory Medicine, Nagoya University Hospital, Nagoya, Japan
| | - Naoya Asai
- Department of Pathology, Nagoya University Hospital, Nagoya, Japan
| | - Tetsuro Taki
- Department of Pathology, Nagoya University Hospital, Nagoya, Japan
| | - Kazuki Nishida
- Center for Advanced Medicine and Clinical Research, Nagoya University Hospital, Nagoya, Japan
| | - Takayuki Fukui
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | - Hiroki Kobayashi
- Department of Pathology, Nagoya University Hospital, Nagoya, Japan
| | - Shinji Mii
- Department of Pathology, Nagoya University Hospital, Nagoya, Japan
| | - Yukihiro Shiraki
- Department of Pathology, Nagoya University Hospital, Nagoya, Japan
| | - Yoshinori Hasegawa
- Department of Respiratory Medicine, Nagoya University Hospital, Nagoya, Japan
| | - Hiroyoshi Nishikawa
- Department of Immunology, Nagoya University Hospital, Nagoya, Japan.,Division of Cancer Immunology, Research Institute/Exploratory Oncology Research and Clinical Trial Center (EPOC), National Cancer Center, Tokyo, Japan
| | - Yuichi Ando
- Department of Clinical Oncology and Chemotherapy, Nagoya University Hospital, Nagoya, Japan
| | | | - Atsushi Enomoto
- Department of Pathology, Nagoya University Hospital, Nagoya, Japan
| |
Collapse
|
133
|
Tumor-stroma TGF-β1-THBS2 feedback circuit drives pancreatic ductal adenocarcinoma progression via integrin αvβ3/CD36-mediated activation of the MAPK pathway. Cancer Lett 2022; 528:59-75. [DOI: 10.1016/j.canlet.2021.12.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/11/2021] [Accepted: 12/20/2021] [Indexed: 01/06/2023]
|
134
|
Mizutani Y, Iida T, Ohno E, Ishikawa T, Kinoshita F, Kuwatsuka Y, Imai M, Shimizu S, Tsuruta T, Enomoto A, Kawashima H, Fujishiro M. Safety and efficacy of MIKE-1 in patients with advanced pancreatic cancer: a study protocol for an open-label phase I/II investigator-initiated clinical trial based on a drug repositioning approach that reprograms the tumour stroma. BMC Cancer 2022; 22:205. [PMID: 35209871 PMCID: PMC8867831 DOI: 10.1186/s12885-022-09272-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/08/2022] [Indexed: 01/04/2023] Open
Abstract
Background Cancer-associated fibroblasts (CAFs) are an important component of the tumour microenvironment. Recent studies revealed CAFs are heterogeneous and CAF subset(s) that suppress cancer progression (cancer-restraining CAFs [rCAFs]) must exist in addition to well-characterised cancer-promoting CAFs (pCAFs). However, the identity and specific markers of rCAFs are not yet reported. We recently identified Meflin as a specific marker of rCAFs in pancreatic and colon cancers. Our studies revealed that rCAFs may represent proliferating resident fibroblasts. Interestingly, a lineage tracing experiment showed Meflin-positive rCAFs differentiate into α-smooth muscle actin-positive and Meflin-negative CAFs, which are generally hypothesised as pCAFs, during cancer progression. Using a pharmacological approach, we identified AM80, a synthetic unnatural retinoid, as a reagent that effectively converts Meflin-negative pCAFs to Meflin-positive rCAFs. We aimed to investigate the efficacy of a combination of AM80 and gemcitabine (GEM) and nab-paclitaxel (nab-PTX) in patients with advanced pancreatic cancer. Methods The phase I part is a 3 + 3 design, open-label, and dose-finding study. The dose-limiting toxicity (DLT) of these combination therapies would be evaluated for 4 weeks. After the DLT evaluation period, if no disease progression is noted based on the Response Evaluation Criteria in Solid Tumors (RECIST) version 1.1 or if the patient has no intolerable toxicity, administration of AM80 with GEM and nab-PTX would be continued for up to 24 weeks. The phase II part is an open-label, single-arm study. The maximum tolerated dose (MTD) of AM80 with GEM and nab-PTX, determined in phase I, would be administered until intolerable toxicity or disease progression occurs, up to a maximum of 24 weeks, to confirm efficacy and safety. The primary endpoints are frequency of DLT and MTD of AM80 with GEM and nab-PTX in the phase I part and response rate based on the RECIST in the phase II part. Given the historical control data, we hope that the response rate will be over 23% in phase II. Discussion Strategies to convert pCAFs into rCAFs have been developed in recent years. We hypothesised that AM80 would be a promising enhancer of chemosensitivity and drug distribution through CAF conversion in the stroma. Trial registration Clinicaltrial.gov: NCT05064618, registered on 1 October 2021. jRCT: jRCT2041210056, registered on 27 August 2021.
Collapse
Affiliation(s)
- Yasuyuki Mizutani
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tadashi Iida
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Eizaburo Ohno
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takuya Ishikawa
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Fumie Kinoshita
- Department of Advanced Medicine, Nagoya University Hospital, Nagoya, Japan
| | - Yachiyo Kuwatsuka
- Department of Advanced Medicine, Nagoya University Hospital, Nagoya, Japan
| | - Miwa Imai
- Department of Advanced Medicine, Nagoya University Hospital, Nagoya, Japan
| | - Shinobu Shimizu
- Department of Advanced Medicine, Nagoya University Hospital, Nagoya, Japan
| | - Toshihisa Tsuruta
- Department of Advanced Medicine, Nagoya University Hospital, Nagoya, Japan
| | - Atsushi Enomoto
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroki Kawashima
- Department of Endoscopy, Nagoya University Hospital, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan.
