101
|
Abstract
In the field of cardio-oncology, it is well recognised that despite the benefits of chemotherapy in treating and possibly curing cancer, it can cause catastrophic damage to bystander tissues resulting in a range of potentially of life-threatening cardiovascular toxicities, and leading to a number of damaging side effects including heart failure and myocardial infarction. Cardiotoxicity is responsible for significant morbidity and mortality in the long-term in oncology patients, specifically due to left ventricular dysfunction. There is increasing emphasis on the early use of biomarkers in order to detect the cardiotoxicity at a stage before it becomes irreversible. The most important markers of cardiac injury are cardiac troponin and natriuretic peptides, whilst markers of inflammation such as interleukin-6, C-reactive protein, myeloperoxidase, Galectin-3, growth differentiation factor-15 are under investigation for their use in detecting cardiotoxicity early. In addition, microRNAs, genome-wide association studies and proteomics are being studied as novel markers of cardiovascular injury or inflammation. The aim of this literature review is to discuss the evidence base behind the use of these biomarkers for the detection of cardiotoxicity.
Collapse
|
102
|
Wang J, Lee CJ, Deci MB, Jasiewicz N, Verma A, Canty JM, Nguyen J. MiR-101a loaded extracellular nanovesicles as bioactive carriers for cardiac repair. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2020; 27:102201. [PMID: 32278100 PMCID: PMC7647388 DOI: 10.1016/j.nano.2020.102201] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 02/25/2020] [Accepted: 03/16/2020] [Indexed: 12/19/2022]
Abstract
Myocardial infarction (MI) remains a major cause of mortality worldwide. Despite significant advances in MI treatment, many who survive the acute event are at high risk of chronic cardiac morbidity. Here we developed a cell-free therapeutic that capitalizes on the antifibrotic effects of micro(mi)RNA-101a and exploits the multi-faceted regenerative activity of mesenchymal stem cell (MSC) extracellular nanovesicles (eNVs). While the majority of MSC eNVs require local delivery via intramyocardial injection to exert therapeutic efficacy, we have developed MSC eNVs that can be administered in a minimally invasive manner, all while remaining therapeutically active. When loaded with miR-101a, MSC eNVs substantially decreased infarct size (9.2 ± 1.7% vs. 20.0 ± 6.5%) and increased ejection fraction (53.6 ± 7.6% vs. 40.3 ± 6.0%) and fractional shortening (23.6 ± 4.3% vs. 16.6 ± 3.0%) compared to control. These findings are significant as they represent an advance in the development of minimally invasive cardio-therapies.
Collapse
Affiliation(s)
- Jinli Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, University at Buffalo, The State University of New York, Buffalo, NY, USA; Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Christine J Lee
- Department of Pharmaceutical Sciences, School of Pharmacy, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Michael B Deci
- Department of Pharmaceutical Sciences, School of Pharmacy, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Natalie Jasiewicz
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Anjali Verma
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - John M Canty
- Department of Medicine, Department of Physiology and Biophysics, Department of Biomedical Engineering, The Clinical and Translational Research Center of the University at Buffalo, Buffalo, NY, USA; VA Western New York Healthcare System, Buffalo, NY, USA
| | - Juliane Nguyen
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
103
|
Li J, Liang C, Yang KY, Huang X, Han MY, Li X, Chan VW, Chan KS, Liu D, Huang ZP, Zhou B, Lui KO. Specific ablation of CD4 + T-cells promotes heart regeneration in juvenile mice. Am J Cancer Res 2020; 10:8018-8035. [PMID: 32724455 PMCID: PMC7381734 DOI: 10.7150/thno.42943] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 05/20/2020] [Indexed: 12/21/2022] Open
Abstract
Unlike adult cardiomyocytes, neonatal cardiomyocytes can readily proliferate that contributes to a transient regenerative potential after myocardial injury in mice. We have recently reported that CD4+ regulatory T-cells promote this process; however, the role of other CD4+ T-cell subsets as well as CD8+ T-cells in postnatal heart regeneration has been less studied. Methods: by comparing the regenerating postnatal day (P) 3 and the non-regenerating P8 heart after injury, we revealed the heterogeneity of CD4+ and CD8+ T-cells in the myocardium through single cell analysis. We also specifically ablated CD4+ and CD8+ T-cells using the lytic anti-CD4 and -CD8 monoclonal antibodies, respectively, in juvenile mice at P8 after myocardial injury. Results: we observe significantly more CD4+FOXP3- conventional T-cells in the P8 heart when compared to that of the P3 heart within a week after injury. Surprisingly, such a difference is not seen in CD8+ T-cells that appear to have no function as their depletion does not reactivate heart regeneration. On the other hand, specific ablation of CD4+ T-cells contributes to mitigated cardiac fibrosis and increased cardiomyocyte proliferation after injury in juvenile mice. Single-cell transcriptomic profiling reveals a pro-fibrotic CD4+ T-cell subset in the P8 but not P3 heart. Moreover, there are likely more Th1 and Th17 cells in the P8 than P3 heart. We further demonstrate that cytokines of Th1 and Th17 cells can directly reduce the proliferation and increase the apoptosis of neonatal cardiomyocytes. Moreover, ablation of CD4+ T-cells can directly or indirectly facilitate the polarization of macrophages away from the pro-fibrotic M2-like signature in the juvenile heart. Nevertheless, ablation of CD4+ T-cells alone does not offer the same protection in the adult heart after myocardial infarction, suggesting a developmental change of immune cells including CD4+ T-cells in the regulation of age-related mammalian heart repair. Conclusions: our results demonstrate that ablation of CD4+ but not CD8+ T-cells promotes heart regeneration in juvenile mice; and CD4+ T-cells play a distinct role in the regulation of heart regeneration and repair during development.
Collapse
|
104
|
Effect of Interleukin-17 in the Activation of Monocyte Subsets in Patients with ST-Segment Elevation Myocardial Infarction. J Immunol Res 2020; 2020:5692829. [PMID: 32676508 PMCID: PMC7336211 DOI: 10.1155/2020/5692829] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/12/2020] [Accepted: 05/21/2020] [Indexed: 11/18/2022] Open
Abstract
Interleukin- (IL-) 17 is increased in acute myocardial infarction (AMI) and plays a key role in inflammatory diseases through its involvement in the activation of leukocytes. Here, we describe for the first time the effect of IL-17 in the migration and activation of monocyte subsets in patients during ST-segment elevation myocardial infarction (STEMI) and post-STEMI. We analyzed the circulating levels of IL-17 in patient plasma. A gradual increase in IL-17 was found in STEMI and post-STEMI patients. Additionally, IL-17 had a powerful effect on the recruitment of CD14++CD16+/CD14+CD16++ monocytes derived from patients post-STEMI compared with the monocytes from patients with STEMI, suggesting that IL-17 recruits monocytes with inflammatory activity post-STEMI. Furthermore, IL-17 increased the expression of TLR4 on CD14 + CD16 - and CD14++CD16+/CD14+CD16++ monocytes post-STEMI and might enhance the response to danger-associated molecular patterns post-STEMI. Moreover, IL-17 induced secretion of IL-6 from CD14++CD16- and CD14++CD16+/CD14+CD16++ monocytes both in STEMI and in post-STEMI, which indicates that IL-17 has an effect on the secretion of proinflammatory cytokines from monocytes during STEMI and post-STEMI. Overall, we demonstrate that in STEMI and post-STEMI, IL-17 is increased and induces the migration and activation of monocyte subsets, possibly contributing to the inflammatory response through TLR4 and IL-6 secretion.
Collapse
|
105
|
Michel L, Totzeck M, Lehmann L, Finke D. Emerging role of immune checkpoint inhibitors and their relevance for the cardiovascular system. Herz 2020; 45:645-651. [DOI: 10.1007/s00059-020-04954-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
106
|
Recombinant Human Brain Natriuretic Peptide Attenuates Myocardial Ischemia-Reperfusion Injury by Inhibiting CD4 + T Cell Proliferation via PI3K/AKT/mTOR Pathway Activation. Cardiovasc Ther 2020; 2020:1389312. [PMID: 32788926 PMCID: PMC7330653 DOI: 10.1155/2020/1389312] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 01/23/2020] [Accepted: 05/27/2020] [Indexed: 11/28/2022] Open
Abstract
Inflammation plays a major role in the development of myocardial ischemia-reperfusion (IR) injury. Recombinant human brain natriuretic peptide (rhBNP), a man-made version of a peptide that is elevated in heart failure, exhibits anti-inflammatory effects in various tissues. However, its role in myocardial IR injury remains unclear. In this study, we demonstrate that treatment with rhBNP provided protection for mice against myocardial IR injury as manifested by reduced infarct size and well-preserved myocardial, attenuated inflammatory infiltration and CD4+ T cell proliferation function, and inhibited expression of proinflammatory related genes. Furthermore, mechanistic studies revealed that rhBNP inhibited Jurkat T proliferation by promoting PI3K/AKT/mTOR phosphorylation. Collectively, our data suggest that the administration of rhBNP during IR injury could expand our understanding of the cardioprotective effects of rhBNP.
Collapse
|
107
|
Steffens S, Van Linthout S, Sluijter JPG, Tocchetti CG, Thum T, Madonna R. Stimulating pro-reparative immune responses to prevent adverse cardiac remodelling: consensus document from the joint 2019 meeting of the ESC Working Groups of cellular biology of the heart and myocardial function. Cardiovasc Res 2020; 116:1850-1862. [DOI: 10.1093/cvr/cvaa137] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/31/2020] [Accepted: 05/05/2020] [Indexed: 12/14/2022] Open
Abstract
Abstract
Cardiac injury may have multiple causes, including ischaemic, non-ischaemic, autoimmune, and infectious triggers. Independent of the underlying pathophysiology, cardiac tissue damage induces an inflammatory response to initiate repair processes. Immune cells are recruited to the heart to remove dead cardiomyocytes, which is essential for cardiac healing. Insufficient clearance of dying cardiomyocytes after myocardial infarction (MI) has been shown to promote unfavourable cardiac remodelling, which may result in heart failure (HF). Although immune cells are integral key players of cardiac healing, an unbalanced or unresolved immune reaction aggravates tissue damage that triggers maladaptive remodelling and HF. Neutrophils and macrophages are involved in both, inflammatory as well as reparative processes. Stimulating the resolution of cardiac inflammation seems to be an attractive therapeutic strategy to prevent adverse remodelling. Along with numerous experimental studies, the promising outcomes from recent clinical trials testing canakinumab or colchicine in patients with MI are boosting the interest in novel therapies targeting inflammation in cardiovascular disease patients. The aim of this review is to discuss recent experimental studies that provide new insights into the signalling pathways and local regulators within the cardiac microenvironment promoting the resolution of inflammation and tissue regeneration. We will cover ischaemia- and non-ischaemic-induced as well as infection-related cardiac remodelling and address potential targets to prevent adverse cardiac remodelling.
Collapse
Affiliation(s)
- Sabine Steffens
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität, Munich, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Sophie Van Linthout
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité, University Medicine Berlin, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Berlin, Germany
| | - Joost P G Sluijter
- Department of Cardiology, Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands
- Regenerative Medicine Center, Circulatory Health Laboratory, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Carlo Gabriele Tocchetti
- Department of Translational Medical Sciences and Interdepartmental Center of Clinical and Translational Sciences (CIRCET), Federico II University, Naples, Italy
| | - Thomas Thum
- Institute for Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
| | - Rosalinda Madonna
- Institute of Cardiology, University of Pisa, Via Paradisa, Pisa 56124, Italy
| |
Collapse
|
108
|
Gladow N, Hollmann C, Ramos G, Frantz S, Kerkau T, Beyersdorf N, Hofmann U. Treatment of mice with a ligand binding blocking anti-CD28 monoclonal antibody improves healing after myocardial infarction. PLoS One 2020; 15:e0227734. [PMID: 32298302 PMCID: PMC7161974 DOI: 10.1371/journal.pone.0227734] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 12/29/2019] [Indexed: 01/07/2023] Open
Abstract
Both conventional and regulatory CD4+ T-cells rely on costimulatory signals mediated by cell surface receptors including CD28 for full activation. We showed previously that stimulation of CD4+ Foxp3+ regulatory T-cells by superagonistic anti-CD28 monoclonal antibodies (mAb) improves myocardial healing after experimental myocardial infarction (MI). However, the effect of ligand binding blocking anti-CD28 monoclonal antibodies has not yet been tested in this context. We hypothesize that ligand blocking anti-CD28 mAb treatment might favorably impact on healing after MI by limiting the activation of conventional CD4+ T-cells. Therefore, we studied the therapeutic effect of the recently characterized mAb E18 which blocks ligand binding to CD28 in a mouse permanent coronary ligation model. E18 or an irrelevant control mAb was applied once on day two after myocardial infarction to wildtype mice. Echocardiography was performed on day 7 after MI. E18 treatment improved the survival and reduced the incidence of left ventricular ruptures after experimental myocardial infarction. Accordingly, although we found no difference in infarct size, there was significantly less left ventricular dilation after E18 treatment in surviving animals as determined by echocardiography at day 7 after MI. In sham operated control mice neither antibody had an impact on body weight, survival, and echocardiographic parameters. Mechanistically, compared to control immunoglobulin, E18 treatment reduced the number of CD4+ T-cells and monocytes/macrophages within the infarct and periinfarct zone on day 5. This was accompanied by an upregulation of arginase which is a marker for alternatively differentiated macrophages. The data indicate that CD28-dependent costimulation of CD4+ T-cells impairs myocardial healing and anti-CD28 antibody treatment constitutes a potentially clinically translatable approach to improve the outcome early after MI.
