101
|
Link MS, Kulkarni N. Moderatio Rebus Omnibus. JACC Clin Electrophysiol 2018; 4:754-756. [DOI: 10.1016/j.jacep.2018.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 02/22/2018] [Indexed: 10/28/2022]
|
102
|
Abstract
Exercise and sports are an integral part of daily life for millions of Americans, with 16% of the US population older than age 15 years engaged in sports or exercise activities (Bureau of Labor statistics). The physical and psychological benefits of exercise are well-recognized. However, high-profile cases of athletes dying suddenly on the field, often due to undiagnosed genetic cardiomyopathies, raise questions about the risks and benefits of exercise for those with cardiomyopathy.
Collapse
|
103
|
Affiliation(s)
- Jingjing Zheng
- Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Da Zheng
- Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Terry Su
- Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jianding Cheng
- Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
104
|
Abstract
Competitive sports activity is associated with an increased risk of sudden cardiovascular death in adolescents and young adults with inherited cardiomyopathies. Many young subjects aspire to continue competitive sport after a diagnosis of cardiomyopathy and the clinician is frequently confronted with the problem of eligibility and the request of designing specific exercise programs. Since inherited cardiomyopathies are the leading cause of sudden cardiovascular death during sports performance, a conservative approach implying disqualification of affected athletes from most competitive athletic disciplines is recommended by all the available international guidelines. On the other hand, we know that the health benefits of practicing recreational sports activity can overcome the potential arrhythmic risk in these patients, provided that the type and level of exercise are tailored on the basis of the specific risk profile of the underlying cardiomyopathy. This article will review the available evidence on the sports-related risk of sudden cardiac death and the recommendations regarding eligibility of individuals affected by inherited cardiomyopathies for sports activities.
Collapse
Affiliation(s)
- A Zorzi
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padova, Italy.
| | - A Pelliccia
- Institute of Sports Medicine and Science, Rome, Italy
| | - D Corrado
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padova, Italy
| |
Collapse
|
105
|
Abstract
Sudden cardiac death (SCD) caused by ventricular arrhythmias is common in patients with genetic cardiomyopathies (CMs) including dilated CM, hypertrophic CM, and arrhythmogenic right ventricular CM (ARVC). Phenotypic features can identify individuals at high enough risk to warrant placement of an implantable cardioverter-defibrillator, although risk stratification schemes remain imperfect. Genetic testing is valuable for family cascade screening but with few exceptions (eg, LMNA mutations) do not identify higher risk for SCD. Although randomized trials are lacking, observational data suggest that ICDs can be beneficial. Vigorous exercise can exacerbate ARVC disease progression and increase likelihood of ventricular arrhythmias.
Collapse
|
106
|
Exercise participation and shared decision-making in patients with inherited channelopathies and cardiomyopathies. Heart Rhythm 2017; 15:915-920. [PMID: 29248563 DOI: 10.1016/j.hrthm.2017.12.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Indexed: 01/02/2023]
Abstract
Sports eligibility and disqualification of patients with cardiac diseases are important considerations for adult and pediatric cardiologists. The 2005 guidelines that addressed this issue have recently been revised and updated, and the new guidelines advocate for a shared decision-making approach in which the well-informed athlete and family participate in the discussion. In this review, we focus on the benefits of sports participation and review the revised guidelines related to sports participation in patients with channelopathies and cardiomyopathies.
Collapse
|
107
|
Rotemberg V, Garzon M, Lauren C, Iglesias A, Brachio SS, Aggarwal V, Stong N, Goldstein DB, Diacovo T. A Novel Mutation in Junctional Plakoglobin Causing Lethal Congenital Epidermolysis Bullosa. J Pediatr 2017; 191:266-269.e1. [PMID: 29173316 DOI: 10.1016/j.jpeds.2017.08.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 05/20/2017] [Accepted: 08/14/2017] [Indexed: 01/14/2023]
Abstract
We report a case of neonatal generalized erythema and epidermolysis resulting from a novel mutation in the junctional plakoglobin gene causing truncation of the plakoglobin protein. Expedited genetic testing enabled diagnosis while the patient was in the neonatal intensive care unit, providing valuable information for the clinicians and family.