| | - Mitsuhiro Fujishiro
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
135
|
Matrix Stiffness Contributes to Cancer Progression by Regulating Transcription Factors. Cancers (Basel) 2022; 14:cancers14041049. [PMID: 35205794 PMCID: PMC8870363 DOI: 10.3390/cancers14041049] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/10/2022] [Accepted: 02/16/2022] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Matrix stiffness is recognized as a critical factor in cancer progression. Recent studies have shown that matrix stiffening is caused by the accumulation, contraction, and crosslinking of the extracellular matrix by cancer and stromal cells. Cancer and stromal cells respond to matrix stiffness, which determines the phenotypes of these cells. In addition, matrix stiffness activates and/or inactivates specific transcription factors in cancer and stromal cells to regulate cancer progression. In this review, we discuss the mechanisms of cancer stiffening and progression that are regulated by transcription factors responding to matrix stiffness. Abstract Matrix stiffness is critical for the progression of various types of cancers. In solid cancers such as mammary and pancreatic cancers, tumors often contain abnormally stiff tissues, mainly caused by stiff extracellular matrices due to accumulation, contraction, and crosslinking. Stiff extracellular matrices trigger mechanotransduction, the conversion of mechanical cues such as stiffness of the matrix to biochemical signaling in the cells, and as a result determine the cellular phenotypes of cancer and stromal cells in tumors. Transcription factors are key molecules for these processes, as they respond to matrix stiffness and are crucial for cellular behaviors. The Yes-associated protein (YAP)/transcriptional coactivator with PDZ-binding motif (TAZ) is one of the most studied transcription factors that is regulated by matrix stiffness. The YAP/TAZ are activated by a stiff matrix and promotes malignant phenotypes in cancer and stromal cells, including cancer-associated fibroblasts. In addition, other transcription factors such as β-catenin and nuclear factor kappa B (NF-κB) also play key roles in mechanotransduction in cancer tissues. In this review, the mechanisms of stiffening cancer tissues are introduced, and the transcription factors regulated by matrix stiffness in cancer and stromal cells and their roles in cancer progression are shown.
Collapse
|
136
|
Simon T, Salhia B. Cancer-Associated Fibroblast Subpopulations With Diverse and Dynamic Roles in the Tumor Microenvironment. Mol Cancer Res 2022; 20:183-192. [PMID: 34670861 PMCID: PMC9306405 DOI: 10.1158/1541-7786.mcr-21-0282] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/21/2021] [Accepted: 10/15/2021] [Indexed: 01/07/2023]
Abstract
Close interactions between cancer cells and cancer-associated fibroblasts (CAF) have repeatedly been reported to support tumor progression. Yet, targeting CAFs has so far failed to show a real benefit in cancer treatment, as preclinical studies have shown that such a strategy can enhance tumor growth. Accordingly, recent paradigm-shifting data suggest that certain CAF subpopulations could also show tumor-inhibitory capabilities. The present review aims to provide an in-depth description of the cellular heterogeneity of the CAF compartment in tumors. Through combining information from different cancer types, here we define 4 main CAF subpopulations that might cohabitate in any tumor microenvironment (TME). In addition, a model for the evolution of CAFs during tumor development is introduced. Moreover, the presence of tumor-inhibitory CAFs in the TME as well as their molecular characteristics are extensively discussed. Finally, the potential cellular origins of these distinct CAF subpopulations are reviewed. To our knowledge, this is the first attempt at establishing a broad but comprehensive classification of CAF subpopulations. Altogether, the present manuscript aims to provide the latest developments and innovative insights that could help refine future therapeutic targeting of CAFs for cancer treatment.
Collapse
Affiliation(s)
- Thomas Simon
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Bodour Salhia
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, California.,Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California.,Corresponding Author: Bodour Salhia, Department of Translational Genomics, Keck School of Medicine, University of Southern California, 1450 Biggy Street, Los Angeles, CA 90033. Phone: 323-442-3099; E-mail:
| |
Collapse
|
137
|
Zhou T, Liu J, Xie Y, Yuan S, Guo Y, Bai W, Zhao K, Jiang W, Wang H, Wang H, Zhao T, Huang C, Gao S, Wang X, Yang S, Hao J. ESE3/EHF, a promising target of rosiglitazone, suppresses pancreatic cancer stemness by downregulating CXCR4. Gut 2022; 71:357-371. [PMID: 33674341 PMCID: PMC9422994 DOI: 10.1136/gutjnl-2020-321952] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 02/02/2021] [Accepted: 02/20/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND AND AIMS The crosstalk between cancer stem cells (CSCs) and their niche is required for the maintenance of stem cell-like phenotypes of CSCs. Here, we identified E26 transformation-specific homologous factor (EHF) as a key molecule in decreasing the sensitivity of pancreatic cancer (PC) cells to CSCs' niche stimulus. We also explored a therapeutic strategy to restore the expression of EHF. DESIGN We used a LSL-KrasG12D/+mice, LSL-Trp53R172H/+ and Pdx1-Cre (KPC) mouse model and samples from patients with PC. Immunostaining, flow cytometry, sphere formation assays, anchorage-independent growth assay, in vivo tumourigenicity, reverse transcription PCR, chromatin immunoprecipitation (ChIP) and luciferase analyses were conducted in this study. RESULTS CXCL12 derived from pancreatic stellate cells (PSCs) mediates the crosstalk between PC cells and PSCs to promote PC stemness. Tumorous EHF suppressed CSC stemness by decreasing the sensitivity of PC to CXCL12 stimulus and inhibiting the crosstalk between PC and CSC-supportive niches. Mechanically, EHF suppressed the transcription of the CXCL12 receptor CXCR4. EHF had a cell autonomous role in suppressing cancer stemness by inhibiting the transcription of Sox9, Sox2, Oct4 and Nanog. Rosiglitazone suppressed PC stemness and inhibited the crosstalk between PC and PSCs by upregulating EHF. Preclinical KPC mouse cohorts demonstrated that rosiglitazone sensitised PDAC to gemcitabine therapy. CONCLUSIONS EHF decreased the sensitivity of PC to the stimulus from PSC-derived CSC-supportive niche by negatively regulating tumorous CXCR4. Rosiglitazone could be used to target PC stem cells and the crosstalk between CSCs and their niche by upregulating EHF.