Collapse
Affiliation(s)
- Nadine Gladow
- Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany
- * E-mail:
| | - Claudia Hollmann
- Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Gustavo Ramos
- Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany
- Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
| | - Stefan Frantz
- Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany
- Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
| | - Thomas Kerkau
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Niklas Beyersdorf
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Ulrich Hofmann
- Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany
- Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
109
|
Wagner MJ, Khan M, Mohsin S. Healing the Broken Heart; The Immunomodulatory Effects of Stem Cell Therapy. Front Immunol 2020; 11:639. [PMID: 32328072 PMCID: PMC7160320 DOI: 10.3389/fimmu.2020.00639] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/20/2020] [Indexed: 12/14/2022] Open
Abstract
Cardiovascular Disease (CVD) is a leading cause of mortality within the United States. Current treatments being administered to patients who suffered a myocardial infarction (MI) have increased patient survival, but do not facilitate the replacement of damaged myocardium. Recent studies demonstrate that stem cell-based therapies promote myocardial repair; however, the poor engraftment of the transferred stem cell populations within the infarcted myocardium is a major limitation, regardless of the cell type. One explanation for poor cell retention is attributed to the harsh inflammatory response mounted following MI. The inflammatory response coupled to cardiac repair processes is divided into two distinct phases. The first phase is initiated during ischemic injury when necrosed myocardium releases Danger Associated Molecular Patterns (DAMPs) and chemokines/cytokines to induce the activation and recruitment of neutrophils and pro-inflammatory M1 macrophages (MΦs); in turn, facilitating necrotic tissue clearance. During the second phase, a shift from the M1 inflammatory functional phenotype to the M2 anti-inflammatory and pro-reparative functional phenotype, permits the resolution of inflammation and the establishment of tissue repair. T-regulatory cells (Tregs) are also influential in mediating the establishment of the pro-reparative phase by directly regulating M1 to M2 MΦ differentiation. Current studies suggest CD4+ T-lymphocyte populations become activated when presented with autoantigens released from the injured myocardium. The identity of the cardiac autoantigens or paracrine signaling molecules released from the ischemic tissue that directly mediate the phenotypic plasticity of T-lymphocyte populations in the post-MI heart are just beginning to be elucidated. Stem cells are enriched centers that contain a diverse paracrine secretome that can directly regulate responses within neighboring cell populations. Previous studies identify that stem cell mediated paracrine signaling can influence the phenotype and function of immune cell populations in vitro, but how stem cells directly mediate the inflammatory microenvironment of the ischemic heart is poorly characterized and is a topic of extensive investigation. In this review, we summarize the complex literature that details the inflammatory microenvironment of the ischemic heart and provide novel insights regarding how paracrine mediated signaling produced by stem cell-based therapies can regulate immune cell subsets to facilitate pro-reparative myocardial wound healing.
Collapse
Affiliation(s)
- Marcus J Wagner
- Independence Blue Cross Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Mohsin Khan
- Center for Metabolic Disease, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Department of Physiology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Sadia Mohsin
- Independence Blue Cross Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| |
Collapse
|
110
|
Abstract
PURPOSE OF REVIEW Over the last decade, myocarditis has been increasingly recognized as common cause of sudden cardiac death in young adults and heart failure overall. The purpose of this review is to discuss hypothesis of development of non-infectious myocarditis, to provide a description of the immunopathogenesis and the most common mechanisms of autoimmunity in myocarditis, and to provide an update on therapeutic options. RECENT FINDINGS A new entity of myocarditis is immune checkpoint inhibitor (ICI) induced myocarditis. ICIs are used in advanced cancer to "disinhibit" the immune system and make it more aggressive in fighting cancer. This novel drug class has doubled life expectancy in metastatic melanoma and significantly increased progression free survival in advanced non-small-cell lung cancer, but comes with a risk of autoimmune diseases such as myocarditis resulting from an overly aggressive immune system. Myocarditis is an inflammatory disease of the heart with major public health impact. Thorough understanding of its immunopathogenesis is crucial for accurate diagnosis and effective treatment.
Collapse
|
111
|
Cormack S, Mohammed A, Panahi P, Das R, Steel AJ, Chadwick T, Bryant A, Egred M, Stellos K, Spyridopoulos I. Effect of ciclosporin on safety, lymphocyte kinetics and left ventricular remodelling in acute myocardial infarction. Br J Clin Pharmacol 2020; 86:1387-1397. [PMID: 32067256 PMCID: PMC7318996 DOI: 10.1111/bcp.14252] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 12/12/2019] [Accepted: 12/23/2019] [Indexed: 11/27/2022] Open
Abstract
Aims Following a favourable pilot trial using a single bolus of ciclosporin, it has been unclear why 2 large studies (CYCLE and CIRCUS) failed to prevent reperfusion injury and reduce infarct size in STEMI (ST elevation myocardial infarction). The purpose of this study was to assess the effect of ciclosporin on myocardial injury, left ventricular remodelling and lymphocyte kinetics in patients with acute STEMI undergoing primary percutaneous coronary intervention. Methods In this double‐blind, single centre trial, we randomly assigned 52 acute STEMI patients with an onset of pain of <6 hours and blocked culprit artery to a single bolus of ciclosporin (n = 26) or placebo (n = 26, control group) prior to reperfusion by stent percutaneous coronary intervention. The primary endpoint was infarct size at 12 weeks. Results Mean infarct size at 12 weeks was identical in both groups (9.1% [standard deviation= 7.0] vs 9.1% [standard deviation = 7.0], P = .99; 95% confidence interval for difference: −4.0 to 4.1). CD3 T‐lymphocytes dropped to similar levels at 90 minutes (867 vs 852 cells/μL, control vs ciclosporin) and increased to 1454 vs 1650 cells/μL at 24 hours. Conclusion In our pilot trial, a single ciclosporin bolus did not affect infarct size or left ventricular remodelling, matching the results from CYCLE and CIRCUS. Our study suggests that ciclosporin does either not reach ischaemic cardiomyocytes, or requires earlier application during first medical contact. Finally, 1 bolus of ciclosporin is not sufficient to inhibit CD4 T‐lymphocyte proliferation during remodelling. We therefore believe that further studies are warranted. (Evaluating the effectiveness of intravenous Ciclosporin on reducing reperfusion injury in pAtients undergoing PRImary percutaneous coronary intervention [CAPRI]; NCT02390674)
Collapse
Affiliation(s)
- Suzanne Cormack
- Freeman Hospital, Newcastle upon Tyne, UK.,Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, UK
| | | | | | - Rajiv Das
- Freeman Hospital, Newcastle upon Tyne, UK.,Faculty of Health and Life Sciences, Northumbria University, UK
| | - Alison J Steel
- Newcastle Clinical Trials Unit, Faculty of Medical Sciences, Newcastle University, UK
| | - Thomas Chadwick
- Population Health Sciences Institute, Newcastle University, UK
| | - Andrew Bryant
- Population Health Sciences Institute, Newcastle University, UK
| | | | - Konstantinos Stellos
- Freeman Hospital, Newcastle upon Tyne, UK.,Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, UK
| | - Ioakim Spyridopoulos
- Freeman Hospital, Newcastle upon Tyne, UK.,Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, UK
| | | |
Collapse
|
112
|
Cabac‐Pogorevici I, Muk B, Rustamova Y, Kalogeropoulos A, Tzeis S, Vardas P. Ischaemic cardiomyopathy. Pathophysiological insights, diagnostic management and the roles of revascularisation and device treatment. Gaps and dilemmas in the era of advanced technology. Eur J Heart Fail 2020; 22:789-799. [DOI: 10.1002/ejhf.1747] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/31/2019] [Accepted: 12/30/2019] [Indexed: 12/28/2022] Open
Affiliation(s)
- Irina Cabac‐Pogorevici
- Nicolae Testemitanu State University of Medicine and Pharmacy Chisinau Republic of Moldova
| | - Balazs Muk
- Department of Cardiology Medical Centre Hungarian Defence Forces Budapest Hungary
| | - Yasmin Rustamova
- Department of Internal Medicine 2 Azerbaijan Medical University Baku Azerbaijan
| | | | - Stylianos Tzeis
- Cardiology Department Mitera General Clinic ‐ Hygeia Group Athens Greece
| | - Panos Vardas
- Hygeia Hospitals Group, Heart Sector Athens Greece
| |
Collapse
|
113
|
Bruno C, Silvestrini A, Calarco R, Favuzzi AMR, Vergani E, Nicolazzi MA, d'Abate C, Meucci E, Mordente A, Landolfi R, Mancini A. Anabolic Hormones Deficiencies in Heart Failure With Preserved Ejection Fraction: Prevalence and Impact on Antioxidants Levels and Myocardial Dysfunction. Front Endocrinol (Lausanne) 2020; 11:281. [PMID: 32477267 PMCID: PMC7235369 DOI: 10.3389/fendo.2020.00281] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 04/15/2020] [Indexed: 12/15/2022] Open
Abstract
Purpose: In heart failure with reduced ejection fraction, catabolic mechanisms have a strong negative impact on mortality and morbidity. The relationship between anabolic hormonal deficiency and heart failure with preserved ejection fraction (HFpEF) has still been poorly investigated. On the other hand, oxidative stress is recognized as a player in the pathogenesis of HFpEF. Therefore, we performed a cohort study in HFpEF aimed to (1) define the multi-hormonal deficiency prevalence in HFpEF patients; (2) investigate the relationships between hormonal deficiencies and echocardiographic indexes; (3) explore the modulatory activity of anabolic hormones on antioxidant systems. Methods: 84 patients with diagnosis of HFpEF were enrolled in the study. Plasma levels of N-terminal pro-brain natriuretic peptide, fasting glucose, insulin, lipid pattern, insulin-like growth factor-1, dehydroepiandrosterone-sulfate (DHEA-S), total testosterone (T, only in male subjects) were evaluated. Hormonal deficiencies were defined according to T.O.S.C.A. multi-centric study, as previously published. An echocardiographic evaluation was performed. Plasma total antioxidant capacity (TAC) was measured using the system metmyoglobin -H2O2 and the chromogen ABTS, whose radical form is spectroscopically revealed; latency time (LAG) in the appearance of ABTS• is proportional to antioxidants in sample. Results: Multiple deficiencies were discovered. DHEA-S deficiency in 87% of patients, IGF-1 in 67% of patients, T in 42%. Patients with DHEA-S deficiency showed lower levels of TAC expressed by LAG (mean ± SEM 91.25 ± 9.34 vs. 75.22 ± 4.38 s; p < 0.05). No differences between TAC in patients with or without IGF-1 deficiency were found. A trend toward high level of TAC in patients without hormonal deficiencies compared with patients with one or multiple deficiencies was found. Regarding echocardiographic parameters, Left Atrial and Left Atrial Volume Index were significantly higher in patients with low IGF-1 values (mean ± SD 90.84 ± 3.86 vs. 72.83 ± 3.78 mL; 51.03 ± 2.33 vs. 40.56 ± 2.46 mL/m2, respectively; p < 0.05). Conclusions: Our study showed high prevalence of anabolic deficiencies in HFpEF. DHEA-S seems to influence antioxidant levels; IGF-1 deficiency was associated with alteration in parameters of myocardial structure and dysfunction. These data suggest a role of anabolic hormones in the complex pathophysiological mechanisms of HFpEF and could represent the basis for longitudinal studies and investigations on possible benefits of replacement therapy.
Collapse
Affiliation(s)
- Carmine Bruno
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario a Gemelli IRCCS, Rome, Italy
| | - Andrea Silvestrini
- Fondazione Policlinico Universitario a Gemelli IRCCS, Rome, Italy
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy
- *Correspondence: Andrea Silvestrini
| | - Rodolfo Calarco
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario a Gemelli IRCCS, Rome, Italy
| | - Angela M. R. Favuzzi
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario a Gemelli IRCCS, Rome, Italy
| | - Edoardo Vergani
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario a Gemelli IRCCS, Rome, Italy
| | - Maria Anna Nicolazzi
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario a Gemelli IRCCS, Rome, Italy
| | - Claudia d'Abate
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario a Gemelli IRCCS, Rome, Italy
| | - Elisabetta Meucci
- Fondazione Policlinico Universitario a Gemelli IRCCS, Rome, Italy
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Alvaro Mordente
- Fondazione Policlinico Universitario a Gemelli IRCCS, Rome, Italy
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Raffaele Landolfi
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario a Gemelli IRCCS, Rome, Italy
| | - Antonio Mancini
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario a Gemelli IRCCS, Rome, Italy
- Antonio Mancini
| |
Collapse
|
114
|
Liu J, Meng Q, Liang X, Zhuang R, Yuan D, Ge X, Cao H, Lin F, Gong X, Fan H, Wang B, Zhou X, Liu Z. A novel small molecule compound VCP979 improves ventricular remodeling in murine models of myocardial ischemia/reperfusion injury. Int J Mol Med 2019; 45:353-364. [PMID: 31789413 PMCID: PMC6984775 DOI: 10.3892/ijmm.2019.4413] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 10/25/2019] [Indexed: 11/06/2022] Open
Abstract
Persistent ventricular remodeling following myocardial ischemia/reperfusion (MI/R) injury results in functional decompensation and eventual progression to heart failure. VCP979, a novel small‑molecule compound developed in‑house, possesses anti‑inflammatory and anti‑fibrotic activities. In the present study, no significant pathological effect was observed following the administration of VCP979 on multiple organs in mice and no difference of aspartate transaminase/alanine aminotransferase/lactate dehydrogenase levels was found in murine serum. Treatment with VCP979 ameliorated cardiac dysfunction, pathological myocardial fibrosis and hypertrophy in murine MI/R injury models. The administration of VCP979 also inhibited the infiltration of inflammatory cells and the pro‑inflammatory cytokine expression in hearts post MI/R injury. Further results revealed that the addition of VCP979 prevented the primary neonatal cardiac fibroblasts (NCFs) from Angiotensin II (Ang II)‑induced collagen synthesis and neonatal cardiac myocytes (NCMs) hypertrophy. In addition, VCP979 attenuated the activation of p38‑mitogen‑activated protein kinase in both Ang II‑induced NCFs and hearts subjected to MI/R injury. These findings indicated that the novel small‑molecule compound VCP979 can improve ventricular remodeling in murine hearts against MI/R injury, suggesting its potential therapeutic function in patients subjected to MI/R injury.
