101
|
Lakhani SR, Reis-Filho JS, Fulford L, Penault-Llorca F, van der Vijver M, Parry S, Bishop T, Benitez J, Rivas C, Bignon YJ, Chang-Claude J, Hamann U, Cornelisse CJ, Devilee P, Beckmann MW, Nestle-Krämling C, Daly PA, Haites N, Varley J, Lalloo F, Evans G, Maugard C, Meijers-Heijboer H, Klijn JGM, Olah E, Gusterson BA, Pilotti S, Radice P, Scherneck S, Sobol H, Jacquemier J, Wagner T, Peto J, Stratton MR, McGuffog L, Easton DF. Prediction of BRCA1 status in patients with breast cancer using estrogen receptor and basal phenotype. Clin Cancer Res 2005; 11:5175-80. [PMID: 16033833 DOI: 10.1158/1078-0432.ccr-04-2424] [Citation(s) in RCA: 441] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
PURPOSE To investigate the proportion of breast cancers arising in patients with germ line BRCA1 and BRCA2 mutations expressing basal markers and developing predictive tests for identification of high-risk patients. EXPERIMENTAL DESIGN Histopathologic material from 182 tumors in BRCA1 mutation carriers, 63 BRCA2 carriers, and 109 controls, collected as part of the international Breast Cancer Linkage Consortium were immunohistochemically stained for CK14, CK5/6, CK17, epidermal growth factor receptor (EGFR), and osteonectin. RESULTS All five basal markers were commoner in BRCA1 tumors than in control tumors (CK14: 61% versus 12%; CK5/6: 58% versus 7%; CK17: 53% versus 10%; osteonectin: 43% versus 19%; EGFR: 67% versus 21%; P < 0.0001 in each case). In a multivariate analysis, CK14, CK5/6, and estrogen receptor (ER) remained significant predictors of BRCA1 carrier status. In contrast, the frequency of basal markers in BRCA2 tumors did not differ significant from controls. CONCLUSION The use of cytokeratin staining in combination with ER and morphology provides a more accurate predictor of BRCA1 mutation status than previously available, that may be useful in selecting patients for BRCA1 mutation testing. The high percentage of BRCA1 cases positive for EGFR suggests that specific anti-tyrosine kinase therapy may be of potential benefit in these patients.
Collapse
Affiliation(s)
- Sunil R Lakhani
- The Breakthrough Toby Robins Breast Cancer Research Centre, Institute of Cancer Research, London, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
102
|
Little SE, Vuononvirta R, Reis-Filho JS, Natrajan R, Iravani M, Fenwick K, Mackay A, Ashworth A, Pritchard-Jones K, Jones C. Array CGH using whole genome amplification of fresh-frozen and formalin-fixed, paraffin-embedded tumor DNA. Genomics 2005; 87:298-306. [PMID: 16271290 DOI: 10.1016/j.ygeno.2005.09.019] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2005] [Accepted: 09/21/2005] [Indexed: 11/18/2022]
Abstract
The ability to utilize formalin-fixed, paraffin-embedded (FFPE) archival specimens reliably for high-resolution molecular genetic analysis would be of immense practical application in the study of human disease. We have evaluated the ability of the GenomePlex whole genome amplification (WGA) kit to amplify frozen and FFPE tissue for use in array CGH (aCGH). GenomePlex gave highly representative data compared with unamplified controls both from frozen material (Pearson's R(2) = 0.898) and from FFPE (R(2) = 0.883). Artifactual amplification observed using DOP-PCR at chromosomes 1p, 3, 13q, and 16p was not seen with GenomePlex. Highly reproducible aCGH profiles were obtained using as little as 5 ng starting material from FFPE (R(2) = 0.918). This WGA method should readily lend itself to the determination of DNA copy number alterations from small fresh-frozen and FFPE clinical tumor specimens, although some care must be taken to optimize the DNA extraction procedure.
Collapse
Affiliation(s)
- Suzanne E Little
- Paediatric Oncology, Institute of Cancer Research/Royal Marsden NHS Trust, Sutton, Surrey SM2 5NG, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
103
|
Reis-Filho JS, Simpson PT, Gale T, Lakhani SR. The molecular genetics of breast cancer: The contribution of comparative genomic hybridization. Pathol Res Pract 2005; 201:713-25. [PMID: 16325514 DOI: 10.1016/j.prp.2005.05.013] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2005] [Accepted: 05/02/2005] [Indexed: 10/25/2022]
Abstract
Comparative genomic hybridization (CGH) has been the technique of choice over the last 10 years for mapping DNA copy number changes in human tumors. Here we review the literature to demonstrate how CGH has contributed to the comprehension of molecular aspects of breast tumorigenesis. At least two distinct molecular pathways of breast cancer have been characterized that show a strong correlation with histological grade. It seems that grade I invasive ductal carcinomas (IDCs) arise from well-differentiated ductal carcinoma in situ (DCIS), whereas grade III IDCs come from poorly differentiated DCIS. In addition, dedifferentiation from a low- to a high-grade breast cancer has proven an unlikely phenomenon. CGH has been instrumental in dissecting distinct molecular pathways toward breast malignancy and in establishing a direct relationship between genotype and clinical pathological features.