Collapse
Affiliation(s)
- Tianxing Zhou
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, PR China
| | - Jing Liu
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, PR China.,Department of Breast Oncoplastic Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, China
| | - Yongjie Xie
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, PR China
| | - Shuai Yuan
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, PR China
| | - Yu Guo
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, 38 Tongyan Road, Tianjin, 300071, China
| | - Weiwei Bai
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, PR China
| | - Kaili Zhao
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, PR China
| | - Wenna Jiang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, PR China
| | - Hongwei Wang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, PR China
| | - Haotian Wang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, PR China
| | - Tiansuo Zhao
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, PR China
| | - Chongbiao Huang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, PR China
| | - Song Gao
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, PR China
| | - Xiuchao Wang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, PR China
| | - Shengyu Yang
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA
| | - Jihui Hao
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, PR China
| |
Collapse
|
138
|
Hamada S, Matsumoto R, Masamune A. HIF-1 and NRF2; Key Molecules for Malignant Phenotypes of Pancreatic Cancer. Cancers (Basel) 2022; 14:cancers14020411. [PMID: 35053572 PMCID: PMC8773475 DOI: 10.3390/cancers14020411] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/13/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Pancreatic cancer progression involves interactions between cancer cells and stromal cells in harsh tumor microenvironments, which are characterized by hypoxia, few nutrients, and oxidative stress. Clinically, cancer cells overcome therapeutic interventions, such as chemotherapy and radiotherapy, to continue to survive. Activation of the adaptation mechanism is required for cancer cell survival under these conditions, and it also contributes to the acquisition of the malignant phenotype. Stromal cells, especially pancreatic stellate cells, play a critical role in the formation of a cancer-promoting microenvironment. We here review the roles of key molecules, hypoxia inducible factor-1 and KEAP1-NRF2, in stress response mechanisms for the adaptation to hypoxia and oxidative stress in pancreatic cancer cells and stellate cells. Various cancer-promoting properties associated with these molecules have been identified, and they might serve as novel therapeutic targets in the future. Abstract Pancreatic cancer is intractable due to early progression and resistance to conventional therapy. Dense fibrotic stroma, known as desmoplasia, is a characteristic feature of pancreatic cancer, and develops through the interactions between pancreatic cancer cells and stromal cells, including pancreatic stellate cells. Dense stroma forms harsh tumor microenvironments characterized by hypoxia, few nutrients, and oxidative stress. Pancreatic cancer cells as well as pancreatic stellate cells survive in the harsh microenvironments through the altered expression of signaling molecules, transporters, and metabolic enzymes governed by various stress response mechanisms. Hypoxia inducible factor-1 and KEAP1-NRF2, stress response mechanisms for hypoxia and oxidative stress, respectively, contribute to the aggressive behaviors of pancreatic cancer. These key molecules for stress response mechanisms are activated, both in pancreatic cancer cells and in pancreatic stellate cells. Both factors are involved in the mutual activation of cancer cells and stellate cells, by inducing cancer-promoting signals and their mediators. Therapeutic interventions targeting these pathways are promising approaches for novel therapies. In this review, we summarize the roles of stress response mechanisms, focusing on hypoxia inducible factor-1 and KEAP1-NRF2, in pancreatic cancer. In addition, we discuss the potential of targeting these molecules for the treatment of pancreatic cancer.
Collapse
|
139
|
Ichihara R, Shiraki Y, Mizutani Y, Iida T, Miyai Y, Esaki N, Kato A, Mii S, Ando R, Hayashi M, Takami H, Fujii T, Takahashi M, Enomoto A. Matrix remodeling-associated protein 8 is a marker of a subset of cancer-associated fibroblasts in pancreatic cancer. Pathol Int 2022; 72:161-175. [PMID: 35020975 PMCID: PMC9305816 DOI: 10.1111/pin.13198] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 12/11/2021] [Indexed: 02/06/2023]
Abstract
Cancer‐associated fibroblasts (CAFs), a compartment of the tumor microenvironment, were previously thought to be a uniform cell population that promotes cancer progression. However, recent studies have shown that CAFs are heterogeneous and that there are at least two types of CAFs, that is, cancer‐promoting and ‐restraining CAFs. We previously identified Meflin as a candidate marker of cancer‐restraining CAFs (rCAFs) in pancreatic ductal adenocarcinoma (PDAC). The precise nature of rCAFs, however, has remained elusive owing to a lack of understanding of their comprehensive gene signatures. Here, we screened genes whose expression correlated with Meflin in single‐cell transcriptomic analyses of human cancers. Among the identified genes, we identified matrix remodeling‐associated protein 8 (MXRA8), which encodes a type I transmembrane protein with unknown molecular function. Analysis of MXRA8 expression in human PDAC samples showed that MXRA8 was differentially co‐expressed with other CAF markers. Moreover, in patients with PDAC or syngeneic tumors developed in MXRA8‐knockout mice, MXRA8 expression did not affect the roles of CAFs in cancer progression, and the biological importance of MXRA8+ CAFs is still unclear. Overall, we identified MXRA8 as a new CAF marker; further studies are needed to determine the relevance of this marker.