Collapse
Affiliation(s)
- Jing Liu
- Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Qingshu Meng
- Research Center for Translational Medicine, Shanghai 200120, P.R. China
| | - Xiaoting Liang
- Research Center for Translational Medicine, Shanghai 200120, P.R. China
| | - Rulin Zhuang
- Research Center for Translational Medicine, Shanghai 200120, P.R. China
| | - Dongsheng Yuan
- Research Center for Translational Medicine, Shanghai 200120, P.R. China
| | - Xinyu Ge
- Research Center for Translational Medicine, Shanghai 200120, P.R. China
| | - Hao Cao
- Department of Cardiovascular and Thoracic Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Fang Lin
- Research Center for Translational Medicine, Shanghai 200120, P.R. China
| | - Xin Gong
- Department of Heart Failure, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Huimin Fan
- Research Center for Translational Medicine, Shanghai 200120, P.R. China
| | - Binghui Wang
- Biomarker Discovery Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia
| | - Xiaohui Zhou
- Research Center for Translational Medicine, Shanghai 200120, P.R. China
| | - Zhongmin Liu
- Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| |
Collapse
|
115
|
Cohen A, Angoulvant D. Cardiomyopathie du diabétique, dépistage et épidémiologie. ARCHIVES OF CARDIOVASCULAR DISEASES SUPPLEMENTS 2019. [DOI: 10.1016/s1878-6480(19)30963-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
116
|
Gao S, Li L, Li L, Ni J, Guo R, Mao J, Fan G. Effects of the combination of tanshinone IIA and puerarin on cardiac function and inflammatory response in myocardial ischemia mice. J Mol Cell Cardiol 2019; 137:59-70. [DOI: 10.1016/j.yjmcc.2019.09.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 09/19/2019] [Accepted: 09/21/2019] [Indexed: 02/08/2023]
|
117
|
Spatiotemporal Dynamics of Immune Cells in Early Left Ventricular Remodeling After Acute Myocardial Infarction in Mice. J Cardiovasc Pharmacol 2019; 75:112-122. [PMID: 31764396 DOI: 10.1097/fjc.0000000000000777] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Myocardial infarction remains a leading cause of morbidity and death. Insufficient delivery of oxygen to the myocardium sets into play a complicated process of repair that involves the temporal recruitment of different immune cells so as to remove debris and necrotic cells expeditiously and to form effective scar tissue. Clearly defined and overlapping phases have been identified in the process, which transitions from an overall proinflammatory to anti-inflammatory phenotype with time. Variations in the strength of the phases as well as in the co-ordination among them have profound consequences. Too strong of an inflammatory phase can result in left ventricular wall thinning and eventual rupture, whereas too strong of an anti-inflammatory phase can lead to cardiac stiffening, arrhythmias, or ventricular aneurisms. In both cases, heart failure is an intermediate consequence with death being the likely outcome. Here, we summarize the role of key immune cells in the repair process of the heart after left ventricular myocardial infarction, along with the associated cytokines and chemokines. A better understanding of the immune response ought to lead hopefully to improved therapies that exploit the natural repair process for mending the infarcted heart.
Collapse
|
118
|
Forte E, Furtado MB, Rosenthal N. The interstitium in cardiac repair: role of the immune-stromal cell interplay. Nat Rev Cardiol 2019; 15:601-616. [PMID: 30181596 DOI: 10.1038/s41569-018-0077-x] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cardiac regeneration, that is, restoration of the original structure and function in a damaged heart, differs from tissue repair, in which collagen deposition and scar formation often lead to functional impairment. In both scenarios, the early-onset inflammatory response is essential to clear damaged cardiac cells and initiate organ repair, but the quality and extent of the immune response vary. Immune cells embedded in the damaged heart tissue sense and modulate inflammation through a dynamic interplay with stromal cells in the cardiac interstitium, which either leads to recapitulation of cardiac morphology by rebuilding functional scaffolds to support muscle regrowth in regenerative organisms or fails to resolve the inflammatory response and produces fibrotic scar tissue in adult mammals. Current investigation into the mechanistic basis of homeostasis and restoration of cardiac function has increasingly shifted focus away from stem cell-mediated cardiac repair towards a dynamic interplay of cells composing the less-studied interstitial compartment of the heart, offering unexpected insights into the immunoregulatory functions of cardiac interstitial components and the complex network of cell interactions that must be considered for clinical intervention in heart diseases.
Collapse
Affiliation(s)
| | | | - Nadia Rosenthal
- The Jackson Laboratory, Bar Harbor, ME, USA. .,National Heart and Lung Institute, Imperial College London, Faculty of Medicine, Imperial Centre for Translational and Experimental Medicine, London, UK.
| |
Collapse
|
119
|
Temporal dynamics of immune response following prolonged myocardial ischemia/reperfusion with and without cyclosporine A. Acta Pharmacol Sin 2019; 40:1168-1183. [PMID: 30858476 PMCID: PMC6786364 DOI: 10.1038/s41401-018-0197-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 11/21/2018] [Indexed: 12/19/2022] Open
Abstract
Understanding the dynamics of the immune response following late myocardial reperfusion is critical for the development of immunomodulatory therapy for myocardial infarction (MI). Cyclosporine A (CSA) possesses multiple therapeutic applications for MI, but its effects on the inflammation caused by acute MI are not clear. This study aimed to determine the dynamics of the immune response following myocardial ischemia/reperfusion (I/R) and the effects of CSA in a mouse model of prolonged myocardial ischemia designated to represent the human condition of late reperfusion. Adult C57BL/6 mice were subjected to 90 min of closed-chest myocardial I/R, which induced severe myocardial injury and excessive inflammation in the heart. Multicomponent analysis of the immune response caused by prolonged I/R revealed that the peak of cytokines/chemokines in the systemic circulation was synchronized with the maximal influx of neutrophils and T-cells in the heart 1 day after MI. The peak of cytokine/chemokine secretion in the infarcted heart coincided with the maximal macrophage and natural killer cell infiltration on day 3 after MI. The cellular composition of the mediastinal lymph nodes changed similarly to that of the infarcted hearts. CSA (10 mg/kg/day) given after prolonged I/R impaired heart function, enlarged the resulting scar, and reduced heart vascularization. It did not change the content of immune cells in hearts exposed to prolonged I/R, but the levels of MCP-1 and MIP-1α (hearts) and IL-12 (hearts and serum) were significantly reduced in the CSA-treated group in comparison to the untreated group, indicating alterations in immune cell function. Our findings provide new knowledge necessary for the development of immunomodulatory therapy targeting the immune response after prolonged myocardial ischemia/reperfusion.
Collapse
|
120
|
Kudryavtsev I, Serebriakova M, Zhiduleva E, Murtazalieva P, Titov V, Malashicheva A, Shishkova A, Semenova D, Irtyuga O, Isakov D, Mitrofanova L, Moiseeva O, Golovkin A. CD73 Rather Than CD39 Is Mainly Involved in Controlling Purinergic Signaling in Calcified Aortic Valve Disease. Front Genet 2019; 10:604. [PMID: 31402927 PMCID: PMC6669234 DOI: 10.3389/fgene.2019.00604] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 06/07/2019] [Indexed: 12/30/2022] Open
Abstract
The study aimed to compare composition of peripheral blood T-cell subsets and assess their surface expression of CD39 and CD73 ectonucleotidases in patients with severe and moderate aortic stenosis (AS) as well as to evaluate involvement of T-cell-mediated immune processes in valve calcification. The study was performed with 38 patients suffering from severe calcified aortic stenosis (SAS), 33 patients with MAS, and 30 apparently healthy volunteers (HVs). The relative distribution and percentage of T-cell subsets expressing CD39 and CD73 were evaluated by flow cytometry. T helper (Th) and cytotoxic T-cell subsets (Tcyt) were identified by using CD3, CD4, and CD8 antibodies. Regulatory T cells (Tregs) were characterized by the expression of CD3, CD4, and high IL-2R alpha chain (CD25high) levels. CD45R0 and CD62L were used to assess differentiation stage of Th, Tcyt, and Treg subsets. It was found that MAS and SAS patients differed in terms of relative distribution of Tcyt and absolute number of Treg. Moreover, the absolute number of Tcyt and terminally differentiated CD45RA-positive effector T-cells (TEMRA) subset was significantly higher in SAS vs. MAS patients and HVs. However, the absolute and relative number of naïve Th and the absolute number of Treg were significantly higher in MAS vs. SAS patients; the relative number of naïve Tregs was significantly (p < 0.01) decreased in SAS patients. It was shown that CD73 expression was significantly higher in SAS vs. MAS patients noted in all EM, CM, TEMRA, and naïve Th cell subsets. However, only the latter were significantly increased (p = 0.003) in patients compared with HVs. SAS vs. MAS patients were noted to have significantly higher percentage of CD73+ EM Tcyt (p = 0.006) and CD73+ CM Tcyt (p = 0.002). The expression of CD73 in patients significantly differed in all three Treg populations such as EM (p = 0.049), CM (p = 0.044), and naïve (p < 0.001). No significant differences in CD39 expression level was found in MAS and SAS patients compared with the HV group. Overall, the data obtained demonstrated that purinergic signaling was involved in the pathogenesis of aortic stenosis and calcification potentially acting via various cell types, wherein among enzymes, degrading extracellular ATP CD73 rather than CD39 played a prominent role.
Collapse
Affiliation(s)
- Igor Kudryavtsev
- Institution of Experimental Medicine, St. Petersburg, Russia.,Far Eastern Federal University, Vladivostok, Russia
| | | | | | | | - Vladislav Titov
- Almazov National Medical Research Centre, St. Petersburg, Russia
| | | | | | - Daria Semenova
- Almazov National Medical Research Centre, St. Petersburg, Russia
| | - Olga Irtyuga
- Almazov National Medical Research Centre, St. Petersburg, Russia
| | - Dmitry Isakov
- Institution of Experimental Medicine, St. Petersburg, Russia.,Pavlov First Saint Petersburg State Medical University, St. Petersburg, Russia
| | | | - Olga Moiseeva
- Almazov National Medical Research Centre, St. Petersburg, Russia
| | - Alexey Golovkin
- Almazov National Medical Research Centre, St. Petersburg, Russia
| |
Collapse
|
121
|
Rieckmann M, Delgobo M, Gaal C, Büchner L, Steinau P, Reshef D, Gil-Cruz C, Horst ENT, Kircher M, Reiter T, Heinze KG, Niessen HW, Krijnen PA, van der Laan AM, Piek JJ, Koch C, Wester HJ, Lapa C, Bauer WR, Ludewig B, Friedman N, Frantz S, Hofmann U, Ramos GC. Myocardial infarction triggers cardioprotective antigen-specific T helper cell responses. J Clin Invest 2019; 129:4922-4936. [PMID: 31408441 DOI: 10.1172/jci123859] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
T cell autoreactivity is a hallmark of autoimmune diseases but can also benefit self-maintenance and foster tissue repair. Herein, we investigated whether heart-specific T cells exert salutary or detrimental effects in the context of myocardial infarction (MI), the leading cause of death worldwide. After screening more than 150 class-II-restricted epitopes, we found that myosin heavy chain alpha (MYHCA) was a dominant cardiac antigen triggering post-MI CD4+ T cell activation in mice. Transferred MYHCA614-629-specific CD4+ T (TCR-M) cells selectively accumulated in the myocardium and mediastinal lymph nodes (med-LN) of infarcted mice, acquired a Treg phenotype with a distinct pro-healing gene expression profile, and mediated cardioprotection. Myocardial Treg cells were also detected in autopsies from patients who suffered a MI. Noninvasive PET/CT imaging using a CXCR4 radioligand revealed enlarged med-LNs with increased cellularity in MI-patients. Notably, the med-LN alterations observed in MI patients correlated with the infarct size and cardiac function. Taken together, the results obtained in our study provide evidence showing that MI-context induces pro-healing T cell autoimmunity in mice and confirms the existence of an analogous heart/med-LN/T cell axis in MI patients.