Collapse
Affiliation(s)
| | - Maria Garzon
- Department of Dermatology, Columbia University, New York, NY; Department of Pediatrics, Columbia University, New York, NY
| | - Christine Lauren
- Department of Dermatology, Columbia University, New York, NY; Department of Pediatrics, Columbia University, New York, NY
| | - Alejandro Iglesias
- Department of Pediatrics, Columbia University, New York, NY; Department of Clinical Genetics, Columbia University, New York, NY
| | | | - Vimla Aggarwal
- Department of Pathology and Cell Biology, Columbia University, New York, NY
| | - Nicholas Stong
- Institute for Genomic Medicine, Columbia University, New York, NY
| | - David B Goldstein
- Department of Genetics and Development, Columbia University, New York, NY
| | - Thomas Diacovo
- Department of Pediatrics, Columbia University, New York, NY; Department of Pathology and Cell Biology, Columbia University, New York, NY
| |
Collapse
|
108
|
Abstract
Arrhythmogenic right ventricular cardiomyopathy (ARVC) is an inherited cardiomyopathy characterized by ventricular arrhythmias and an increased risk of sudden cardiac death. Although structural abnormalities of the right ventricle predominate, it is well recognized that left ventricular involvement is common, particularly in advanced disease, and that left-dominant forms occur. The pathological characteristic of ARVC is myocyte loss with fibrofatty replacement. Since the first detailed clinical description of the disorder in 1982, significant advances have been made in understanding this disease. Once the diagnosis of ARVC is established, the single most important clinical decision is whether a particular patient's sudden cardiac death risk is sufficient to justify placement of an implantable cardioverter-defibrillator. The importance of this decision reflects the fact that ARVC is a common cause of sudden death in young people and that sudden death may be the first manifestation of the disease. This decision is particularly important because these are often young patients who are expected to live for many years. Although an implantable cardioverter-defibrillator can save lives in individuals with this disease, it is also well recognized that implantable cardioverter-defibrillator therapy is associated with both short- and long-term complications. Decisions about the placement of an implantable cardioverter-defibrillator are based on an estimate of a patient's risk of sudden cardiac death, as well as their preferences and values. The primary purpose of this article is to provide a review of the literature that concerns risk stratification in patients with ARVC and to place this literature in the framework of the 3 authors' considerable lifetime experiences in caring for patients with ARVC. The most important parameters to consider when determining arrhythmic risk include electric instability, including the frequency of premature ventricular contractions and sustained ventricular arrhythmia; proband status; extent of structural disease; cardiac syncope; male sex; the presence of multiple mutations or a mutation in TMEM43; and the patient's willingness to restrict exercise and to eliminate participation in competitive or endurance exercise.
Collapse
Affiliation(s)
- Hugh Calkins
- Cardiology Division, Johns Hopkins Medical Institutions, Baltimore, MD (H.C.)
| | - Domenico Corrado
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padua, Italy (D.C.)
| | - Frank Marcus
- University of Arizona College of Medicine, Tucson (F.M.)
| |
Collapse
|
109
|
Zorzi A, Rigato I, Bauce B, Pilichou K, Basso C, Thiene G, Iliceto S, Corrado D. Arrhythmogenic Right Ventricular Cardiomyopathy: Risk Stratification and Indications for Defibrillator Therapy. Curr Cardiol Rep 2017. [PMID: 27147509 DOI: 10.1007/s11886- 016-0734-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a genetically determined disease which predisposes to life-threatening ventricular arrhythmias. The main goal of ARVC therapy is prevention of sudden cardiac death (SCD). Implantable cardioverter defibrillator (ICD) is the most effective therapy for interruption of potentially lethal ventricular tachyarrhythmias. Despite its life-saving potential, ICD implantation is associated with a high rate of complications and significant impact on quality of life. Accurate risk stratification is needed to identify individuals who most benefit from the therapy. While there is general agreement that patients with a history of cardiac arrest or hemodynamically unstable ventricular tachycardia are at high risk of SCD and needs an ICD, indications for primary prevention remain a matter of debate. The article reviews the available scientific evidence and guidelines that may help to stratify the arrhythmic risk of ARVC patients and guide ICD implantation. Other therapeutic strategies, either alternative or additional to ICD, will be also addressed.
Collapse
Affiliation(s)
- Alessandro Zorzi
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padova, Italy
| | - Ilaria Rigato
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padova, Italy
| | - Barbara Bauce
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padova, Italy
| | - Kalliopi Pilichou
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padova, Italy
| | - Cristina Basso
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padova, Italy
| | - Gaetano Thiene
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padova, Italy
| | - Sabino Iliceto
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padova, Italy
| | - Domenico Corrado
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padova, Italy.