Collapse
Affiliation(s)
- Jorge S Reis-Filho
- The Breakthrough Toby Robins Breast Cancer Research Centre, Institute of Cancer Research, London, UK.
| | | | | | | |
Collapse
|
104
|
Reis-Filho JS, Simpson PT, Jones C, Steele D, Mackay A, Iravani M, Fenwick K, Valgeirsson H, Lambros M, Ashworth A, Palacios J, Schmitt F, Lakhani SR. Pleomorphic lobular carcinoma of the breast: role of comprehensive molecular pathology in characterization of an entity. J Pathol 2005; 207:1-13. [PMID: 15957152 DOI: 10.1002/path.1806] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Immunohistochemical analysis of E-cadherin has changed the way lobular neoplasia is perceived. It has helped to classify difficult cases of carcinoma in situ with indeterminate features and led to the identification of new variants of lobular carcinoma. Pleomorphic lobular carcinoma (PLC) and pleomorphic lobular carcinoma in situ (PLCIS), recently described variants of invasive and in situ classic lobular carcinoma, are reported to be associated with more aggressive clinical behaviour. Although PLC/PLCIS show morphological features of classic lobular neoplasia and lack E-cadherin expression, it is still unclear whether these lesions evolve through the same genetic pathway as lobular carcinomas or are high-grade ductal neoplasms that have lost E-cadherin. Here we have analysed a case of extensive PLCIS and invasive PLC associated with areas of E-cadherin-negative carcinoma in situ with indeterminate features, using immunohistochemistry, chromogenic in situ hybridization, high-resolution comparative genomic hybridization (CGH) and array-based CGH. We observed that all lesions lacked E-cadherin and beta-catenin and showed gain of 1q and loss of 16q, features that are typical of lobular carcinomas but are not seen in high-grade ductal lesions. In addition, amplifications of c-myc and HER2 were detected in the pleomorphic components, which may account for the high-grade features in this case and the reported aggressive clinical behaviour of these lesions. Taken together, these data suggest that at least some PLCs may evolve from the same precursor or through the same genetic pathway as classic lobular carcinomas.
Collapse
Affiliation(s)
- Jorge S Reis-Filho
- The Breakthrough Toby Robins Breast Cancer Research Centre, Institute of Cancer Research, London SW3 6JB, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Nicassio F, Bianchi F, Capra M, Vecchi M, Confalonieri S, Bianchi M, Pajalunga D, Crescenzi M, Bonapace IM, Di Fiore PP. A cancer-specific transcriptional signature in human neoplasia. J Clin Invest 2005; 115:3015-25. [PMID: 16224537 PMCID: PMC1253624 DOI: 10.1172/jci24862] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2005] [Accepted: 07/26/2005] [Indexed: 02/06/2023] Open
Abstract
The molecular anatomy of cancer cells is being explored through unbiased approaches aimed at the identification of cancer-specific transcriptional signatures. An alternative biased approach is exploitation of molecular tools capable of inducing cellular transformation. Transcriptional signatures thus identified can be readily validated in real cancers and more easily reverse-engineered into signaling pathways, given preexisting molecular knowledge. We exploited the ability of the adenovirus early region 1 A protein (E1A) oncogene to force the reentry into the cell cycle of terminally differentiated cells in order to identify and characterize genes whose expression is upregulated in this process. A subset of these genes was activated through a retinoblastoma protein/E2 viral promoter required factor-independent (pRb/E2F-independent) mechanism and was overexpressed in a fraction of human cancers. Furthermore, this overexpression correlated with tumor progression in colon cancer, and 2 of these genes predicted unfavorable prognosis in breast cancer. A proof of principle biological validation was performed on one of the genes of the signature, skeletal muscle cell reentry-induced (SKIN) gene, a previously undescribed gene. SKIN was found overexpressed in some primary tumors and tumor cell lines and was amplified in a fraction of colon adenocarcinomas. Furthermore, knockdown of SKIN caused selective growth suppression in overexpressing tumor cell lines but not in tumor lines expressing physiological levels of the transcript. Thus, SKIN is a candidate oncogene in human cancer.
Collapse
Affiliation(s)
- Francesco Nicassio
- IFOM, Istituto Fondazione Italiana per la Ricerca sul Cancro di Oncologia Molecolare, Milan, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Hanby AM. The pathology of breast cancer and the role of the histopathology laboratory. Clin Oncol (R Coll Radiol) 2005; 17:234-9. [PMID: 15997917 DOI: 10.1016/j.clon.2005.02.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Histopathology plays an important part in determining the treatment strategy for women with breast cancer, with the evaluation of breast specimens determining the surgical and the oncological therapeutic options used. The correct approach to specimens requires integration of clinical and imaging findings. This work is not trivial. It is time-consuming and skilled, and requires (and has in place) safeguards and checks in the form of national audit and quality-control schemes. The pathobiology of breast cancer is diverse, and the current taxonomy, rooted in morphological interpretation, has been underscored by molecular observations, such as the relationship of E-cadherin mutations to lobular carcinomas. Investigation of ductal carcinoma of no special type (NST) reveals covert tumour types, such as those with basal or myoepithelial features, whose distinctive features are only now being widely recognised. With the rise of modern molecular techniques, the demise of diagnostic histopathology has been predicted, but, for now and the intermediate future, the histopathologist remains a key element of the integrated breast-care team.
