101
|
Xiao H, Xu D, Chen P, Zeng G, Wang X, Zhang X. Identification of Five Genes as a Potential Biomarker for Predicting Progress and Prognosis in Adrenocortical Carcinoma. J Cancer 2018; 9:4484-4495. [PMID: 30519354 PMCID: PMC6277665 DOI: 10.7150/jca.26698] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 09/20/2018] [Indexed: 12/19/2022] Open
Abstract
Background: Adrenocortical carcinoma (ACC) is a limited endocrine fatality with a minor diagnosis and rare remedial options. The progressive and predictive meaning of message RNA (mRNA) expression oddity in ACC has been studied extensively in recent years. However, differences in measurement platforms and lab protocols as well as small sample sizes can render gene expression levels incomparable. Methods: An extensive study of GEO datasets was conducted to define potential mRNA biomarkers for ACC. The study compared the mRNA expression profiles of ACC tissues and neighboring noncancerous adrenal tissues in the pair. The study covered a sum of 165 tumors and 36 benign control samples. Hub genes were identified through a protein-protein interaction (PPI) network and Robust Rank Aggregation method. Then the Cancer Genome Atlas (TCGA) and Oncomine database were used to perform the validation of hub genes. 4 ACC tissues and 4 normal tissues were collected and then Polymerase Chain Reaction (PCR), Western-blot and immunofluorescence were conducted to validate the expression of five hub genes. Results: We identified five statistically significant genes (TOP2A, NDC80, CEP55, CDKN3, CDK1) corrected with clinical features. The expression of five hub genes in TCGA and Oncomine database were significantly overexpressed in ACC compared with normal ones. Among all the TCGA ACC cases, the strong expression of TOP2A (logrank p=1.4e-04, HR=4.7), NDC80 (logrank p=8.8e-05, HR=4.9), CEP55 (logrank p=5.2e-07, HR=8.6), CDKN3 (log rank p=2.3e-06, HR=7.6) and CDK1 (logrank p=7e-08, HR=11) were correlated with low comprehensive survival, disease free survival (logrank p < 0.001), pathology stage and pathology T stage (FDR < 0.001). PCR results showed that the transcriptional levels of these five genes were significantly higher in ACC tissues than in normal tissues. The western blotting results also showed that the translational level of TOP2A was significantly higher in tumor tissues than in normal tissues. The results of immunofluorescence showed that TOP2A was abundantly observed in the adrenal cortical cell membrane and nucleus and its expression in ACC tissues was significantly higher than that in normal tissues. Conclusions: The distinguished five genes may be utilized to form a board of progressive and predictive biomarkers for ACC for clinical purpose.
Collapse
Affiliation(s)
- He Xiao
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430071, P.R. China
| | - Deqiang Xu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430071, P.R. China
| | - Ping Chen
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430071, P.R. China
| | - Guang Zeng
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430071, P.R. China.,Biomedical Engineering, Stony Brook University, New York 11790
| | - Xinghuan Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430071, P.R. China
| | - Xinhua Zhang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430071, P.R. China
| |
Collapse
|
102
|
Mohan DR, Lerario AM, Hammer GD. Therapeutic Targets for Adrenocortical Carcinoma in the Genomics Era. J Endocr Soc 2018; 2:1259-1274. [PMID: 30402590 PMCID: PMC6215083 DOI: 10.1210/js.2018-00197] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 08/10/2018] [Indexed: 01/08/2023] Open
Abstract
Adrenocortical carcinoma (ACC) is a rare and often fatal cancer, affecting ~1 person per million per year worldwide. Approximately 75% of patients with ACC eventually develop metastases and progress on the few available standard-of-care medical therapies, highlighting an incredible need for an improved understanding of the molecular biology of this disease. Although it has long been known that ACC is characterized by certain histological and genetic features (e.g., high mitotic activity, chromosomal instability, and overexpression of IGF2), only in the last two decades of genomics has the molecular landscape of ACC been more thoroughly characterized. In this review, we describe the findings of historical genetics and recent genomics studies on ACC and discuss how underlying concepts emerging from these studies contribute to the current model of critical pathways for adrenocortical carcinogenesis. Integrative synthesis across these studies reveals that ACC consists of three distinct molecular subtypes with divergent clinical outcomes and implicates differential regulation of Wnt signaling, cell cycle, DNA methylation, immune biology, and steroidogenesis in ACC biology. These cellular programs are pharmacologically targetable and may enable the development of therapeutic strategies to improve outcomes for patients facing this devastating disease.
Collapse
Affiliation(s)
- Dipika R Mohan
- Medical Scientist Training Program, University of Michigan, Ann Arbor, Michigan.,Doctoral Program in Cancer Biology, University of Michigan, Ann Arbor, Michigan
| | - Antonio Marcondes Lerario
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, Michigan
| | - Gary D Hammer
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, Michigan.,Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan.,Department of Cell & Developmental Biology, University of Michigan, Ann Arbor, Michigan.,University of Michigan Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
103
|
Abstract
INTRODUCTION Adrenocortical carcinoma (ACC) is a rare cancer, with an incidence less than 0.7-1.5 per 1 million people per year, with a poor prognosis. The overall survival (OS) depends on the ENSAT stage: in particular in metastatic ACC the OS varies from 10 to 20 months, with a 5-year survival around 10%. ACC has a different behavior, probably due to a different biology. For this reason, a careful prognostic classification is mandatory, in order to stratify the patients and propose a specific management. EVIDENCE ACQUISITION Prognostic factors can be divides in three groups: clinical factors (tumor stage, age, hormone-related symptoms), pathological factors (Weiss Score, mitotic count, Ki-67, SF-1 and AVA2, P53, beta-catenin immunohistochemistry, resection status), molecular factors (chromosomal aberrations, methylation profile, altered gene expression and miRNA expression, gene mutations). EVIDENCE SYNTHESIS The best way to stratify ACC patients and propose the best therapeutic option is to combine clinical, pathological and molecular factors. CONCLUSIONS Individualizing patients' prognosis and tumor biology appears as a necessary step for personalized medicine. In addition to tumor stage and tumor grade, the genomic classification may precise the risk stratification and thus help defining therapeutic strategy.
Collapse
Affiliation(s)
- Rossella Libé
- French Network for Adrenal Cancer, Department of Endocrinology, Cochin Hospital, Paris, France -
| |
Collapse
|
104
|
Lotfi CFP, Kremer JL, dos Santos Passaia B, Cavalcante IP. The human adrenal cortex: growth control and disorders. Clinics (Sao Paulo) 2018; 73:e473s. [PMID: 30208164 PMCID: PMC6113920 DOI: 10.6061/clinics/2018/e473s] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 03/26/2018] [Indexed: 12/15/2022] Open
Abstract
This review summarizes key knowledge regarding the development, growth, and growth disorders of the adrenal cortex from a molecular perspective. The adrenal gland consists of two distinct regions: the cortex and the medulla. During embryological development and transition to the adult adrenal gland, the adrenal cortex acquires three different structural and functional zones. Significant progress has been made in understanding the signaling and molecules involved during adrenal cortex zonation. Equally significant is the knowledge obtained regarding the action of peptide factors involved in the maintenance of zonation of the adrenal cortex, such as peptides derived from proopiomelanocortin processing, adrenocorticotropin and N-terminal proopiomelanocortin. Findings regarding the development, maintenance and growth of the adrenal cortex and the molecular factors involved has improved the scientific understanding of disorders that affect adrenal cortex growth. Hypoplasia, hyperplasia and adrenocortical tumors, including adult and pediatric adrenocortical adenomas and carcinomas, are described together with findings regarding molecular and pathway alterations. Comprehensive genomic analyses of adrenocortical tumors have shown gene expression profiles associated with malignancy as well as methylation alterations and the involvement of miRNAs. These findings provide a new perspective on the diagnosis, therapeutic possibilities and prognosis of adrenocortical disorders.
Collapse
Affiliation(s)
- Claudimara Ferini Pacicco Lotfi
- Departamento de Anatomia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP, BR
- *Corresponding author. E-mail:
| | - Jean Lucas Kremer
- Departamento de Anatomia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Barbara dos Santos Passaia
- Departamento de Anatomia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Isadora Pontes Cavalcante
- Departamento de Anatomia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP, BR
| |
Collapse
|
105
|
Yuan L, Qian G, Chen L, Wu CL, Dan HC, Xiao Y, Wang X. Co-expression Network Analysis of Biomarkers for Adrenocortical Carcinoma. Front Genet 2018; 9:328. [PMID: 30158955 PMCID: PMC6104177 DOI: 10.3389/fgene.2018.00328] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 07/31/2018] [Indexed: 01/08/2023] Open
Abstract
Adrenocortical carcinoma (ACC) is a rare malignancy with a poor prognosis. And currently, there are no specific diagnostic biomarkers for ACC. In our study, we aimed to screen biomarkers for disease diagnosis, progression and prognosis. We firstly used the microarray data from public database Gene Expression Omnibus database to construct a weighted gene co-expression network, and then to identify gene modules associated with clinical features of ACC. Though this algorithm, a significant module with R2 = 0.64 (P = 9 × 10-5) was identified. Co-expression network and protein–protein interaction network were performed for screen the candidate hub genes. Checked by The Cancer Genome Atlas (TCGA) database, another independent dataset GSE19750, and GEPIA database, using one-way ANOVA, Pearson’s correlation, survival analysis, diagnostic capacity (ROC curve) and expression level revalidation, a total 12 real hub genes were identified. Gene ontology and KEGG pathway analysis of genes in the significant module revealed that the hub genes are significantly enriched in cell cycle regulation. Moreover, gene set enrichment analysis suggests that the samples with highly expressed hub genes are correlated with cell cycle. Taken together, our integrated analysis has identified 12 hub genes that are associated with the progression and prognosis of ACC; these hub genes might lead to poor outcomes by regulating the cell cycle.
Collapse
Affiliation(s)
- Lushun Yuan
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Guofeng Qian
- Department of Endocrinology, The First Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Liang Chen
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Chin-Lee Wu
- Department of Urology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Han C Dan
- Greenebaum Cancer Center, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Yu Xiao
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.,Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xinghuan Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
106
|
Chortis V, Taylor AE, Doig CL, Walsh MD, Meimaridou E, Jenkinson C, Rodriguez-Blanco G, Ronchi CL, Jafri A, Metherell LA, Hebenstreit D, Dunn WB, Arlt W, Foster PA. Nicotinamide Nucleotide Transhydrogenase as a Novel Treatment Target in Adrenocortical Carcinoma. Endocrinology 2018; 159:2836-2849. [PMID: 29850793 PMCID: PMC6093335 DOI: 10.1210/en.2018-00014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 04/16/2018] [Indexed: 01/13/2023]
Abstract
Adrenocortical carcinoma (ACC) is an aggressive malignancy with poor response to chemotherapy. In this study, we evaluated a potential new treatment target for ACC, focusing on the mitochondrial reduced form of NAD phosphate (NADPH) generator nicotinamide nucleotide transhydrogenase (NNT). NNT has a central role within mitochondrial antioxidant pathways, protecting cells from oxidative stress. Inactivating human NNT mutations result in congenital adrenal insufficiency. We hypothesized that NNT silencing in ACC cells will induce toxic levels of oxidative stress. To explore this, we transiently knocked down NNT in NCI-H295R ACC cells. As predicted, this manipulation increased intracellular levels of oxidative stress; this resulted in a pronounced suppression of cell proliferation and higher apoptotic rates, as well as sensitization of cells to chemically induced oxidative stress. Steroidogenesis was paradoxically stimulated by NNT loss, as demonstrated by mass spectrometry-based steroid profiling. Next, we generated a stable NNT knockdown model in the same cell line to investigate the longer lasting effects of NNT silencing. After long-term culture, cells adapted metabolically to chronic NNT knockdown, restoring their redox balance and resilience to oxidative stress, although their proliferation remained suppressed. This was associated with higher rates of oxygen consumption. The molecular pathways underpinning these responses were explored in detail by RNA sequencing and nontargeted metabolome analysis, revealing major alterations in nucleotide synthesis, protein folding, and polyamine metabolism. This study provides preclinical evidence of the therapeutic merit of antioxidant targeting in ACC as well as illuminating the long-term adaptive response of cells to oxidative stress.
Collapse
Affiliation(s)
- Vasileios Chortis
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, United Kingdom
| | - Angela E Taylor
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, United Kingdom
| | - Craig L Doig
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, United Kingdom
| | - Mark D Walsh
- School of Life Sciences, University of Warwick, Warwick, United Kingdom
| | - Eirini Meimaridou
- Centre for Endocrinology, Queen Mary University of London, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, London, United Kingdom
| | - Carl Jenkinson
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, United Kingdom
| | - Giovanny Rodriguez-Blanco
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
- Phenome Centre Birmingham, University of Birmingham, Birmingham, United Kingdom
| | - Cristina L Ronchi
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, United Kingdom
| | - Alisha Jafri
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, United Kingdom
| | - Louise A Metherell
- Centre for Endocrinology, Queen Mary University of London, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, London, United Kingdom
| | | | - Warwick B Dunn
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
- Phenome Centre Birmingham, University of Birmingham, Birmingham, United Kingdom
| | - Wiebke Arlt
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, United Kingdom
| | - Paul A Foster
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, United Kingdom
| |
Collapse
|
107
|
Giordano TJ. 65 YEARS OF THE DOUBLE HELIX: Classification of endocrine tumors in the age of integrated genomics. Endocr Relat Cancer 2018; 25:T171-T187. [PMID: 29980645 DOI: 10.1530/erc-18-0116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 05/31/2018] [Indexed: 12/26/2022]
Abstract
The classification of human cancers represents one of the cornerstones of modern pathology. Over the last century, surgical pathologists established the current taxonomy of neoplasia using traditional histopathological parameters, which include tumor architecture, cytological features and cellular proliferation. This morphological classification is efficient and robust with high reproducibility and has served patients and health care providers well. The most recent decade has witnessed an explosion of genome-wide molecular genetic and epigenetic data for most cancers, including tumors of endocrine organs. The availability of this expansive multi-dimensional genomic data, collectively termed the cancer genome, has catalyzed a re-examination of the classification of endocrine tumors. Here, recent cancer genome studies of various endocrine tumors, including those of the thyroid, pituitary and adrenal glands, pancreas, small bowel, lung and skin, are presented with special emphasis on how genomic insights are impacting endocrine tumor classification.
Collapse
Affiliation(s)
- Thomas J Giordano
- Divisions of Anatomic Pathology and Molecular & Genomic PathologyDepartments of Pathology and Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
108
|
Pereira SS, Monteiro MP, Bourdeau I, Lacroix A, Pignatelli D. MECHANISMS OF ENDOCRINOLOGY: Cell cycle regulation in adrenocortical carcinoma. Eur J Endocrinol 2018; 179:R95-R110. [PMID: 29773584 DOI: 10.1530/eje-17-0976] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 05/15/2018] [Indexed: 12/27/2022]
Abstract
Adrenocortical carcinomas (ACCs) are rather rare endocrine tumors that often have a poor prognosis. The reduced survival rate associated with these tumors is due to their aggressive biological behavior, combined with the scarcity of effective treatment options that are currently available. The recent identification of the genomic alterations present in ACC have provided further molecular mechanisms to develop consistent strategies for the diagnosis, prevention of progression and treatment of advanced ACCs. Taken together, molecular and genomic advances could be leading the way to develop personalized medicine in ACCs similarly to similar developments in lung or breast cancers. In this review, we focused our attention to systematically compile and summarize the alterations in the cell cycle regulation that were described so far in ACC as they are known to play a crucial role in cell differentiation and growth. We have divided the analysis according to the major transition phases of the cell cycle, G1 to S and G2 to M. We have analyzed the most extensively studied checkpoints: the p53/Rb1 pathway, CDC2/cyclin B and topoisomerases (TOPs). We reached the conclusion that the most important alterations having a potential application in clinical practice are the ones related to p53/Rb1 and TOP 2. We also present a brief description of on-going clinical trials based on molecular alterations in ACC. The drugs have targeted the insulin-like growth factor receptor 1, TOP 2, polo-like kinase1, cyclin-dependent kinase inhibitors, p53 reactivation and CDC25.
Collapse
Affiliation(s)
- Sofia S Pereira
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
- Clinical and Experimental Endocrinology, Department of Anatomy, Multidisciplinary Unit for Biomedical Research (UMIB), Instituto de Ciências Biomédicas Abel Salazar, University of Porto (ICBAS/UP), Porto, Portugal
| | - Mariana P Monteiro
- Clinical and Experimental Endocrinology, Department of Anatomy, Multidisciplinary Unit for Biomedical Research (UMIB), Instituto de Ciências Biomédicas Abel Salazar, University of Porto (ICBAS/UP), Porto, Portugal
| | - Isabelle Bourdeau
- Endocrinology Division, Department of Medicine, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CHUM), Montréal, Canada
| | - André Lacroix
- Endocrinology Division, Department of Medicine, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CHUM), Montréal, Canada
| | - Duarte Pignatelli
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
- Department of Endocrinology, Hospital S. João, Porto, Portugal
| |
Collapse
|
109
|
Altieri B, Colao A, Faggiano A. The role of insulin-like growth factor system in the adrenocortical tumors. MINERVA ENDOCRINOL 2018; 44:43-57. [PMID: 29963827 DOI: 10.23736/s0391-1977.18.02882-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION The different presentation of adrenocortical tumors in benign adenoma (ACA) or adrenocortical carcinoma (ACC) is related to the variability at the molecular level. The insulin-like growth factor (IGF) system is one of the most frequently altered pathways in ACC. In this review we will critically analyze the evidence regarding the pathogenic role of the IGF system in adrenal tumorigenesis, focusing on ACC. We will also examine the preclinical and clinical studies which investigated the targeting of the IGF system as a therapeutic approach in ACC. EVIDENCE ACQUISITION The IGF system plays a crucial role in the embryogenesis of adrenal glands. No significant alterations of the IGF system were observed in ACA. In ACC, the IGF2 overexpression is one of the most frequent molecular change presented in more than 85% of cases. However, IGF2 seems to be only a tumor progression factor which requires additional hits to trigger adrenal tumorigenesis. Also, the IGF1 receptor (IGF1R) appears to be higher expressed in ACC. Many IGF1R target-drugs have been developed to inhibit the activation of the IGF system. EVIDENCE SYNTHESIS Preclinical studies using antibody or tyrosine kinase which target the IGF1R, or the dual-targeting of IGF1R and insulin receptor (IR) reduced ACC cells proliferation both in vitro and in vivo in mouse xenograft model. However, these promising results were not confirmed in clinical trials. CONCLUSIONS Nowadays, predictive markers for the response of target-IGF therapy are missing and further studies which investigate new molecular markers and evaluate the entire IGF receptors, including the IR, are urgently needed.