- Inherited Arrhythmogenic Cardiomyopathy Unit, Department of Cardiac Thoracic and Vascular Sciences, University of Padova, Via N. Giustiniani 2, 35121, Padova, Italy.
| |
Collapse
|
110
|
Affiliation(s)
- Domenico Corrado
- From the Department of Cardiac, Thoracic, and Vascular Sciences, University of Padova Medical School, Italy (D.C., C.B.); and Department of Medicine/Cardiology, Center for Inherited Heart Disease, Johns Hopkins University School of Medicine, Baltimore, MD (D.P.J.)
| | - Cristina Basso
- From the Department of Cardiac, Thoracic, and Vascular Sciences, University of Padova Medical School, Italy (D.C., C.B.); and Department of Medicine/Cardiology, Center for Inherited Heart Disease, Johns Hopkins University School of Medicine, Baltimore, MD (D.P.J.)
| | - Daniel P. Judge
- From the Department of Cardiac, Thoracic, and Vascular Sciences, University of Padova Medical School, Italy (D.C., C.B.); and Department of Medicine/Cardiology, Center for Inherited Heart Disease, Johns Hopkins University School of Medicine, Baltimore, MD (D.P.J.)
| |
Collapse
|
111
|
Docekal JW, Lee JC. Novel gene mutation identified in a patient with arrhythmogenic ventricular cardiomyopathy. HeartRhythm Case Rep 2017; 3:459-463. [PMID: 29062697 PMCID: PMC5643863 DOI: 10.1016/j.hrcr.2017.06.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Jeremy W Docekal
- Department of Cardiology, Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Joseph C Lee
- Electrophysiology Service, Walter Reed National Military Medical Center, Bethesda, Maryland
| |
Collapse
|
112
|
Moncayo-Arlandi J, Brugada R. Unmasking the molecular link between arrhythmogenic cardiomyopathy and Brugada syndrome. Nat Rev Cardiol 2017; 14:744-756. [DOI: 10.1038/nrcardio.2017.103] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
113
|
Padrón-Barthe L, Domínguez F, Garcia-Pavia P, Lara-Pezzi E. Animal models of arrhythmogenic right ventricular cardiomyopathy: what have we learned and where do we go? Insight for therapeutics. Basic Res Cardiol 2017; 112:50. [PMID: 28688053 DOI: 10.1007/s00395-017-0640-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 07/03/2017] [Indexed: 01/01/2023]
Abstract
Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a rare genetically-determined cardiac heart muscle disorder characterized by fibro-fatty replacement of the myocardium that results in heart failure and sudden cardiac death (SCD), predominantly in young males. The disease is often caused by mutations in genes encoding proteins of the desmosomal complex, with a significant minority caused by mutations in non-desmosomal proteins. Existing treatment options are based on SCD prevention with the implantable cardioverter defibrillator, antiarrhythmic drugs, and anti-heart failure medication. Heart transplantation may also be required and there is currently no cure. Several genetically modified animal models have been developed to characterize the disease, assess its progression, and determine the influence of potential environmental factors. These models have also been very valuable for translational therapeutic approaches, to screen new treatment options that prevent and/or reverse the disease. Here, we review the available ARVC animal models reported to date, highlighting the most important pathophysiological findings and discussing the effect of treatments tested so far in this setting. We also describe gaps in our knowledge of the disease, with the goal of stimulating research and improving patient outcomes.
Collapse
Affiliation(s)
| | - Fernando Domínguez
- CIBER Cardiovascular Diseases (CIBERCV), Madrid, Spain.,Heart Failure and Inherited Cardiac Diseases Unit, Department of Cardiology, Hospital Universitario Puerta de Hierro, Manuel de Falla, 2, Majadahonda, 28222, Madrid, Spain
| | - Pablo Garcia-Pavia
- CIBER Cardiovascular Diseases (CIBERCV), Madrid, Spain. .,Heart Failure and Inherited Cardiac Diseases Unit, Department of Cardiology, Hospital Universitario Puerta de Hierro, Manuel de Falla, 2, Majadahonda, 28222, Madrid, Spain. .,Francisco de Vitoria University, Madrid, Spain.
| | - Enrique Lara-Pezzi
- CIBER Cardiovascular Diseases (CIBERCV), Madrid, Spain. .,Myocardial Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Melchor Fernandez Almagro, 3, 28029, Madrid, Spain. .,Faculty of Medicine, National Heart and Lung Institute, Imperial College, London, UK.
| |
Collapse
|
114
|
Abstract
The nuclear lamina is a critical structural domain for the maintenance of genomic stability and whole-cell mechanics. Mutations in the LMNA gene, which encodes nuclear A-type lamins lead to the disruption of these key cellular functions, resulting in a number of devastating diseases known as laminopathies. Cardiomyopathy is a common laminopathy and is highly penetrant with poor prognosis. To date, cell mechanical instability and dysregulation of gene expression have been proposed as the main mechanisms driving cardiac dysfunction, and indeed discoveries in these areas have provided some promising leads in terms of therapeutics. However, important questions remain unanswered regarding the role of lamin A dysfunction in the heart, including a potential role for the toxicity of lamin A precursors in LMNA cardiomyopathy, which has yet to be rigorously investigated.