Collapse
Affiliation(s)
- Ryosuke Ichihara
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yukihiro Shiraki
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yasuyuki Mizutani
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tadashi Iida
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuki Miyai
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Nobutoshi Esaki
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akira Kato
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shinji Mii
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ryota Ando
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masamichi Hayashi
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hideki Takami
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tsutomu Fujii
- Department of Surgery and Science, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan
| | - Masahide Takahashi
- International Center for Cell and Gene Therapy, Fujita Health University, Toyoake, Japan
| | - Atsushi Enomoto
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
140
|
Suzuki J, Tsuboi M, Ishii G. Cancer-associated fibroblasts and the tumor microenvironment in non-small cell lung cancer. Expert Rev Anticancer Ther 2022; 22:169-182. [PMID: 34904919 DOI: 10.1080/14737140.2022.2019018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Non-small cell lung cancer (NSCLC) has a markedly poor prognosis as it progresses, and the prognosis is still unsatisfactory even with modern treatments. Cancer is composed of not only cancer cells, but also stroma consisting of various cell types. Cancer-associated fibroblasts (CAFs) are a major component of the stroma and the associated tumor microenvironment (TME). Particularly, CAFs are a critical component in elucidating the biological mechanisms of cancer progression and new therapeutic targets. This article outlines the TME formed by CAFs in NSCLC. AREAS COVERED Focusing on the TME in NSCLC, we discuss the mechanisms by which CAFs are involved in cancer progression, drug resistance, and the development of therapies targeting CAFs. EXPERT OPINION In the TME, CAFs profoundly contribute to tumor progression by interacting with cancer cells through direct contact or paracrine cytokine signaling. CAFs also interact with various other stromal components to establish a tumor-promoting immunosuppressive microenvironment and remodel the extracellular matrix. Furthermore, these effects are closely associated with drug resistance. Further elucidation of the stromal microenvironment, including CAFs, could prove to be crucial in the treatment of NSCLC.
Collapse
Affiliation(s)
- Jun Suzuki
- Department of Thoracic Surgery, National Cancer Center Hospital East, Kashiwa, Japan.,Department of Pathology and Clinical Laboratories, National Cancer Center Hospital East, Kashiwa, Japan
| | - Masahiro Tsuboi
- Department of Thoracic Surgery, National Cancer Center Hospital East, Kashiwa, Japan
| | - Genichiro Ishii
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital East, Kashiwa, Japan
| |
Collapse
|
141
|
Wang W, Cheng B, Yu Q. Cancer-associated fibroblasts as accomplices to confer therapeutic resistance in cancer. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2022; 5:889-901. [PMID: 36627901 PMCID: PMC9771752 DOI: 10.20517/cdr.2022.67] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/15/2022] [Accepted: 08/15/2022] [Indexed: 04/21/2023]
Abstract
The "seed and soil" concept has reformed paradigms for cancer treatment in the past decade. Accumulating evidence indicates that the intimate crosstalk between cancer cells and stromal cells plays a tremendous role in tumor progression. Cancer-associated fibroblasts (CAFs), the largest population of stroma cells, influence therapeutic effects through diverse mechanisms. Herein, we summarize the recent advances in the versatile functions of CAFs regarding their heterogeneity, and we mainly discuss the pro-tumorigenic functions of CAFs which promote tumorigenesis and confer therapeutic resistance to tumors. Targeting CAFs is emerging as one of the most appealing strategies in anticancer therapies. The endeavors to target or reprogram the specific subtypes of CAFs provide great cancer treatment opportunities, which may provide a better clinical benefit to cancer patients.
Collapse
Affiliation(s)
- Wenyu Wang
- Guangdong Provincial Key laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510655, Guangdong, China
- Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510655, Guangdong, China
| | - Bing Cheng
- Guangdong Provincial Key laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510655, Guangdong, China
- Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510655, Guangdong, China
| | - Qiang Yu
- Guangdong Provincial Key laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510655, Guangdong, China
- Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510655, Guangdong, China
- Cancer Precision Medicine, Genome Institute of Singapore, Agency for Science, Technology, and Research, Biopolis, Singapore 138672, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Cancer and Stem Cell Biology, DUKE-NUS Graduate Medical School of Singapore, Singapore 169857, Singapore
- Correspondence to: Prof. Qiang Yu, Cancer and Stem Cell Biology, DUKE-NUS Graduate Medical School of Singapore, Singapore 169857, Singapore. E-mail:
| |
Collapse
|
142
|
Kuznetsova AV, Popova OP, Astakhov DA, Ivanov YV, Panchenkov DN, Ivanov AA. [Epithelial-stromal interactions in pancreatic adenocarcinoma: the role of stroma in disease progression]. Arkh Patol 2022; 84:65-70. [PMID: 36178225 DOI: 10.17116/patol20228405165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most common and difficult to treat form of pancreas cancer. PDAC and other solid cancers contain both tumor cells and normal connective tissue cells called stromal cells, which are responsible for the excess production of extracellular matrix. It is known that in more than 90% of PDAC tumors and in many other types of cancer, mutations of the KRAS gene are observed, the reciprocal signaling of which has been shown between tumor and stromal cells in vitro. Pancreatic stromal stellate cells are considered precursors of activated or tumor-associated fibroblasts (CAFs), which are an increasing population of cells that proliferate in situ or are recruited into the tumor. CAFs are a heterogeneous population of stromal fibroblasts with different molecular profiles that change during tumorigenesis. Both immunosuppressive and immunosuppressive subsets of CAFs can coexist in the stroma of a single tumor. Based on the heterogeneity of the intertumor stroma, attempts are being made to classify PDAC and predict the course of the disease.