Collapse
Affiliation(s)
- Barbara Altieri
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Hospital, University of Wuerzburg, Wuerzburg, Germany - .,Department of Clinical Medicine and Surgery, University "Federico II", Naples, Italy -
| | - Annamaria Colao
- Department of Clinical Medicine and Surgery, University "Federico II", Naples, Italy
| | - Antongiulio Faggiano
- Department of Clinical Medicine and Surgery, University "Federico II", Naples, Italy
| |
Collapse
|
110
|
Kiseljak-Vassiliades K, Zhang Y, Kar A, Razzaghi R, Xu M, Gowan K, Raeburn CD, Albuja-Cruz M, Jones KL, Somerset H, Fishbein L, Leong S, Wierman ME. Elucidating the Role of the Maternal Embryonic Leucine Zipper Kinase in Adrenocortical Carcinoma. Endocrinology 2018; 159:2532-2544. [PMID: 29790920 PMCID: PMC6669820 DOI: 10.1210/en.2018-00310] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 04/24/2018] [Indexed: 12/29/2022]
Abstract
Adrenocortical carcinoma (ACC) is an aggressive cancer with a 5-year survival rate <35%. Mortality remains high due to lack of targeted therapies. Using bioinformatic analyses, we identified maternal embryonic leucine zipper kinase (MELK) as 4.1-fold overexpressed in ACC compared with normal adrenal samples. High MELK expression in human tumors correlated with shorter survival and with increased expression of genes involved in cell division and growth. We investigated the functional effects of MELK inhibition using newly developed ACC cell lines with variable MELK expression, CU-ACC1 and CU-ACC2, compared with H295R cells. In vitro treatment with the MELK inhibitor, OTSSP167, resulted in a dose-dependent decrease in rates of cell proliferation, colony formation, and cell survival, with relative sensitivity of each ACC cell line based upon the level of MELK overexpression. To confirm a MELK-specific antitumorigenic effect, MELK was inhibited in H295R cells via multiple short hairpin RNAs. MELK silencing resulted in 1.9-fold decrease in proliferation, and 3- to 10-fold decrease in colony formation in soft agar and clonogenicity assays, respectively. In addition, although MELK silencing had no effect on survival in normoxia, exposure to a hypoxia resulted in a sixfold and eightfold increase in apoptosis as assessed by caspase-3 activation and TUNEL, respectively. Together these data suggest that MELK is a modulator of tumor cell growth and survival in a hypoxic microenvironment in adrenal cancer cells and support future investigation of its role as a therapeutic kinase target in patients with ACC.
Collapse
Affiliation(s)
- Katja Kiseljak-Vassiliades
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, Colorado Anschutz Medical Campus, Aurora, Colorado
- Research Service Veterans Affairs Medical Center, Denver, Colorado
| | - Yu Zhang
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Adwitiya Kar
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Raud Razzaghi
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Mei Xu
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Katherine Gowan
- Department of Pediatrics, Colorado Anschutz Medical Campus, Aurora, Colorado
| | | | - Maria Albuja-Cruz
- Department of Surgery, Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Kenneth L Jones
- Department of Pediatrics, Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Hilary Somerset
- Department of Pathology, Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Lauren Fishbein
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, Colorado Anschutz Medical Campus, Aurora, Colorado
- Research Service Veterans Affairs Medical Center, Denver, Colorado
| | - Stephen Leong
- Division of Medical Oncology, Department of Medicine, Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Margaret E Wierman
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, Colorado Anschutz Medical Campus, Aurora, Colorado
- Research Service Veterans Affairs Medical Center, Denver, Colorado
| |
Collapse
|
111
|
Abstract
Careful morphological evaluation forms the basis of the workup of an adrenal cortical neoplasm. However, the adoption of immunohistochemical biomarkers has added tremendous value to enhance diagnostic accuracy. The authors provide a brief review of immunohistochemical biomarkers that have been used in the confirmation of adrenal cortical origin and in the detection of the source of functional adrenal cortical proliferations, as well as diagnostic, predictive, and prognostic biomarkers of adrenal cortical carcinoma. In addition, a brief section on potential novel theranostic biomarkers in the prediction of treatment response to mitotane and other relevant chemotherapeutic agents is also provided. In the era of precision and personalized medical practice, adoption of combined morphology and immunohistochemistry provides a new approach to the diagnostic workup of adrenal cortical neoplasms, reflecting the evolution of clinical responsibility of pathologists.
Collapse
Affiliation(s)
- Ozgur Mete
- Department of Pathology, University Health Network, 200 Elizabeth Street, 11th floor, Toronto, ON, M5G 2C4, Canada.
| | - Sylvia L Asa
- Department of Pathology, University Health Network, 200 Elizabeth Street, 11th floor, Toronto, ON, M5G 2C4, Canada
| | - Thomas J Giordano
- Departments of Pathology and Internal Medicine, University of Michigan Health System, Ann Arbor, MI, USA
| | - Mauro Papotti
- Department of Pathology, Turin University at Molinette Hospital, Turin, Italy
| | - Hironobu Sasano
- Department of Pathology, Tohoku University School of Medicine, Sendai, Japan
| | - Marco Volante
- Department of Oncology, University of Turin at San Luigi Hospital, Turin University, Orbassano, Turin, Italy
| |
Collapse
|
112
|
The Guardian of the Genome Revisited: p53 Downregulates Genes Required for Telomere Maintenance, DNA Repair, and Centromere Structure. Cancers (Basel) 2018; 10:cancers10050135. [PMID: 29734785 PMCID: PMC5977108 DOI: 10.3390/cancers10050135] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 04/30/2018] [Accepted: 05/02/2018] [Indexed: 02/06/2023] Open
Abstract
The p53 protein has been extensively studied for its capacity to prevent proliferation of cells with a damaged genome. Surprisingly, however, our recent analysis of mice expressing a hyperactive mutant p53 that lacks the C-terminal domain revealed that increased p53 activity may alter genome maintenance. We showed that p53 downregulates genes essential for telomere metabolism, DNA repair, and centromere structure and that a sustained p53 activity leads to phenotypic traits associated with dyskeratosis congenita and Fanconi anemia. This downregulation is largely conserved in human cells, which suggests that our findings could be relevant to better understand processes involved in bone marrow failure as well as aging and tumor suppression.
Collapse
|
113
|
Jouinot A, Bertherat J. MANAGEMENT OF ENDOCRINE DISEASE: Adrenocortical carcinoma: differentiating the good from the poor prognosis tumors. Eur J Endocrinol 2018; 178:R215-R230. [PMID: 29475877 DOI: 10.1530/eje-18-0027] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 02/23/2018] [Indexed: 12/16/2022]
Abstract
Adrenocortical carcinoma (ACC) is a rare malignancy with a poor prognosis, the five-years overall survival being below 40%. However, there is great variability of outcomes and we have now a better view of the heterogeneity of tumor aggressiveness. The extent of the disease at the time of diagnosis, best assayed by the European Network for the Study of Adrenal Tumors (ENSAT) Staging Score, is a major determinant of survival. The tumor grade, including the mitotic count and the Ki67 proliferation index, also appears as a strong prognostic factor. The assessment of tumor grade, even by expert pathologists, still suffers from inter-observer reproducibility. The emergence of genomics in the last decade has revolutionized the knowledge of molecular biology and genetics of cancers. In ACC, genomic approaches - including pan-genomic studies of gene expression (transcriptome), recurrent mutations (exome or whole-genome sequencing), chromosome alterations, DNA methylation (methylome), miRNA expression (miRnome) - converge in a new classification of ACC, characterized by distinct molecular profiles and very different outcomes. Targeted measurements of a few discriminant molecular alterations have been developed in the perspective of clinical routine, and thus, may help defining therapeutic strategy. By individualizing patients' prognosis and tumor biology, these recent progresses appear as an important step forward towards precision medicine.
Collapse
Affiliation(s)
- Anne Jouinot
- Institut CochinINSERM U1016, CNRS UMR8104, Paris Descartes University, Paris, France
- Medical Oncology Reference Center for Rare Adrenal DiseasesDepartment of Endocrinology, Assistance Publique Hôpitaux de Paris, Hôpital Cochin, Paris, France
| | - Jérôme Bertherat
- Institut CochinINSERM U1016, CNRS UMR8104, Paris Descartes University, Paris, France
- Reference Center for Rare Adrenal DiseasesDepartment of Endocrinology, Assistance Publique Hôpitaux de Paris, Hôpital Cochin, Paris, France
| |
Collapse
|
114
|
Armignacco R, Cantini G, Canu L, Poli G, Ercolino T, Mannelli M, Luconi M. Adrenocortical carcinoma: the dawn of a new era of genomic and molecular biology analysis. J Endocrinol Invest 2018; 41:499-507. [PMID: 29080966 DOI: 10.1007/s40618-017-0775-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 09/29/2017] [Indexed: 01/04/2023]
Abstract
Over the last decade, the development of novel and high penetrance genomic approaches to analyze biological samples has provided very new insights in the comprehension of the molecular biology and genetics of tumors. The use of these techniques, consisting of exome sequencing, transcriptome, miRNome, chromosome alteration, genome, and epigenome analysis, has also been successfully applied to adrenocortical carcinoma (ACC). In fact, the analysis of large cohorts of patients allowed the stratification of ACC with different patterns of molecular alterations, associated with different outcomes, thus providing a novel molecular classification of the malignancy to be associated with the classical pathological analysis. Improving our knowledge about ACC molecular features will result not only in a better diagnostic and prognostic accuracy, but also in the identification of more specific therapeutic targets for the development of more effective pharmacological anti-cancer approaches. In particular, the specific molecular alteration profiles identified in ACC may represent targetable events by the use of already developed or newly designed drugs enabling a better and more efficacious management of the ACC patient in the context of new frontiers of personalized precision medicine.
Collapse
Affiliation(s)
- R Armignacco
- Endocrinology Unit, Department of Clinical and Experimental Biomedical Sciences "Mario Serio", University of Florence, Viale Pieraccini, 6, 50139, Florence, Italy
| | - G Cantini
- Endocrinology Unit, Department of Clinical and Experimental Biomedical Sciences "Mario Serio", University of Florence, Viale Pieraccini, 6, 50139, Florence, Italy
| | - L Canu
- Endocrinology Unit, Department of Clinical and Experimental Biomedical Sciences "Mario Serio", University of Florence, Viale Pieraccini, 6, 50139, Florence, Italy
| | - G Poli
- Endocrinology Unit, Department of Clinical and Experimental Biomedical Sciences "Mario Serio", University of Florence, Viale Pieraccini, 6, 50139, Florence, Italy
| | - T Ercolino
- Endocrinology Unit, Department of Clinical and Experimental Biomedical Sciences "Mario Serio", University of Florence, Viale Pieraccini, 6, 50139, Florence, Italy
| | - M Mannelli
- Endocrinology Unit, Department of Clinical and Experimental Biomedical Sciences "Mario Serio", University of Florence, Viale Pieraccini, 6, 50139, Florence, Italy
| | - M Luconi
- Endocrinology Unit, Department of Clinical and Experimental Biomedical Sciences "Mario Serio", University of Florence, Viale Pieraccini, 6, 50139, Florence, Italy.
| |
Collapse
|
115
|
Agosta C, Laugier J, Guyon L, Denis J, Bertherat J, Libé R, Boisson B, Sturm N, Feige JJ, Chabre O, Cherradi N. MiR-483-5p and miR-139-5p promote aggressiveness by targeting N-myc downstream-regulated gene family members in adrenocortical cancer. Int J Cancer 2018. [PMID: 29516499 DOI: 10.1002/ijc.31363] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Adrenocortical carcinoma (ACC) is a tumor with poor prognosis in which overexpression of a panel of microRNAs has been associated with malignancy but a very limited number of investigations on their role in ACC pathogenesis have been conducted. We examined the involvement of miR-483-5p and miR-139-5p in adrenocortical cancer aggressiveness. Using bioinformatics predictions and mRNA/miRNA expression profiles, we performed an integrated analysis to identify inversely correlated miRNA-mRNA pairs in ACC. We identified N-myc downstream-regulated gene family members 2 and 4 (NDRG2 and NDRG4) as targets of miR-483-5p and miR-139-5p, respectively. NDRG2 and NDRG4 expressions were inversely correlated respectively with miR-483-5p and miR-139-5p levels in aggressive ACC samples from two independent cohorts of 20 and 44 ACC. Moreover, upregulation of miR-139-5p and downregulation of NDRG4 demonstrated a striking prognostic value. A direct interaction between miR-483-5p or miR-139-5p and their targets was demonstrated in reporter assays. Downregulation of miR-483-5p or miR-139-5p in the ACC cell lines NCI-H295R and SW13 increased NDRG2 or NDRG4 mRNA and protein expression, compromised adrenocortical cancer cell invasiveness and anchorage-independent growth. MiR-483-5p or miR-139-5p overexpression and NDRG2 or NDRG4 inhibition produce similar changes, which are rescued by NDRG2 or NDRG4 ectopic expression. We established that key factors mediating epithelial-to-mesenchymal transition are downstream effectors of miR-483-5p/NDRG2 and miR-139-5p/NDRG4 pathways. Collectively, our data show for the first time that miR-483-5p/NDRG2 and miR-139-5p/NDRG4 axes promote ACC aggressiveness, with potential implications for prognosis and therapeutic interventions in adrenocortical malignancies.
Collapse
Affiliation(s)
- Claire Agosta
- Centre Hospitalier Universitaire Grenoble Alpes, Service d'Endocrinologie, Grenoble, France.,Institut National de la Santé et de la Recherche Médicale, Unité 1036, Grenoble, France.,Commissariat à l'Energie Atomique, Biologie du Cancer et de l'Infection, Institut de Biosciences et Biotechnologies de Grenoble, Grenoble, France.,Université Grenoble Alpes, Unité Mixte de Recherche-S1036, Grenoble, France
| | - Jonathan Laugier
- Institut National de la Santé et de la Recherche Médicale, Unité 1036, Grenoble, France.,Commissariat à l'Energie Atomique, Biologie du Cancer et de l'Infection, Institut de Biosciences et Biotechnologies de Grenoble, Grenoble, France.,Université Grenoble Alpes, Unité Mixte de Recherche-S1036, Grenoble, France
| | - Laurent Guyon
- Institut National de la Santé et de la Recherche Médicale, Unité 1036, Grenoble, France.,Commissariat à l'Energie Atomique, Biologie du Cancer et de l'Infection, Institut de Biosciences et Biotechnologies de Grenoble, Grenoble, France.,Université Grenoble Alpes, Unité Mixte de Recherche-S1036, Grenoble, France
| | - Josiane Denis
- Institut National de la Santé et de la Recherche Médicale, Unité 1036, Grenoble, France.,Commissariat à l'Energie Atomique, Biologie du Cancer et de l'Infection, Institut de Biosciences et Biotechnologies de Grenoble, Grenoble, France.,Université Grenoble Alpes, Unité Mixte de Recherche-S1036, Grenoble, France
| | - Jérôme Bertherat
- Université Paris Descartes, Paris, France.,Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique UMR 8104, Unité 1016, Institut Cochin, Paris, France.,Département d'Endocrinologie, Centre Expert Cancers Rares de la Surrénale, Assistance Publique Hôpitaux de Paris, Hôpital Cochin, Paris, France
| | - Rossella Libé
- Université Paris Descartes, Paris, France.,Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique UMR 8104, Unité 1016, Institut Cochin, Paris, France.,Département d'Endocrinologie, Centre Expert Cancers Rares de la Surrénale, Assistance Publique Hôpitaux de Paris, Hôpital Cochin, Paris, France
| | - Bruno Boisson
- Centre Hospitalier Universitaire Grenoble Alpes, Institut de Biologie et de Pathologie, Grenoble, France
| | - Nathalie Sturm
- Centre Hospitalier Universitaire Grenoble Alpes, Institut de Biologie et de Pathologie, Grenoble, France
| | - Jean-Jacques Feige
- Institut National de la Santé et de la Recherche Médicale, Unité 1036, Grenoble, France.,Commissariat à l'Energie Atomique, Biologie du Cancer et de l'Infection, Institut de Biosciences et Biotechnologies de Grenoble, Grenoble, France.,Université Grenoble Alpes, Unité Mixte de Recherche-S1036, Grenoble, France
| | - Olivier Chabre
- Centre Hospitalier Universitaire Grenoble Alpes, Service d'Endocrinologie, Grenoble, France.,Institut National de la Santé et de la Recherche Médicale, Unité 1036, Grenoble, France.,Commissariat à l'Energie Atomique, Biologie du Cancer et de l'Infection, Institut de Biosciences et Biotechnologies de Grenoble, Grenoble, France.,Université Grenoble Alpes, Unité Mixte de Recherche-S1036, Grenoble, France
| | - Nadia Cherradi
- Institut National de la Santé et de la Recherche Médicale, Unité 1036, Grenoble, France.,Commissariat à l'Energie Atomique, Biologie du Cancer et de l'Infection, Institut de Biosciences et Biotechnologies de Grenoble, Grenoble, France.,Université Grenoble Alpes, Unité Mixte de Recherche-S1036, Grenoble, France
| |
Collapse
|
116
|
Bonnet-Serrano F, Bertherat J. Genetics of tumors of the adrenal cortex. Endocr Relat Cancer 2018; 25:R131-R152. [PMID: 29233839 DOI: 10.1530/erc-17-0361] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 12/12/2017] [Indexed: 01/23/2023]
Abstract
This review describes the molecular alterations observed in the various types of tumors of the adrenal cortex, excluding Conn adenomas, especially the alterations identified by genomic approaches these last five years. Two main forms of bilateral adrenocortical tumors can be distinguished according to size and aspect of the nodules: primary pigmented nodular adrenal disease (PPNAD), which can be sporadic or part of Carney complex and primary bilateral macro nodular adrenal hyperplasia (PBMAH). The bilateral nature of the tumors suggests the existence of an underlying genetic predisposition. PPNAD and Carney complex are mainly due to germline-inactivating mutations of PRKAR1A, coding for a regulatory subunit of PKA, whereas PBMAH genetic seems more complex. However, genome-wide approaches allowed the identification of a new tumor suppressor gene, ARMC5, whose germline alteration could be responsible for at least 25% of PBMAH cases. Unilateral adrenocortical tumors are more frequent, mostly adenomas. The Wnt/beta-catenin pathway can be activated in both benign and malignant tumors by CTNNB1 mutations and by ZNRF3 inactivation in adrenal cancer (ACC). Some other signaling pathways are more specific of the tumor dignity. Thus, somatic mutations of cAMP/PKA pathway genes, mainly PRKACA, coding for the catalytic alpha-subunit of PKA, are found in cortisol-secreting adenomas, whereas IGF-II overexpression and alterations of p53 signaling pathway are observed in ACC. Genome-wide approaches including transcriptome, SNP, methylome and miRome analysis have identified new genetic and epigenetic alterations and the further clustering of ACC in subgroups associated with different prognosis, allowing the development of new prognosis markers.
Collapse
Affiliation(s)
- Fidéline Bonnet-Serrano
- Institut CochinINSERM U1016, CNRS UMR8104, Paris Descartes University, Paris, France
- Hormonal Biology LaboratoryAssistance Publique Hôpitaux de Paris, Hôpital Cochin, Paris, France
| | - Jérôme Bertherat
- Institut CochinINSERM U1016, CNRS UMR8104, Paris Descartes University, Paris, France
- Department of EndocrinologyAssistance Publique Hôpitaux de Paris, Hôpital Cochin, Paris, France
| |
Collapse
|
117
|
Altieri B, Sbiera S, Della Casa S, Weigand I, Wild V, Steinhauer S, Fadda G, Kocot A, Bekteshi M, Mambretti EM, Rosenwald A, Pontecorvi A, Fassnacht M, Ronchi CL. Livin/BIRC7 expression as malignancy marker in adrenocortical tumors. Oncotarget 2018; 8:9323-9338. [PMID: 28030838 PMCID: PMC5354734 DOI: 10.18632/oncotarget.14067] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 12/15/2016] [Indexed: 11/25/2022] Open
Abstract
Livin/BIRC7 is a member of the inhibitors of apoptosis proteins family, which are involved in tumor development through the inhibition of caspases. Aim was to investigate the expression of livin and other members of its pathway in adrenocortical tumors and in the adrenocortical carcinoma (ACC) cell line NCI-H295R. The mRNA expression of livin, its isoforms α and β, XIAP, CASP3 and DIABLO was evaluated by qRT-PCR in 82 fresh-frozen adrenal tissues (34 ACC, 25 adenomas = ACA, 23 normal adrenal glands = NAG). Livin protein expression was assessed by immunohistochemistry in 270 paraffin-embedded tissues (192 ACC, 58 ACA, 20 NAG). Livin, CASP3 and cleaved caspase-3 were evaluated in NCI-H295R after induction of livin overexpression. Relative livin mRNA expression was significantly higher in ACC than in ACA and NAG (0.060 ± 0.116 vs 0.004 ± 0.014 and 0.002 ± 0.009, respectively, p < 0.01), being consistently higher in tumors than in adjacent NAG and isoform β more expressed than α. No significant differences in CASP3, XIAP and DIABLO levels were found among these groups. In immunohistochemistry, livin was localized in both cytoplasm and nuclei. The ratio between cytoplasmic and nuclear staining was significantly higher in ACC (1.51 ± 0.66) than in ACA (0.80 ± 0.35) and NAG (0.88 ± 0.27; p < 0.0001). No significant correlations were observed between livin expression and histopathological parameters or clinical outcome. In NCI-H295R cells, the livin overexpression slightly reduced the activation of CASP3, but did not correlate with cell viability. In conclusion, livin is specifically over-expressed in ACC, suggesting that it might be involved in adrenocortical tumorigenesis and represent a new molecular marker of malignancy.