Collapse
Affiliation(s)
- Daniel Brayson
- a King's College London, The James Black Centre , London , United Kingdom
| | | |
Collapse
|
115
|
Latt H, Tun Aung T, Roongsritong C, Smith D. A classic case of arrhythmogenic right ventricular cardiomyopathy (ARVC) and literature review. J Community Hosp Intern Med Perspect 2017. [PMID: 28638576 PMCID: PMC5473197 DOI: 10.1080/20009666.2017.1302703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Arrhythmogenic Right Ventricular Cardiomyopathy (ARVC) is a relatively under-recognized hereditary cardiomyopathy. It is characterized pathologically by fibro-fatty infiltration of right ventricular (RV) myocardium and clinically by consequences of RV electrical instability. Timely intervention with device therapy and pharmacotherapy may help reduce the risk of arrhythmic events or sudden cardiac death. Here, we describe a classic case of a young adult with ARVC and a brief literature review. The patient presented with exertional palpitations and ARVC was suspected after his routine electrocardiogram (EKG) revealed symmetric T wave inversions and possible epsilon waves in right precordial leads. Subsequent work up showed fatty infiltration of RV myocardium on cardiac magnetic resonance imaging and inducible ventricular tachycardia from the right ventricle during electrophysiologic study. Those findings confirmed the diagnosis of ARVC and warranted treatment with implantable cardioverter defibrillator. It is always exciting to encounter rare pathological entities with classic clinical findings, especially when they present as a diagnostic challenge.We were able to provide correct diagnosis and management, thereby preventing the potentially lethal consequences. Therefore, it is important to recognize the possible EKG findings of ARVC and to know when to pursue further investigations and to implement therapies.
Collapse
Affiliation(s)
- Htun Latt
- Department of Internal Medicine, University of Nevada, Reno, NV, USA
| | - Thein Tun Aung
- Department of Cardiology, Good Samaritan Hospital, Dayton, OH, USA
| | - Chanwit Roongsritong
- Department of Heart and Vascular Health, Renown Regional Medical Center, Reno, NV, USA
| | - David Smith
- Department of Heart and Vascular Health, Renown Regional Medical Center, Reno, NV, USA
| |
Collapse
|
116
|
Kirubakaran S, Bisceglia C, Silberbauer J, Oloriz T, Santagostino G, Yamase M, Maccabelli G, Trevisi N, Della Bella P. Characterization of the arrhythmogenic substrate in patients with arrhythmogenic right ventricular cardiomyopathy undergoing ventricular tachycardia ablation. Europace 2017; 19:1049-1062. [DOI: 10.1093/europace/euw062] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 02/23/2016] [Indexed: 01/24/2023] Open
|
117
|
Eijsvogels TM, Thompson PD. Are There Clinical Cardiac Complications From Too Much Exercise? Curr Sports Med Rep 2017; 16:9-11. [PMID: 28067733 DOI: 10.1249/jsr.0000000000000322] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Thijs M Eijsvogels
- 1Research Institute for Sports and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom; 2Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands; and 3Division of Cardiology, Hartford Hospital, Hartford, CT
| | | |
Collapse
|
118
|
Affiliation(s)
- Domenico Corrado
- From the Department of Cardiac, Thoracic, and Vascular Sciences, University of Padua Medical School, Padua, Italy (D.C.); the University of Texas Southwestern Medical Center, Dallas (M.S.L.); and Johns Hopkins Medical Institutions, Baltimore (H.C.)
| | - Mark S Link
- From the Department of Cardiac, Thoracic, and Vascular Sciences, University of Padua Medical School, Padua, Italy (D.C.); the University of Texas Southwestern Medical Center, Dallas (M.S.L.); and Johns Hopkins Medical Institutions, Baltimore (H.C.)
| | - Hugh Calkins
- From the Department of Cardiac, Thoracic, and Vascular Sciences, University of Padua Medical School, Padua, Italy (D.C.); the University of Texas Southwestern Medical Center, Dallas (M.S.L.); and Johns Hopkins Medical Institutions, Baltimore (H.C.)
| |
Collapse
|
119
|
Athletic participation in the young patient with an implantable cardioverter-defibrillator. Cardiol Young 2017; 27:S132-S137. [PMID: 28084971 DOI: 10.1017/s1047951116002377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The decision of whether to allow a young patient with an implantable cardioverter-defibrillator to continue to participate in sports is complex and multi-factorial. The positive physical and psychosocial impact of sports participation must be weighed against the potential adverse events associated with implantable cardioverter-defibrillators. Arrhythmias appear to be more prevalent in athletes and occur more frequently during physical activity or competition/practice, but there is growing evidence that device therapy is effective in athletes across a wide range of competitive sports. Failure of a device to convert a life-threatening arrhythmia, major injury from a shock, and increased lead failure have thus far not been reported in the prospective Implantable Cardioverter-Defibrillator Sports Registry, but follow-up remains relatively short. Thoughtful consideration of disease state, arrhythmia risk, and the potential dangers of device therapy during the desired sports is imperative before allowing participation. Frank discussion with children and families regarding the possibility of shocks during sports, as well as at other times, is imperative. Ongoing and future studies will help guide these decisions.