Collapse
Affiliation(s)
- Max Rieckmann
- Department of Internal Medicine III, University Clinic Halle, Halle, Germany
| | - Murilo Delgobo
- Department of Internal Medicine I, and.,Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany
| | - Chiara Gaal
- Department of Internal Medicine I, and.,Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany
| | - Lotte Büchner
- Department of Internal Medicine I, and.,Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany
| | - Philipp Steinau
- Department of Internal Medicine III, University Clinic Halle, Halle, Germany
| | - Dan Reshef
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Cristina Gil-Cruz
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Ellis N Ter Horst
- Heart Center, Amsterdam UMC, location AMC, Amsterdam, Netherlands.,Department of Pathology and Cardiac Surgery, Amsterdam UMC, location VUmc, Amsterdam, Netherlands.,Amsterdam Cardiovascular Sciences, Amsterdam UMC, Amsterdam, Netherlands.,Netherlands Heart Institute, Utrecht, Netherlands
| | - Malte Kircher
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Theresa Reiter
- Department of Internal Medicine I, and.,Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany
| | - Katrin G Heinze
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - Hans Wm Niessen
- Department of Pathology and Cardiac Surgery, Amsterdam UMC, location VUmc, Amsterdam, Netherlands.,Amsterdam Cardiovascular Sciences, Amsterdam UMC, Amsterdam, Netherlands
| | - Paul Aj Krijnen
- Department of Pathology and Cardiac Surgery, Amsterdam UMC, location VUmc, Amsterdam, Netherlands.,Amsterdam Cardiovascular Sciences, Amsterdam UMC, Amsterdam, Netherlands
| | | | - Jan J Piek
- Heart Center, Amsterdam UMC, location AMC, Amsterdam, Netherlands.,Amsterdam Cardiovascular Sciences, Amsterdam UMC, Amsterdam, Netherlands
| | - Charlotte Koch
- Department of Internal Medicine III, University Clinic Halle, Halle, Germany
| | - Hans-Jürgen Wester
- Pharmaceutical Radiochemistry, Technical University Munich, Munich, Germany
| | - Constantin Lapa
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Wolfgang R Bauer
- Department of Internal Medicine I, and.,Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany
| | - Burkhard Ludewig
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Nir Friedman
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Stefan Frantz
- Department of Internal Medicine III, University Clinic Halle, Halle, Germany.,Department of Internal Medicine I, and.,Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany
| | - Ulrich Hofmann
- Department of Internal Medicine III, University Clinic Halle, Halle, Germany.,Department of Internal Medicine I, and.,Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany
| | - Gustavo Campos Ramos
- Department of Internal Medicine III, University Clinic Halle, Halle, Germany.,Department of Internal Medicine I, and.,Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
122
|
Su L, Zheng J, Wang Y, Zhang W, Hu D. Emerging progress on the mechanism and technology in wound repair. Biomed Pharmacother 2019; 117:109191. [PMID: 31387187 DOI: 10.1016/j.biopha.2019.109191] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/24/2019] [Accepted: 06/28/2019] [Indexed: 12/16/2022] Open
Abstract
Normal wound repair is a dynamic and complex process involving multiple coordinated interactions between growth factors, cytokines, chemokines, and various cells. Any failure during the repair process may cause chronic wounds or scar formation, which increase the financial burden of patients due to repetitive treatments and considerable medical expenditures, and affect their quality of life. Nowadays, extensive efforts have been made to develop novel therapeutics for wound repair. Genetic engineering technology, tissue engineering technology, stem cell-based therapy, physical and biochemical technology, and vacuum-assisted closure technique have been proposed to be beneficial for wound repair, and shown considerable potential for improving the rate and quality of wound healing and skin regeneration. However, challenges remain as applying these techniques. As the development of cell biology and molecular biology, the understanding of the mechanism under wound repair has gradually deepened. As the growth of interdisciplinary research on physics, chemistry, biology, tissue engineering, and materials, the concept and technique relating wound repair for clinical application have rapidly developed. This article reviews the latest progress on the mechanism and technique in wound repair.
Collapse
Affiliation(s)
- Linlin Su
- Department of Burnsand Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China.
| | - Jianping Zheng
- Department of Orthopedic Surgery, Xiangyang Central Hospital, The Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, 441021, PR China
| | - Yang Wang
- Department of Burns and Plastic Surgery, Xi'an Central Hospital, Xi'an, Shaanxi, 710000, PR China
| | - Wei Zhang
- Department of Burnsand Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Dahai Hu
- Department of Burnsand Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| |
Collapse
|
123
|
Wang J, Duan Y, Sluijter JPG, Xiao J. Lymphocytic subsets play distinct roles in heart diseases. Am J Cancer Res 2019; 9:4030-4046. [PMID: 31281530 PMCID: PMC6592175 DOI: 10.7150/thno.33112] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 05/06/2019] [Indexed: 12/24/2022] Open
Abstract
Heart diseases are one of the leading causes of death for humans in the world. Increasing evidence has shown that myocardial injury induced innate and adaptive immune responses upon early cellular damage but also during chronic phases post-injury. The immune cells can not only aggravate the injury but also play an essential role in the induction of wound healing responses, which means they play a complex role throughout the acute inflammatory response and reparative response after cardiac injury. This review will summarize the current experimental and clinical evidence of lymphocytes, one of the major types of immune cells, participate in heart diseases and try to explain the possible role of these immune cells following cardiac injury.
Collapse
|
124
|
Novel Molecular Targets Participating in Myocardial Ischemia-Reperfusion Injury and Cardioprotection. Cardiol Res Pract 2019; 2019:6935147. [PMID: 31275641 PMCID: PMC6558612 DOI: 10.1155/2019/6935147] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 03/28/2019] [Indexed: 12/11/2022] Open
Abstract
Worldwide morbidity and mortality from acute myocardial infarction (AMI) and related heart failure remain high. While effective early reperfusion of the criminal coronary artery after a confirmed AMI is the typical treatment at present, collateral myocardial ischemia-reperfusion injury (MIRI) and pertinent cardioprotection are still challenging to address and have inadequately understood mechanisms. Therefore, unveiling the related novel molecular targets and networks participating in triggering and resisting the pathobiology of MIRI is a promising and valuable frontier. The present study specifically focuses on the recent MIRI advances that are supported by sophisticated bio-methodology in order to bring the poorly understood interrelationship among pro- and anti-MIRI participant molecules up to date, as well as to identify findings that may facilitate the further investigation of novel targets.
Collapse
|
125
|
Inhibitor of DNA binding in heart development and cardiovascular diseases. Cell Commun Signal 2019; 17:51. [PMID: 31126344 PMCID: PMC6534900 DOI: 10.1186/s12964-019-0365-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 05/14/2019] [Indexed: 02/05/2023] Open
Abstract
Id proteins, inhibitors of DNA binding, are transcription regulators containing a highly conserved helix-loop-helix domain. During multiple stages of normal cardiogenesis, Id proteins play major roles in early development and participate in the differentiation and proliferation of cardiac progenitor cells and mature cardiomyocytes. The fact that a depletion of Ids can cause a variety of defects in cardiac structure and conduction function is further evidence of their involvement in heart development. Multiple signalling pathways and growth factors are involved in the regulation of Ids in a cell- and tissue- specific manner to affect heart development. Recent studies have demonstrated that Ids are related to multiple aspects of cardiovascular diseases, including congenital structural, coronary heart disease, and arrhythmia. Although a growing body of research has elucidated the important role of Ids, no comprehensive review has previously compiled these scattered findings. Here, we introduce and summarize the roles of Id proteins in heart development, with the hope that this overview of key findings might shed light on the molecular basis of consequential cardiovascular diseases. Furthermore, we described the future prospective researches needed to enable advancement in the maintainance of the proliferative capacity of cardiomyocytes. Additionally, research focusing on increasing embryonic stem cell culture adaptability will help to improve the future therapeutic application of cardiac regeneration.
Collapse
|
126
|
Grad E, Gutman D, Golomb M, Efraim R, Oppenheim A, Richter I, Danenberg HD, Golomb G. Monocyte Modulation by Liposomal Alendronate Improves Cardiac Healing in a Rat Model of Myocardial Infarction. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2019. [DOI: 10.1007/s40883-019-00103-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
127
|
Jia D, Jiang H, Weng X, Wu J, Bai P, Yang W, Wang Z, Hu K, Sun A, Ge J. Interleukin-35 Promotes Macrophage Survival and Improves Wound Healing After Myocardial Infarction in Mice. Circ Res 2019; 124:1323-1336. [DOI: 10.1161/circresaha.118.314569] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Daile Jia
- From the Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China (D.J., H.J., X.W., J.W., W.Y., Z.W., K.H., A.S., J.G.)
- Shanghai Institute of Cardiovascular Diseases, Shanghai, China (D.J., H.J., X.W., J.W., W.Y., Z.W., K.H., A.S., J.G.)
- NHC Key Laboratory of Viral Heart Diseases, Shanghai, China (D.J., H.J., X.W., J.W., W.Y., Z.W., K.H., A.S., J.G.)
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, China (D.J., H.J., X.W., J.W., W.Y., Z.W., K.H., A.S., J.G.)
| | - Hao Jiang
- From the Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China (D.J., H.J., X.W., J.W., W.Y., Z.W., K.H., A.S., J.G.)
- Shanghai Institute of Cardiovascular Diseases, Shanghai, China (D.J., H.J., X.W., J.W., W.Y., Z.W., K.H., A.S., J.G.)
- NHC Key Laboratory of Viral Heart Diseases, Shanghai, China (D.J., H.J., X.W., J.W., W.Y., Z.W., K.H., A.S., J.G.)
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, China (D.J., H.J., X.W., J.W., W.Y., Z.W., K.H., A.S., J.G.)
| | - Xinyu Weng
- From the Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China (D.J., H.J., X.W., J.W., W.Y., Z.W., K.H., A.S., J.G.)
- Shanghai Institute of Cardiovascular Diseases, Shanghai, China (D.J., H.J., X.W., J.W., W.Y., Z.W., K.H., A.S., J.G.)
- NHC Key Laboratory of Viral Heart Diseases, Shanghai, China (D.J., H.J., X.W., J.W., W.Y., Z.W., K.H., A.S., J.G.)
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, China (D.J., H.J., X.W., J.W., W.Y., Z.W., K.H., A.S., J.G.)
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China (X.W., J.W., Z.W., A.S., J.G.)
| | - Jian Wu
- From the Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China (D.J., H.J., X.W., J.W., W.Y., Z.W., K.H., A.S., J.G.)
- Shanghai Institute of Cardiovascular Diseases, Shanghai, China (D.J., H.J., X.W., J.W., W.Y., Z.W., K.H., A.S., J.G.)
- NHC Key Laboratory of Viral Heart Diseases, Shanghai, China (D.J., H.J., X.W., J.W., W.Y., Z.W., K.H., A.S., J.G.)
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, China (D.J., H.J., X.W., J.W., W.Y., Z.W., K.H., A.S., J.G.)
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China (X.W., J.W., Z.W., A.S., J.G.)
| | - Peiyuan Bai
- Department of Cardiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, China (P.B.)
| | - Wenlong Yang
- From the Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China (D.J., H.J., X.W., J.W., W.Y., Z.W., K.H., A.S., J.G.)
- Shanghai Institute of Cardiovascular Diseases, Shanghai, China (D.J., H.J., X.W., J.W., W.Y., Z.W., K.H., A.S., J.G.)
- NHC Key Laboratory of Viral Heart Diseases, Shanghai, China (D.J., H.J., X.W., J.W., W.Y., Z.W., K.H., A.S., J.G.)
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, China (D.J., H.J., X.W., J.W., W.Y., Z.W., K.H., A.S., J.G.)
| | - Zeng Wang
- From the Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China (D.J., H.J., X.W., J.W., W.Y., Z.W., K.H., A.S., J.G.)
- Shanghai Institute of Cardiovascular Diseases, Shanghai, China (D.J., H.J., X.W., J.W., W.Y., Z.W., K.H., A.S., J.G.)
- NHC Key Laboratory of Viral Heart Diseases, Shanghai, China (D.J., H.J., X.W., J.W., W.Y., Z.W., K.H., A.S., J.G.)
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, China (D.J., H.J., X.W., J.W., W.Y., Z.W., K.H., A.S., J.G.)
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China (X.W., J.W., Z.W., A.S., J.G.)
| | - Kai Hu
- From the Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China (D.J., H.J., X.W., J.W., W.Y., Z.W., K.H., A.S., J.G.)
- Shanghai Institute of Cardiovascular Diseases, Shanghai, China (D.J., H.J., X.W., J.W., W.Y., Z.W., K.H., A.S., J.G.)
- NHC Key Laboratory of Viral Heart Diseases, Shanghai, China (D.J., H.J., X.W., J.W., W.Y., Z.W., K.H., A.S., J.G.)
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, China (D.J., H.J., X.W., J.W., W.Y., Z.W., K.H., A.S., J.G.)
| | - Aijun Sun
- From the Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China (D.J., H.J., X.W., J.W., W.Y., Z.W., K.H., A.S., J.G.)
- Shanghai Institute of Cardiovascular Diseases, Shanghai, China (D.J., H.J., X.W., J.W., W.Y., Z.W., K.H., A.S., J.G.)
- NHC Key Laboratory of Viral Heart Diseases, Shanghai, China (D.J., H.J., X.W., J.W., W.Y., Z.W., K.H., A.S., J.G.)
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, China (D.J., H.J., X.W., J.W., W.Y., Z.W., K.H., A.S., J.G.)
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China (X.W., J.W., Z.W., A.S., J.G.)
| | - Junbo Ge
- From the Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China (D.J., H.J., X.W., J.W., W.Y., Z.W., K.H., A.S., J.G.)
- Shanghai Institute of Cardiovascular Diseases, Shanghai, China (D.J., H.J., X.W., J.W., W.Y., Z.W., K.H., A.S., J.G.)
- NHC Key Laboratory of Viral Heart Diseases, Shanghai, China (D.J., H.J., X.W., J.W., W.Y., Z.W., K.H., A.S., J.G.)
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, China (D.J., H.J., X.W., J.W., W.Y., Z.W., K.H., A.S., J.G.)