Collapse
Affiliation(s)
- Barbara Altieri
- Department of Internal Medicine I, Division of Endocrinology and Diabetes, University Hospital of Wuerzburg, Germany.,Division of Endocrinology and Metabolic Diseases, Catholic University of the Sacred Heart, Rome, Italy
| | - Silviu Sbiera
- Comprehensive Cancer Center Mainfranken, University of Wuerzburg, Germany
| | - Silvia Della Casa
- Division of Endocrinology and Metabolic Diseases, Catholic University of the Sacred Heart, Rome, Italy
| | - Isabel Weigand
- Department of Internal Medicine I, Division of Endocrinology and Diabetes, University Hospital of Wuerzburg, Germany
| | - Vanessa Wild
- Comprehensive Cancer Center Mainfranken, University of Wuerzburg, Germany.,Department of Pathology, University of Wuerzburg, Germany
| | - Sonja Steinhauer
- Department of Internal Medicine I, Division of Endocrinology and Diabetes, University Hospital of Wuerzburg, Germany
| | - Guido Fadda
- Division of Anatomic Pathology and Histology, Catholic University of the Sacred Heart, Rome, Italy
| | - Arkadius Kocot
- Department of Urology, University Hospital of Wuerzburg, Germany
| | - Michaela Bekteshi
- Department of Internal Medicine I, Division of Endocrinology and Diabetes, University Hospital of Wuerzburg, Germany
| | - Egle M Mambretti
- Department of Anesthesiology and Critical Care, University Hospital of Wuerzburg, Germany
| | | | - Alfredo Pontecorvi
- Division of Endocrinology and Metabolic Diseases, Catholic University of the Sacred Heart, Rome, Italy
| | - Martin Fassnacht
- Department of Internal Medicine I, Division of Endocrinology and Diabetes, University Hospital of Wuerzburg, Germany.,Comprehensive Cancer Center Mainfranken, University of Wuerzburg, Germany
| | - Cristina L Ronchi
- Department of Internal Medicine I, Division of Endocrinology and Diabetes, University Hospital of Wuerzburg, Germany
| |
Collapse
|
118
|
Lalli E, Luconi M. The next step: mechanisms driving adrenocortical carcinoma metastasis. Endocr Relat Cancer 2018; 25:R31-R48. [PMID: 29142005 DOI: 10.1530/erc-17-0440] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 11/15/2017] [Indexed: 12/20/2022]
Abstract
Endocrine tumors have the peculiarity to become clinically evident not only due to symptoms related to space occupation by the growing lesion, similarly to most other tumors, but also, and most often, because of their specific hormonal secretion, which significantly contributes to their pathological burden. Malignant endocrine tumors, in addition, have the ability to produce distant metastases. Here, we critically review the current knowledge about mechanisms and biomarkers characterizing the metastatic process in adrenocortical carcinoma (ACC), a rare endocrine malignancy with a high risk of relapse and metastatization even when the primary tumor is diagnosed and surgically removed at an early stage. We highlight perspectives of future research in the domain and possible new therapeutic avenues based on targeting factors having an important role in the metastatic process of ACC.
Collapse
Affiliation(s)
- Enzo Lalli
- Université Côte d'AzurValbonne, France
- CNRS UMR7275Valbonne, France
- NEOGENEX CNRS International Associated LaboratoryValbonne, France
- Institut de Pharmacologie Moléculaire et CellulaireValbonne, France
| | - Michaela Luconi
- Department of Experimental and Clinical Biomedical Sciences 'Mario Serio'University of Florence, Florence, Italy
| |
Collapse
|
119
|
Payabyab EC, Balasubramaniam S, Edgerly M, Velarde M, Merino MJ, Venkatesan AM, Leuva H, Litman T, Bates SE, Fojo T. Adrenocortical Cancer: A Molecularly Complex Disease Where Surgery Matters. Clin Cancer Res 2018; 22:4989-5000. [PMID: 27742785 DOI: 10.1158/1078-0432.ccr-16-1570] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 08/24/2016] [Indexed: 11/16/2022]
Abstract
The development of new therapies has lagged behind for rare cancers without defined therapeutic targets. Adrenocortical cancer is no exception. Mitotane, an older agent considered "adrenolytic," is used both to control symptoms in advanced disease and as adjuvant therapy after surgical resection. Molecular characterization of adrenocortical cancer has deepened our understanding of this genetically complex disease while identifying subgroups whose importance remains to be determined. Unfortunately, such studies have yet to demonstrate a therapeutic target for drug development, and to date, no targeted therapy has achieved meaningful outcomes. Consequently, first-line therapy for metastatic disease remains a combination regimen of etoposide, doxorubicin, and cisplatinum established in a randomized clinical trial. In addition to evaluating recent studies in adrenocortical cancer, we raise one critical clinical issue-the risk of peritoneal dissemination following laparoscopic resection of adrenocortical cancer. In a retrospective case series of 267 patients referred to the NCI for the treatment of recurrent or advanced adrenocortical cancer, we found extensive peritoneal dissemination in 25 of the 45 patients (55.6%) who had undergone laparoscopic resection, compared with only 7 of the 222 patients (3%) who had undergone an open resection (P < 0.0001). Although this has been debated in the literature, our data argue for an end to laparoscopic resection of adrenocortical cancers to avoid peritoneal dissemination, a complication of laparoscopy that is uniformly fatal. Clin Cancer Res; 22(20); 4989-5000. ©2016 AACR SEE ALL ARTICLES IN THIS CCR FOCUS SECTION, "ENDOCRINE CANCERS REVISING PARADIGMS".
Collapse
Affiliation(s)
- Eden C Payabyab
- Surgery Branch and Thoracic & GI Oncology Branch, NCI, NIH, Bethesda, Maryland
| | - Sanjeeve Balasubramaniam
- Division of Oncology Products 1, OHOP, CDER, U.S. Food and Drug Administration, Silver Spring, Maryland
| | - Maureen Edgerly
- Medical Oncology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Margarita Velarde
- Medical Oncology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Maria J Merino
- Laboratory of Pathology, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Aradhana M Venkatesan
- Department of Diagnostic Radiology, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Harshraj Leuva
- James J. Peters Veterans Administration Medical Center, Bronx, New York
| | - Thomas Litman
- Medical Biostatistics, University of Copenhagen, Copenhagen, Denmark
| | - Susan E Bates
- James J. Peters Veterans Administration Medical Center, Bronx, New York. Division of Medical Oncology, Department of Medicine, Columbia University Medical Center, New York, New York
| | - Tito Fojo
- James J. Peters Veterans Administration Medical Center, Bronx, New York. Division of Medical Oncology, Department of Medicine, Columbia University Medical Center, New York, New York.
| |
Collapse
|
120
|
Passaia BDS, Dias MH, Kremer JL, Antonini SRR, de Almeida MQ, Fragoso MCBV, Lotfi CFP. TCF21/POD-1, a Transcritional Regulator of SF-1/NR5A1, as a Potential Prognosis Marker in Adult and Pediatric Adrenocortical Tumors. Front Endocrinol (Lausanne) 2018; 9:38. [PMID: 29520253 PMCID: PMC5827685 DOI: 10.3389/fendo.2018.00038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
With recent progress in understanding the pathogenesis of adrenocortical tumors (ACTs), identification of molecular markers to predict their prognosis has become possible. Transcription factor 21 (TCF21)/podocyte-expressed 1 (POD1) is a transcriptional regulatory protein expressed in mesenchymal cells at sites of epithelial-mesenchymal transition during the development of different systems. Adult carcinomas express less TCF21 than adenomas, in addition, the KEGG pathway analysis has shown that BUB1B, among others genes, is negatively correlated with TCF21 expression. The difference between BUB1B and PTEN-induced putative kinase 1 (PINK1) expression has been described previously to be associated with survival in adult but not in pediatric carcinomas. Here, we analyzed the gene expression of TCF21, BUB1B, PINK1, and NR5A1 in adult and pediatric ACTs. We found a negative correlation between the relative expression levels of TCF21 and BUB1B in adult ACTs, but the relative expression levels of TCF21, BUB1B, PINK1, and NR5A1 were similar in childhood ACTs. In addition, we propose using the subtracted expression levels of the TCF21/POD-1 genes as a predictor of overall survival (OS) in adult carcinomas and TCF21-NR5A1 as a predictor of malignancy for pediatric tumors in patients aged <5 years. These results require further validation in different cohorts of both adult and pediatric samples. Finally, we observed that the OS for patients aged <5 years was markedly favorable compared with that for patients >5 years as well as adult patients with carcinoma. In summary, we propose TCF21/POD-1 as a new prognostic marker in adult and pediatric ACTs.
Collapse
Affiliation(s)
| | - Matheus Henrique Dias
- Special Laboratory of Applied Toxicology (LETA), Butantan Institute, São Paulo, Brazil
| | - Jean Lucas Kremer
- Department of Anatomy, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Sonir Roberto Rauber Antonini
- Department of Pediatrics and Puericulture, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Madson Queiroz de Almeida
- Adrenal Unit, Hormone and Molecular Genetic Laboratory/LIM42, Hospital of Clinics, School of Medicine, University of São Paulo, São Paulo, Brazil
| | | | - Claudimara Ferini Pacicco Lotfi
- Department of Anatomy, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
- *Correspondence: Claudimara Ferini Pacicco Lotfi,
| |
Collapse
|
121
|
Hadjadj D, Kim SJ, Denecker T, Driss LB, Cadoret JC, Maric C, Baldacci G, Fauchereau F. A hypothesis-driven approach identifies CDK4 and CDK6 inhibitors as candidate drugs for treatments of adrenocortical carcinomas. Aging (Albany NY) 2017; 9:2695-2716. [PMID: 29283884 PMCID: PMC5764399 DOI: 10.18632/aging.101356] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 12/17/2017] [Indexed: 12/17/2022]
Abstract
High proliferation rate and high mutation density are both indicators of poor prognosis in adrenocortical carcinomas. We performed a hypothesis-driven association study between clinical features in adrenocortical carcinomas and the expression levels of 136 genes involved in DNA metabolism and G1/S phase transition. In 79 samples downloaded from The Cancer Genome Atlas portal, high Cyclin Dependent Kinase 6 (CDK6) mRNA levels gave the most significant association with shorter time to relapse and poorer survival of patients. A hierarchical clustering approach assembled most tumors with high levels of CDK6 mRNA into one group. These tumors tend to cumulate mutations activating the Wnt/β-catenin pathway and show reduced MIR506 expression. Actually, the level of MIR506 RNA is inversely correlated with the levels of both CDK6 and CTNNB1 (encoding β-catenin). Together these results indicate that high CDK6 expression is found in aggressive tumors with activated Wnt/β-catenin pathway. Thus we tested the impact of Food and Drug Administration-approved CDK4 and CDK6 inhibitors, namely palbociclib and ribociclib, on SW-13 and NCI-H295R cells. While both drugs reduced viability and induced senescence in SW-13 cells, only palbociclib was effective on the retinoblastoma protein (pRB)-negative NCI-H295R cells, by inducing apoptosis. In NCI-H295R cells, palbociclib induced an increase of the active form of Glycogen Synthase Kinase 3β (GSK3β) responsible for the reduced amount of active β-catenin, and altered the amount of AXIN2 mRNA. Taken together, these data underline the impact of CDK4 and CDK6 inhibitors in treating adrenocortical carcinomas.
Collapse
Affiliation(s)
- Djihad Hadjadj
- Pathologies de la Réplication de l'ADN, Université Paris-Diderot – Paris 7, Sorbonne Paris Cité, CNRS UMR7592, Institut Jacques-Monod, 75205 Paris Cedex 13, France
| | - Su-Jung Kim
- Pathologies de la Réplication de l'ADN, Université Paris-Diderot – Paris 7, Sorbonne Paris Cité, CNRS UMR7592, Institut Jacques-Monod, 75205 Paris Cedex 13, France
| | - Thomas Denecker
- Pathologies de la Réplication de l'ADN, Université Paris-Diderot – Paris 7, Sorbonne Paris Cité, CNRS UMR7592, Institut Jacques-Monod, 75205 Paris Cedex 13, France
| | - Laura Ben Driss
- Pathologies de la Réplication de l'ADN, Université Paris-Diderot – Paris 7, Sorbonne Paris Cité, CNRS UMR7592, Institut Jacques-Monod, 75205 Paris Cedex 13, France
| | - Jean-Charles Cadoret
- Pathologies de la Réplication de l'ADN, Université Paris-Diderot – Paris 7, Sorbonne Paris Cité, CNRS UMR7592, Institut Jacques-Monod, 75205 Paris Cedex 13, France
| | - Chrystelle Maric
- Pathologies de la Réplication de l'ADN, Université Paris-Diderot – Paris 7, Sorbonne Paris Cité, CNRS UMR7592, Institut Jacques-Monod, 75205 Paris Cedex 13, France
| | - Giuseppe Baldacci
- Pathologies de la Réplication de l'ADN, Université Paris-Diderot – Paris 7, Sorbonne Paris Cité, CNRS UMR7592, Institut Jacques-Monod, 75205 Paris Cedex 13, France
| | - Fabien Fauchereau
- Pathologies de la Réplication de l'ADN, Université Paris-Diderot – Paris 7, Sorbonne Paris Cité, CNRS UMR7592, Institut Jacques-Monod, 75205 Paris Cedex 13, France
- ePôle de Génoinformatique, Université Paris-Diderot – Paris 7, Sorbonne Paris Cité, CNRS UMR7592, Institut Jacques-Monod, 75205 Paris Cedex 13, France
| |
Collapse
|
122
|
Nicolson NG, Man J, Carling T. Advances in understanding the molecular underpinnings of adrenocortical tumors. Curr Opin Oncol 2017; 30:16-22. [PMID: 29028646 DOI: 10.1097/cco.0000000000000415] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW Adrenocortical tumors are divided into benign adenomas and malignant carcinomas. The former is relatively common and carries a favorable prognosis, whereas the latter is rare and frequently presents at an advanced stage, with poor outcomes. Advances in next-generation sequencing, genome analysis, and bioinformatics have allowed for high-throughput molecular characterization of adrenal tumorigenesis. RECENT FINDINGS Although recent genomic, epigenomic, and transcriptomic studies in large tumor cohorts have confirmed the central roles of aberrant Wnt/ß-catenin signaling, constitutive protein kinase A pathway activation, cell cycle dysregulation, and ion channelopathies in adrenal tumorigenesis, these studies also revealed novel signature events underlying malignant differentiation of adrenocortical carcinomas. SUMMARY Recent advances in understanding of the molecular mechanisms underlying adrenocortical tumorigenesis provide new molecular diagnostic and prognostic tools and opportunities for novel therapeutic approaches. These findings are particularly important in adrenocortical carcinoma, for which current treatment options are limited.
Collapse
Affiliation(s)
- Norman G Nicolson
- Section of Endocrine Surgery, Yale Endocrine Neoplasia Laboratory, Department of Surgery, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | |
Collapse
|
123
|
Romero Arenas MA, Whitsett TG, Aronova A, Henderson SA, LoBello J, Habra MA, Grubbs EG, Lee JE, Sircar K, Zarnegar R, Scognamiglio T, Fahey TJ, Perrier ND, Demeure MJ. Protein Expression of PTTG1 as a Diagnostic Biomarker in Adrenocortical Carcinoma. Ann Surg Oncol 2017; 25:801-807. [PMID: 29218429 DOI: 10.1245/s10434-017-6297-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Indexed: 11/18/2022]
Abstract
BACKGROUND Adrenocortical carcinoma (ACC) has a poor prognosis and there is an unmet clinical need for biomarkers to improve both diagnostic and prognostic assessment. Pituitary-tumor transforming gene (PTTG1) has been shown to modulate cancer invasiveness and response to therapy. The potential role of PTTG1 protein levels in ACC has not been previously addressed. We assessed whether increased nuclear protein expression of PTTG1 distinguished ACCs from adrenocortical adenomas (ACAs). METHODS Patients with ACC or ACA were identified from prospective tissue banks at two independent institutions. Two tissue microarrays (TMAs) consisting of adrenal specimens from 131 patients were constructed and clinically annotated. Immunohistochemical analysis for PTTG1 and Ki-67 was performed on each TMA. RESULTS TMA-1 (n = 80) contained 20 normal adrenals, 20 ACAs, and 40 ACCs, and the validation, TMA-2 (n = 51), consisted of 10 normal adrenals, 14 ACAs, and 27 ACCs. On TMA-1, nuclear staining of PTTG1 was detected in 12 (31%) ACC specimens, while all ACAs and normal adrenal glands were negative for PTTG1. On TMA-2, 20 (74%) of the ACC tumors demonstrated PTTG1 nuclear staining of PTTG1, and 13 (93%) ACA and 4 (44%) normal adrenal glands were negative for PTTG1. ACC tumors with increased PTTG1 protein staining had a significantly higher Ki-67 index (p < 0.001) than those with lower levels of PTTG1. CONCLUSIONS Increased nuclear protein expression of PTTG1 was observed in malignant adrenal tumors. PTTG1 correlated with Ki-67 in two independent TMAs. PTTG1 is a promising biologic marker in the evaluation of adrenal tumors.
Collapse
Affiliation(s)
| | | | - Anna Aronova
- Weill Cornell Medical College, New York, NY, USA
| | | | - Janine LoBello
- Translational Genomics Research Institute, Phoenix, AZ, USA
| | | | | | - Jeffrey E Lee
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kanishka Sircar
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | | | - Nancy D Perrier
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | | |
Collapse
|
124
|
Role of Scaffold Protein Proline-, Glutamic Acid-, and Leucine-Rich Protein 1 (PELP1) in the Modulation of Adrenocortical Cancer Cell Growth. Cells 2017; 6:cells6040042. [PMID: 29112114 PMCID: PMC5755500 DOI: 10.3390/cells6040042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 11/02/2017] [Accepted: 11/03/2017] [Indexed: 12/13/2022] Open
Abstract
PELP1 acts as an estrogen receptor (ER) coactivator that exerts an essential role in the ER's functions. ER coregulators have a critical role in the progression and response to hormonal treatment of estrogen-dependent tumors. We previously demonstrated that, in adrenocortical carcinoma (ACC), ERα is upregulated and that estradiol activates the IGF-II/IGF1R signaling pathways defining the role of this functional cross-talk in H295R ACC cell proliferation. The aim of this study was to determine if PELP1 is expressed in ACC and may play a role in promoting the interaction between ERα and IGF1R allowing the activation of pathways important for ACC cell growth. The expression of PELP1 was detected by Western blot analysis in ACC tissues and in H295R cells. H295R cell proliferation decrease was assessed by A3-(4,5-Dimethylthiaoly)-2,5-diphenyltetrazolium bromide (MTT) assay and [3H] thymidine incorporation. PELP1 is expressed in ACC tissues and in H295R cells. Moreover, treatment of H295R with E2 or IGF-II induced a multiprotein complex formation consisting of PELP1, IGF1R, ERα, and Src that is involved in ERK1/2 rapid activation. PELP1/ER/IGF1R/c-Src complex identification as part of E2- and IGF-II-dependent signaling in ACC suggests PELP1 is a novel and more efficient potential target to reduce ACC growth.