Collapse
|
120
|
Abstract
The cardiovascular benefits of habitual exercise are well documented. In the current era, more of the population is exceeding the recommendations for physical activity as the popularity of endurance events increases. Recent data have proposed a U-shaped relationship between exercise intensity and cardiovascular outcomes. Regular participation in endurance activities has been shown to result in structural and functional changes in the heart. This re-modelling may be the substrate for cardiac dysfunction or arrhythmias. The risk of sudden cardiac death may also be elevated; however, in most cases of sudden cardiac death, the cause can be linked to an underlying cardiac pathology where exercise acted as the trigger for a lethal arrhythmia. This article serves to review whether excessive exercise may result in harm in some athletes.
Collapse
|
121
|
Abstract
Arrhythmogenic right ventricular dysplasia/cardiomyopathy is an inherited cardiomyopathy characterised by ventricular arrhythmias and an increased risk of sudden cardiac death. Arrhythmogenic right ventricular dysplasia/cardiomyopathy diagnosis is based on criteria that take into account electrical and structural cardiac abnormalities, as well as mutation analysis. Appropriate pharmacological therapy and the prevention of sudden death with implantable defibrillators are important in the management of these patients. Exercise is considered an important environmental factor for the development and progression of the disease.
Collapse
|
122
|
Abstract
Cardiac arrhythmias can follow disruption of the normal cellular electrophysiological processes underlying excitable activity and their tissue propagation as coherent wavefronts from the primary sinoatrial node pacemaker, through the atria, conducting structures and ventricular myocardium. These physiological events are driven by interacting, voltage-dependent, processes of activation, inactivation, and recovery in the ion channels present in cardiomyocyte membranes. Generation and conduction of these events are further modulated by intracellular Ca2+ homeostasis, and metabolic and structural change. This review describes experimental studies on murine models for known clinical arrhythmic conditions in which these mechanisms were modified by genetic, physiological, or pharmacological manipulation. These exemplars yielded molecular, physiological, and structural phenotypes often directly translatable to their corresponding clinical conditions, which could be investigated at the molecular, cellular, tissue, organ, and whole animal levels. Arrhythmogenesis could be explored during normal pacing activity, regular stimulation, following imposed extra-stimuli, or during progressively incremented steady pacing frequencies. Arrhythmic substrate was identified with temporal and spatial functional heterogeneities predisposing to reentrant excitation phenomena. These could arise from abnormalities in cardiac pacing function, tissue electrical connectivity, and cellular excitation and recovery. Triggering events during or following recovery from action potential excitation could thereby lead to sustained arrhythmia. These surface membrane processes were modified by alterations in cellular Ca2+ homeostasis and energetics, as well as cellular and tissue structural change. Study of murine systems thus offers major insights into both our understanding of normal cardiac activity and its propagation, and their relationship to mechanisms generating clinical arrhythmias.
Collapse
Affiliation(s)
- Christopher L-H Huang
- Physiological Laboratory and the Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
123
|
Karlsson D, Engvall J, Ando AA, Aneq MÅ. Exercise testing for long-term follow-up in arrhythmogenic right ventricular cardiomyopathy. J Electrocardiol 2016; 50:176-183. [PMID: 28012557 DOI: 10.1016/j.jelectrocard.2016.10.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Indexed: 11/15/2022]
Abstract
OBJECTIVES We investigated arrhythmia, electrocardiography and physical work capacity (PWC) in the follow-up of ARVC. DESIGN Twenty-three patients (13 men; age 41±12years) fulfilling diagnostic criteria were re-investigated after at least five years. RESULTS Ventricular arrhythmia during exercise testing (ET) was present in 14 patients (61%) and showed variation between examinations. In eleven (48%), complex ventricular ectopic activity was observed at peak exercise or immediately thereafter. Mutations known to be pathogenic in ARVC were present in 13 patients (57%) of which 11 developed complex ventricular arrhythmia at ET. PWC at baseline was 190±66W (104±26%) decreasing to 151±61W (91±23%, p=0.008) after 10.7years. CONCLUSION The appearance of ventricular arrhythmia during exercise testing showed temporal variation but was frequent in patients with relevant genetic mutation. Physical exercise capacity decreased over time in patients with ARVC in excess to the age-related deterioration and regardless of medication.