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China (X.W., J.W., Z.W., A.S., J.G.)
| |
Collapse
|
128
|
Meijers WC, de Boer RA. Common risk factors for heart failure and cancer. Cardiovasc Res 2019; 115:844-853. [PMID: 30715247 PMCID: PMC6452432 DOI: 10.1093/cvr/cvz035] [Citation(s) in RCA: 194] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/29/2019] [Accepted: 02/01/2019] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular (CV) disease and cancer are the leading causes of death.1,2 Over the last decades, it has been appreciated that both CV disease and cancer are more common in individuals in whom risk factors for disease development accumulate, and preventative measures have been extremely important in driving down the incidence of disease.3-6 In general, the field of epidemiology, risk reduction, and preventative trials is divided into health care professionals who have an interest in either CV disease or cancer. As a result, the medical literature and medical practice has largely focused on the one disease, or the other. However, human individuals do not behave according to this dogma. Emerging data clearly suggest that identical risk factors may lead to CV disease in the one individual, but may cause cancer in another, or even both diseases in the same individual. This overlap exists between risk factors that are historically classified as 'CV risk factors' as these factors do equally strong predict cancer development. Therefore, we propose that a holistic approach might better estimate actual risks for CV disease and cancer. In this review, we summarize current insights in common behavioural risk factors for heart failure, being the most progressed and lethal form of CV disease, and cancer.
Collapse
Affiliation(s)
- Wouter C Meijers
- University Medical Centre Groningen, University of Groningen, Department of Cardiology, Hanzeplein 1, Groningen, The Netherlands
| | - Rudolf A de Boer
- University Medical Centre Groningen, University of Groningen, Department of Cardiology, Hanzeplein 1, Groningen, The Netherlands
| |
Collapse
|
129
|
Lai SL, Marín-Juez R, Stainier DYR. Immune responses in cardiac repair and regeneration: a comparative point of view. Cell Mol Life Sci 2019; 76:1365-1380. [PMID: 30578442 PMCID: PMC6420886 DOI: 10.1007/s00018-018-2995-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 11/26/2018] [Accepted: 12/10/2018] [Indexed: 12/13/2022]
Abstract
Immediately after cardiac injury, the immune system plays major roles in repair and regeneration as it becomes involved in a number of processes including damage-associated signaling, inflammation, revascularization, cardiomyocyte dedifferentiation and replenishment, and fibrotic scar formation/resolution. Recent studies have revealed that different immune responses occur in the various experimental models capable or incapable of cardiac regeneration, and that harnessing these immune responses might improve cardiac repair. In light of this concept, this review analyzes current knowledge about the immune responses to cardiac injury from a comparative perspective. Insights gained from such comparative analyses may provide ways to modulate the immune response as a potential therapeutic strategy for cardiac disease.
Collapse
Affiliation(s)
- Shih-Lei Lai
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| | - Rubén Marín-Juez
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Didier Y R Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.
| |
Collapse
|
130
|
Yuan D, Tie J, Xu Z, Liu G, Ge X, Wang Z, Zhang X, Gong S, Liu G, Meng Q, Lin F, Liu Z, Fan H, Zhou X. Dynamic Profile of CD4 + T-Cell-Associated Cytokines/Chemokines following Murine Myocardial Infarction/Reperfusion. Mediators Inflamm 2019; 2019:9483647. [PMID: 31011288 PMCID: PMC6442492 DOI: 10.1155/2019/9483647] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 02/03/2019] [Indexed: 12/14/2022] Open
Abstract
CD4+ T-cells play crucial roles in the injured heart. However, the way in which different CD4+ T subtypes function in the myocardial infarction/reperfusion (MI/R) heart is still poorly understood. We aimed to detect the dynamic profile of distinct CD4+ subpopulation-associated cytokines/chemokines by relying on a closed-chest acute murine MI/R model. The protein levels of 26 CD4+ T-cell-associated cytokines/chemokines were detected in the heart tissues and serum of mice at day 7 and day 14 post-MI/R or sham surgery. The mRNA levels of IL-4, IL-6, IL-13, IL-27, MIP-1β, MCP-3, and GRO-α were measured in blood mononuclear cells. The protein levels of IL-4, IL-6, IL-13, IL-27, MIP-1β, MCP-3, and GRO-α increased in both injured heart tissues and serum, while IFN-γ, IL-12P70, IL-2, IL-1β, IL-18, TNF-α, IL-5, IL-9, IL-17A, IL-23, IL-10, eotaxin, MIP-1α, RANTES, MCP-1, and MIP-2 increased only in MI/R heart tissues in the day 7 and day 14 groups compared to the sham group. In serum, the IFN-γ, IL-23, and IL-10 levels were downregulated in the MI/R model at both day 7 and day 14 compared to the sham. Compared with the protein expressions in injured heart tissues at day 7, IFN-γ, IL-12P70, IL-2, IL-18, TNF-α, IL-6, IL-4, IL-5, IL-9, IL-17A, IL-23, IL-27, IL-10, eotaxin, IP-10, RANTES, MCP-1, MCP-3, and GRO-α were reduced, while IL-1β and MIP-2 were elevated at day 14. IL-13 and MIP-1β showed higher levels in the MI/R serum at day 14 than at day 7. mRNA levels of IL-4, IL-6, IL-13, and IL-27 were increased in the day 7 group compared to the sham, while MIP-1β, MCP-3, and GRO-α mRNA levels showed no significant difference between the MI/R and sham groups in blood mononuclear cells. Multiple CD4+ T-cell-associated cytokines/chemokines were upregulated in the MI/R hearts at the chronic stage. These results provided important evidence necessary for developing future immunomodulatory therapies after MI/R.
Collapse
Affiliation(s)
- Dongsheng Yuan
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200092, China
- Shanghai Heart Failure Research Center, Shanghai 200120, China
- Department of Cardiovascular and Thoracic Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200092, China
| | - Jinjun Tie
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200092, China
- Shanghai Heart Failure Research Center, Shanghai 200120, China
- Department of Cardiovascular and Thoracic Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200092, China
| | - Zhican Xu
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200092, China
- Shanghai Heart Failure Research Center, Shanghai 200120, China
- Department of Cardiovascular and Thoracic Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200092, China
| | - Guanya Liu
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200092, China
- Shanghai Heart Failure Research Center, Shanghai 200120, China
- Department of Cardiovascular and Thoracic Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200092, China
| | - Xinyu Ge
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200092, China
- Shanghai Heart Failure Research Center, Shanghai 200120, China
- Department of Cardiovascular and Thoracic Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200092, China
| | - Zhulin Wang
- Department of Child Internal Medicine, Shanghai Children's Medical Center, Shanghai Jiaotong University, Shanghai 200127, China
| | - Xumin Zhang
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200092, China
| | - Shiyu Gong
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200092, China
| | - Gang Liu
- Department of Cardiovascular and Thoracic Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200092, China
| | - Qingshu Meng
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200092, China
- Shanghai Heart Failure Research Center, Shanghai 200120, China
| | - Fang Lin
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200092, China
- Shanghai Heart Failure Research Center, Shanghai 200120, China
| | - Zhongmin Liu
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200092, China
- Shanghai Heart Failure Research Center, Shanghai 200120, China
- Department of Cardiovascular and Thoracic Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200092, China
- Department of Heart Failure, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200092, China
| | - Huimin Fan
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200092, China
- Shanghai Heart Failure Research Center, Shanghai 200120, China
- Department of Cardiovascular and Thoracic Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200092, China
- Department of Heart Failure, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200092, China
| | - Xiaohui Zhou
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200092, China
- Shanghai Heart Failure Research Center, Shanghai 200120, China
| |
Collapse
|
131
|
Inflammation and fibrosis in murine models of heart failure. Basic Res Cardiol 2019; 114:19. [PMID: 30887214 DOI: 10.1007/s00395-019-0722-5] [Citation(s) in RCA: 253] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 02/12/2019] [Indexed: 02/07/2023]
Abstract
Heart failure is a consequence of various cardiovascular diseases and associated with poor prognosis. Despite progress in the treatment of heart failure in the past decades, prevalence and hospitalisation rates are still increasing. Heart failure is typically associated with cardiac remodelling. Here, inflammation and fibrosis are thought to play crucial roles. During cardiac inflammation, immune cells invade the cardiac tissue and modulate tissue-damaging responses. Cardiac fibrosis, however, is characterised by an increased amount and a disrupted composition of extracellular matrix proteins. As evidence exists that cardiac inflammation and fibrosis are potentially reversible in experimental and clinical set ups, they are interesting targets for innovative heart failure treatments. In this context, animal models are important as they mimic clinical conditions of heart failure patients. The advantages of mice in this respect are short generation times and genetic modifications. As numerous murine models of heart failure exist, the selection of a proper disease model for a distinct research question is demanding. To facilitate this selection, this review aims to provide an overview about the current understanding of the pathogenesis of cardiac inflammation and fibrosis in six frequently used murine models of heart failure. Hence, it compares the models of myocardial infarction with or without reperfusion, transverse aortic constriction, chronic subjection to angiotensin II or deoxycorticosterone acetate, and coxsackievirus B3-induced viral myocarditis in this context. It furthermore provides information about the clinical relevance and the limitations of each model, and, if applicable, about the recent advancements in their methodological proceedings.
Collapse
|
132
|
Mora-Ruíz MD, Blanco-Favela F, Chávez Rueda AK, Legorreta-Haquet MV, Chávez-Sánchez L. Role of interleukin-17 in acute myocardial infarction. Mol Immunol 2019; 107:71-78. [DOI: 10.1016/j.molimm.2019.01.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/08/2019] [Accepted: 01/11/2019] [Indexed: 12/12/2022]
|
133
|
Hardy SA, Mabotuwana NS, Murtha LA, Coulter B, Sanchez-Bezanilla S, Al-Omary MS, Senanayake T, Loering S, Starkey M, Lee RJ, Rainer PP, Hansbro PM, Boyle AJ. Novel role of extracellular matrix protein 1 (ECM1) in cardiac aging and myocardial infarction. PLoS One 2019; 14:e0212230. [PMID: 30789914 PMCID: PMC6383988 DOI: 10.1371/journal.pone.0212230] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 01/29/2019] [Indexed: 12/28/2022] Open
Abstract
INTRODUCTION The prevalence of heart failure increases in the aging population and following myocardial infarction (MI), yet the extracellular matrix (ECM) remodeling underpinning the development of aging- and MI-associated cardiac fibrosis remains poorly understood. A link between inflammation and fibrosis in the heart has long been appreciated, but has mechanistically remained undefined. We investigated the expression of a novel protein, extracellular matrix protein 1 (ECM1) in the aging and infarcted heart. METHODS Young adult (3-month old) and aging (18-month old) C57BL/6 mice were assessed. Young mice were subjected to left anterior descending artery-ligation to induce MI, or transverse aortic constriction (TAC) surgery to induce pressure-overload cardiomyopathy. Left ventricle (LV) tissue was collected early and late post-MI/TAC. Bone marrow cells (BMCs) were isolated from young healthy mice, and subject to flow cytometry. Human cardiac fibroblast (CFb), myocyte, and coronary artery endothelial & smooth muscle cell lines were cultured; human CFbs were treated with recombinant ECM1. Primary mouse CFbs were cultured and treated with recombinant angiotensin-II or TGF-β1. Immunoblotting, qPCR and mRNA fluorescent in-situ hybridization (mRNA-FISH) were conducted on LV tissue and cells. RESULTS ECM1 expression was upregulated in the aging LV, and in the infarct zone of the LV early post-MI. No significant differences in ECM1 expression were found late post-MI or at any time-point post-TAC. ECM1 was not expressed in any resident cardiac cells, but ECM1 was highly expressed in BMCs, with high ECM1 expression in granulocytes. Flow cytometry of bone marrow revealed ECM1 expression in large granular leucocytes. mRNA-FISH revealed that ECM1 was indeed expressed by inflammatory cells in the infarct zone at day-3 post-MI. ECM1 stimulation of CFbs induced ERK1/2 and AKT activation and collagen-I expression, suggesting a pro-fibrotic role. CONCLUSIONS ECM1 expression is increased in ageing and infarcted hearts but is not expressed by resident cardiac cells. Instead it is expressed by bone marrow-derived granulocytes. ECM1 is sufficient to induce cardiac fibroblast stimulation in vitro. Our findings suggest ECM1 is released from infiltrating inflammatory cells, which leads to cardiac fibroblast stimulation and fibrosis in aging and MI. ECM1 may be a novel intermediary between inflammation and fibrosis.