Collapse
|
125
|
Marti N, Malikova J, Galván JA, Aebischer M, Janner M, Sumnik Z, Obermannova B, Escher G, Perren A, Flück CE. Androgen production in pediatric adrenocortical tumors may occur via both the classic and/or the alternative backdoor pathway. Mol Cell Endocrinol 2017; 452:64-73. [PMID: 28501574 DOI: 10.1016/j.mce.2017.05.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 04/24/2017] [Accepted: 05/09/2017] [Indexed: 11/27/2022]
Abstract
Children with adrenocortical tumors (ACTs) often present with virilization due to high tumoral androgen production, with dihydrotestosterone (DHT) as most potent androgen. Recent work revealed two pathways for DHT biosynthesis, the classic and the backdoor pathway. Usage of alternate routes for DHT production has been reported in castration-resistant prostate cancer, CAH and PCOS. To assess whether the backdoor pathway may contribute to the virilization of pediatric ACTs, we investigated seven children suffering from androgen producing tumors using steroid profiling and immunohistochemical expression studies. All cases produced large amounts of androgens of the classic and/or backdoor pathway. Variable expression of steroid enzymes was observed in carcinomas and adenomas. We found no discriminative pattern. This suggests that enhanced androgen production in pediatric ACTs is the result of deregulated steroidogenesis through multiple steroid pathways. Thus future treatments of ACTs targeting androgen overproduction should consider these novel steroid production pathways.
Collapse
Affiliation(s)
- Nesa Marti
- Pediatric Endocrinology and Diabetology, Department of Pediatrics, Switzerland; Department of Clinical Research, Inselspital, Bern University Hospital, University of Bern, Switzerland; Graduate School Bern, University of Bern, Switzerland
| | - Jana Malikova
- Pediatric Endocrinology and Diabetology, Department of Pediatrics, Switzerland; Department of Clinical Research, Inselspital, Bern University Hospital, University of Bern, Switzerland; Department of Pediatrics, 2(nd) Faculty of Medicine, Charles University in Prague, University Hospital Motol, Prague, Czech Republic
| | - José A Galván
- Institute of Pathology, University of Bern, Switzerland
| | - Maude Aebischer
- Pediatric Endocrinology and Diabetology, Department of Pediatrics, Switzerland
| | - Marco Janner
- Pediatric Endocrinology and Diabetology, Department of Pediatrics, Switzerland
| | - Zdenek Sumnik
- Department of Pediatrics, 2(nd) Faculty of Medicine, Charles University in Prague, University Hospital Motol, Prague, Czech Republic
| | - Barbora Obermannova
- Department of Pediatrics, 2(nd) Faculty of Medicine, Charles University in Prague, University Hospital Motol, Prague, Czech Republic
| | - Genevieve Escher
- Department of Clinical Research, Inselspital, Bern University Hospital, University of Bern, Switzerland; Department of Nephrology and Hypertension, Bern University Hospital, University of Bern, Switzerland
| | - Aurel Perren
- Institute of Pathology, University of Bern, Switzerland
| | - Christa E Flück
- Pediatric Endocrinology and Diabetology, Department of Pediatrics, Switzerland; Department of Clinical Research, Inselspital, Bern University Hospital, University of Bern, Switzerland.
| |
Collapse
|
126
|
Sbiera S, Sbiera I, Ruggiero C, Doghman-Bouguerra M, Korpershoek E, de Krijger RR, Ettaieb H, Haak H, Volante M, Papotti M, Reimondo G, Terzolo M, Luconi M, Nesi G, Mannelli M, Libé R, Ragazzon B, Assié G, Bertherat J, Altieri B, Fadda G, Rogowski-Lehmann N, Reincke M, Beuschlein F, Fassnacht M, Lalli E. Assessment of VAV2 Expression Refines Prognostic Prediction in Adrenocortical Carcinoma. J Clin Endocrinol Metab 2017; 102:3491-3498. [PMID: 28911143 DOI: 10.1210/jc.2017-00984] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 06/28/2017] [Indexed: 11/19/2022]
Abstract
CONTEXT Adrenocortical carcinoma (ACC) is a rare endocrine malignancy with overall poor prognosis. The Ki67 labeling index (LI) has a major prognostic role in localized ACC after complete resection, but its estimates may suffer from considerable intra- and interobserver variability. VAV2 overexpression induced by increased Steroidogenic Factor-1 dosage is an essential factor driving ACC tumor cell invasion. OBJECTIVE To assess the prognostic role of VAV2 expression in ACC by investigation of a large cohort of patients. DESIGN, SETTING, AND PARTICIPANTS A total of 171 ACC cases (157 primary tumors, six local recurrences, eight metastases) from seven European Network for the Study of Adrenal Tumors centers were studied. OUTCOME MEASUREMENTS H-scores were generated to quantify VAV2 expression. VAV2 expression was divided into two categories: low (H-score, <2) and high (H-score, ≥2). The Ki67 LI retrieved from patients' pathology records was also categorized into low (<20%) and high (≥20%). Clinical and immunohistochemical markers were correlated with progression-free survival (PFS) and overall survival (OS). RESULTS VAV2 expression and Ki67 LI were significantly correlated with each other and with PFS and OS. Heterogeneity of VAV2 expression inside the same tumor was very low. Combined assessment of VAV2 expression and Ki67 LI improved patient stratification to low-risk and high-risk groups. CONCLUSION Combined assessment of Ki67 LI and VAV2 expression improves prognostic prediction in ACC.
Collapse
Affiliation(s)
- Silviu Sbiera
- Department of Internal Medicine I - Division of Endocrinology and Diabetes, University Hospital, University of Würzburg, 97080 Wurzburg, Germany
| | - Iuliu Sbiera
- Department of Internal Medicine I - Division of Endocrinology and Diabetes, University Hospital, University of Würzburg, 97080 Wurzburg, Germany
| | - Carmen Ruggiero
- Université Côte d'Azur, Sophia Antipolis, 06560 Valbonne, France
- CNRS UMR7275, Sophia Antipolis, 06560 Valbonne, France
- NEOGENEX CNRS International Associated Laboratory, Sophia Antipolis, 06560 Valbonne, France
- Institut de Pharmacologie Moléculaire et Cellulaire, Sophia Antipolis, 06560 Valbonne, France
| | - Mabrouka Doghman-Bouguerra
- Université Côte d'Azur, Sophia Antipolis, 06560 Valbonne, France
- CNRS UMR7275, Sophia Antipolis, 06560 Valbonne, France
- NEOGENEX CNRS International Associated Laboratory, Sophia Antipolis, 06560 Valbonne, France
- Institut de Pharmacologie Moléculaire et Cellulaire, Sophia Antipolis, 06560 Valbonne, France
| | - Esther Korpershoek
- Department of Pathology, Erasmus MC Cancer Institute, University Medical Center, 3000 CA Rotterdam, The Netherlands
| | - Ronald R de Krijger
- Department of Pathology, Erasmus MC Cancer Institute, University Medical Center, 3000 CA Rotterdam, The Netherlands
- Department of Pathology, Reinier de Graaf Hospital, 2625 AD Delft, The Netherlands
| | - Hester Ettaieb
- Department of Internal Medicine, Máxima Medical Centre, 5631 BM Eindhoven/Veldhoven, The Netherlands
| | - Harm Haak
- Department of Internal Medicine, Máxima Medical Centre, 5631 BM Eindhoven/Veldhoven, The Netherlands
- Department of Internal Medicine, Division of General Internal Medicine, Maastricht University Medical Centre+, 6202 AZ Maastricht, The Netherlands
- Maastricht University, CAPHRI School for Public Health and Primary Care, Ageing and Long-Term Care, 6200 MD Maastricht, The Netherlands
| | - Marco Volante
- Department of Oncology, University of Turin at San Luigi Hospital, 10043 Orbassano, Italy
| | - Mauro Papotti
- Department of Oncology, University of Turin at San Luigi Hospital, 10043 Orbassano, Italy
| | - Giuseppe Reimondo
- Department of Clinical and Biological Sciences, University of Turin at San Luigi Hospital, 10043 Orbassano, Italy
| | - Massimo Terzolo
- Department of Clinical and Biological Sciences, University of Turin at San Luigi Hospital, 10043 Orbassano, Italy
| | - Michaela Luconi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, 50139 Florence, Italy
| | - Gabriella Nesi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, 50139 Florence, Italy
| | - Massimo Mannelli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, 50139 Florence, Italy
| | - Rossella Libé
- Inserm U1016, Institut Cochin, 75014 Paris, France
- CNRS UMR8104, 75014 Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, 75014 Paris, France
| | - Bruno Ragazzon
- Inserm U1016, Institut Cochin, 75014 Paris, France
- CNRS UMR8104, 75014 Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, 75014 Paris, France
| | - Guillaume Assié
- Inserm U1016, Institut Cochin, 75014 Paris, France
- CNRS UMR8104, 75014 Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, 75014 Paris, France
| | - Jérôme Bertherat
- Inserm U1016, Institut Cochin, 75014 Paris, France
- CNRS UMR8104, 75014 Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, 75014 Paris, France
| | - Barbara Altieri
- Department of Internal Medicine I - Division of Endocrinology and Diabetes, University Hospital, University of Würzburg, 97080 Wurzburg, Germany
- Division of Endocrinology and Metabolic Diseases, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Guido Fadda
- Division of Anatomic Pathology and Histology, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | | | - Martin Reincke
- Medizinische Klinik and Poliklinik IV, Ludwig-Maximilians-Universität, 80336 Munich, Germany
| | - Felix Beuschlein
- Medizinische Klinik and Poliklinik IV, Ludwig-Maximilians-Universität, 80336 Munich, Germany
- Klinik für Endokrinologie, Diabetologie und Klinische Ernährung, Universitätsspital Zürich, 8091 Zurich, Switzerland
| | - Martin Fassnacht
- Comprehensive Cancer Center Mainfranken, University of Würzburg, 97080 Wurzburg, Germany
| | - Enzo Lalli
- Université Côte d'Azur, Sophia Antipolis, 06560 Valbonne, France
- CNRS UMR7275, Sophia Antipolis, 06560 Valbonne, France
- NEOGENEX CNRS International Associated Laboratory, Sophia Antipolis, 06560 Valbonne, France
- Institut de Pharmacologie Moléculaire et Cellulaire, Sophia Antipolis, 06560 Valbonne, France
| |
Collapse
|
127
|
Pennanen M, Hagström J, Heiskanen I, Sane T, Mustonen H, Arola J, Haglund C. C-myc expression in adrenocortical tumours. J Clin Pathol 2017; 71:129-134. [PMID: 28801349 DOI: 10.1136/jclinpath-2017-204503] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 05/29/2017] [Accepted: 06/08/2017] [Indexed: 11/04/2022]
Abstract
AIMS Widespread use of high-resolution imaging techniques and thus increased prevalence of adrenal lesions has made diagnostics of adrenocortical tumours an increasingly important clinical issue. In non-metastatic tumours, diagnosis is based on histology. New or enhanced information for clinicopathological diagnosis, revealing the malignant potential of the tumour, could emerge by means of biomarkers. The connection of proto-oncogene c-myc to adrenocortical neoplasias is poorly known, although the Wnt/beta-catenin pathway, one of the signalling pathways leading to induction of c-myc expression, has been connected to development of adrenocortical neoplasias. We studied c-myc expression in adrenocortical tumours and investigated molecules associated with the signalling pathway of c-myc, including cell cycle-related proteins p27, cyclin E and cyclin D1. METHODS We studied 195 consecutive adult patients with 197 primary adrenocortical tumours. Histopathological diagnosis was determined by Weiss score and the novel Helsinki score. C-myc, cyclin D1, cyclin E and p27 expressions were determined by immunohistochemistry. RESULTS Benign adenomas showed prominent nuclear c-myc expression comparable to that of normal adrenocortical cells, whereas carcinomas showed increased cytoplasmic expression. Strong cytoplasmic and weak nuclear c-myc expressions associated with malignancy and adverse outcome. C-myc staining did not correlate with cyclin E. Cyclin D1 correlated with cytoplasmic c-myc expression and to a lesser extent with nuclear c-myc. P27 correlated with cytoplasmic c-myc, but not with nuclear c-myc. P27 correlated with cyclin E. CONCLUSIONS Strong cytoplasmic c-myc expression and weak nuclear expression in adrenocortical tumours associated with malignancy and shorter survival.
Collapse
Affiliation(s)
- Mirkka Pennanen
- Department of Pathology, University of Helsinki and HUSLAB, Helsinki, Finland
| | - Jaana Hagström
- Department of Pathology, University of Helsinki and HUSLAB, Helsinki, Finland
| | - Ilkka Heiskanen
- Department of Surgery, Helsinki University Hospital, and University of Helsinki, Helsinki, Finland
| | - Timo Sane
- Division of Endocrinology, Department of Medicine, Helsinki University Hospital, and University of Helsinki, Helsinki, Finland
| | - Harri Mustonen
- Department of Surgery, Helsinki University Hospital, and University of Helsinki, Helsinki, Finland
| | - Johanna Arola
- Department of Pathology, University of Helsinki and HUSLAB, Helsinki, Finland
| | - Caj Haglund
- Department of Surgery, Helsinki University Hospital, and University of Helsinki, Helsinki, Finland.,Research Programs Unit, Translational Cancer Biology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
128
|
Germano A, Rapa I, Duregon E, Votta A, Giorcelli J, Buttigliero C, Scagliotti GV, Volante M, Terzolo M, Papotti M. Tissue Expression and Pharmacological In Vitro Analyses of mTOR and SSTR Pathways in Adrenocortical Carcinoma. Endocr Pathol 2017; 28:95-102. [PMID: 28271381 DOI: 10.1007/s12022-017-9473-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
New therapies for advanced adrenocortical carcinoma (ACC) are urgently needed, as the majority of the patients experience a rapid and inexorable progression despite surgery and adjuvant mitotane. In vitro data suggest that somatostatin receptors (SSTRs) and mTOR pathway might represent reasonable targets for novel therapies, being involved in functionality and growth of ACC cells. However, in vitro analysis of combination treatments targeting both mTOR and SSTR as compared to mitotane are poorly explored in ACC. This study aimed to investigate in vitro the effects on cell growth of pasireotide, everolimus, and mitotane, alone or combined, in the two ACC cell lines H295R and SW13 (mitotane sensitive and resistant, respectively). Moreover, the tissue expression of mTOR pathway molecules and SSTR (types 1-5) was assessed in 58 ACCs. In both cell lines, only everolimus induced a significant inhibition of cell growth. Conversely, the combinations among mitotane, pasireotide, and everolimus produced antagonistic effects on mitotane-induced growth inhibition on H295R cell line. A heterogeneous profile of mTOR-related molecules and SSTR expression was observed in ACC samples, being the mTOR pathway found activated in approximately 30% of cases. In conclusion, our data suggest caution in designing combinations of mitotane with other drugs potentially active in ACC, such as mTOR inhibitors or somatostatin analogs.
Collapse
Affiliation(s)
- Antonina Germano
- Department of Clinical and Biological Sciences and Department of Oncology, University of Turin at San Luigi Hospital, Regione Gonzole 10, 10043 Orbassano, Turin, Italy
| | - Ida Rapa
- Department of Clinical and Biological Sciences and Department of Oncology, University of Turin at San Luigi Hospital, Regione Gonzole 10, 10043 Orbassano, Turin, Italy
| | - Eleonora Duregon
- Department of Clinical and Biological Sciences and Department of Oncology, University of Turin at San Luigi Hospital, Regione Gonzole 10, 10043 Orbassano, Turin, Italy.
| | - Arianna Votta
- Department of Clinical and Biological Sciences and Department of Oncology, University of Turin at San Luigi Hospital, Regione Gonzole 10, 10043 Orbassano, Turin, Italy
| | - Jessica Giorcelli
- Department of Clinical and Biological Sciences and Department of Oncology, University of Turin at San Luigi Hospital, Regione Gonzole 10, 10043 Orbassano, Turin, Italy
| | - Consuelo Buttigliero
- Department of Clinical and Biological Sciences and Department of Oncology, University of Turin at San Luigi Hospital, Regione Gonzole 10, 10043 Orbassano, Turin, Italy
| | - Giorgio V Scagliotti
- Department of Clinical and Biological Sciences and Department of Oncology, University of Turin at San Luigi Hospital, Regione Gonzole 10, 10043 Orbassano, Turin, Italy
| | - Marco Volante
- Department of Clinical and Biological Sciences and Department of Oncology, University of Turin at San Luigi Hospital, Regione Gonzole 10, 10043 Orbassano, Turin, Italy
| | - Massimo Terzolo
- Department of Clinical and Biological Sciences and Department of Oncology, University of Turin at San Luigi Hospital, Regione Gonzole 10, 10043 Orbassano, Turin, Italy
| | - Mauro Papotti
- Department of Clinical and Biological Sciences and Department of Oncology, University of Turin at San Luigi Hospital, Regione Gonzole 10, 10043 Orbassano, Turin, Italy
| |
Collapse
|
129
|
Muscogiuri G, De Martino MC, Negri M, Pivonello C, Simeoli C, Orio F, Pivonello R, Colao A. Adrenal Mass: Insight Into Pathogenesis and a Common Link With Insulin Resistance. Endocrinology 2017; 158:1527-1532. [PMID: 28368448 DOI: 10.1210/en.2016-1804] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 03/24/2017] [Indexed: 12/29/2022]
Abstract
Adrenal mass (AM) is a common incidental finding detected during radiological investigations with an estimated incidence of 4%. Subjects with AM do not show any physical signs of adrenal hormonal excess, although they are often insulin resistant. Interestingly, apparently nonfunctioning AMs are often associated with a high prevalence of insulin resistance (IR) and metabolic syndrome. However, it is unclear whether AM develops from a primary IR and compensatory hyperinsulinemia or whether IR is only secondary to the slight cortisol hypersecretion by AM. Further, the degree of IR has been directly reported to correlate to the size of AM, thus allowing one to hypothesize that compensatory hyperinsulinemia to IR could be mitogenic on the adrenal cortex acting through the activation of insulin and insulinlike growth factor 1 receptors. Thus, the aim of the present article is to review the current evidence on the link between AM and compensatory hyperinsulinemia to IR.