Collapse
Affiliation(s)
- A V Kuznetsova
- A.I. Evdokimov Moscow State University of Medicine and Dentistry, Moscow, Russia
- Koltzov Institute of Developmental Biology, Moscow, Russia
| | - O P Popova
- A.I. Evdokimov Moscow State University of Medicine and Dentistry, Moscow, Russia
| | - D A Astakhov
- A.I. Evdokimov Moscow State University of Medicine and Dentistry, Moscow, Russia
| | - Y V Ivanov
- A.I. Evdokimov Moscow State University of Medicine and Dentistry, Moscow, Russia
| | - D N Panchenkov
- A.I. Evdokimov Moscow State University of Medicine and Dentistry, Moscow, Russia
| | - A A Ivanov
- A.I. Evdokimov Moscow State University of Medicine and Dentistry, Moscow, Russia
| |
Collapse
|
143
|
Delinassios JG, Hoffman RM. The cancer-inhibitory effects of proliferating tumor-residing fibroblasts. Biochim Biophys Acta Rev Cancer 2021; 1877:188673. [PMID: 34953931 DOI: 10.1016/j.bbcan.2021.188673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/09/2021] [Accepted: 12/17/2021] [Indexed: 11/19/2022]
Abstract
Initiation, local progression, and metastasis of cancer are associated with specific morphological, molecular, and functional changes in the extracellular matrix and the fibroblasts within the tumor microenvironment (TME). In the early stages of tumor development, fibroblasts are an obstacle that cancer cells must surpass or nullify to progress. Thus, in early tumor progression, specific signaling from cancer cells activates bio-pathways, which abolish the innate anticancer properties of fibroblasts and convert a high proportion of them to tumor-promoting cancer-associated fibroblasts (CAFs). Following this initial event, a wide spectrum of gene expression changes gradually leads to the development of a stromal fibroblast population with complex heterogeneity, creating fibroblast subtypes with characteristic profiles, which may alternate between being tumor-promotive and tumor-suppressive, topologically and chronologically in the TME. These fibroblast subtypes form the tumor's histological landscape including areas of cancer growth, inflammation, angiogenesis, invasion fronts, proliferating and non-proliferating fibroblasts, cancer-cell apoptosis, fibroblast apoptosis, and necrosis. These features reflect general deregulation of tissue homeostasis within the TME. This review discusses fundamental and current knowledge that has established the existence of anticancer fibroblasts within the various interacting elements of the TME. It is proposed that the maintenance of fibroblast proliferation is an essential parameter for the activation of their anticancer capacity, similar to that by which normal fibroblasts would be activated in wound repair, thus maintaining tissue homeostasis. Encouragement of research in this direction may render new means of cancer therapy and a greater understanding of tumor progression.
Collapse
Affiliation(s)
- John G Delinassios
- International Institute of Anticancer Research, 1(st) km Kapandritiou-Kalamou Rd., Kapandriti, 19014 Attica, Greece.
| | - Robert M Hoffman
- Department of Surgery, University of California, 9300 Campus Point Drive, La Jolla, CA 92037, USA; AntiCancer Inc., 7917 Ostrow St, San Diego, CA 92111, USA.
| |
Collapse
|
144
|
Yoshida J, Ohishi T, Abe H, Ohba SI, Inoue H, Usami I, Amemiya M, Oriez R, Sakashita C, Dan S, Sugawara M, Kawaguchi T, Ueno J, Asano Y, Ikeda A, Takamatsu M, Amori G, Kondoh Y, Honda K, Osada H, Noda T, Watanabe T, Shimizu T, Shibasaki M, Kawada M. Mitochondrial complex I inhibitors suppress tumor growth through concomitant acidification of the intra- and extracellular environment. iScience 2021; 24:103497. [PMID: 34934919 DOI: 10.1016/j.isci.2021.103497] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/25/2021] [Accepted: 11/19/2021] [Indexed: 12/13/2022] Open
Abstract
The disruption of the tumor microenvironment (TME) is a promising anti-cancer strategy, but its effective targeting for solid tumors remains unknown. Here, we investigated the anti-cancer activity of the mitochondrial complex I inhibitor intervenolin (ITV), which modulates the TME independent of energy depletion. By modulating lactate metabolism, ITV induced the concomitant acidification of the intra- and extracellular environment, which synergistically suppressed S6K1 activity in cancer cells through protein phosphatase-2A-mediated dephosphorylation via G-protein-coupled receptor(s). Other complex I inhibitors including metformin and rotenone were also found to exert the same effect through an energy depletion-independent manner as ITV. In mouse and patient-derived xenograft models, ITV was found to suppress tumor growth and its mode of action was further confirmed. The TME is usually acidic owing to glycolytic cancer cell metabolism, and this condition is more susceptible to complex I inhibitors. Thus, we have demonstrated a potential treatment strategy for solid tumors.
Collapse
Affiliation(s)
- Junjiro Yoshida
- Laboratory of Oncology, Institute of Microbial Chemistry (BIKAKEN), Shinagawa-ku, Tokyo 141-0021, Japan
| | - Tomokazu Ohishi
- Numazu Branch and Section of Animal Resources, Institute of Microbial Chemistry (BIKAKEN), Numazu-shi, Shizuoka 410-0301, Japan
| | - Hikaru Abe
- Laboratory of Synthetic Organic Chemistry, Institute of Microbial Chemistry (BIKAKEN), Shinagawa-ku, Tokyo 141-0021, Japan
| | - Shun-Ichi Ohba
- Numazu Branch and Section of Animal Resources, Institute of Microbial Chemistry (BIKAKEN), Numazu-shi, Shizuoka 410-0301, Japan
| | - Hiroyuki Inoue
- Numazu Branch and Section of Animal Resources, Institute of Microbial Chemistry (BIKAKEN), Numazu-shi, Shizuoka 410-0301, Japan
| | - Ihomi Usami
- Numazu Branch and Section of Animal Resources, Institute of Microbial Chemistry (BIKAKEN), Numazu-shi, Shizuoka 410-0301, Japan
| | - Masahide Amemiya
- Laboratory of Oncology, Institute of Microbial Chemistry (BIKAKEN), Shinagawa-ku, Tokyo 141-0021, Japan
| | - Raphael Oriez
- Laboratory of Synthetic Organic Chemistry, Institute of Microbial Chemistry (BIKAKEN), Shinagawa-ku, Tokyo 141-0021, Japan
| | - Chiharu Sakashita
- Laboratory of Synthetic Organic Chemistry, Institute of Microbial Chemistry (BIKAKEN), Shinagawa-ku, Tokyo 141-0021, Japan
| | - Shingo Dan
- Division of Molecular Pharmacology, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550, Japan
| | - Minoru Sugawara
- Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550, Japan
| | - Tokuichi Kawaguchi
- Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550, Japan
| | - Junko Ueno
- Department of Cancer Genomics, Cancer Institute, Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550, Japan
| | - Yuko Asano