Collapse
Affiliation(s)
- Sean A. Hardy
- School of Medicine and Public Health, The University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Nishani S. Mabotuwana
- School of Medicine and Public Health, The University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Lucy A. Murtha
- School of Medicine and Public Health, The University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Brianna Coulter
- School of Medicine and Public Health, The University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Sonia Sanchez-Bezanilla
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia
- Priority Research Centre’s for Healthy Lungs and GrowUpWell, School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia
| | - Mohammed S. Al-Omary
- School of Medicine and Public Health, The University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- Department of Cardiovascular Medicine, John Hunter Hospital, New Lambton Heights, NSW, Australia
| | - Tharindu Senanayake
- School of Medicine and Public Health, The University of Newcastle, Callaghan, NSW, Australia
| | - Svenja Loering
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia
- Priority Research Centre’s for Healthy Lungs and GrowUpWell, School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia
| | - Malcolm Starkey
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia
- Priority Research Centre’s for Healthy Lungs and GrowUpWell, School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia
| | - Randall J. Lee
- Department of Medicine, Division of Cardiology, University of California San Francisco, San Francisco, CA, United States of America
- Edyth and Eli Broad Center for Regenerative Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, United States of America
| | - Peter P. Rainer
- Division of Cardiology, Medical University of Graz, Graz, Austria
| | - Philip M. Hansbro
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia
- Priority Research Centre’s for Healthy Lungs and GrowUpWell, School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia
- Centre for inflammation, Centenary Institute, Sydney, NSW, Australia
- University of Technology, Faculty of Science, Ultimo, NSW, Australia
| | - Andrew J. Boyle
- School of Medicine and Public Health, The University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- Department of Cardiovascular Medicine, John Hunter Hospital, New Lambton Heights, NSW, Australia
- * E-mail:
| |
Collapse
|
134
|
Santos-Zas I, Lemarié J, Tedgui A, Ait-Oufella H. Adaptive Immune Responses Contribute to Post-ischemic Cardiac Remodeling. Front Cardiovasc Med 2019; 5:198. [PMID: 30687720 PMCID: PMC6335242 DOI: 10.3389/fcvm.2018.00198] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 12/21/2018] [Indexed: 12/14/2022] Open
Abstract
Myocardial infarction (MI) is a common condition responsible for mortality and morbidity related to ischemic heart failure. Accumulating experimental and translational evidence support a crucial role for innate immunity in heart failure and adverse heart remodeling following MI. More recently, the role of adaptive immunity in myocardial ischemia has been identified, mainly in rodents models of both transient and permanent heart ischemia. The present review summarizes the experimental evidence regarding the role of lymphocytes and dendritic cells in myocardial remodeling following coronary artery occlusion. Th1 and potentially Th17 CD4+ T cell responses promote adverse heart remodeling, whereas regulatory T cells appear to be protective, modulating macrophage activity, cardiomyocyte survival, and fibroblast phenotype. The role of CD8+ T cells in this setting remains unknown. B cells contribute to adverse cardiac remodeling through the modulation of monocyte trafficking, and potentially the production of tissue-specific antibodies. Yet, further substantial efforts are still required to confirm experimental data in human MI before developing new therapeutic strategies targeting the adaptive immune system in ischemic cardiac diseases.
Collapse
Affiliation(s)
- Icia Santos-Zas
- INSERM UMR-S 970, Sorbonne Paris Cité, Paris Cardiovascular Research Center - PARCC, Université Paris Descartes, Paris, France
| | - Jérémie Lemarié
- INSERM UMR-S 970, Sorbonne Paris Cité, Paris Cardiovascular Research Center - PARCC, Université Paris Descartes, Paris, France.,UMR_S 1116, Université de Lorraine, Inserm, DCAC, Centre Hospitalier Régional Universitaire de Nancy - Réanimation Médicale - Hôpital Central, Nancy, France
| | - Alain Tedgui
- INSERM UMR-S 970, Sorbonne Paris Cité, Paris Cardiovascular Research Center - PARCC, Université Paris Descartes, Paris, France
| | - Hafid Ait-Oufella
- INSERM UMR-S 970, Sorbonne Paris Cité, Paris Cardiovascular Research Center - PARCC, Université Paris Descartes, Paris, France.,AP-HP (Assistance Publique-Hôpitaux de Paris), Hôpital Saint-Antoine, Sorbonne Université, Paris, France
| |
Collapse
|
135
|
Li W, Zhang F, Ju C, Lv S, Huang K. The role of CD27-CD70 signaling in myocardial infarction and cardiac remodeling. Int J Cardiol 2018; 278:210-216. [PMID: 30527529 DOI: 10.1016/j.ijcard.2018.11.132] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 11/16/2018] [Accepted: 11/28/2018] [Indexed: 12/18/2022]
Abstract
BACKGROUND CD4+ T cells are key players in regulating the inflammatory processes and physiological repair mechanisms engaged after acute myocardial infarction (AMI). Although signaling through the CD27-CD70 co-stimulatory pathway are known to be important in CD4+ T cell activation and proliferation in certain contexts, the role of the CD27-CD70 pathway in AMI remains unclear. METHODS AND RESULTS A total of 43 control subjects, 42 unstable angina patients, and 90 AMI patients were enrolled in the present study. The serum levels of soluble CD27 (sCD27) in patients were measured, revealing a significant increase in serum sCD27 levels in AMI patients within 24 h of the cardiac event, after which they decreased. Correlation analyses revealed that serum sCD27 was positively correlated with cardiac troponin I (c-TnI) (r = 0.267, P = 0.011). When anti-CD70 antibody was used to block the CD27-CD70 pathway in MI model mice, we found that this treatment increased left ventricular end-diastolic dimension (LVEDD) (P < 0.01) and left ventricular end-systolic dimension (LVESD) (P < 0.01), and decreased ejection fraction (P < 0.01). Flow cytometric analysis revealed that the percentage of regulatory T cells was lower in blocking antibody-treated mice (P < 0.01), while neutrophils levels were higher (P < 0.01). The number of CD31-positive endothelial cells (P = 0.026) and α-smooth muscle actin-positive arterioles (P < 0.01) were significantly down-regulated in anti-CD70 treated-AMI mice. The formation of the extracellular matrix (ECM) was also impaired. CONCLUSION Serum sCD27 may be a potential biomarker for AMI. Blockade of the CD27-CD70 pathway worsens cardiac dysfunction, aggravates left ventricular remodeling, and impairs scar healing after AMI, resulting in heart failure.
Collapse
Affiliation(s)
- Wei Li
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fengxiao Zhang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chenhui Ju
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Suying Lv
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Huang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
136
|
Pretreatment with Total Flavonoid Extract from Dracocephalum Moldavica L. Attenuates Ischemia Reperfusion-induced Apoptosis. Sci Rep 2018; 8:17491. [PMID: 30504832 PMCID: PMC6269513 DOI: 10.1038/s41598-018-35726-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 11/08/2018] [Indexed: 02/08/2023] Open
Abstract
We previously demonstrated the cardio-protection mediated by the total flavonoid extracted from Dracocephalum moldavica L. (TFDM) following myocardial ischemia reperfusion injury (MIRI). The present study assessed the presence and mechanism of TFDM-related cardio-protection on MIRI-induced apoptosis in vivo. Male Sprague-Dawley rats experienced 45-min ischemia with 12 h of reperfusion. Rats pretreated with TFDM (3, 10 or 30 mg/kg/day) were compared with Sham (no MIRI and no TFDM), MIRI (no TFDM), and Positive (trapidil tablets, 13.5 mg/kg/day) groups. In MIRI-treated rats, high dose-TFDM (H-TFDM) pre-treatment with apparently reduced release of LDH, CK-MB and MDA, enhanced the concentration of SOD in plasma, and greatly reduced the infarct size, apoptotic index and mitochondrial injury. H-TFDM pretreatment markedly promoted the phosphorylation of PI3K, Akt, GSK-3β and ERK1/2 in comparison with the MIRI model group. Western blot analysis after reperfusion also showed that H-TFDM decreased release of Bax, cleaved caspase-3, caspase-7 and caspase-9, and increased expression of Bcl-2 as evident by the higher Bcl-2/Bax ratio. TFDM cardio-protection was influenced by LY294002 (PI3K inhibitor) and PD98059 (ERK1/2 inhibitor). Taken together, these results provide convincing evidence of the benefit of TFDM pretreatment due to inhibited myocardial apoptosis as mediated by the PI3K/Akt/GSK-3β and ERK1/2 signaling pathways.
Collapse
|
137
|
Richardson RJ. Parallels between vertebrate cardiac and cutaneous wound healing and regeneration. NPJ Regen Med 2018; 3:21. [PMID: 30416753 PMCID: PMC6220283 DOI: 10.1038/s41536-018-0059-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 10/12/2018] [Indexed: 12/11/2022] Open
Abstract
The cellular events that contribute to tissue healing of non-sterile wounds to the skin and ischaemic injury to internal organs such as the heart share remarkable similarities despite the differences between these injury types and organs. In adult vertebrates, both injuries are characterised by a complex series of overlapping events involving multiple different cell types and cellular interactions. In adult mammals both tissue-healing processes ultimately lead to the permanent formation of a fibrotic, collagenous scar, which can have varying effects on tissue function depending on the site and magnitude of damage. Extensive scarring in the heart as a result of a severe myocardial infarction contributes to ventricular dysfunction and the progression of heart failure. Some vertebrates such as adult zebrafish, however, retain a more embryonic capacity for scar-free tissue regeneration in many tissues including the skin and heart. In this review, the similarities and differences between these different types of wound healing are discussed, with special attention on recent advances in regenerative, non-scarring vertebrate models such as the zebrafish.
Collapse
Affiliation(s)
- Rebecca J Richardson
- School of Physiology, Pharmacology and Neuroscience, Faculty of Biomedical Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
138
|
Many Cells Make Life Work-Multicellularity in Stem Cell-Based Cardiac Disease Modelling. Int J Mol Sci 2018; 19:ijms19113361. [PMID: 30373227 PMCID: PMC6274721 DOI: 10.3390/ijms19113361] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 10/23/2018] [Accepted: 10/24/2018] [Indexed: 12/22/2022] Open
Abstract
Cardiac disease causes 33% of deaths worldwide but our knowledge of disease progression is still very limited. In vitro models utilising and combining multiple, differentiated cell types have been used to recapitulate the range of myocardial microenvironments in an effort to delineate the mechanical, humoral, and electrical interactions that modulate the cardiac contractile function in health and the pathogenesis of human disease. However, due to limitations in isolating these cell types and changes in their structure and function in vitro, the field is now focused on the development and use of stem cell-derived cell types, most notably, human-induced pluripotent stem cell-derived CMs (hiPSC-CMs), in modelling the CM function in health and patient-specific diseases, allowing us to build on the findings from studies using animal and adult human CMs. It is becoming increasingly appreciated that communications between cardiomyocytes (CMs), the contractile cell of the heart, and the non-myocyte components of the heart not only regulate cardiac development and maintenance of health and adult CM functions, including the contractile state, but they also regulate remodelling in diseases, which may cause the chronic impairment of the contractile function of the myocardium, ultimately leading to heart failure. Within the myocardium, each CM is surrounded by an intricate network of cell types including endothelial cells, fibroblasts, vascular smooth muscle cells, sympathetic neurons, and resident macrophages, and the extracellular matrix (ECM), forming complex interactions, and models utilizing hiPSC-derived cell types offer a great opportunity to investigate these interactions further. In this review, we outline the historical and current state of disease modelling, focusing on the major milestones in the development of stem cell-derived cell types, and how this technology has contributed to our knowledge about the interactions between CMs and key non-myocyte components of the heart in health and disease, in particular, heart failure. Understanding where we stand in the field will be critical for stem cell-based applications, including the modelling of diseases that have complex multicellular dysfunctions.
Collapse
|
139
|
Wang Z, Xu Y, Wang M, Ye J, Liu J, Jiang H, Ye D, Wan J. TRPA1 inhibition ameliorates pressure overload-induced cardiac hypertrophy and fibrosis in mice. EBioMedicine 2018; 36:54-62. [PMID: 30297144 PMCID: PMC6197736 DOI: 10.1016/j.ebiom.2018.08.022] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 08/09/2018] [Accepted: 08/09/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Recent evidence has indicated that the transient receptor potential ankyrin 1 (TRPA1) is expressed in the cardiovascular system and implicated in the development and progression of several cardiovascular diseases. However, the effects of TRPA1 on cardiac hypertrophy development remain unclear. The aim of this study was to determine the role of TRPA1 in cardiac hypertrophy and fibrosis development. METHODS C57BL/6J mice were subjected to transverse aortic constriction (TAC) and were orally treated with the TRPA1 selective inhibitors HC-030031 (HC) and TCS-5861528 (TCS). Morphological assessments, echocardiographic parameters, histological analyses and flow cytometry were used to evaluate cardiac hypertrophy and fibrosis. RESULTS Human and mouse hypertrophic hearts presented with noticeably increased TRPA1 protein levels. Inhibition of TRPA1 by HC and TCS attenuated cardiac hypertrophy and preserved cardiac function after chronic pressure overload, as evidenced by increased heart weight/body weight ratio, cardiomyocyte cross-sectional area and mRNA expression of hypertrophic markers, including ANP, BNP and β-MHC. Dramatic interstitial fibrosis was observed in the mice subjected to TAC surgery, and this was markedly attenuated in the HC and TCS treated mice. Mechanistically, the results revealed that TRPA1 inhibition ameliorated pressure overload-induced cardiac hypertrophy by negatively regulating Ca2+/calmodulin-dependent protein kinase II (CaMKII) and calcineurin signaling pathways. We also demonstrated that blocking TRPA1 decreased the proportion of M2 macrophages and reduced profibrotic cytokine levels, thereby improving cardiac fibrosis. CONCLUSIONS TRPA1 inhibition protected against cardiac hypertrophy and suppressed cardiac dysfunction via Ca2+-dependent signal pathways and inhibition of the M2 macrophages transition. These results suggest that TRPA1 may represent a potential therapeutic drug target for cardiac hypertrophy and fibrosis.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Yao Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Menglong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Jing Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Jianfang Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Huimin Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Di Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China.
| |
Collapse
|
140
|
Guo Y, Yang X, He J, Liu J, Yang S, Dong H. Important roles of the Ca 2+-sensing receptor in vascular health and disease. Life Sci 2018; 209:217-227. [PMID: 30098342 DOI: 10.1016/j.lfs.2018.08.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/30/2018] [Accepted: 08/06/2018] [Indexed: 02/07/2023]
Abstract
Ca2+-sensing receptor (CaSR), a member of G protein-coupled receptor family, is widely expressed in the vascular system, including perivascular neurons, vascular endothelial cells (VECs) and vascular smooth muscle cells (VSMCs). When stimulated, CaSR can further increase the cytosolic Ca2+ concentration ([Ca2+]cyt) in two ways: intracellular Ca2+ release from endo/sarcoplasmic reticulum (ER/SR) and extracellular Ca2+ entry through Ca2+-permeable cation channels. In endothelium, increased Ca2+ subsequently activate nitric oxide synthase (NOS) and intermediate conductance Ca2+-activated K+ channels (IKCa), resulting in vasodilation through NOS-mediated NO release or membrane hyperpolarization. In VSMCs, CaSR-induced intracellular Ca2+ increase causes blood vessel constriction. CaSR activation predominantly induces vasorelaxation of whole vascular tissues through VECs-dependent mechanisms; however, CaSR-induced Ca2+ signaling in VSMCs may play a braking role in CaSR-mediated vasorelaxation. Emerging evidence reveals the importance of CaSR in the regulation of vascular tone and blood pressure. Here, we summarized recent advances in CaSR-mediated vascular reaction and the underlying mechanisms in different species, including humans. In addition, several studies have demonstrated that CaSR dysfunction may be associated with some fatal vascular diseases, such as pulmonary arterial hypertension, primary hypertension, diabetes, acute myocardial infarction and vascular calcification. With the advance of studies on CaSR in vascular health and disease, it is expected positive modulators or negative modulators of CaSR used for the treatment of specific diseases may be promising therapeutic options for the prevention and/or treatment of vascular diseases.