Collapse
Affiliation(s)
| | | | | | - Claudia Pivonello
- Department of Clinical Medicine and Surgery, University of Naples, 80131 Naples, Italy
| | - Chiara Simeoli
- Department of Clinical Medicine and Surgery, University of Naples, 80131 Naples, Italy
| | - Francesco Orio
- Department of Sports Science and Wellness, "Parthenope" University Naples, 80131 Naples, Italy
| | - Rosario Pivonello
- Department of Clinical Medicine and Surgery, University of Naples, 80131 Naples, Italy
| | - Annamaria Colao
- Department of Clinical Medicine and Surgery, University of Naples, 80131 Naples, Italy
| |
Collapse
|
130
|
França MM, Lerario AM, Fragoso MCBV, Lotfi CFP. New evidences on the regulation of SF-1 expression by POD1/TCF21 in adrenocortical tumor cells. Clinics (Sao Paulo) 2017; 72:391-394. [PMID: 28658440 PMCID: PMC5463254 DOI: 10.6061/clinics/2017(06)10] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 02/14/2017] [Indexed: 01/22/2023] Open
Abstract
OBJECTIVES: Transcription Factor 21 represses steroidogenic factor 1, a nuclear receptor required for gonadal development, sex determination and the regulation of adrenogonadal steroidogenesis. The aim of this study was to investigate whether silencing or overexpression of the gene Transcription Factor 21 could modulate the gene and protein expression of steroidogenic factor 1 in adrenocortical tumors. METHODS: We analyzed the gene expression of steroidogenic factor 1 using qPCR after silencing endogenous Transcription Factor 21 in pediatric adrenal adenoma-T7 cells through small interfering RNA. In addition, using overexpression of Transcription Factor 21 in human adrenocortical carcinoma cells, we analyzed the protein expression of steroidogenic factor 1 using Western blotting. RESULTS: Transcription Factor 21 knockdown increased the mRNA expression of steroidogenic factor 1 by 5.97-fold in pediatric adrenal adenoma-T7 cells. Additionally, Transcription Factor 21 overexpression inhibited the protein expression of steroidogenic factor 1 by 0.41-fold and 0.64-fold in two different adult adrenocortical carcinoma cell cultures, H295R and T36, respectively. CONCLUSIONS: Transcription Factor 21 is downregulated in adrenocortical carcinoma cells. Taken together, these findings support the hypothesis that Transcription Factor 21 is a regulator of steroidogenic factor 1 and is a tumor suppressor gene in pediatric and adult adrenocortical tumors.
Collapse
Affiliation(s)
- Monica Malheiros França
- Departamento de Anatomia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Antonio M Lerario
- Laboratorio de Hormonio e Genetica Molecular (LIM-42), Unidade Adrenal, Divisao de Endocrinologia, Faculdade de Medicine, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Maria Candida B V Fragoso
- Laboratorio de Hormonio e Genetica Molecular (LIM-42), Unidade Adrenal, Divisao de Endocrinologia, Faculdade de Medicine, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | | |
Collapse
|
131
|
Penny MK, Finco I, Hammer GD. Cell signaling pathways in the adrenal cortex: Links to stem/progenitor biology and neoplasia. Mol Cell Endocrinol 2017; 445:42-54. [PMID: 27940298 PMCID: PMC5508551 DOI: 10.1016/j.mce.2016.12.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 11/17/2016] [Accepted: 12/07/2016] [Indexed: 02/06/2023]
Abstract
The adrenal cortex is a dynamic tissue responsible for the synthesis of steroid hormones, including mineralocorticoids, glucocorticoids, and androgens in humans. Advances have been made in understanding the role of adrenocortical stem/progenitor cell populations in cortex homeostasis and self-renewal. Recently, large molecular profiling studies of adrenocortical carcinoma (ACC) have given insights into proteins and signaling pathways involved in normal tissue homeostasis that become dysregulated in cancer. These data provide an impetus to examine the cellular pathways implicated in adrenocortical disease and study connections, or lack thereof, between adrenal homeostasis and tumorigenesis, with a particular focus on stem and progenitor cell pathways. In this review, we discuss evidence for stem/progenitor cells in the adrenal cortex, proteins and signaling pathways that may regulate these cells, and the role these proteins play in pathologic and neoplastic conditions. In turn, we also examine common perturbations in adrenocortical tumors (ACT) and how these proteins and pathways may be involved in adrenal homeostasis.
Collapse
Affiliation(s)
- Morgan K Penny
- Cancer Biology Graduate Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI 48109, USA
| | - Isabella Finco
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI 48109, USA
| | - Gary D Hammer
- Cancer Biology Graduate Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI 48109, USA; Endocrine Oncology Program, Comprehensive Cancer Center, University of Michigan Health System, 109 Zina Pitcher Place, 1528 BSRB, Ann Arbor, MI 48109, USA.
| |
Collapse
|
132
|
P53/Rb inhibition induces metastatic adrenocortical carcinomas in a preclinical transgenic model. Oncogene 2017; 36:4445-4456. [PMID: 28368424 DOI: 10.1038/onc.2017.54] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 12/20/2016] [Accepted: 02/04/2017] [Indexed: 12/14/2022]
Abstract
Adrenocortical carcinoma (ACC) is a rare cancer with poor prognosis. Pan-genomic analyses identified p53/Rb and WNT/β-catenin signaling pathways as main contributors to the disease. However, isolated β-catenin constitutive activation failed to induce malignant progression in mouse adrenocortical tumors. Therefore, there still was a need for a relevant animal model to study ACC pathogenesis and to test new therapeutic approaches. Here, we have developed a transgenic mice model with adrenocortical specific expression of SV40 large T-antigen (AdTAg mice), to test the oncogenic potential of p53/Rb inhibition in the adrenal gland. All AdTAg mice develop large adrenal carcinomas that eventually metastasize to the liver and lungs, resulting in decreased overall survival. Consistent with ACC in patients, adrenal tumors in AdTAg mice autonomously produce large amounts of glucocorticoids and spontaneously activate WNT/β-catenin signaling pathway during malignant progression. We show that this activation is associated with downregulation of secreted frizzled related proteins (Sfrp) and Znrf3 that act as inhibitors of the WNT signaling. We also show that mTORC1 pathway activation is an early event during neoplasia expansion and further demonstrate that mTORC1 pathway is activated in ACC patients. Preclinical inhibition of mTORC1 activity induces a marked reduction in tumor size, associated with induction of apoptosis and inhibition of proliferation that results in normalization of corticosterone plasma levels in AdTAg mice. Altogether, these data establish AdTAg mice as the first preclinical model for metastatic ACC.
Collapse
|
133
|
RARRES2 functions as a tumor suppressor by promoting β-catenin phosphorylation/degradation and inhibiting p38 phosphorylation in adrenocortical carcinoma. Oncogene 2017; 36:3541-3552. [PMID: 28114280 PMCID: PMC5481486 DOI: 10.1038/onc.2016.497] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 10/28/2016] [Accepted: 11/15/2016] [Indexed: 12/27/2022]
Abstract
Tumor suppressor genes and the immune system are critical players in inhibiting cancer initiation and/or progression. However, little is known about whether a tumor suppressor gene can function through both immune-dependent and -independent mechanisms. Retinoic acid receptor responder 2 (RARRES2) is transcriptionally downregulated in multiple cancer types. Previous studies suggested that it can serve as an immune-dependent tumor suppressor by acting as a chemoattractant to recruit anti-cancer immune cells expressing its receptor, the chemerin chemokine receptor 1 (CMKLR1), to sites of tumor. In this study, we investigated the role of RARRES2 in adrenocortical carcinoma (ACC), a rare lethal malignancy in which aberrant Wnt/β-catenin signaling is frequently detected. We show that RARRES2 expression is downregulated in ACC as compared to normal and benign adrenocortical tissues, which is a result of CpG hypermethylation. Despite minimal CMKLR1 expression and lack of phenotypic tumor-suppressive effect with exogenous RARRES2 treatment, RARRES2 overexpression in ACC cell lines not only reduced cell proliferation, cell invasion and tumorigenicity in vitro, but also inhibited tumor growth in vivo in two immunodeficient mouse xenograft models. Mechanistically, RARRES2 overexpression in ACC cells inhibited Wnt/β-catenin pathway activity by promoting β-catenin phosphorylation and degradation, it also inhibited the phosphorylation of p38 mitogen-activated protein kinase. Thus our study identifies RARRES2 as a novel tumor suppressor for ACC, which can function through an immune-independent mechanism.
Collapse
|
134
|
Simultaneous dimension reduction and adjustment for confounding variation. Proc Natl Acad Sci U S A 2016; 113:14662-14667. [PMID: 27930330 DOI: 10.1073/pnas.1617317113] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Dimension reduction methods are commonly applied to high-throughput biological datasets. However, the results can be hindered by confounding factors, either biological or technical in origin. In this study, we extend principal component analysis (PCA) to propose AC-PCA for simultaneous dimension reduction and adjustment for confounding (AC) variation. We show that AC-PCA can adjust for (i) variations across individual donors present in a human brain exon array dataset and (ii) variations of different species in a model organism ENCODE RNA sequencing dataset. Our approach is able to recover the anatomical structure of neocortical regions and to capture the shared variation among species during embryonic development. For gene selection purposes, we extend AC-PCA with sparsity constraints and propose and implement an efficient algorithm. The methods developed in this paper can also be applied to more general settings. The R package and MATLAB source code are available at https://github.com/linzx06/AC-PCA.
Collapse
|
135
|
Wells SA. Progress in Endocrine Neoplasia. Clin Cancer Res 2016; 22:4981-4988. [PMID: 27742784 DOI: 10.1158/1078-0432.ccr-16-0384] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 08/24/2016] [Indexed: 01/17/2023]
Abstract
Most endocrine tumors are benign, and afflicted patients usually seek medical advice because of symptoms caused by too much, or too little, native hormone secretion or the impingement of their tumor on a vital structure. Malignant endocrine tumors represent a more serious problem, and patient cure often depends on early diagnosis and treatment. The recent development of novel molecular therapeutics holds great promise for the treatment of patients with locally advanced or metastatic endocrine cancer. In this CCR Focus, expert clinical investigators describe the molecular characteristics of various endocrine tumors and discuss the current status of diagnosis and treatment. Clin Cancer Res; 22(20); 4981-8. ©2016 AACR
See all articles in this CCR Focus section, "Endocrine Cancers Revising Paradigms".
Collapse
Affiliation(s)
- Samuel A Wells
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
136
|
Grolmusz VK, Karászi K, Micsik T, Tóth EA, Mészáros K, Karvaly G, Barna G, Szabó PM, Baghy K, Matkó J, Kovalszky I, Tóth M, Rácz K, Igaz P, Patócs A. Cell cycle dependent RRM2 may serve as proliferation marker and pharmaceutical target in adrenocortical cancer. Am J Cancer Res 2016; 6:2041-2053. [PMID: 27725909 PMCID: PMC5043113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 06/06/2016] [Indexed: 06/06/2023] Open
Abstract
Adrenocortical cancer (ACC) is a rare, but agressive malignancy with poor prognosis. Histopathological diagnosis is challenging and pharmacological options for treatment are limited. By the comparative reanalysis of the transcriptional malignancy signature with the cell cycle dependent transcriptional program of ACC, we aimed to identify novel biomarkers which may be used in the histopathological diagnosis and for the prediction of therapeutical response of ACC. Comparative reanalysis of publicly available microarray datasets included three earlier studies comparing transcriptional differences between ACC and benign adrenocortical adenoma (ACA) and one study presenting the cell cycle dependent gene expressional program of human ACC cell line NCI-H295R. Immunohistochemical analysis was performed on ACC samples. In vitro effects of antineoplastic drugs including gemcitabine, mitotane and 9-cis-retinoic acid alone and in combination were tested in the NCI-H295R adrenocortical cell line. Upon the comparative reanalysis, ribonucleotide reductase subunit 2 (RRM2), responsible for the ribonucleotide dezoxyribonucleotide conversion during the S phase of the cell cycle has been validated as cell cycle dependently expressed. Moreover, its expression was associated with the malignancy signature, as well. Immunohistochemical analysis of RRM2 revealed a strong correlation with Ki67 index in ACC. Among the antiproliferative effects of the investigated compounds, gemcitabine showed a strong inhibition of proliferation and an increase of apoptotic events. Additionally, RRM2 has been upregulated upon gemcitabine treatment. Upon our results, RRM2 might be used as a proliferation marker in ACC. RRM2 upregulation upon gemcitabine treatment might contribute to an emerging chemoresistance against gemcitabine, which is in line with its limited therapeutical efficacy in ACC, and which should be overcome for successful clinical applications.
Collapse
Affiliation(s)
- Vince Kornél Grolmusz
- 2 Department of Medicine, Semmelweis UniversityBudapest, Hungary
- “Lendület” Hereditary Endocrine Tumours Research Group, Hungarian Academy of Sciences, Semmelweis UniversityBudapest, Hungary
| | - Katalin Karászi
- 1 Department of Pathology and Experimental Cancer Research, Semmelweis UniversityBudapest, Hungary
| | - Tamás Micsik
- 1 Department of Pathology and Experimental Cancer Research, Semmelweis UniversityBudapest, Hungary
| | | | - Katalin Mészáros
- “Lendület” Hereditary Endocrine Tumours Research Group, Hungarian Academy of Sciences, Semmelweis UniversityBudapest, Hungary
- Department of Laboratory Medicine, Semmelweis UniversityBudapest, Hungary
| | - Gellért Karvaly
- “Lendület” Hereditary Endocrine Tumours Research Group, Hungarian Academy of Sciences, Semmelweis UniversityBudapest, Hungary
- Department of Laboratory Medicine, Semmelweis UniversityBudapest, Hungary
- Bionics Innovation CenterBudapest, Hungary
| | - Gábor Barna
- 1 Department of Pathology and Experimental Cancer Research, Semmelweis UniversityBudapest, Hungary
| | - Péter Márton Szabó
- Molecular Medicine Research Group, Hungarian Academy of Sciences, Semmelweis UniversityBudapest, Hungary
| | - Kornélia Baghy
- 1 Department of Pathology and Experimental Cancer Research, Semmelweis UniversityBudapest, Hungary
| | - János Matkó
- Department of Immunology, Eötvös Loránd UniversityBudapest, Hungary
| | - Ilona Kovalszky
- 1 Department of Pathology and Experimental Cancer Research, Semmelweis UniversityBudapest, Hungary
| | - Miklós Tóth
- 2 Department of Medicine, Semmelweis UniversityBudapest, Hungary
| | - Károly Rácz
- 2 Department of Medicine, Semmelweis UniversityBudapest, Hungary
- Molecular Medicine Research Group, Hungarian Academy of Sciences, Semmelweis UniversityBudapest, Hungary
| | - Péter Igaz
- 2 Department of Medicine, Semmelweis UniversityBudapest, Hungary
| | - Attila Patócs
- “Lendület” Hereditary Endocrine Tumours Research Group, Hungarian Academy of Sciences, Semmelweis UniversityBudapest, Hungary
- Department of Laboratory Medicine, Semmelweis UniversityBudapest, Hungary
- Bionics Innovation CenterBudapest, Hungary
| |
Collapse
|
137
|
Liu-Chittenden Y, Patel D, Gaskins K, Giordano TJ, Assie G, Bertherat J, Kebebew E. Serum RARRES2 Is a Prognostic Marker in Patients With Adrenocortical Carcinoma. J Clin Endocrinol Metab 2016; 101:3345-52. [PMID: 27336360 PMCID: PMC5010575 DOI: 10.1210/jc.2016-1781] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
CONTEXT Retinoic acid receptor responder protein 2 (RARRES2) is a small secreted protein involved in multiple cancers, including adrenocortical carcinoma (ACC). However, discordant tumor and serum RARRES2 levels have been reported in various cancers. The etiology of this discordance is unknown and has not been studied in pair-matched tumor and serum samples. OBJECTIVE To determine tissue and serum RARRES2 levels in patients with adrenocortical neoplasm and to elucidate the prognostic implications of RARRES2 levels. DESIGN, SETTINGS, AND PATIENTS Tissue and serum RARRES2 levels were analyzed. A pair-matched analysis was performed to examine tissue and serum RARRES2 from 51 patients with benign adrenocortical tumors and 18 patients with ACC. Overall survival was analyzed based on RARRES2 expression. A mouse xenograft model was used to determine the source of serum RARRES2. RESULTS Patients with ACC had decreased tumor RARRES2 gene expression (P < .0001) and increased serum RARRES2 levels (P < .005) as compared with patients with benign adrenocortical tumors. Higher serum RARRES2 levels were associated with improved overall survival (P = .0227). A mouse xenograft model demonstrated that higher tissue RARRES2 expression was associated with higher RARRES2 secretion in the serum and that there was an intrinsic mechanism in maintaining serum RARRES2 homeostasis. CONCLUSIONS Serum and tissue RARRES2 expression levels are paradoxical in patients with ACC. The elevated RARRES2 in patient serum is unlikely to be secreted from tumor cells. Serum RARRES2 may be used as a novel prognostic marker for ACC.
Collapse
MESH Headings
- Adrenal Cortex Neoplasms/blood
- Adrenal Cortex Neoplasms/genetics
- Adrenal Cortex Neoplasms/pathology
- Adrenocortical Carcinoma/blood
- Adrenocortical Carcinoma/genetics
- Adrenocortical Carcinoma/secondary
- Adult
- Aged
- Animals
- Biomarkers, Tumor/blood
- Biomarkers, Tumor/genetics
- Blotting, Western
- Case-Control Studies
- Chemokines/blood
- Chemokines/genetics
- Female
- Follow-Up Studies
- Humans
- Intercellular Signaling Peptides and Proteins/blood
- Intercellular Signaling Peptides and Proteins/genetics
- Lymphatic Metastasis
- Male
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Middle Aged
- Neoplasm Recurrence, Local/blood
- Neoplasm Recurrence, Local/genetics
- Neoplasm Recurrence, Local/pathology
- Neoplasm Staging
- Prognosis
- RNA, Messenger/genetics
- Real-Time Polymerase Chain Reaction
- Reverse Transcriptase Polymerase Chain Reaction
- Survival Rate
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Yi Liu-Chittenden
- Endocrine Oncology Branch (Y.L.-C., D.P., K.G., E.K.), National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892; Department of Pathology (T.J.G.), University of Michigan, Ann Arbor, Michigan 48109; Institut Cochin (G.A., J.B.), Inserm Unité 1016, Centre National de la Recherche Scientifique Unité Mixte de Recherche 8104, Descartes University, 75014, Paris, France; and Department of Endocrinology (G.A., J.B.), Reference Center for Rare Adrenal Diseases, Assistance Publique Hôpitaux de Paris, Hôpital Cochin, 75014, Paris, France
| | - Dhaval Patel
- Endocrine Oncology Branch (Y.L.-C., D.P., K.G., E.K.), National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892; Department of Pathology (T.J.G.), University of Michigan, Ann Arbor, Michigan 48109; Institut Cochin (G.A., J.B.), Inserm Unité 1016, Centre National de la Recherche Scientifique Unité Mixte de Recherche 8104, Descartes University, 75014, Paris, France; and Department of Endocrinology (G.A., J.B.), Reference Center for Rare Adrenal Diseases, Assistance Publique Hôpitaux de Paris, Hôpital Cochin, 75014, Paris, France
| | - Kelli Gaskins
- Endocrine Oncology Branch (Y.L.-C., D.P., K.G., E.K.), National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892; Department of Pathology (T.J.G.), University of Michigan, Ann Arbor, Michigan 48109; Institut Cochin (G.A., J.B.), Inserm Unité 1016, Centre National de la Recherche Scientifique Unité Mixte de Recherche 8104, Descartes University, 75014, Paris, France; and Department of Endocrinology (G.A., J.B.), Reference Center for Rare Adrenal Diseases, Assistance Publique Hôpitaux de Paris, Hôpital Cochin, 75014, Paris, France
| | - Thomas J Giordano
- Endocrine Oncology Branch (Y.L.-C., D.P., K.G., E.K.), National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892; Department of Pathology (T.J.G.), University of Michigan, Ann Arbor, Michigan 48109; Institut Cochin (G.A., J.B.), Inserm Unité 1016, Centre National de la Recherche Scientifique Unité Mixte de Recherche 8104, Descartes University, 75014, Paris, France; and Department of Endocrinology (G.A., J.B.), Reference Center for Rare Adrenal Diseases, Assistance Publique Hôpitaux de Paris, Hôpital Cochin, 75014, Paris, France
| | - Guillaume Assie
- Endocrine Oncology Branch (Y.L.-C., D.P., K.G., E.K.), National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892; Department of Pathology (T.J.G.), University of Michigan, Ann Arbor, Michigan 48109; Institut Cochin (G.A., J.B.), Inserm Unité 1016, Centre National de la Recherche Scientifique Unité Mixte de Recherche 8104, Descartes University, 75014, Paris, France; and Department of Endocrinology (G.A., J.B.), Reference Center for Rare Adrenal Diseases, Assistance Publique Hôpitaux de Paris, Hôpital Cochin, 75014, Paris, France
| | - Jerome Bertherat
- Endocrine Oncology Branch (Y.L.-C., D.P., K.G., E.K.), National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892; Department of Pathology (T.J.G.), University of Michigan, Ann Arbor, Michigan 48109; Institut Cochin (G.A., J.B.), Inserm Unité 1016, Centre National de la Recherche Scientifique Unité Mixte de Recherche 8104, Descartes University, 75014, Paris, France; and Department of Endocrinology (G.A., J.B.), Reference Center for Rare Adrenal Diseases, Assistance Publique Hôpitaux de Paris, Hôpital Cochin, 75014, Paris, France
| | - Electron Kebebew
- Endocrine Oncology Branch (Y.L.-C., D.P., K.G., E.K.), National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892; Department of Pathology (T.J.G.), University of Michigan, Ann Arbor, Michigan 48109; Institut Cochin (G.A., J.B.), Inserm Unité 1016, Centre National de la Recherche Scientifique Unité Mixte de Recherche 8104, Descartes University, 75014, Paris, France; and Department of Endocrinology (G.A., J.B.), Reference Center for Rare Adrenal Diseases, Assistance Publique Hôpitaux de Paris, Hôpital Cochin, 75014, Paris, France
| |
Collapse
|
138
|
Faillot S, Assie G. ENDOCRINE TUMOURS: The genomics of adrenocortical tumors. Eur J Endocrinol 2016; 174:R249-65. [PMID: 26739091 DOI: 10.1530/eje-15-1118] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 01/06/2016] [Indexed: 01/01/2023]
Abstract
The last decade witnessed the emergence of genomics, a set of high-throughput molecular measurements in biological samples. These pan-genomic and agnostic approaches have revolutionized the molecular biology and genetics of malignant and benign tumors. These techniques have been applied successfully to adrenocortical tumors. Exome sequencing identified new major drivers in all tumor types, including KCNJ5, ATP1A1, ATP2B3 and CACNA1D mutations in aldosterone-producing adenomas (APA), PRKACA mutations in cortisol-producing adenomas (CPA), ARMC5 mutations in primary bilateral macronodular adrenocortical hyperplasia (PBMAH) and ZNRF3 mutations in adrenocortical carcinomas (ACC). Moreover, the various genomic approaches - including exome sequencing, transcriptome, miRNome, genome and methylome - converge into a single molecular classification of adrenocortical tumors. Especially for ACC, two main molecular groups have emerged, showing major differences in outcomes. These ACC groups differ by their gene expression profiles, but also by recurrent mutations and specific DNA hypermethylation patterns in the subgroup of poor outcome. The clinical impact of these findings is just starting. The main altered signaling pathways now become therapeutic targets. The molecular groups of diseases individualize robust subtypes within diseases such as APA, CPA, PBMAH and ACC. A revised nosology of adrenocortical tumors should impact the clinical research. Obvious consequences also include genetic counseling for the new genetic diseases such as ARMC5 mutations in PBMAH, and a better prognostication of ACC based on targeted measurements of a few discriminant molecular alterations. Identifying the main molecular groups of adrenocortical tumors by extensively gathering the molecular variations is a significant step forward towards precision medicine.