- Department of Cancer Genomics, Cancer Institute, Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550, Japan
| | - Ami Ikeda
- Department of Cancer Genomics, Cancer Institute, Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550, Japan
| | - Manabu Takamatsu
- Division of Pathology, Cancer Institute, Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550, Japan
- Department of Pathology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550, Japan
| | - Gulanbar Amori
- Division of Pathology, Cancer Institute, Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550, Japan
- Department of Pathology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550, Japan
| | - Yasumitsu Kondoh
- Chemical Biology Research Group & Drug Discovery Chemical Bank Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Kaori Honda
- Chemical Biology Research Group & Drug Discovery Chemical Bank Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Hiroyuki Osada
- Chemical Biology Research Group & Drug Discovery Chemical Bank Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Tetsuo Noda
- Director's Room, Cancer Institute, Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550, Japan
| | - Takumi Watanabe
- Laboratory of Synthetic Organic Chemistry, Institute of Microbial Chemistry (BIKAKEN), Shinagawa-ku, Tokyo 141-0021, Japan
| | - Takao Shimizu
- Department of Lipid Signaling, Research Institute, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo 162-8655, Japan
- Department of Lipidomics, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
- Laboratory of Virology, Institute of Microbial Chemistry (BIKAKEN), Shinagawa-ku, Tokyo 141-0021, Japan
| | - Masakatsu Shibasaki
- Laboratory of Synthetic Organic Chemistry, Institute of Microbial Chemistry (BIKAKEN), Shinagawa-ku, Tokyo 141-0021, Japan
| | - Manabu Kawada
- Laboratory of Oncology, Institute of Microbial Chemistry (BIKAKEN), Shinagawa-ku, Tokyo 141-0021, Japan
- Numazu Branch and Section of Animal Resources, Institute of Microbial Chemistry (BIKAKEN), Numazu-shi, Shizuoka 410-0301, Japan
| |
Collapse
|
145
|
Li C, Teixeira AF, Zhu HJ, Ten Dijke P. Cancer associated-fibroblast-derived exosomes in cancer progression. Mol Cancer 2021; 20:154. [PMID: 34852849 PMCID: PMC8638446 DOI: 10.1186/s12943-021-01463-y] [Citation(s) in RCA: 162] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/11/2021] [Indexed: 02/08/2023] Open
Abstract
To identify novel cancer therapies, the tumor microenvironment (TME) has received a lot of attention in recent years in particular with the advent of clinical successes achieved by targeting immune checkpoint inhibitors (ICIs). The TME consists of multiple cell types that are embedded in the extracellular matrix (ECM), including immune cells, endothelial cells and cancer associated fibroblasts (CAFs), which communicate with cancer cells and each other during tumor progression. CAFs are a dominant and heterogeneous cell type within the TME with a pivotal role in controlling cancer cell invasion and metastasis, immune evasion, angiogenesis and chemotherapy resistance. CAFs mediate their effects in part by remodeling the ECM and by secreting soluble factors and extracellular vesicles. Exosomes are a subtype of extracellular vesicles (EVs), which contain various biomolecules such as nucleic acids, lipids, and proteins. The biomolecules in exosomes can be transmitted from one to another cell, and thereby affect the behavior of the receiving cell. As exosomes are also present in circulation, their contents can also be explored as biomarkers for the diagnosis and prognosis of cancer patients. In this review, we concentrate on the role of CAFs-derived exosomes in the communication between CAFs and cancer cells and other cells of the TME. First, we introduce the multiple roles of CAFs in tumorigenesis. Thereafter, we discuss the ways CAFs communicate with cancer cells and interplay with other cells of the TME, and focus in particular on the role of exosomes. Then, we elaborate on the mechanisms by which CAFs-derived exosomes contribute to cancer progression, as well as and the clinical impact of exosomes. We conclude by discussing aspects of exosomes that deserve further investigation, including emerging insights into making treatment with immune checkpoint inhibitor blockade more efficient.
Collapse
Affiliation(s)
- Chao Li
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Adilson Fonseca Teixeira
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Hong-Jian Zhu
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Peter Ten Dijke
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands.
| |
Collapse
|
146
|
Chen Y, McAndrews KM, Kalluri R. Clinical and therapeutic relevance of cancer-associated fibroblasts. Nat Rev Clin Oncol 2021; 18:792-804. [PMID: 34489603 PMCID: PMC8791784 DOI: 10.1038/s41571-021-00546-5] [Citation(s) in RCA: 553] [Impact Index Per Article: 138.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2021] [Indexed: 02/07/2023]
Abstract
Cancer-associated fibroblasts (CAFs) found in primary and metastatic tumours are highly versatile, plastic and resilient cells that are actively involved in cancer progression through complex interactions with other cell types in the tumour microenvironment. As well as generating extracellular matrix components that contribute to the structure and function of the tumour stroma, CAFs undergo epigenetic changes to produce secreted factors, exosomes and metabolites that influence tumour angiogenesis, immunology and metabolism. Because of their putative pro-oncogenic functions, CAFs have long been considered an attractive therapeutic target; however, clinical trials of treatment strategies targeting CAFs have mostly ended in failure and, in some cases, accelerated cancer progression and resulted in inferior survival outcomes. Importantly, CAFs are heterogeneous cells and their characteristics and interactions with other cell types might change dynamically as cancers evolve. Studies involving single-cell RNA sequencing and novel mouse models have increased our understanding of CAF diversity, although the context-dependent roles of different CAF populations and their interchangeable plasticity remain largely unknown. Comprehensive characterization of the tumour-promoting and tumour-restraining activities of CAF subtypes, including how these complex bimodal functions evolve and are subjugated by neoplastic cells during cancer progression, might facilitate the development of novel diagnostic and therapeutic approaches. In this Review, the clinical relevance of CAFs is summarized with an emphasis on their value as prognosis factors and therapeutic targets.