Collapse
Affiliation(s)
- Daniel Karlsson
- Department of Clinical Physiology and Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Jan Engvall
- Department of Clinical Physiology and Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Agota Alfoldine Ando
- Department of Clinical Physiology and Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Meriam Åström Aneq
- Department of Clinical Physiology and Department of Medical and Health Sciences, Linköping University, Linköping, Sweden.
| |
Collapse
|
124
|
|
125
|
|
126
|
Mont L, Pelliccia A, Sharma S, Biffi A, Borjesson M, Brugada Terradellas J, Carré F, Guasch E, Heidbuchel H, La Gerche A, Lampert R, McKenna W, Papadakis M, Priori SG, Scanavacca M, Thompson P, Sticherling C, Viskin S, Wilson M, Corrado D, Lip GYH, Gorenek B, Blomström Lundqvist C, Merkely B, Hindricks G, Hernández-Madrid A, Lane D, Boriani G, Narasimhan C, Marquez MF, Haines D, Mackall J, Manuel Marques-Vidal P, Corra U, Halle M, Tiberi M, Niebauer J, Piepoli M. Pre-participation cardiovascular evaluation for athletic participants to prevent sudden death: Position paper from the EHRA and the EACPR, branches of the ESC. Endorsed by APHRS, HRS, and SOLAECE. Eur J Prev Cardiol 2016; 24:41-69. [DOI: 10.1177/2047487316676042] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Lluís Mont
- Hospital Clinic, Universitat de Barcelona, Barcelona, Spain
| | | | | | | | - Mats Borjesson
- Inst of Neuroscience and Physiology and Food, Nutrition and Sport Science and Östra University Hospital, Goteborg, Sweden
| | | | | | - Eduard Guasch
- Hospital Clinic, Universitat de Barcelona, Barcelona, Spain
| | | | - André La Gerche
- Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | | | | | | | | | - Mauricio Scanavacca
- Instituto do Coração (InCor) do Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil
| | | | | | | | | | | | | | | | | | - Bela Merkely
- Semmelweis University, Heart and Vascular Center, Budapest, Hungary
| | | | - Antonio Hernández-Madrid
- Unidad De Arritmias, Servicio De Cardiologia, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Deirdre Lane
- Hospital Clinic, Universitat de Barcelona, Barcelona, Spain
- Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | | | | | - Manlio F Marquez
- Departamento de Electrocardiología, Instituto Nacional de Cardiologia Ignacio Chavez, Tlalpan, Mexico
| | - David Haines
- Department of Cardiovascular Medicine, Beaumont Health System, Royal Oak, MI, USA
| | - Judith Mackall
- University Hospitals Case Medical Center, Cleveland, OH, USA
| | | | - Ugo Corra
- IRCCS Rehabilitation Medical Center, Cardiology Department, Salvatore Maugeri Foundation, Veruno, Italy
| | - Martin Halle
- Prevention and Sports Medicine, Technical University Munich, Munich, Germany
| | | | - Josef Niebauer
- Sports Medicine, Prevention & Rehabilitation, Paracelsus Medical University, Salzburg, Austria
| | | | | |
Collapse
|
127
|
Mont L, Pelliccia A, Sharma S, Biffi A, Borjesson M, Terradellas JB, Carré F, Guasch E, Heidbuchel H, Gerche AL, Lampert R, McKenna W, Papadakis M, Priori SG, Scanavacca M, Thompson P, Sticherling C, Viskin S, Wilson M, Corrado D, Lip GYH, Gorenek B, Lundqvist CB, Merkely B, Hindricks G, Hernández-Madrid A, Lane D, Boriani G, Narasimhan C, Marquez MF, Haines D, Mackall J, Marques-Vidal PM, Corra U, Halle M, Tiberi M, Niebauer J, Piepoli M. Pre-participation cardiovascular evaluation for athletic participants to prevent sudden death: Position paper from the EHRA and the EACPR, branches of the ESC. Endorsed by APHRS, HRS, and SOLAECE. Europace 2016; 19:139-163. [PMID: 27815371 DOI: 10.1093/europace/euw243] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Lluís Mont
- Hospital Clinic, Universitat de Barcelona, Barcelona, Spain
| | | | | | | | - Mats Borjesson
- Inst of Neuroscience and Physiology and Food, Nutrition and Sport Science and Östra University Hospital, Göteborg, Sweden
| | | | | | - Eduard Guasch
- Hospital Clinic, Universitat de Barcelona, Barcelona, Spain
| | | | - André La Gerche
- Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | | | | | | | | | - Mauricio Scanavacca
- Instituto do Coração (InCor) do Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | - Bela Merkely
- Semmelweis University, Heart and Vascular Center, Budapest, Hungary
| | | | - Antonio Hernández-Madrid
- Unidad De Arritmias, Servicio De Cardiologia, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | | | | | | | - Manlio F Marquez
- Departamento de Electrocardiología, Instituto Nacional de Cardiologia Ignacio Chavez, Tlalpan, Mexico
| | - David Haines
- Department of Cardiovascular Medicine, Beaumont Health System, Royal Oak, MI, USA
| | - Judith Mackall
- University Hospitals Case Medical Center, Cleveland, OH, USA
| | | | - Ugo Corra