Collapse
Affiliation(s)
- Simon Faillot
- Institut CochinINSERM U1016, CNRS 8104, Paris Descartes University, Paris, FranceSIRIC (Site de Recherche Intégré sur le Cancer) CARPEM (CAncer Research for PErsonalized Medicine)Assistance Publique Hôpitaux de Paris, Paris, FranceDepartment of EndocrinologyReference Center for Rare Adrenal Diseases, Assistance Publique Hôpitaux de Paris, Hôpital Cochin, 27 rue du Faubourg Saint Jacques, 75014 Paris, France Institut CochinINSERM U1016, CNRS 8104, Paris Descartes University, Paris, FranceSIRIC (Site de Recherche Intégré sur le Cancer) CARPEM (CAncer Research for PErsonalized Medicine)Assistance Publique Hôpitaux de Paris, Paris, FranceDepartment of EndocrinologyReference Center for Rare Adrenal Diseases, Assistance Publique Hôpitaux de Paris, Hôpital Cochin, 27 rue du Faubourg Saint Jacques, 75014 Paris, France
| | - Guillaume Assie
- Institut CochinINSERM U1016, CNRS 8104, Paris Descartes University, Paris, FranceSIRIC (Site de Recherche Intégré sur le Cancer) CARPEM (CAncer Research for PErsonalized Medicine)Assistance Publique Hôpitaux de Paris, Paris, FranceDepartment of EndocrinologyReference Center for Rare Adrenal Diseases, Assistance Publique Hôpitaux de Paris, Hôpital Cochin, 27 rue du Faubourg Saint Jacques, 75014 Paris, France Institut CochinINSERM U1016, CNRS 8104, Paris Descartes University, Paris, FranceSIRIC (Site de Recherche Intégré sur le Cancer) CARPEM (CAncer Research for PErsonalized Medicine)Assistance Publique Hôpitaux de Paris, Paris, FranceDepartment of EndocrinologyReference Center for Rare Adrenal Diseases, Assistance Publique Hôpitaux de Paris, Hôpital Cochin, 27 rue du Faubourg Saint Jacques, 75014 Paris, France
| |
Collapse
|
139
|
Zheng S, Cherniack AD, Dewal N, Moffitt RA, Danilova L, Murray BA, Lerario AM, Else T, Knijnenburg TA, Ciriello G, Kim S, Assie G, Morozova O, Akbani R, Shih J, Hoadley KA, Choueiri TK, Waldmann J, Mete O, Robertson AG, Wu HT, Raphael BJ, Shao L, Meyerson M, Demeure MJ, Beuschlein F, Gill AJ, Sidhu SB, Almeida MQ, Fragoso MCBV, Cope LM, Kebebew E, Habra MA, Whitsett TG, Bussey KJ, Rainey WE, Asa SL, Bertherat J, Fassnacht M, Wheeler DA, Hammer GD, Giordano TJ, Verhaak RGW. Comprehensive Pan-Genomic Characterization of Adrenocortical Carcinoma. Cancer Cell 2016; 29:723-736. [PMID: 27165744 PMCID: PMC4864952 DOI: 10.1016/j.ccell.2016.04.002] [Citation(s) in RCA: 394] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 12/08/2015] [Accepted: 04/05/2016] [Indexed: 01/08/2023]
Abstract
We describe a comprehensive genomic characterization of adrenocortical carcinoma (ACC). Using this dataset, we expand the catalogue of known ACC driver genes to include PRKAR1A, RPL22, TERF2, CCNE1, and NF1. Genome wide DNA copy-number analysis revealed frequent occurrence of massive DNA loss followed by whole-genome doubling (WGD), which was associated with aggressive clinical course, suggesting WGD is a hallmark of disease progression. Corroborating this hypothesis were increased TERT expression, decreased telomere length, and activation of cell-cycle programs. Integrated subtype analysis identified three ACC subtypes with distinct clinical outcome and molecular alterations which could be captured by a 68-CpG probe DNA-methylation signature, proposing a strategy for clinical stratification of patients based on molecular markers.
Collapse
Affiliation(s)
- Siyuan Zheng
- Departments of Genomic Medicine, Bioinformatics, and Computational Biology, Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Andrew D Cherniack
- The Eli and Edythe L. Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Ninad Dewal
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Richard A Moffitt
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ludmila Danilova
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD 21287, USA
| | - Bradley A Murray
- The Eli and Edythe L. Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Antonio M Lerario
- Unidade de Suprarrenal, Laboratório de Hormônios e Genética Molecular LIM42, Serviço de Endocrinologia e Metabologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo 05403-900, Brazil; Departments of Cell & Developmental Biology, Pathology, Molecular & Integrative Physiology, Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA; University of Michigan Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Tobias Else
- Departments of Cell & Developmental Biology, Pathology, Molecular & Integrative Physiology, Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA; University of Michigan Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Giovanni Ciriello
- Department of Computational Biology, University of Lausanne, Rue du Bugnon 27, 1005 Lausanne, Switzerland; Computational Biology Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Seungchan Kim
- Translational Genomics Research Institute, Phoenix, AZ 85004, USA
| | - Guillaume Assie
- Inserm U1016, CNRS UMR 8104, Institut Cochin, 75014 Paris, France; Faculté de Médecine Paris Descartes, Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France; Department of Endocrinology, Referral Center for Rare Adrenal Diseases, Assistance Publique Hôpitaux de Paris, Hôpital Cochin, 75014 Paris, France; European Network for the Study of Adrenal Tumors, 75014 Paris, France
| | - Olena Morozova
- University of California Santa Cruz Genomics Institute, University California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Rehan Akbani
- Departments of Genomic Medicine, Bioinformatics, and Computational Biology, Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Juliann Shih
- The Eli and Edythe L. Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Katherine A Hoadley
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Toni K Choueiri
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Jens Waldmann
- European Network for the Study of Adrenal Tumors, 75014 Paris, France; Department of Visceral, Thoracic and Vascular Surgery, University Hospital Giessen and Marburg, Campus Marburg, General Surgery, Endocrine Center, 34501 Marburg, Germany
| | - Ozgur Mete
- Department of Laboratory Medicine and Pathobiology, University Health Network, Toronto, ON M5G 2C4, Canada
| | - A Gordon Robertson
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC V5Z 4S6, Canada
| | - Hsin-Ta Wu
- Department of Computer Science, Brown University, Providence, RI 02906, USA
| | - Benjamin J Raphael
- Department of Computer Science, Brown University, Providence, RI 02906, USA
| | - Lina Shao
- Departments of Cell & Developmental Biology, Pathology, Molecular & Integrative Physiology, Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Matthew Meyerson
- The Eli and Edythe L. Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Department of Pathology, Harvard Medical School, Boston, MA 02215, USA
| | | | - Felix Beuschlein
- European Network for the Study of Adrenal Tumors, 75014 Paris, France; Endocrine Research Unit, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, 80336 Munich, Germany
| | - Anthony J Gill
- Cancer Diagnosis and Pathology Group and Cancer Genetics Laboratory, Kolling Institute of Medical Research, University of Sydney, Sydney, NSW 2006, Australia; Department of Anatomical Pathology, Royal North Shore Hospital, St Leonards, NSW 2065, Australia
| | - Stan B Sidhu
- Cancer Diagnosis and Pathology Group and Cancer Genetics Laboratory, Kolling Institute of Medical Research, University of Sydney, Sydney, NSW 2006, Australia; Endocrine Surgical Unit, Royal North Shore Hospital, St Leonards, NSW 2065, Australia
| | - Madson Q Almeida
- Unidade de Suprarrenal, Laboratório de Hormônios e Genética Molecular LIM42, Serviço de Endocrinologia e Metabologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo 05403-900, Brazil; Instituto do Câncer do Estado de São Paulo (ICESP), Faculdade de Medicina da Universidade de São Paulo, São Paulo 05403-900, Brazil
| | - Maria C B V Fragoso
- Unidade de Suprarrenal, Laboratório de Hormônios e Genética Molecular LIM42, Serviço de Endocrinologia e Metabologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo 05403-900, Brazil; Instituto do Câncer do Estado de São Paulo (ICESP), Faculdade de Medicina da Universidade de São Paulo, São Paulo 05403-900, Brazil
| | - Leslie M Cope
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD 21287, USA
| | - Electron Kebebew
- Endocrine Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mouhammed A Habra
- Departments of Genomic Medicine, Bioinformatics, and Computational Biology, Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Kimberly J Bussey
- Translational Genomics Research Institute, Phoenix, AZ 85004, USA; NantOmics, LLC, The Biodesign Institute, Arizona State University, Tempe, AZ 85287-5001, USA
| | - William E Rainey
- Departments of Cell & Developmental Biology, Pathology, Molecular & Integrative Physiology, Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA; University of Michigan Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sylvia L Asa
- Department of Laboratory Medicine and Pathobiology, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Jérôme Bertherat
- Inserm U1016, CNRS UMR 8104, Institut Cochin, 75014 Paris, France; Faculté de Médecine Paris Descartes, Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France; Department of Endocrinology, Referral Center for Rare Adrenal Diseases, Assistance Publique Hôpitaux de Paris, Hôpital Cochin, 75014 Paris, France; European Network for the Study of Adrenal Tumors, 75014 Paris, France
| | - Martin Fassnacht
- European Network for the Study of Adrenal Tumors, 75014 Paris, France; Endocrine and Diabetes Unit, Department of Internal Medicine I, University Hospital Würzburg, 97080 Würzburg, Germany; Comprehensive Cancer Center Mainfranken, University of Würzburg, 97080 Würzburg, Germany
| | - David A Wheeler
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Gary D Hammer
- Departments of Cell & Developmental Biology, Pathology, Molecular & Integrative Physiology, Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA; University of Michigan Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Thomas J Giordano
- Departments of Cell & Developmental Biology, Pathology, Molecular & Integrative Physiology, Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA; University of Michigan Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Roel G W Verhaak
- Departments of Genomic Medicine, Bioinformatics, and Computational Biology, Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
140
|
Legendre CR, Demeure MJ, Whitsett TG, Gooden GC, Bussey KJ, Jung S, Waibhav T, Kim S, Salhia B. Pathway Implications of Aberrant Global Methylation in Adrenocortical Cancer. PLoS One 2016; 11:e0150629. [PMID: 26963385 PMCID: PMC4786116 DOI: 10.1371/journal.pone.0150629] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 02/17/2016] [Indexed: 12/02/2022] Open
Abstract
Context Adrenocortical carcinomas (ACC) are a rare tumor type with a poor five-year survival rate and limited treatment options. Objective Understanding of the molecular pathogenesis of this disease has been aided by genomic analyses highlighting alterations in TP53, WNT, and IGF signaling pathways. Further elucidation is needed to reveal therapeutically actionable targets in ACC. Design In this study, global DNA methylation levels were assessed by the Infinium HumanMethylation450 BeadChip Array on 18 ACC tumors and 6 normal adrenal tissues. A new, non-linear correlation approach, the discretization method, assessed the relationship between DNA methylation/gene expression across ACC tumors. Results This correlation analysis revealed epigenetic regulation of genes known to modulate TP53, WNT, and IGF signaling, as well as silencing of the tumor suppressor MARCKS, previously unreported in ACC. Conclusions DNA methylation may regulate genes known to play a role in ACC pathogenesis as well as known tumor suppressors.
Collapse
Affiliation(s)
| | - Michael J. Demeure
- Translational Genomics Research Institute, Phoenix, AZ, United States of America
| | - Timothy G. Whitsett
- Translational Genomics Research Institute, Phoenix, AZ, United States of America
| | - Gerald C. Gooden
- Translational Genomics Research Institute, Phoenix, AZ, United States of America
| | - Kimberly J. Bussey
- Translational Genomics Research Institute, Phoenix, AZ, United States of America
- NantOmics, LLC, Phoenix, Arizona, United States of America
| | - Sungwon Jung
- Department of Genome Medicine and Science, Gachon University School of Medicine, Incheon, 21565, Republic of Korea
- Gachon Institute of Genome Medicine and Science, Gachon University Gil Medical Center, Incheon, 21565, Republic of Korea
| | - Tembe Waibhav
- Translational Genomics Research Institute, Phoenix, AZ, United States of America
| | - Seungchan Kim
- Translational Genomics Research Institute, Phoenix, AZ, United States of America
| | - Bodour Salhia
- Translational Genomics Research Institute, Phoenix, AZ, United States of America
- * E-mail:
| |
Collapse
|
141
|
Poli G, Ceni E, Armignacco R, Ercolino T, Canu L, Baroni G, Nesi G, Galli A, Mannelli M, Luconi M. 2D-DIGE proteomic analysis identifies new potential therapeutic targets for adrenocortical carcinoma. Oncotarget 2016; 6:5695-706. [PMID: 25691058 PMCID: PMC4467395 DOI: 10.18632/oncotarget.3299] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 01/02/2015] [Indexed: 01/29/2023] Open
Abstract
Adrenocortical carcinoma (ACC) is a rare aggressive tumor with poor prognosis when metastatic at diagnosis. The tumor biology is still mostly unclear, justifying the limited specificity and efficacy of the anti-cancer drugs currently available. This study reports the first proteomic analysis of ACC by using two-dimensional-differential-in-gel-electrophoresis (2D-DIGE) to evaluate a differential protein expression profile between adrenocortical carcinoma and normal adrenal. Mass spectrometry, associated with 2D-DIGE analysis of carcinomas and normal adrenals, identified 22 proteins in 27 differentially expressed 2D spots, mostly overexpressed in ACC. Gene ontology analysis revealed that most of the proteins concurs towards a metabolic shift, called the Warburg effect, in adrenocortical cancer. The differential expression was validated by Western blot for Aldehyde-dehydrogenase-6-A1,Transferrin, Fascin-1,Lamin A/C,Adenylate-cyclase-associated-protein-1 and Ferredoxin-reductase. Moreover, immunohistochemistry performed on paraffin-embedded ACC and normal adrenal specimens confirmed marked positive staining for all 6 proteins diffusely expressed by neoplastic cells, compared with normal adrenal cortex. In conclusion, our preliminary findings reveal a different proteomic profile in adrenocortical carcinoma compared with normal adrenal cortex characterized by overexpression of mainly metabolic enzymes, thus suggesting the Warburg effect also occurs in ACC. These proteins may represent promising novel ACC biomarkers and potential therapeutic targets if validated in larger cohorts of patients.
Collapse
Affiliation(s)
- Giada Poli
- Endocrinology Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Elisabetta Ceni
- Gastroenterology Unit, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Roberta Armignacco
- Endocrinology Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Tonino Ercolino
- Endocrinology Unit, Careggi Hospital, Azienda Ospedaliera Universitaria Careggi, Florence, Italy
| | - Letizia Canu
- Endocrinology Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Gianna Baroni
- Division of Pathological Anatomy, Department of Surgery and Translational Medicine, University of Florence, Florence, Italy
| | - Gabriella Nesi
- Division of Pathological Anatomy, Department of Surgery and Translational Medicine, University of Florence, Florence, Italy
| | - Andrea Galli
- Gastroenterology Unit, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Massimo Mannelli
- Endocrinology Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy.,Istituto Toscano Tumori, Florence, Italy
| | - Michaela Luconi
- Endocrinology Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy.,Istituto Toscano Tumori, Florence, Italy
| |
Collapse
|
142
|
Bussey KJ, Bapat A, Linnehan C, Wandoloski M, Dastrup E, Rogers E, Gonzales P, Demeure MJ. Targeting polo-like kinase 1, a regulator of p53, in the treatment of adrenocortical carcinoma. Clin Transl Med 2016; 5:1. [PMID: 26754547 PMCID: PMC4709336 DOI: 10.1186/s40169-015-0080-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 12/15/2015] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Adrenocortical carcinoma (ACC) is an aggressive cancer with a 5 year survival rate of 20-30 %. Various factors have been implicated in the pathogenesis of ACC including dysregulation of the G2/M transition and aberrant activity of p53 and MDM2. Polo-like kinase 1 (PLK-1) negatively modulates p53 functioning, promotes MDM2 activity through its phosphorylation, and is involved in the G2/M transition. Gene expression profiling of 44 ACC samples showed that increased expression of PLK-1 in 29 % of ACC. Consequently, we examined PLK-1's role in the modulation of the p53 signaling pathway in adrenocortical cancer. METHODS We used siRNA knock down PLK-1 and pharmacological inhibition of PLK-1 and MDM2 ACC cell lines SW-13 and H295R. We examined viability, protein expression, p53 transactivation, and induction of apoptosis. RESULTS Knocking down expression of PLK-1 with siRNA or inhibition of PLK-1 by a small molecule inhibitor, BI-2536, resulted in a loss of viability of up to 70 % in the ACC cell lines H295R and SW-13. In xenograft models, BI-2536 demonstrated marked inhibition of growth of SW-13 with less inhibition of H295R. BI-2536 treatment resulted in a decrease in mutant p53 protein in SW-13 cells but had no effect on wild-type p53 protein levels in H295R cells. Additionally, inhibition of PLK-1 restored wild-type p53's transactivation and apoptotic functions in H295R cells, while these functions of mutant p53 were restored only to a smaller extent. Furthermore, inhibition of MDM2 with nutlin-3 reduced the viability of both the ACC cells and also reactivated wild-type p53's apoptotic function. Inhibition of PLK-1 sensitized the ACC cell lines to MDM2 inhibition and this dual inhibition resulted in an additive apoptotic response in H295R cells with wild-type p53. CONCLUSIONS These preclinical studies suggest that targeting p53 through PLK-1 is an attractive chemotherapy strategy warranting further investigation in adrenocortical cancer.