Collapse
Affiliation(s)
- Yang Chen
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kathleen M McAndrews
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Raghu Kalluri
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Bioengineering, Rice University, Houston, TX, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
147
|
Nallasamy P, Nimmakayala RK, Karmakar S, Leon F, Seshacharyulu P, Lakshmanan I, Rachagani S, Mallya K, Zhang C, Ly QP, Myers MS, Josh L, Grabow CE, Gautam SK, Kumar S, Lele SM, Jain M, Batra SK, Ponnusamy MP. Pancreatic Tumor Microenvironment Factor Promotes Cancer Stemness via SPP1-CD44 Axis. Gastroenterology 2021; 161:1998-2013.e7. [PMID: 34418441 PMCID: PMC10069715 DOI: 10.1053/j.gastro.2021.08.023] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 07/14/2021] [Accepted: 08/14/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND & AIMS Tumor-microenvironment factors and cancer stem cells (CSCs) play a critical role in the aggressiveness of pancreatic cancer (PC). However, the degree to which tumor-microenvironment factors promote stemness remains unexplored. Here, we examined whether cancer-associated fibroblasts (CAFs) promote CSC features in PC. METHODS PC cells were treated long-term (30, 60, and 90 days) with conditioned media (CM)-derived from normal human fibroblasts (NFs) and CAFs. The stemness features of tumorsphere formation and stemness populations, along with CSCs markers, were analyzed using 2-dimensional and 3-dimensional sodium alginate bead-based co-culture models. Immunohistochemistry and immunofluorescence staining were performed for CSCs and fibroblast markers in autochthonous KrasG12D/+; Trp53R172H/+; Pdx1-Cre mice and human pancreatic tumors. Polymerase chain reaction array and gene knockdown were performed to identify the mechanism of stemness enrichment. RESULTS Long-term treatment of PC cells with CAF-CM enriched stemness, as indicated by significantly higher CD44+, ALDH+, and AF+ populations in PC cells. Increased tumorsphere formation and elevated CSC, self-renewal, and drug-resistance markers in CAF-CM-treated PC cells were observed. In addition, CAFs co-cultured with PC cells in the 3-dimensional model showed a substantial increase in stemness features. CD44 and α-smooth muscle actin were positively correlated and their expressions progressively increased from the early to late stages of KrasG12D/+; Trp53R172H/+; Pdx1-Cre mouse and human pancreatic tumors. Osteopontin/secreted phosphoprotein 1 was identified as the top differentially overexpressed gene in CAF-CM-treated PC cells and knockdown of osteopontin/secreted phosphoprotein 1 significantly reduced stemness characteristics in CAF-CM-treated PC cells. CONCLUSIONS Our data uncovered novel insight into the interplay between CAF and enrichment of stemness population through the osteopontin/secreted phosphoprotein 1-CD44 axis in PC.
Collapse
Affiliation(s)
- Palanisamy Nallasamy
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Rama Krishna Nimmakayala
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Saswati Karmakar
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Frank Leon
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Parthasarathy Seshacharyulu
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Imayavaramban Lakshmanan
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Satyanarayana Rachagani
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Kavita Mallya
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Chunmeng Zhang
- Division of Surgical Oncology, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
| | - Quan P Ly
- Division of Surgical Oncology, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
| | - Molly S Myers
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Lindenberger Josh
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Corinn E Grabow
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Shailendra K Gautam
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Sushil Kumar
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Subodh M Lele
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska; Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska; Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska.
| | - Moorthy P Ponnusamy
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska; Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska.
| |
Collapse
|
148
|
Zhang P, Li Z, Yang G. Silencing of ISLR inhibits tumour progression and glycolysis by inactivating the IL‑6/JAK/STAT3 pathway in non‑small cell lung cancer. Int J Mol Med 2021; 48:222. [PMID: 34713300 PMCID: PMC8559699 DOI: 10.3892/ijmm.2021.5055] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/15/2021] [Indexed: 12/13/2022] Open
Abstract
Lung cancer is the second most frequent cancer type in both men and women, and it is considered to be one of the major causes of cancer-related mortality worldwide. However, few biomarkers are currently available for the diagnosis of lung cancer. The aim of the present study was to investigate the function of the immunoglobulin superfamily containing leucine-rich repeat (ISLR) gene in non-small cell lung cancer (NSCLC) cells, and to elucidate the underlying molecular mechanism of its action. The current study analysed ISLR expression in NSCLC tumour and normal tissues using The Cancer Genome Atlas cohort datasets. ISLR expression in NSCLC cell lines was determined using reverse transcription-quantitative PCR. Cell Counting Kit-8, soft agar colony formation, wound healing, Transwell, flow cytometry and glycolysis assays were performed to determine the effects of ISLR silencing or overexpression on cells. The expression levels of the genes involved in epithelial-mesenchymal transition (EMT), apoptosis and glycolysis were evaluated via western blotting. Transfected cells were exposed to the pathway activator, IL-6, to validate the regulatory pathway. ISLR was overexpressed in NSCLC tissues and cell lines. Overall, patients with high ISLR expression had lower survival rates. In addition, small interfering RNA-ISLR inhibited the proliferation, EMT, migration, invasion and glycolysis of NSCLC cells, and promoted their apoptosis. ISLR overexpression had the opposite effect on tumour progression and glycolysis in NSCLC cells. Gene set enrichment analysis and western blotting results indicated that the IL-6/Janus kinase (JAK)/STAT3 pathway was enriched in ISLR-related NSCLC. Knockdown of ISLR inhibited IL-6-induced proliferation, invasion, migration and glycolysis in human NSCLC cells. In summary, ISLR silencing can inhibit tumour progression and glycolysis in NSCLC cells by activating the IL-6/JAK/STAT3 signalling pathway, which is a potential molecular target for NSCLC diagnosis and treatment.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Pulmonary and Critical Care Medicine, Shandong Second Provincial General Hospital, Ji'nan, Shandong 250022, P.R. China
| | - Zhen Li
- Department of Pulmonary and Critical Care Medicine, Shandong Second Provincial General Hospital, Ji'nan, Shandong 250022, P.R. China
| | - Guangming Yang
- Department of Tumor Radiotherapy, Shandong Second Provincial General Hospital, Ji'nan, Shandong 250022, P.R. China
| |
Collapse
|
149
|
Uchida C, Mizukami H, Hara Y, Saito T, Umetsu S, Igawa A, Osonoi S, Kudoh K, Yamamoto Y, Yamamoto H, Yagihashi S, Hakamada K. Diabetes in Humans Activates Pancreatic Stellate Cells via RAGE in Pancreatic Ductal Adenocarcinoma. Int J Mol Sci 2021; 22:11716. [PMID: 34769147 PMCID: PMC8584151 DOI: 10.3390/ijms222111716] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/13/2021] [Accepted: 10/25/2021] [Indexed: 01/02/2023] Open
Abstract
Pancreatic stellate cells (PSCs) mainly consist of cancer-associating fibroblasts in pancreatic ductal adenocarcinoma (PDAC). The receptor for advanced glycation end products (RAGE) is implicated in the pathophysiology of diabetic complications. Here, we studied the implication of RAGE in PSC activation in PDAC. The activation of cultured mouse PSCs was evaluated by qPCR. The induction of epithelial mesenchymal transition (EMT) in PDAC cell lines was assessed under stimulation with culture supernatant from activated PSCs. A total of 155 surgically resected PDAC subjects (83 nondiabetic, 18 with ≦3-years and 54 with >3-years history of diabetes) were clinicopathologically evaluated. A high-fat diet increased the expression of activated markers in cultured PSCs, which was abrogated by RAGE deletion. Culture supernatant from activated PSCs facilitated EMT of PDAC cells with elevation of TGF-β and IL-6, but not from RAGE-deleted PSCs. Diabetic subjects complicated with metabolic syndrome, divided by cluster analysis, showed higher PSC activation and RAGE expression. In such groups, PDAC cells exhibited an EMT nature. The complication of metabolic syndrome with diabetes significantly worsened disease-free survival of PDAC subjects. Thus, RAGE in PSCs can be viewed as a new promoter and a future therapeutic target of PDAC in diabetic subjects with metabolic syndrome.