Collapse
Affiliation(s)
- A M Hanby
- Academic Unit of Pathology, Leeds University.
| |
Collapse
|
107
|
Gusterson BA, Ross DT, Heath VJ, Stein T. Basal cytokeratins and their relationship to the cellular origin and functional classification of breast cancer. Breast Cancer Res 2005; 7:143-8. [PMID: 15987465 PMCID: PMC1175069 DOI: 10.1186/bcr1041] [Citation(s) in RCA: 190] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Recent publications have classified breast cancers on the basis of expression of cytokeratin-5 and -17 at the RNA and protein levels, and demonstrated the importance of these markers in defining sporadic tumours with bad prognosis and an association with BRCA1-related breast cancers. These important observations using different technology platforms produce a new functional classification of breast carcinoma. However, it is important in developing hypotheses about the pathogenesis of this tumour type to review the nomenclature that is being used to emphasize potential confusion between terminology that defines clinical subgroups and markers of cell lineage. This article reviews the lineages in the normal breast in relation to what have become known as the 'basal-like' carcinomas.
Collapse
Affiliation(s)
- Barry A Gusterson
- Division of Cancer Sciences and Molecular Pathology, Western Infirmary, University of Glasgow, Glasgow, UK
| | | | - Victoria J Heath
- Division of Cancer Sciences and Molecular Pathology, Western Infirmary, University of Glasgow, Glasgow, UK
| | - Torsten Stein
- Division of Cancer Sciences and Molecular Pathology, Western Infirmary, University of Glasgow, Glasgow, UK
| |
Collapse
|
108
|
Lapierre JM, Tachdjian G. Detection of chromosomal abnormalities by comparative genomic hybridization. Curr Opin Obstet Gynecol 2005; 17:171-7. [PMID: 15758611 DOI: 10.1097/01.gco.0000162188.99219.04] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Comparative genomic hybridization (CGH) is a modified in-situ hybridization technique. In this type of analysis, two differentially labeled genomic DNAs (study and reference) are cohybridized to normal metaphase spreads or to microarray. Chromosomal locations of copy number changes in the DNA segments of the study genome are revealed by a variable fluorescence intensity ratio along each target chromosome. Thus, CGH allows detection and mapping of DNA sequence copy differences between two genomes in a single experiment. RECENT FINDINGS Since its development, comparative genomic hybridization has been applied mostly as a research tool in the field of cancer cytogenetics to identify genetic changes in many previously unknown regions. It is also a powerful tool for detection and identification of unbalanced chromosomal abnormalities in prenatal, postnatal and preimplantation diagnostics. SUMMARY The development of comparative genomic hybridization and increase in resolution analysis by using the microarray-based technique offer new information on chromosomal pathologies and thus better management of patients.
Collapse
Affiliation(s)
- Jean-Michel Lapierre
- Service d'Histologie-Embryologie-Cytogénétique, Hôpital Necker-Enfants Malades, Paris bService de Biologie du Développement et de la Reproduction-Cytogénétique, Hôpital Antoine Béclère, Clamart, France.
| | | |
Collapse
|
109
|
Simpson PT, Reis-Filho JS, Gale T, Lakhani SR. Molecular evolution of breast cancer. J Pathol 2005; 205:248-54. [PMID: 15641021 DOI: 10.1002/path.1691] [Citation(s) in RCA: 338] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Molecular analysis of invasive breast cancer and its precursors has furthered our understanding of breast cancer progression. In the past few years, new multi-step pathways of breast cancer progression have been delineated through genotypic-phenotypic correlations. Nuclear grade, more than any other pathological feature, is strongly associated with the number and pattern of molecular genetic abnormalities in breast cancer cells. Thus, there are two distinct major pathways to the evolution of low- and high-grade invasive carcinomas: whilst the former consistently show oestrogen receptor (ER) and progesterone receptor (PgR) positivity and 16q loss, the latter are usually ER/PgR-negative and show Her-2 overexpression/amplification and complex karyotypes. The boundaries between the evolutionary pathways of well-differentiated/low-grade ductal and lobular carcinomas have been blurred, with changes in E-cadherin expression being one of the few distinguishing features between the two. In addition, lesions long thought to be precursors of breast carcinomas, such as hyperplasia of usual type, are currently considered mere risk indicators, whilst columnar cell lesions are now implicated as non-obligate precursors of atypical ductal hyperplasia (ADH) and well-differentiated ductal carcinoma in situ (DCIS). However, only through the combination of comprehensive morphological analysis and cutting-edge molecular tools can this knowledge be translated into clinical practice and patient management.
Collapse
Affiliation(s)
- Peter T Simpson
- The Breakthrough Toby Robins Breast Cancer Research Centre, Institute of Cancer Research, London, UK
| | | | | | | |
Collapse
|