- IRCCS Rehabilitation Medical Center, Cardiology Department, Salvatore Maugeri Foundation, Veruno, Italy
| | - Martin Halle
- Prevention and Sports Medicine, Technical University Munich, Munich, Germany
| | | | - Josef Niebauer
- Sports Medicine, Prevention & Rehabilitation, Paracelsus Medical University, Salzburg, Austria
| | | |
Collapse
|
128
|
Herman AR, Gardner M, Steinberg C, Yeung-Lai-Wah JA, Healey JS, Leong-Sit P, Krahn AD, Chakrabarti S. Long-term right ventricular implantable cardioverter-defibrillator lead performance in arrhythmogenic right ventricular cardiomyopathy. Heart Rhythm 2016; 13:1964-70. [DOI: 10.1016/j.hrthm.2016.06.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Indexed: 11/26/2022]
|
129
|
Abstract
PURPOSE OF REVIEW This review will discuss the recent advances in the diagnosis and management of arrhythmogenic right ventricular cardiomyopathy (ARVC). RECENT FINDINGS Since the first detailed clinical description of the disease in 1982, we have learned much about the genetics, pathophysiology, diagnosis, and management of ARVC. We now appreciate that pathogenic mutations in desmosomal genes are the most common genetic finding. Although the right ventricle is mostly affected, left ventricular involvement is being increasingly recognized. Electrical instability precipitating sudden cardiac death often presents before structural abnormalities, and therefore early accurate diagnosis is of utmost importance. The broad spectrum of phenotypic variation, age-related penetrance, and lack of a definitive diagnostic test make the clinical diagnosis challenging. The diagnosis is made by fulfilling the 2010 Task Force criteria. Today, genetic testing and cardiac MRI play an important role in the diagnosis. Implantable cardioverter defibrillator implantation is the only lifesaving therapy available today for a subset of patients. In patients with recurrent ventricular arrhythmias, epicardial catheter ablation has demonstrated improved outcomes compared with endocardial ablation. Exercise restriction may delay the progression of disease. SUMMARY ARVC is predominantly associated with mutations in desmosomal genes with incomplete penetrance and variable expressivity. Ventricular electrical instability is the hallmark of ARVC, often occurring before structural abnormalities. Goals in the evaluation and management of ARVC are early diagnosis, risk stratification for sudden cardiac death, minimizing ventricular arrhythmias, and delaying the progression of disease.
Collapse
|
130
|
Moncayo-Arlandi J, Guasch E, Sanz-de la Garza M, Casado M, Garcia NA, Mont L, Sitges M, Knöll R, Buyandelger B, Campuzano O, Diez-Juan A, Brugada R. Molecular disturbance underlies to arrhythmogenic cardiomyopathy induced by transgene content, age and exercise in a truncated PKP2 mouse model. Hum Mol Genet 2016; 25:3676-3688. [PMID: 27412010 DOI: 10.1093/hmg/ddw213] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 06/27/2016] [Accepted: 06/29/2016] [Indexed: 09/13/2023] Open
Abstract
Arrhythmogenic cardiomyopathy (ACM) is a disorder characterized by a progressive ventricular myocardial replacement by fat and fibrosis, which lead to ventricular arrhythmias and sudden cardiac death. Mutations in the desmosomal gene Plakophilin-2 (PKP2) accounts for >40% of all known mutations, generally causing a truncated protein. In a PKP2-truncated mouse model, we hypothesize that content of transgene, endurance training and aging will be determinant in disease progression. In addition, we investigated the molecular defects associated with the phenotype in this model. We developed a transgenic mouse model containing a truncated PKP2 (PKP2-Ser329) and generated three transgenic lines expressing increasing transgene content. The pathophysiological features of ACM in this model were assessed. While we did not observe fibro-fatty replacement, ultrastructural defects were exhibited. Moreover, we observed transgene content-dependent development of structural (ventricle dilatation and dysfunction) and electrophysiological anomalies in mice (PR interval and QRS prolongation and arrhythmia induction). In concordance with pathological defects, we detected a content reduction and remodeling of the structural proteins Desmocollin-2, Plakoglobin, native Plakophilin-2, Desmin and β-Catenin as well as the electrical coupling proteins Connexin 43 and cardiac sodium channel (Nav1.5). Surprisingly, we observed structural but not electrophysiological abnormalities only in trained and old mice. We demonstrated that truncated PKP2 provokes ACM in the absence of fibro-fatty replacement in the mouse. Transgene dose is essential to reveal the pathology, whereas aging and endurance training trigger limited phenotype. Molecular abnormalities underlay the structural and electrophysiological defects.