Collapse
Affiliation(s)
- Kimberly J Bussey
- NantOmics, LLC, The Biodesign Institute, Arizona State University, PO Box 875001, Tempe, AZ, 85287-5001, USA.
- Translational Genomics Research Institute (TGen), Phoenix, AZ, USA.
| | - Aditi Bapat
- Translational Genomics Research Institute (TGen), Phoenix, AZ, USA.
| | - Claire Linnehan
- Translational Genomics Research Institute (TGen), Phoenix, AZ, USA.
| | | | - Erica Dastrup
- Translational Genomics Research Institute (TGen), Phoenix, AZ, USA.
| | - Erik Rogers
- Translational Genomics Research Institute (TGen), Phoenix, AZ, USA.
| | - Paul Gonzales
- Translational Drug Development (TD2), Scottsdale, AZ, USA.
| | | |
Collapse
|
143
|
Basham KJ, Hung HA, Lerario AM, Hammer GD. Mouse models of adrenocortical tumors. Mol Cell Endocrinol 2016; 421:82-97. [PMID: 26678830 PMCID: PMC4720156 DOI: 10.1016/j.mce.2015.11.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 11/23/2015] [Accepted: 11/24/2015] [Indexed: 12/17/2022]
Abstract
The molecular basis of the organogenesis, homeostasis, and tumorigenesis of the adrenal cortex has been the subject of intense study for many decades. Specifically, characterization of tumor predisposition syndromes with adrenocortical manifestations and molecular profiling of sporadic adrenocortical tumors have led to the discovery of key molecular pathways that promote pathological adrenal growth. However, given the observational nature of such studies, several important questions regarding the molecular pathogenesis of adrenocortical tumors have remained. This review will summarize naturally occurring and genetically engineered mouse models that have provided novel tools to explore the molecular and cellular underpinnings of adrenocortical tumors. New paradigms of cancer initiation, maintenance, and progression that have emerged from this work will be discussed.
Collapse
Affiliation(s)
- Kaitlin J Basham
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, USA; Endocrine Oncology Program, Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Holly A Hung
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, USA; Endocrine Oncology Program, Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Antonio M Lerario
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, USA; Endocrine Oncology Program, Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Gary D Hammer
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, USA; Endocrine Oncology Program, Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
144
|
Leccia F, Batisse-Lignier M, Sahut-Barnola I, Val P, Lefrançois-Martinez AM, Martinez A. Mouse Models Recapitulating Human Adrenocortical Tumors: What Is Lacking? Front Endocrinol (Lausanne) 2016; 7:93. [PMID: 27471492 PMCID: PMC4945639 DOI: 10.3389/fendo.2016.00093] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 07/04/2016] [Indexed: 12/31/2022] Open
Abstract
Adrenal cortex tumors are divided into benign forms, such as primary hyperplasias and adrenocortical adenomas (ACAs), and malignant forms or adrenocortical carcinomas (ACCs). Primary hyperplasias are rare causes of adrenocorticotropin hormone-independent hypercortisolism. ACAs are the most common type of adrenal gland tumors and they are rarely "functional," i.e., producing steroids. When functional, adenomas result in endocrine disorders, such as Cushing's syndrome (hypercortisolism) or Conn's syndrome (hyperaldosteronism). By contrast, ACCs are extremely rare but highly aggressive tumors that may also lead to hypersecreting syndromes. Genetic analyses of patients with sporadic or familial forms of adrenocortical tumors (ACTs) led to the identification of potentially causative genes, most of them being involved in protein kinase A (PKA), Wnt/β-catenin, and P53 signaling pathways. Development of mouse models is a crucial step to firmly establish the functional significance of candidate genes, to dissect mechanisms leading to tumors and endocrine disorders, and in fine to provide in vivo tools for therapeutic screens. In this article, we will provide an overview on the existing mouse models (xenografted and genetically engineered) of ACTs by focusing on the role of PKA and Wnt/β-catenin pathways in this context. We will discuss the advantages and limitations of models that have been developed heretofore and we will point out necessary improvements in the development of next generation mouse models of adrenal diseases.
Collapse
Affiliation(s)
- Felicia Leccia
- UMR6293, GReD, INSERM U1103, CNRS, Clermont Université, Clermont-Ferrand, France
| | - Marie Batisse-Lignier
- UMR6293, GReD, INSERM U1103, CNRS, Clermont Université, Clermont-Ferrand, France
- Endocrinology, Diabetology and Metabolic Diseases Department, Centre Hospitalier Universitaire, School of Medicine, Clermont-Ferrand, France
| | | | - Pierre Val
- UMR6293, GReD, INSERM U1103, CNRS, Clermont Université, Clermont-Ferrand, France
| | | | - Antoine Martinez
- UMR6293, GReD, INSERM U1103, CNRS, Clermont Université, Clermont-Ferrand, France
- *Correspondence: Antoine Martinez,
| |
Collapse
|
145
|
Stigliano A, Chiodini I, Giordano R, Faggiano A, Canu L, Della Casa S, Loli P, Luconi M, Mantero F, Terzolo M. Management of adrenocortical carcinoma: a consensus statement of the Italian Society of Endocrinology (SIE). J Endocrinol Invest 2016; 39:103-21. [PMID: 26165270 DOI: 10.1007/s40618-015-0349-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 06/23/2015] [Indexed: 01/10/2023]
Affiliation(s)
- A Stigliano
- Endocrinology, Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy.
| | - I Chiodini
- Endocrinology and Metabolic Disease Unit, IRCCS Foundation Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - R Giordano
- Department of Clinical and Biological Science, University of Turin, Turin, Italy
- Division of Endocrinology, Diabetology and Metabolism, Department of Medical Science, University of Turin, Turin, Italy
| | - A Faggiano
- Department of Clinical Medicine and Surgery, Federico II University of Naples, Naples, Italy
| | - L Canu
- Endocrinology Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - S Della Casa
- Endocrinology, Department of Internal Medicine, Catholic University of Rome, Rome, Italy
| | - P Loli
- Endocrine Unit, Niguarda Cà Granda Hospital, Milan, Italy
| | - M Luconi
- Endocrinology Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - F Mantero
- Endocrinology Unit, Department of Medicine-DIMED, University of Padua, Padua, Italy
| | - M Terzolo
- Internal Medicine I, Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| |
Collapse
|
146
|
Cabezon-Gutierrez L, Franco-Moreno AI, Khosravi-Shahi P, Custodio-Cabello S, Garcia-Navarro MJ, Martin-Diaz RM. Clinical Case of Metastatic Adrenocortical Carcinoma With Unusual Evolution: Review the Literature. World J Oncol 2015; 6:485-490. [PMID: 28983351 PMCID: PMC5624676 DOI: 10.14740/wjon936w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2015] [Indexed: 12/13/2022] Open
Abstract
Adrenocortical carcinoma (ACC) is a rare and heterogeneous malignancy, with an incidence of approximately 0.72 per million cases per year leading to 0.2% of all cancer deaths in the United States. Metastatic ACC has a dismal prognosis with an overall survival of less than 1 year. We present a case of a 37-year-old man with metastatic ACC with unusual good prognosis and review the therapeutic options in the literature.
Collapse
|
147
|
Altieri B, Tirabassi G, Della Casa S, Ronchi CL, Balercia G, Orio F, Pontecorvi A, Colao A, Muscogiuri G. Adrenocortical tumors and insulin resistance: What is the first step? Int J Cancer 2015; 138:2785-94. [PMID: 26637955 DOI: 10.1002/ijc.29950] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 11/05/2015] [Accepted: 11/23/2015] [Indexed: 01/15/2023]
Abstract
The pathogenetic mechanisms underlying the onset of adrenocortical tumors (ACTs) are still largely unknown. Recently, more attention has been paid to the role of insulin and insulin-like growth factor (IGF) system on general tumor development and progression. Increased levels of insulin, IGF-1 and IGF-2 are associated with tumor cell growth and increased risk of cancer promotion and progression in patients with type 2 diabetes. Insulin resistance and compensatory hyperinsulinemia may play a role in adrenal tumor growth through the activation of insulin and IGF-1 receptors. Interestingly, apparently non-functioning ACTs are often associated with a high prevalence of insulin resistance and metabolic syndrome. However, it is unclear if ACT develops from a primary insulin resistance and compensatory hyperinsulinemia or if insulin resistance is only secondary to the slight cortisol hypersecretion by ACT. The aim of this review is to summarize the current evidence regarding the relationship between hyperinsulinemia and adrenocortical tumors.
Collapse
Affiliation(s)
- Barbara Altieri
- Institute of Medical Pathology, Division of Endocrinology and Metabolic Diseases, Catholic University, Rome, Italy
| | - Giacomo Tirabassi
- Division of Endocrinology, Department of Clinical and Molecular Sciences, Umberto I Hospital, Polytechnic University of Marche, Ancona, Italy
| | - Silvia Della Casa
- Institute of Medical Pathology, Division of Endocrinology and Metabolic Diseases, Catholic University, Rome, Italy
| | - Cristina L Ronchi
- Endocrine and Diabetes Unit, Department of Internal Medicine I, University Hospital, University of Wuerzburg, Wuerzburg, Germany
| | - Giancarlo Balercia
- Division of Endocrinology, Department of Clinical and Molecular Sciences, Umberto I Hospital, Polytechnic University of Marche, Ancona, Italy
| | - Francesco Orio
- Department of Sports Science and Wellness, Parthenope University, Naples, Italy.,Department of Endocrinology and Diabetology, Fertility Techniques Structure, University Hospital S. Giovanni Di Dio E Ruggi D'aragona, Salerno, Italy
| | - Alfredo Pontecorvi
- Institute of Medical Pathology, Division of Endocrinology and Metabolic Diseases, Catholic University, Rome, Italy
| | - Annamaria Colao
- Department of Clinical Medicine and Surgery, Section of Endocrinology, Federico II University, Naples, Italy
| | - Giovanna Muscogiuri
- Department of Clinical Medicine and Surgery, Section of Endocrinology, Federico II University, Naples, Italy
| |
Collapse
|
148
|
5th International ACC Symposium: Classification of Adrenocortical Cancers from Pathology to Integrated Genomics: Real Advances or Lost in Translation? Discov Oncol 2015; 7:3-8. [DOI: 10.1007/s12672-015-0242-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 12/01/2015] [Indexed: 10/22/2022] Open
|
149
|
Nielsen HM, How-Kit A, Guerin C, Castinetti F, Vollan HKM, De Micco C, Daunay A, Taieb D, Van Loo P, Besse C, Kristensen VN, Hansen LL, Barlier A, Sebag F, Tost J. Copy number variations alter methylation and parallel IGF2 overexpression in adrenal tumors. Endocr Relat Cancer 2015; 22:953-67. [PMID: 26400872 PMCID: PMC4621769 DOI: 10.1530/erc-15-0086] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/22/2015] [Indexed: 12/14/2022]
Abstract
Overexpression of insulin growth factor 2 (IGF2) is a hallmark of adrenocortical carcinomas and pheochromocytomas. Previous studies investigating the IGF2/H19 locus have mainly focused on a single molecular level such as genomic alterations or altered DNA methylation levels and the causal changes underlying IGF2 overexpression are still not fully established. In the current study, we analyzed 62 tumors of the adrenal gland from patients with Conn's adenoma (CA, n=12), pheochromocytomas (PCC, n=10), adrenocortical benign tumors (ACBT, n=20), and adrenocortical carcinomas (ACC, n=20). Gene expression, somatic copy number variation of chr11p15.5, and DNA methylation status of three differential methylated regions of the IGF2/H19 locus including the H19 imprinting control region were integratively analyzed. IGF2 overexpression was found in 85% of the ACCs and 100% of the PCCs compared to 23% observed in CAs and ACBTs. Copy number aberrations of chr11p15.5 were abundant in both PCCs and ACCs but while PCCs retained a diploid state, ACCs were frequently tetraploid (7/19). Loss of either a single allele or loss of two alleles of the same parental origin in tetraploid samples resulted in a uniparental disomy-like genotype. These copy number changes correlated with hypermethylation of the H19 ICR suggesting that the lost alleles were the unmethylated maternal alleles. Our data provide conclusive evidence that loss of the maternal allele correlates with IGF2 overexpression in adrenal tumors and that hypermethylation of the H19 ICR is a consequence thereof.
Collapse
Affiliation(s)
- Helene Myrtue Nielsen
- Laboratory for Functional GenomicsFondation Jean Dausset - Centre d'Etude du Polymorphisme Humain (CEPH), Paris, FranceInstitute of BiomedicineAarhus University, Aarhus, DenmarkEndocrine and Metabolic Surgery DepartmentAP-HM La Conception, Marseille, FranceDepartment of EndocrinologyAP-HM La Timone, Marseille, FranceDepartment of GeneticsInstitute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, NorwayDivision of SurgeryTransplantation and Cancer Medicine, Department of Oncology, Oslo University Hospital, Oslo, NorwayThe K G Jebsen Center for Breast Cancer ResearchInstitute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, NorwayPathology DepartmentAP-HM La Timone, Marseille, FranceNuclear Endocrine Imaging and Treatment DepartmentAP-HM La Timone, Marseille, FranceCancer Research UKLondon Research Institute, London, UKDepartment of Human GeneticsUniversity of Leuven, Leuven, BelgiumGenotyping FacilitiesCentre National de Génotypage, CEA-Institut de Génomique, Evry, FranceDepartment of Clinical Molecular Biology (EpiGen)University of Oslo, Ahus, Lokerod, NorwayLaboratory of Molecular BiologyAP-HM La Conception and CRN2M, Aix-Marseille University, Marseille, FranceLaboratory for Epigenetics and EnvironmentCentre National de Génotypage, CEA-Institut de Génomique, Evry, France Laboratory for Functional GenomicsFondation Jean Dausset - Centre d'Etude du Polymorphisme Humain (CEPH), Paris, FranceInstitute of BiomedicineAarhus University, Aarhus, DenmarkEndocrine and Metabolic Surgery DepartmentAP-HM La Conception, Marseille, FranceDepartment of EndocrinologyAP-HM La Timone, Marseille, FranceDepartment of GeneticsInstitute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, NorwayDivision of SurgeryTransplantation and Cancer Medicine, Department of Oncology, Oslo University Hospital, Oslo, NorwayThe K G Jebsen Center for Breast Cancer ResearchInstitute for Clinical Medicine, Faculty
| | - Alexandre How-Kit
- Laboratory for Functional GenomicsFondation Jean Dausset - Centre d'Etude du Polymorphisme Humain (CEPH), Paris, FranceInstitute of BiomedicineAarhus University, Aarhus, DenmarkEndocrine and Metabolic Surgery DepartmentAP-HM La Conception, Marseille, FranceDepartment of EndocrinologyAP-HM La Timone, Marseille, FranceDepartment of GeneticsInstitute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, NorwayDivision of SurgeryTransplantation and Cancer Medicine, Department of Oncology, Oslo University Hospital, Oslo, NorwayThe K G Jebsen Center for Breast Cancer ResearchInstitute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, NorwayPathology DepartmentAP-HM La Timone, Marseille, FranceNuclear Endocrine Imaging and Treatment DepartmentAP-HM La Timone, Marseille, FranceCancer Research UKLondon Research Institute, London, UKDepartment of Human GeneticsUniversity of Leuven, Leuven, BelgiumGenotyping FacilitiesCentre National de Génotypage, CEA-Institut de Génomique, Evry, FranceDepartment of Clinical Molecular Biology (EpiGen)University of Oslo, Ahus, Lokerod, NorwayLaboratory of Molecular BiologyAP-HM La Conception and CRN2M, Aix-Marseille University, Marseille, FranceLaboratory for Epigenetics and EnvironmentCentre National de Génotypage, CEA-Institut de Génomique, Evry, France
| | - Carole Guerin
- Laboratory for Functional GenomicsFondation Jean Dausset - Centre d'Etude du Polymorphisme Humain (CEPH), Paris, FranceInstitute of BiomedicineAarhus University, Aarhus, DenmarkEndocrine and Metabolic Surgery DepartmentAP-HM La Conception, Marseille, FranceDepartment of EndocrinologyAP-HM La Timone, Marseille, FranceDepartment of GeneticsInstitute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, NorwayDivision of SurgeryTransplantation and Cancer Medicine, Department of Oncology, Oslo University Hospital, Oslo, NorwayThe K G Jebsen Center for Breast Cancer ResearchInstitute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, NorwayPathology DepartmentAP-HM La Timone, Marseille, FranceNuclear Endocrine Imaging and Treatment DepartmentAP-HM La Timone, Marseille, FranceCancer Research UKLondon Research Institute, London, UKDepartment of Human GeneticsUniversity of Leuven, Leuven, BelgiumGenotyping FacilitiesCentre National de Génotypage, CEA-Institut de Génomique, Evry, FranceDepartment of Clinical Molecular Biology (EpiGen)University of Oslo, Ahus, Lokerod, NorwayLaboratory of Molecular BiologyAP-HM La Conception and CRN2M, Aix-Marseille University, Marseille, FranceLaboratory for Epigenetics and EnvironmentCentre National de Génotypage, CEA-Institut de Génomique, Evry, France
| | - Frederic Castinetti
- Laboratory for Functional GenomicsFondation Jean Dausset - Centre d'Etude du Polymorphisme Humain (CEPH), Paris, FranceInstitute of BiomedicineAarhus University, Aarhus, DenmarkEndocrine and Metabolic Surgery DepartmentAP-HM La Conception, Marseille, FranceDepartment of EndocrinologyAP-HM La Timone, Marseille, FranceDepartment of GeneticsInstitute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, NorwayDivision of SurgeryTransplantation and Cancer Medicine, Department of Oncology, Oslo University Hospital, Oslo, NorwayThe K G Jebsen Center for Breast Cancer ResearchInstitute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, NorwayPathology DepartmentAP-HM La Timone, Marseille, FranceNuclear Endocrine Imaging and Treatment DepartmentAP-HM La Timone, Marseille, FranceCancer Research UKLondon Research Institute, London, UKDepartment of Human GeneticsUniversity of Leuven, Leuven, BelgiumGenotyping FacilitiesCentre National de Génotypage, CEA-Institut de Génomique, Evry, FranceDepartment of Clinical Molecular Biology (EpiGen)University of Oslo, Ahus, Lokerod, NorwayLaboratory of Molecular BiologyAP-HM La Conception and CRN2M, Aix-Marseille University, Marseille, FranceLaboratory for Epigenetics and EnvironmentCentre National de Génotypage, CEA-Institut de Génomique, Evry, France
| | - Hans Kristian Moen Vollan