Collapse
Affiliation(s)
- Chiaki Uchida
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan; (C.U.); (Y.H.); (A.I.); (S.O.); (K.K.); (S.Y.)
- Department of Gasrtroenterological and Pediatric Surgery, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan; (T.S.); (S.U.); (K.H.)
| | - Hiroki Mizukami
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan; (C.U.); (Y.H.); (A.I.); (S.O.); (K.K.); (S.Y.)
| | - Yutaro Hara
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan; (C.U.); (Y.H.); (A.I.); (S.O.); (K.K.); (S.Y.)
- Department of Gasrtroenterological and Pediatric Surgery, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan; (T.S.); (S.U.); (K.H.)
| | - Takeshi Saito
- Department of Gasrtroenterological and Pediatric Surgery, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan; (T.S.); (S.U.); (K.H.)
| | - Satoko Umetsu
- Department of Gasrtroenterological and Pediatric Surgery, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan; (T.S.); (S.U.); (K.H.)
| | - Akiko Igawa
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan; (C.U.); (Y.H.); (A.I.); (S.O.); (K.K.); (S.Y.)
- Department of Gasrtroenterological and Pediatric Surgery, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan; (T.S.); (S.U.); (K.H.)
| | - Sho Osonoi
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan; (C.U.); (Y.H.); (A.I.); (S.O.); (K.K.); (S.Y.)
| | - Kazuhiro Kudoh
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan; (C.U.); (Y.H.); (A.I.); (S.O.); (K.K.); (S.Y.)
| | - Yasuhiko Yamamoto
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8640, Japan; (Y.Y.); (H.Y.)
| | - Hiroshi Yamamoto
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8640, Japan; (Y.Y.); (H.Y.)
- Komatsu University, Komatsu 923-0921, Japan
| | - Soroku Yagihashi
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan; (C.U.); (Y.H.); (A.I.); (S.O.); (K.K.); (S.Y.)
| | - Kenichi Hakamada
- Department of Gasrtroenterological and Pediatric Surgery, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan; (T.S.); (S.U.); (K.H.)
| |
Collapse
|
150
|
Takahashi M, Kobayashi H, Mizutani Y, Hara A, Iida T, Miyai Y, Asai N, Enomoto A. Roles of the Mesenchymal Stromal/Stem Cell Marker Meflin/Islr in Cancer Fibrosis. Front Cell Dev Biol 2021; 9:749924. [PMID: 34676218 PMCID: PMC8523999 DOI: 10.3389/fcell.2021.749924] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/06/2021] [Indexed: 01/03/2023] Open
Abstract
Fibroblasts synthesise the extracellular matrix (ECM) such as collagen and elastin, the excessive accumulation of which can lead to fibrosis and organ dysfunction under pathological conditions. Cancer-associated fibroblasts (CAFs) are major constituents of the tumour microenvironment (TME) that accompany the desmoplastic reaction responsible for anti-cancer treatment resistance. Thus, it is important to dissect the roles of CAFs in the TME to develop new therapeutic strategies for refractory cancers. Recent progress in the studies of CAF biology suggests that the functions of CAFs are complicated and that they are composed of functionally distinct populations, including cancer-promoting CAFs (pCAFs) and cancer-restraining CAFs (rCAFs). We recently identified a new cell surface marker for rCAFs in pancreatic and colon cancers, designated as Meflin (mesenchymal stromal cell- and fibroblast-expressing Linx paralogue)/Islr (immunoglobulin super family containing leucine-rich repeat). Based on the distribution of Meflin/Islr-positive cells, we also considered it a specific candidate marker for mesenchymal stroma/stem cells. Meflin/Islr-positive CAFs have been shown to suppress cancer progression by being involved in regulating collagen structures and BMP signalling in the TME. This review describes the function of Meflin/Islr in cancer fibrosis as well as in cardiac and lung fibrosis and its potential in the development of new cancer therapeutics.
Collapse
Affiliation(s)
- Masahide Takahashi
- International Center for Cell and Gene Therapy, Fujita Health University, Toyoake, Japan
| | - Hiroki Kobayashi
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yasuyuki Mizutani
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akitoshi Hara
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tadashi Iida
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuki Miyai
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Naoya Asai
- Department of Pathology, Fujita Health University, Toyoake, Japan
| | - Atsushi Enomoto
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|