Collapse
Affiliation(s)
- Yanjun Guo
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Xin Yang
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Jialin He
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Jingjing Liu
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Shiming Yang
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Hui Dong
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China.
| |
Collapse
|
141
|
Feinstein MJ, Mitter SS, Yadlapati A, Achenbach CJ, Palella FJ, Gonzalez PE, Meyers S, Collins JD, Shah SJ, Lloyd-Jones DM. HIV-Related Myocardial Vulnerability to Infarction and Coronary Artery Disease. J Am Coll Cardiol 2018; 68:2026-2027. [PMID: 27788857 DOI: 10.1016/j.jacc.2016.07.771] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/03/2016] [Accepted: 07/20/2016] [Indexed: 12/29/2022]
|
142
|
Abraityte A, Aukrust P, Kou L, Anand IS, Young J, Mcmurray JJV, van Veldhuisen DJ, Gullestad L, Ueland T. T cell and monocyte/macrophage activation markers associate with adverse outcome, but give limited prognostic value in anemic patients with heart failure: results from RED-HF. Clin Res Cardiol 2018; 108:133-141. [PMID: 30051179 DOI: 10.1007/s00392-018-1331-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 07/16/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND Activated leukocytes may contribute to the development and progression of heart failure (HF). We investigated the predictive value of circulating levels of stable and readily detectable markers reflecting both monocyte/macrophage and T-cell activity, on clinical outcomes in HF patients with reduced ejection fraction (HFrEF). METHODS The association between baseline plasma levels of soluble CD163 (sCD163), macrophage migration inhibitory factor (MIF), granulysin, soluble interleukin-2 receptor (sIL-2R), and activated leukocyte cell adhesion molecule (ALCAM) and the primary endpoint of death from any cause or first hospitalization for worsening of HF was evaluated using multivariable Cox proportional hazard models in 1541 patients with systolic HF and mild to moderate anemia, enrolled in the Reduction of Events by darbepoetin alfa in Heart Failure (RED-HF) trial. Modifying effects and interaction with darbepoetin alfa treatment were also assessed. RESULTS All leukocyte markers, except granulysin, were associated with the primary outcome and all-cause death in univariate analysis (all p < 0.01) and remained significantly associated in multivariable analysis adjusting for conventional clinical variables (e.g. age, gender, BMI, NYHA class, creatinine, LVEF, etiology) and CRP. However, after final adjustment for TnT and NT-proBNP no associations were found with outcomes. No interaction with darbepoetin alpha treatment was observed for any marker. CONCLUSIONS Leukocyte activation markers sCD163, MIF, sIL-2R, and ALCAM were associated with adverse outcome in patients with HFrEF, but add little as prognostic markers on top of established biochemical risk markers. CLINICAL TRIAL REGISTRATION https://clinicaltrials.gov/ct2/show/NCT00358215 .
Collapse
Affiliation(s)
- Aurelija Abraityte
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Nydalen, P. B. 4950, 0424, Oslo, Norway.,Faculty of Medicine, University of Oslo, Oslo, Norway.,Center for Heart Failure Research, University of Oslo, Oslo, Norway
| | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Nydalen, P. B. 4950, 0424, Oslo, Norway.,Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital, Rikshospitalet, Oslo, Norway.,Faculty of Medicine, University of Oslo, Oslo, Norway.,K. G. Jebsen Inflammation Research Center, University of Oslo, Oslo, Norway
| | - Lei Kou
- Cleveland Clinic Foundation, Cleveland, USA
| | - Inder S Anand
- VA Medical Center and University of Minnesota, Minneapolis, MN, USA
| | | | - John J V Mcmurray
- BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK
| | | | - Lars Gullestad
- Department of Cardiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway.,Center for Heart Failure Research, University of Oslo, Oslo, Norway
| | - Thor Ueland
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Nydalen, P. B. 4950, 0424, Oslo, Norway. .,Faculty of Medicine, University of Oslo, Oslo, Norway. .,K. G. Jebsen Thrombosis Research and Expertise Center, University of Tromsø, Tromsö, Norway.
| |
Collapse
|
143
|
Ni Y, Liang D, Tian Y, Kron IL, French BA, Yang Z. Infarct-Sparing Effect of Adenosine A2B Receptor Agonist Is Primarily Due to Its Action on Splenic Leukocytes Via a PI3K/Akt/IL-10 Pathway. J Surg Res 2018; 232:442-449. [PMID: 30463755 DOI: 10.1016/j.jss.2018.06.042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 05/18/2018] [Accepted: 06/14/2018] [Indexed: 01/18/2023]
Abstract
BACKGROUND Adenosine A2B receptor (A2BAR) agonist reduces myocardial reperfusion injury by acting on inflammatory cells. Recently, a cardiosplenic axis was shown to mediate the myocardial postischemic reperfusion injury. This study aimed to explore whether the infarct-squaring effect of A2BAR agonist was primarily due to its action on splenic leukocytes. METHODS C57BL6 (wild type [WT]) mice underwent 40 min of left coronary artery occlusion followed by 60 min of reperfusion. A2BAR knockout (KO) and interleukin (IL)-10KO mice served as donors for splenic leukocytes. Acute splenectomy was performed 30 min before ischemia. The acute splenic leukocyte adoptive transfer was performed by injecting 5 × 106 live splenic leukocytes into splenectomized mice. BAY 60-6583, an A2BAR agonist, was injected by i.v. 15 min before ischemia. The infarct size (IS) was determined using 2,3,5-triphenyltetrazolium chloride and Phthalo blue staining. The expression of p-Akt and IL-10 was estimated by Western blotting. Immunofluorescence staining assessed the localization of IL-10 expression. RESULTS BAY 60-6583 reduced the myocardial IS in intact mice but failed to reduce the same in splenectomized mice, which had a smaller IS than intact mice. BAY 60-6583 reduced the IS in splenectomized mice with the acute transfer of WT splenic leukocytes; however, it did not protect the heart of splenectomized mice with the acute transfer of A2BRKO splenic leukocytes. Furthermore, BAY 60-6583 increased the levels of p-Akt and IL-10 in the WT spleen. Moreover, it did not exert any protective effect in IL-10KO mice. CONCLUSIONS A2BAR activation before ischemia stimulated the IL-10 production in splenic leukocytes via a PI3K/Akt pathway, thereby exerting anti-inflammatory effects that limited the myocardial reperfusion injury.
Collapse
Affiliation(s)
- Yingying Ni
- Department of Cardiovascular Surgery, Tianjin Medical University General Hospital, Tianjin, P.R. of China
| | - Degang Liang
- Department of Cardiovascular Surgery, Tianjin Medical University General Hospital, Tianjin, P.R. of China
| | - Yikui Tian
- Department of Cardiovascular Surgery, Tianjin Medical University General Hospital, Tianjin, P.R. of China.
| | - Irving L Kron
- Department of Surgery, University of Virginia Health System, Charlottesville, Virginia
| | - Brent A French
- Department of Biomedical Engineering, University of Virginia Health System, Charlottesville, Virginia
| | - Zequan Yang
- Department of Surgery, University of Virginia Health System, Charlottesville, Virginia.
| |
Collapse
|
144
|
Zacchigna S, Martinelli V, Moimas S, Colliva A, Anzini M, Nordio A, Costa A, Rehman M, Vodret S, Pierro C, Colussi G, Zentilin L, Gutierrez MI, Dirkx E, Long C, Sinagra G, Klatzmann D, Giacca M. Paracrine effect of regulatory T cells promotes cardiomyocyte proliferation during pregnancy and after myocardial infarction. Nat Commun 2018; 9:2432. [PMID: 29946151 PMCID: PMC6018668 DOI: 10.1038/s41467-018-04908-z] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 05/16/2018] [Indexed: 02/07/2023] Open
Abstract
Cardiomyocyte proliferation stops at birth when the heart is no longer exposed to maternal blood and, likewise, to regulatory T cells (Tregs) that are expanded to promote maternal tolerance towards the fetus. Here, we report a role of Tregs in promoting cardiomyocyte proliferation. Treg-conditioned medium promotes cardiomyocyte proliferation, similar to the serum from pregnant animals. Proliferative cardiomyocytes are detected in the heart of pregnant mothers, and Treg depletion during pregnancy decreases both maternal and fetal cardiomyocyte proliferation. Treg depletion after myocardial infarction results in depressed cardiac function, massive inflammation, and scarce collagen deposition. In contrast, Treg injection reduces infarct size, preserves contractility, and increases the number of proliferating cardiomyocytes. The overexpression of six factors secreted by Tregs (Cst7, Tnfsf11, Il33, Fgl2, Matn2, and Igf2) reproduces the therapeutic effect. In conclusion, Tregs promote fetal and maternal cardiomyocyte proliferation in a paracrine manner and improve the outcome of myocardial infarction. Regulatory T cells (Tregs) expand during pregnancy to promote tolerance towards the fetus. Here the authors show that Tregs induce proliferation of fetal and maternal cardiomyocytes during pregnancy and enhance myocardial repair via proliferation-promoting paracrine actions.
Collapse
Affiliation(s)
- Serena Zacchigna
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149, Trieste, Italy. .,Department of Medical, Surgical and Health Sciences, University of Trieste, 34127 Trieste, Italy and Center for Translational Cardiology, Azienda Sanitaria Universitaria Integrata di Trieste, 34129, Trieste, Italy.
| | - Valentina Martinelli
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149, Trieste, Italy
| | - Silvia Moimas
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34127 Trieste, Italy and Center for Translational Cardiology, Azienda Sanitaria Universitaria Integrata di Trieste, 34129, Trieste, Italy.,Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149, Trieste, Italy
| | - Andrea Colliva
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149, Trieste, Italy
| | - Marco Anzini
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34127 Trieste, Italy and Center for Translational Cardiology, Azienda Sanitaria Universitaria Integrata di Trieste, 34129, Trieste, Italy
| | - Andrea Nordio
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34127 Trieste, Italy and Center for Translational Cardiology, Azienda Sanitaria Universitaria Integrata di Trieste, 34129, Trieste, Italy
| | - Alessia Costa
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149, Trieste, Italy
| | - Michael Rehman
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149, Trieste, Italy
| | - Simone Vodret
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149, Trieste, Italy
| | - Cristina Pierro
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149, Trieste, Italy
| | - Giulia Colussi
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149, Trieste, Italy
| | - Lorena Zentilin
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149, Trieste, Italy
| | - Maria Ines Gutierrez
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149, Trieste, Italy
| | - Ellen Dirkx
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149, Trieste, Italy
| | - Carlin Long
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149, Trieste, Italy
| | - Gianfranco Sinagra
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34127 Trieste, Italy and Center for Translational Cardiology, Azienda Sanitaria Universitaria Integrata di Trieste, 34129, Trieste, Italy
| | - David Klatzmann
- Sorbonne Université, UPMC Univ Paris 06, INSERM, UMR_S 959, Immunology-Immunopathology-Immunotherapy (i3), F-75005, Paris, France.,AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Department of Biotherapies, Clinical Investigation Center in Biotherapy and Inflammation-Immunopathology-Biotherapy Department (DHU i2B), F-75013, Paris, France
| | - Mauro Giacca
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34127 Trieste, Italy and Center for Translational Cardiology, Azienda Sanitaria Universitaria Integrata di Trieste, 34129, Trieste, Italy.,Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149, Trieste, Italy
| |
Collapse
|
145
|
Feinstein MJ, Poole B, Engel Gonzalez P, Pawlowski AE, Schneider D, Provias TS, Palella FJ, Achenbach CJ, Lloyd-Jones DM. Differences by HIV serostatus in coronary artery disease severity and likelihood of percutaneous coronary intervention following stress testing. J Nucl Cardiol 2018; 25:872-883. [PMID: 27739037 PMCID: PMC5391305 DOI: 10.1007/s12350-016-0689-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 09/15/2016] [Indexed: 10/20/2022]
Abstract
BACKGROUND HIV-infected persons develop coronary artery disease (CAD) more commonly and earlier than uninfected persons; however, the role of non-invasive testing to stratify CAD risk in HIV is not well defined. METHODS AND RESULTS Patients were selected from a single-center electronic cohort of HIV-infected patients and uninfected controls matched 1:2 on age, sex, race, and type of cardiovascular testing performed. Patients with abnormal echocardiographic or nuclear stress testing who subsequently underwent coronary angiography were included. Logistic regressions were used to assess differences by HIV serostatus in two co-primary endpoints: (1) severe CAD (≥70% stenosis of at least one coronary artery) and (2) performance of percutaneous coronary intervention (PCI). HIV-infected patients (N = 189) were significantly more likely to undergo PCI following abnormal stress test when compared with uninfected persons (N = 319) after adjustment for demographics, CAD risk factors, previous coronary intervention, and stress test type (OR 1.85, 95% CI 1.12-3.04, P = 0.003). No associations between HIV serostatus and CAD were statistically significant, although there was a non-significant trend toward greater CAD for HIV-infected patients. CONCLUSIONS HIV-infected patients with abnormal cardiovascular stress testing who underwent subsequent coronary angiography did not have a significantly greater CAD burden than uninfected controls, but were significantly more likely to receive PCI.