- Laboratory for Functional GenomicsFondation Jean Dausset - Centre d'Etude du Polymorphisme Humain (CEPH), Paris, FranceInstitute of BiomedicineAarhus University, Aarhus, DenmarkEndocrine and Metabolic Surgery DepartmentAP-HM La Conception, Marseille, FranceDepartment of EndocrinologyAP-HM La Timone, Marseille, FranceDepartment of GeneticsInstitute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, NorwayDivision of SurgeryTransplantation and Cancer Medicine, Department of Oncology, Oslo University Hospital, Oslo, NorwayThe K G Jebsen Center for Breast Cancer ResearchInstitute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, NorwayPathology DepartmentAP-HM La Timone, Marseille, FranceNuclear Endocrine Imaging and Treatment DepartmentAP-HM La Timone, Marseille, FranceCancer Research UKLondon Research Institute, London, UKDepartment of Human GeneticsUniversity of Leuven, Leuven, BelgiumGenotyping FacilitiesCentre National de Génotypage, CEA-Institut de Génomique, Evry, FranceDepartment of Clinical Molecular Biology (EpiGen)University of Oslo, Ahus, Lokerod, NorwayLaboratory of Molecular BiologyAP-HM La Conception and CRN2M, Aix-Marseille University, Marseille, FranceLaboratory for Epigenetics and EnvironmentCentre National de Génotypage, CEA-Institut de Génomique, Evry, France Laboratory for Functional GenomicsFondation Jean Dausset - Centre d'Etude du Polymorphisme Humain (CEPH), Paris, FranceInstitute of BiomedicineAarhus University, Aarhus, DenmarkEndocrine and Metabolic Surgery DepartmentAP-HM La Conception, Marseille, FranceDepartment of EndocrinologyAP-HM La Timone, Marseille, FranceDepartment of GeneticsInstitute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, NorwayDivision of SurgeryTransplantation and Cancer Medicine, Department of Oncology, Oslo University Hospital, Oslo, NorwayThe K G Jebsen Center for Breast Cancer ResearchInstitute for Clinical Medicine, Faculty
| | - Catherine De Micco
- Laboratory for Functional GenomicsFondation Jean Dausset - Centre d'Etude du Polymorphisme Humain (CEPH), Paris, FranceInstitute of BiomedicineAarhus University, Aarhus, DenmarkEndocrine and Metabolic Surgery DepartmentAP-HM La Conception, Marseille, FranceDepartment of EndocrinologyAP-HM La Timone, Marseille, FranceDepartment of GeneticsInstitute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, NorwayDivision of SurgeryTransplantation and Cancer Medicine, Department of Oncology, Oslo University Hospital, Oslo, NorwayThe K G Jebsen Center for Breast Cancer ResearchInstitute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, NorwayPathology DepartmentAP-HM La Timone, Marseille, FranceNuclear Endocrine Imaging and Treatment DepartmentAP-HM La Timone, Marseille, FranceCancer Research UKLondon Research Institute, London, UKDepartment of Human GeneticsUniversity of Leuven, Leuven, BelgiumGenotyping FacilitiesCentre National de Génotypage, CEA-Institut de Génomique, Evry, FranceDepartment of Clinical Molecular Biology (EpiGen)University of Oslo, Ahus, Lokerod, NorwayLaboratory of Molecular BiologyAP-HM La Conception and CRN2M, Aix-Marseille University, Marseille, FranceLaboratory for Epigenetics and EnvironmentCentre National de Génotypage, CEA-Institut de Génomique, Evry, France
| | - Antoine Daunay
- Laboratory for Functional GenomicsFondation Jean Dausset - Centre d'Etude du Polymorphisme Humain (CEPH), Paris, FranceInstitute of BiomedicineAarhus University, Aarhus, DenmarkEndocrine and Metabolic Surgery DepartmentAP-HM La Conception, Marseille, FranceDepartment of EndocrinologyAP-HM La Timone, Marseille, FranceDepartment of GeneticsInstitute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, NorwayDivision of SurgeryTransplantation and Cancer Medicine, Department of Oncology, Oslo University Hospital, Oslo, NorwayThe K G Jebsen Center for Breast Cancer ResearchInstitute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, NorwayPathology DepartmentAP-HM La Timone, Marseille, FranceNuclear Endocrine Imaging and Treatment DepartmentAP-HM La Timone, Marseille, FranceCancer Research UKLondon Research Institute, London, UKDepartment of Human GeneticsUniversity of Leuven, Leuven, BelgiumGenotyping FacilitiesCentre National de Génotypage, CEA-Institut de Génomique, Evry, FranceDepartment of Clinical Molecular Biology (EpiGen)University of Oslo, Ahus, Lokerod, NorwayLaboratory of Molecular BiologyAP-HM La Conception and CRN2M, Aix-Marseille University, Marseille, FranceLaboratory for Epigenetics and EnvironmentCentre National de Génotypage, CEA-Institut de Génomique, Evry, France
| | - David Taieb
- Laboratory for Functional GenomicsFondation Jean Dausset - Centre d'Etude du Polymorphisme Humain (CEPH), Paris, FranceInstitute of BiomedicineAarhus University, Aarhus, DenmarkEndocrine and Metabolic Surgery DepartmentAP-HM La Conception, Marseille, FranceDepartment of EndocrinologyAP-HM La Timone, Marseille, FranceDepartment of GeneticsInstitute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, NorwayDivision of SurgeryTransplantation and Cancer Medicine, Department of Oncology, Oslo University Hospital, Oslo, NorwayThe K G Jebsen Center for Breast Cancer ResearchInstitute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, NorwayPathology DepartmentAP-HM La Timone, Marseille, FranceNuclear Endocrine Imaging and Treatment DepartmentAP-HM La Timone, Marseille, FranceCancer Research UKLondon Research Institute, London, UKDepartment of Human GeneticsUniversity of Leuven, Leuven, BelgiumGenotyping FacilitiesCentre National de Génotypage, CEA-Institut de Génomique, Evry, FranceDepartment of Clinical Molecular Biology (EpiGen)University of Oslo, Ahus, Lokerod, NorwayLaboratory of Molecular BiologyAP-HM La Conception and CRN2M, Aix-Marseille University, Marseille, FranceLaboratory for Epigenetics and EnvironmentCentre National de Génotypage, CEA-Institut de Génomique, Evry, France
| | - Peter Van Loo
- Laboratory for Functional GenomicsFondation Jean Dausset - Centre d'Etude du Polymorphisme Humain (CEPH), Paris, FranceInstitute of BiomedicineAarhus University, Aarhus, DenmarkEndocrine and Metabolic Surgery DepartmentAP-HM La Conception, Marseille, FranceDepartment of EndocrinologyAP-HM La Timone, Marseille, FranceDepartment of GeneticsInstitute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, NorwayDivision of SurgeryTransplantation and Cancer Medicine, Department of Oncology, Oslo University Hospital, Oslo, NorwayThe K G Jebsen Center for Breast Cancer ResearchInstitute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, NorwayPathology DepartmentAP-HM La Timone, Marseille, FranceNuclear Endocrine Imaging and Treatment DepartmentAP-HM La Timone, Marseille, FranceCancer Research UKLondon Research Institute, London, UKDepartment of Human GeneticsUniversity of Leuven, Leuven, BelgiumGenotyping FacilitiesCentre National de Génotypage, CEA-Institut de Génomique, Evry, FranceDepartment of Clinical Molecular Biology (EpiGen)University of Oslo, Ahus, Lokerod, NorwayLaboratory of Molecular BiologyAP-HM La Conception and CRN2M, Aix-Marseille University, Marseille, FranceLaboratory for Epigenetics and EnvironmentCentre National de Génotypage, CEA-Institut de Génomique, Evry, France Laboratory for Functional GenomicsFondation Jean Dausset - Centre d'Etude du Polymorphisme Humain (CEPH), Paris, FranceInstitute of BiomedicineAarhus University, Aarhus, DenmarkEndocrine and Metabolic Surgery DepartmentAP-HM La Conception, Marseille, FranceDepartment of EndocrinologyAP-HM La Timone, Marseille, FranceDepartment of GeneticsInstitute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, NorwayDivision of SurgeryTransplantation and Cancer Medicine, Department of Oncology, Oslo University Hospital, Oslo, NorwayThe K G Jebsen Center for Breast Cancer ResearchInstitute for Clinical Medicine, Faculty
| | - Celine Besse
- Laboratory for Functional GenomicsFondation Jean Dausset - Centre d'Etude du Polymorphisme Humain (CEPH), Paris, FranceInstitute of BiomedicineAarhus University, Aarhus, DenmarkEndocrine and Metabolic Surgery DepartmentAP-HM La Conception, Marseille, FranceDepartment of EndocrinologyAP-HM La Timone, Marseille, FranceDepartment of GeneticsInstitute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, NorwayDivision of SurgeryTransplantation and Cancer Medicine, Department of Oncology, Oslo University Hospital, Oslo, NorwayThe K G Jebsen Center for Breast Cancer ResearchInstitute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, NorwayPathology DepartmentAP-HM La Timone, Marseille, FranceNuclear Endocrine Imaging and Treatment DepartmentAP-HM La Timone, Marseille, FranceCancer Research UKLondon Research Institute, London, UKDepartment of Human GeneticsUniversity of Leuven, Leuven, BelgiumGenotyping FacilitiesCentre National de Génotypage, CEA-Institut de Génomique, Evry, FranceDepartment of Clinical Molecular Biology (EpiGen)University of Oslo, Ahus, Lokerod, NorwayLaboratory of Molecular BiologyAP-HM La Conception and CRN2M, Aix-Marseille University, Marseille, FranceLaboratory for Epigenetics and EnvironmentCentre National de Génotypage, CEA-Institut de Génomique, Evry, France
| | - Vessela N Kristensen
- Laboratory for Functional GenomicsFondation Jean Dausset - Centre d'Etude du Polymorphisme Humain (CEPH), Paris, FranceInstitute of BiomedicineAarhus University, Aarhus, DenmarkEndocrine and Metabolic Surgery DepartmentAP-HM La Conception, Marseille, FranceDepartment of EndocrinologyAP-HM La Timone, Marseille, FranceDepartment of GeneticsInstitute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, NorwayDivision of SurgeryTransplantation and Cancer Medicine, Department of Oncology, Oslo University Hospital, Oslo, NorwayThe K G Jebsen Center for Breast Cancer ResearchInstitute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, NorwayPathology DepartmentAP-HM La Timone, Marseille, FranceNuclear Endocrine Imaging and Treatment DepartmentAP-HM La Timone, Marseille, FranceCancer Research UKLondon Research Institute, London, UKDepartment of Human GeneticsUniversity of Leuven, Leuven, BelgiumGenotyping FacilitiesCentre National de Génotypage, CEA-Institut de Génomique, Evry, FranceDepartment of Clinical Molecular Biology (EpiGen)University of Oslo, Ahus, Lokerod, NorwayLaboratory of Molecular BiologyAP-HM La Conception and CRN2M, Aix-Marseille University, Marseille, FranceLaboratory for Epigenetics and EnvironmentCentre National de Génotypage, CEA-Institut de Génomique, Evry, France Laboratory for Functional GenomicsFondation Jean Dausset - Centre d'Etude du Polymorphisme Humain (CEPH), Paris, FranceInstitute of BiomedicineAarhus University, Aarhus, DenmarkEndocrine and Metabolic Surgery DepartmentAP-HM La Conception, Marseille, FranceDepartment of EndocrinologyAP-HM La Timone, Marseille, FranceDepartment of GeneticsInstitute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, NorwayDivision of SurgeryTransplantation and Cancer Medicine, Department of Oncology, Oslo University Hospital, Oslo, NorwayThe K G Jebsen Center for Breast Cancer ResearchInstitute for Clinical Medicine, Faculty
| | - Lise Lotte Hansen
- Laboratory for Functional GenomicsFondation Jean Dausset - Centre d'Etude du Polymorphisme Humain (CEPH), Paris, FranceInstitute of BiomedicineAarhus University, Aarhus, DenmarkEndocrine and Metabolic Surgery DepartmentAP-HM La Conception, Marseille, FranceDepartment of EndocrinologyAP-HM La Timone, Marseille, FranceDepartment of GeneticsInstitute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, NorwayDivision of SurgeryTransplantation and Cancer Medicine, Department of Oncology, Oslo University Hospital, Oslo, NorwayThe K G Jebsen Center for Breast Cancer ResearchInstitute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, NorwayPathology DepartmentAP-HM La Timone, Marseille, FranceNuclear Endocrine Imaging and Treatment DepartmentAP-HM La Timone, Marseille, FranceCancer Research UKLondon Research Institute, London, UKDepartment of Human GeneticsUniversity of Leuven, Leuven, BelgiumGenotyping FacilitiesCentre National de Génotypage, CEA-Institut de Génomique, Evry, FranceDepartment of Clinical Molecular Biology (EpiGen)University of Oslo, Ahus, Lokerod, NorwayLaboratory of Molecular BiologyAP-HM La Conception and CRN2M, Aix-Marseille University, Marseille, FranceLaboratory for Epigenetics and EnvironmentCentre National de Génotypage, CEA-Institut de Génomique, Evry, France
| | - Anne Barlier
- Laboratory for Functional GenomicsFondation Jean Dausset - Centre d'Etude du Polymorphisme Humain (CEPH), Paris, FranceInstitute of BiomedicineAarhus University, Aarhus, DenmarkEndocrine and Metabolic Surgery DepartmentAP-HM La Conception, Marseille, FranceDepartment of EndocrinologyAP-HM La Timone, Marseille, FranceDepartment of GeneticsInstitute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, NorwayDivision of SurgeryTransplantation and Cancer Medicine, Department of Oncology, Oslo University Hospital, Oslo, NorwayThe K G Jebsen Center for Breast Cancer ResearchInstitute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, NorwayPathology DepartmentAP-HM La Timone, Marseille, FranceNuclear Endocrine Imaging and Treatment DepartmentAP-HM La Timone, Marseille, FranceCancer Research UKLondon Research Institute, London, UKDepartment of Human GeneticsUniversity of Leuven, Leuven, BelgiumGenotyping FacilitiesCentre National de Génotypage, CEA-Institut de Génomique, Evry, FranceDepartment of Clinical Molecular Biology (EpiGen)University of Oslo, Ahus, Lokerod, NorwayLaboratory of Molecular BiologyAP-HM La Conception and CRN2M, Aix-Marseille University, Marseille, FranceLaboratory for Epigenetics and EnvironmentCentre National de Génotypage, CEA-Institut de Génomique, Evry, France
| | - Frederic Sebag
- Laboratory for Functional GenomicsFondation Jean Dausset - Centre d'Etude du Polymorphisme Humain (CEPH), Paris, FranceInstitute of BiomedicineAarhus University, Aarhus, DenmarkEndocrine and Metabolic Surgery DepartmentAP-HM La Conception, Marseille, FranceDepartment of EndocrinologyAP-HM La Timone, Marseille, FranceDepartment of GeneticsInstitute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, NorwayDivision of SurgeryTransplantation and Cancer Medicine, Department of Oncology, Oslo University Hospital, Oslo, NorwayThe K G Jebsen Center for Breast Cancer ResearchInstitute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, NorwayPathology DepartmentAP-HM La Timone, Marseille, FranceNuclear Endocrine Imaging and Treatment DepartmentAP-HM La Timone, Marseille, FranceCancer Research UKLondon Research Institute, London, UKDepartment of Human GeneticsUniversity of Leuven, Leuven, BelgiumGenotyping FacilitiesCentre National de Génotypage, CEA-Institut de Génomique, Evry, FranceDepartment of Clinical Molecular Biology (EpiGen)University of Oslo, Ahus, Lokerod, NorwayLaboratory of Molecular BiologyAP-HM La Conception and CRN2M, Aix-Marseille University, Marseille, FranceLaboratory for Epigenetics and EnvironmentCentre National de Génotypage, CEA-Institut de Génomique, Evry, France
| | - Jörg Tost
- Laboratory for Functional GenomicsFondation Jean Dausset - Centre d'Etude du Polymorphisme Humain (CEPH), Paris, FranceInstitute of BiomedicineAarhus University, Aarhus, DenmarkEndocrine and Metabolic Surgery DepartmentAP-HM La Conception, Marseille, FranceDepartment of EndocrinologyAP-HM La Timone, Marseille, FranceDepartment of GeneticsInstitute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, NorwayDivision of SurgeryTransplantation and Cancer Medicine, Department of Oncology, Oslo University Hospital, Oslo, NorwayThe K G Jebsen Center for Breast Cancer ResearchInstitute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, NorwayPathology DepartmentAP-HM La Timone, Marseille, FranceNuclear Endocrine Imaging and Treatment DepartmentAP-HM La Timone, Marseille, FranceCancer Research UKLondon Research Institute, London, UKDepartment of Human GeneticsUniversity of Leuven, Leuven, BelgiumGenotyping FacilitiesCentre National de Génotypage, CEA-Institut de Génomique, Evry, FranceDepartment of Clinical Molecular Biology (EpiGen)University of Oslo, Ahus, Lokerod, NorwayLaboratory of Molecular BiologyAP-HM La Conception and CRN2M, Aix-Marseille University, Marseille, FranceLaboratory for Epigenetics and EnvironmentCentre National de Génotypage, CEA-Institut de Génomique, Evry, France
| |
Collapse
|
150
|
Zeng Z, Zhou Z, Zhan N, Yuan J, Ye B, Gu L, Wang J, Jian Z, Xiong X. USP10 Expression in Normal Adrenal Gland and Various Adrenal Tumors. Endocr Pathol 2015; 26:302-8. [PMID: 26555087 DOI: 10.1007/s12022-015-9406-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Ubiquitin-specific protease 10 (USP10), a novel deubiquitinating enzyme, is associated with androgen receptor transcriptional activity and pathological processes of tumor. However, information between USP10 and the adrenal gland is limited. In particular, the role of USP10 in adrenal tumors has not been elucidated yet. This study aims to investigate the expression of USP10 in the human normal adrenal gland and various adrenal tumors. Tissue samples were obtained from 30 adrenocortical adenomas, nine adrenocortical adenocarcinomas, and 20 pheochromocytomas following laparoscopic surgery. Twenty normal adrenal glands were obtained from kidney surgical resection conducted due to renal cell carcinomas. USP10 expression was investigated on protein levels using immunohistochemistry and on mRNA levels using bioinformatics analysis in the Gene Expression Omnibus (GEO) Datasets. In the 20 cases of normal adrenal glands analyzed, USP10 protein was constantly expressed in situ in the cortex of the adrenal glands, but in the medulla of the gland, only the sustentacular cells were detected positive. In adrenal tumors, detectable levels of USP10 protein were found in 100 % (30/30) adrenocortical adenomas, 88.89 % (8/9) adrenocortical carcinomas, and 10 % (2/20) pheochromocytomas. Bioinformatics analysis did not show a significant difference in USP10 messenger RNA (mRNA) expression between adrenal tumors and normal adrenal gland tissues. A positive USP10 immunoreaction can be useful in distinguishing adrenal cortical tumors from pheochromocytoma.
Collapse
Affiliation(s)
- Zhi Zeng
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, People's Republic of China
| | - Ziying Zhou
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, People's Republic of China
| | - Na Zhan
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, People's Republic of China
| | - Jingping Yuan
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, People's Republic of China
| | - Baixin Ye
- Department of Hematology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, People's Republic of China
| | - Lijuan Gu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, People's Republic of China
| | - Jun Wang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, People's Republic of China
| | - Zhihong Jian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, People's Republic of China
| | - Xiaoxing Xiong
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, People's Republic of China.
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, People's Republic of China.
| |
Collapse
|