Collapse
Affiliation(s)
- Matthew J Feinstein
- Division of Cardiovascular Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine, 676 N. St. Clair, Suite 600, Chicago, IL, 60611, USA.
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, 680 N. Lakeshore Drive, Suite 1400, Chicago, IL, 60611, USA.
| | - Brian Poole
- Department of Medicine, Beth Israel Deaconness Medical Center, Boston, MA, USA
| | - Pedro Engel Gonzalez
- Department of Medicine, Northwestern University Feinberg School of Medicine, 251 E. Huron, Suite 3-150, Chicago, IL, 60611, USA
| | - Anna E Pawlowski
- Northwestern Medicine Enterprise Data Warehouse, Chicago, IL, 60611, USA
| | - Daniel Schneider
- Northwestern Medicine Enterprise Data Warehouse, Chicago, IL, 60611, USA
| | - Tim S Provias
- Division of Cardiovascular Diseases, Northwestern University Feinberg School of Medicine, 676 N. St. Clair, Suite 600, Chicago, IL, 60611, USA
| | - Frank J Palella
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine, 251 E. Huron St., Suite 3-150, Chicago, IL, 60611, USA
| | - Chad J Achenbach
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine, 251 E. Huron St., Suite 3-150, Chicago, IL, 60611, USA
| | - Donald M Lloyd-Jones
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, 680 N. Lakeshore Drive, Suite 1400, Chicago, IL, 60611, USA
| |
Collapse
|
146
|
Abdullah CS, Jin Z. Targeted deletion of T‐cell S1P receptor 1 ameliorates cardiac fibrosis in streptozotocin‐induced diabetic mice. FASEB J 2018; 32:5426-5435. [DOI: 10.1096/fj.201800231r] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Chowdhury S. Abdullah
- Department of Pharmaceutical SciencesCollege of Pharmacy, South Dakota State University Brookings South Dakota USA
| | - Zhu‐Qiu Jin
- Department of Pharmaceutical and Biomedical SciencesCollege of Pharmacy, California Northstate University Elk Grove California USA
- Department of PathologyLouisiana State University Health Sciences CenterShreveport LA USA
| |
Collapse
|
147
|
Frangogiannis NG. Cell biological mechanisms in regulation of the post-infarction inflammatory response. CURRENT OPINION IN PHYSIOLOGY 2018; 1:7-13. [PMID: 29552674 PMCID: PMC5851468 DOI: 10.1016/j.cophys.2017.09.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Inflammation plays a crucial role in cardiac repair, but may also extend ischemic injury and contribute to post-infarction remodeling. This review manuscript discusses recent advances in our understanding of the cell biology of the post-infarction inflammatory response. Recently published studies demonstrated that the functional repertoire of inflammatory and reparative cells may extend beyond the roles suggested by traditional teachings. Neutrophils may play an important role in cardiac repair by driving macrophages toward a reparative phenotype. Subsets of activated fibroblasts have been implicated in protection of ischemic cardiomyocytes, in phagocytosis of apoptotic cells, and in regulation of inflammation. Dissection of the cellular effectors of cardiac repair is critical in order to develop new therapeutic strategies for patients with acute myocardial infarction.
Collapse
Affiliation(s)
- Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
148
|
Frantz S, Falcao-Pires I, Balligand JL, Bauersachs J, Brutsaert D, Ciccarelli M, Dawson D, de Windt LJ, Giacca M, Hamdani N, Hilfiker-Kleiner D, Hirsch E, Leite-Moreira A, Mayr M, Thum T, Tocchetti CG, van der Velden J, Varricchi G, Heymans S. The innate immune system in chronic cardiomyopathy: a European Society of Cardiology (ESC) scientific statement from the Working Group on Myocardial Function of the ESC. Eur J Heart Fail 2018; 20:445-459. [PMID: 29333691 PMCID: PMC5993315 DOI: 10.1002/ejhf.1138] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 12/03/2017] [Accepted: 12/18/2017] [Indexed: 12/11/2022] Open
Abstract
Activation of the immune system in heart failure (HF) has been recognized for over 20 years. Initially, experimental studies demonstrated a maladaptive role of the immune system. However, several phase III trials failed to show beneficial effects in HF with therapies directed against an immune activation. Preclinical studies today describe positive and negative effects of immune activation in HF. These different effects depend on timing and aetiology of HF. Therefore, herein we give a detailed review on immune mechanisms and their importance for the development of HF with a special focus on commonalities and differences between different forms of cardiomyopathies. The role of the immune system in ischaemic, hypertensive, diabetic, toxic, viral, genetic, peripartum, and autoimmune cardiomyopathy is discussed in depth. Overall, initial damage to the heart leads to disease specific activation of the immune system whereas in the chronic phase of HF overlapping mechanisms occur in different aetiologies.
Collapse
Affiliation(s)
- Stefan Frantz
- Department of Internal Medicine I, University Hospital Würzburg, Germany; Department of Internal Medicine III, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Ines Falcao-Pires
- Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Jean-Luc Balligand
- Pole of Pharmacology and Therapeutics, Institut de Recherche Experimentale et Clinique (IREC), and Clinique Universitaire Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| | - Johann Bauersachs
- Department of Cardiology and Angiology, Medizinische Hochschule, Hannover, Germany
| | | | - Michele Ciccarelli
- Department of Medicine and Surgery, University of Salerno, Baronissi, Italy
| | - Dana Dawson
- School of Medicine and Dentistry, University of Aberdeen, Aberdeen, Scotland
| | - Leon J de Windt
- Department of Cardiology, CARIM School for Cardiovascular Diseases Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Mauro Giacca
- International Centre for Genetic Engineering and Biotechnology (ICGEB) and Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Nazha Hamdani
- Department of Cardiovascular Physiology, Ruhr University Bochum, Bochum, Germany
| | - Denise Hilfiker-Kleiner
- Molecular Cardiology, Department of Cardiology and Angiology, Medizinische Hochschule, Hannover, Germany
| | - Emilio Hirsch
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Adelino Leite-Moreira
- Department of Physiology and Cardiothoracic Surgery and Cardiovascular Research Centre, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Manuel Mayr
- The James Black Centre and King's British Heart Foundation Centre, King's College, University of London, London, UK
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), IFB-Tx, and REBIRTH Excellence Cluster, Hannover Medical School, Hannover, Germany
| | - Carlo G Tocchetti
- Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Jolanda van der Velden
- Department of Physiology, VU University Medical Center, Amsterdam Cardiovascular Sciences Institute, Amsterdam, The Netherlands.,Netherlands Heart Institute, Utrecht, The Netherlands
| | - Gilda Varricchi
- Department of Translational Medical Sciences, Federico II University, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), Federico II University, Naples, Italy
| | - Stephane Heymans
- Department of Cardiology, CARIM School for Cardiovascular Diseases Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands.,Netherlands Heart Institute, Utrecht, The Netherlands.,Department of Cardiovascular Sciences, Leuven University, Leuven, Belgium
| |
Collapse
|
149
|
Ji N, Lou H, Gong X, Fu T, Ni S. Treatment with 3-Bromo-4,5-Dihydroxybenzaldehyde Improves Cardiac Function by Inhibiting Macrophage Infiltration in Mice. Korean Circ J 2018; 48:933-943. [PMID: 30238711 PMCID: PMC6158451 DOI: 10.4070/kcj.2017.0373] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 03/28/2018] [Accepted: 04/10/2018] [Indexed: 12/28/2022] Open
Abstract
Background and Objectives Appropriate inflammatory response is necessary for cardiac repairing after acute myocardial infarction (MI). Three-Bromo-4,5-dihydroxybenzaldehyde (BDB) is a potent antioxidant and natural bromophenol compound derived from red algae. Although BDB has been shown to have an anti-inflammatory effect, it remains unclear whether BDB affects cardiac remolding after MI. The aim of this study was to investigate the potential role of BDB on cardiac function recovery after MI in mice. Methods Mice were intraperitoneally injected with BDB (100 mg/kg) or vehicle control respectively 1 hour before MI and then treated every other day. Cardiac function was monitored by transthoracic echocardiography at day 7 after MI. The survival of mice was observed for 2 weeks and hematoxylin and eosin (H&E) staining was used to determine the infarct size. Macrophages infiltration was examined by immunofluorescence staining. Enzyme-linked immunosorbent assay (ELISA) was used to test the production of cytokines associated with macrophages. The phosphorylation status of nuclear factor (NF)-κB was determined by western blot. Results BDB administration dramatically improved cardiac function recovery, and decreased mortality and infarcted size after MI. Treatment with BDB reduced CD68+ macrophages, M1 and M2 macrophages infiltration post-MI, and suppressed the secretion of pro-inflammatory cytokines, such as tumor necrosis factor (TNF)-α, interleukin (IL)-1β, monocyte chemoattractant protein (MCP)-1, and IL-6 in the injured hearts. Furthermore, BDB inhibited the phosphorylation of NF-κB in the infarcted hearts. Conclusions These data demonstrate, for the first time, that BDB treatment facilitated cardiac healing by suppressing pro-inflammatory cytokine secretion, and indicate that BDB may serve as a therapeutic agent for acute MI.
Collapse
Affiliation(s)
- Ningning Ji
- Department of Cardiology, Yiwu Hospital of Wenzhou Medical University (Yiwu Central Hospital), Yiwu, China
| | - Honghong Lou
- Department of Cardiology, Yiwu Hospital of Wenzhou Medical University (Yiwu Central Hospital), Yiwu, China
| | - Xinyan Gong
- Department of Cardiology, Yiwu Hospital of Wenzhou Medical University (Yiwu Central Hospital), Yiwu, China
| | - Ting Fu
- Department of Cardiology, Yiwu Hospital of Wenzhou Medical University (Yiwu Central Hospital), Yiwu, China
| | - Shimao Ni
- Department of Cardiology, Yiwu Hospital of Wenzhou Medical University (Yiwu Central Hospital), Yiwu, China.
| |
Collapse
|
150
|
Ellenbroek GHJM, de Haan JJ, van Klarenbosch BR, Brans MAD, van de Weg SM, Smeets MB, de Jong S, Arslan F, Timmers L, Goumans MJTH, Hoefer IE, Doevendans PA, Pasterkamp G, Meyaard L, de Jager SCA. Leukocyte-Associated Immunoglobulin-like Receptor-1 is regulated in human myocardial infarction but its absence does not affect infarct size in mice. Sci Rep 2017; 7:18039. [PMID: 29269840 PMCID: PMC5740066 DOI: 10.1038/s41598-017-13678-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 09/27/2017] [Indexed: 01/04/2023] Open
Abstract
Heart failure after myocardial infarction (MI) depends on infarct size and adverse left ventricular (LV) remodelling, both influenced by the inflammatory response. Leukocyte-associated immunoglobulin-like receptor 1 (LAIR-1) is an inhibitory receptor of ITAM-dependent cell activation, present on almost all immune cells. We investigated regulation of LAIR-1 leukocyte expression after MI in patients and hypothesized that its absence in a mouse model of MI would increase infarct size and adverse remodelling. In patients, LAIR-1 expression was increased 3 days compared to 6 weeks after MI on circulating monocytes (24.8 ± 5.3 vs. 21.2 ± 5.1 MFI, p = 0.008) and neutrophils (12.9 ± 4.7 vs. 10.6 ± 3.1 MFI, p = 0.046). In WT and LAIR-1-/- mice, infarct size after ischemia-reperfusion injury was comparable (37.0 ± 14.5 in WT vs. 39.4 ± 12.2% of the area at risk in LAIR-1-/-, p = 0.63). Remodelling after permanent left coronary artery ligation did not differ between WT and LAIR-1-/- mice (end-diastolic volume 133.3 ± 19.3 vs. 132.1 ± 27.9 μL, p = 0.91 and end-systolic volume 112.1 ± 22.2 vs. 106.9 ± 33.5 μL, p = 0.68). Similarly, no differences were observed in inflammatory cell influx or fibrosis. In conclusion, LAIR-1 expression on monocytes and neutrophils is increased in the acute phase after MI in patients, but the absence of LAIR-1 in mice does not influence infarct size, inflammation, fibrosis or adverse cardiac remodelling.
Collapse
Affiliation(s)
| | - Judith J de Haan
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Bas R van Klarenbosch
- Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Maike A D Brans
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Sander M van de Weg
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mirjam B Smeets
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Sanne de Jong
- Department of Medical Physiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Fatih Arslan
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands.,Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Leo Timmers
- Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marie-José T H Goumans
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Imo E Hoefer
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands.,Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Pieter A Doevendans
- Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands.,Netherlands Heart Institute, Utrecht, The Netherlands
| | - Gerard Pasterkamp
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands.,Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Linde Meyaard
- Laboratory of Translational Immunology, Department of Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Saskia C A de Jager
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands. .,Laboratory of Translational Immunology, Department of Immunology, University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|