Collapse
Affiliation(s)
- Javier Moncayo-Arlandi
- Cardiovascular Genetic Centre, Institute of Biomedical Research of Girona (IDIBGI), Girona, Spain
- Department of Biochemistry and Molecular Biology, University of Valencia, Valencia, Spain
| | - Eduard Guasch
- Arrhythmia Unit, Cardiology Department, Hospital Clínic, Universitat de Barcelona and IDIBAPS
| | - Maria Sanz-de la Garza
- Imaging Section, Cardiology Department, Hospital Clínic, Universitat de Barcelona and IDIBAPS, Barcelona, Catalonia, Spain
| | - Marta Casado
- Institute of Biomedicine of Valencia, IBV-CSIC, Valencia, Spain
| | - Nahuel Aquiles Garcia
- Mixed unit for Cardiovascular Repair, Instituto de Investigación Sanitaria La Fe-Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Lluis Mont
- Arrhythmia Unit, Cardiology Department, Hospital Clínic, Universitat de Barcelona and IDIBAPS
| | - Marta Sitges
- Imaging Section, Cardiology Department, Hospital Clínic, Universitat de Barcelona and IDIBAPS, Barcelona, Catalonia, Spain
| | - Ralph Knöll
- Department of Medicine, Integrated Cardio Metabolic Centre (ICMC), Karolinska Institutet, Huddinge, Sweden
| | - Byambajav Buyandelger
- Department of Medicine, Integrated Cardio Metabolic Centre (ICMC), Karolinska Institutet, Huddinge, Sweden
| | - Oscar Campuzano
- Cardiovascular Genetic Centre, Institute of Biomedical Research of Girona (IDIBGI), Girona, Spain
- Medical Science Department, School of Medicine, University of Girona
| | | | - Ramon Brugada
- Cardiovascular Genetic Centre, Institute of Biomedical Research of Girona (IDIBGI), Girona, Spain,
- Medical Science Department, School of Medicine, University of Girona
- Cardiovascular Genetics Clinic, Hospital Josep Trueta, Girona, Spain
| |
Collapse
|
131
|
Choy L, Yeo JM, Tse V, Chan SP, Tse G. Cardiac disease and arrhythmogenesis: Mechanistic insights from mouse models. IJC HEART & VASCULATURE 2016; 12:1-10. [PMID: 27766308 PMCID: PMC5064289 DOI: 10.1016/j.ijcha.2016.05.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 05/02/2016] [Indexed: 12/19/2022]
Abstract
The mouse is the second mammalian species, after the human, in which substantial amount of the genomic information has been analyzed. With advances in transgenic technology, mutagenesis is now much easier to carry out in mice. Consequently, an increasing number of transgenic mouse systems have been generated for the study of cardiac arrhythmias in ion channelopathies and cardiomyopathies. Mouse hearts are also amenable to physical manipulation such as coronary artery ligation and transverse aortic constriction to induce heart failure, radiofrequency ablation of the AV node to model complete AV block and even implantation of a miniature pacemaker to induce cardiac dyssynchrony. Last but not least, pharmacological models, despite being simplistic, have enabled us to understand the physiological mechanisms of arrhythmias and evaluate the anti-arrhythmic properties of experimental agents, such as gap junction modulators, that may be exert therapeutic effects in other cardiac diseases. In this article, we examine these in turn, demonstrating that primary inherited arrhythmic syndromes are now recognized to be more complex than abnormality in a particular ion channel, involving alterations in gene expression and structural remodelling. Conversely, in cardiomyopathies and heart failure, mutations in ion channels and proteins have been identified as underlying causes, and electrophysiological remodelling are recognized pathological features. Transgenic techniques causing mutagenesis in mice are extremely powerful in dissecting the relative contributions of different genes play in producing disease phenotypes. Mouse models can serve as useful systems in which to explore how protein defects contribute to arrhythmias and direct future therapy.
Collapse
Affiliation(s)
- Lois Choy
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong
| | - Jie Ming Yeo
- School of Medicine, Imperial College London, SW7 2AZ, UK
| | - Vivian Tse
- Department of Physiology, McGill University, Canada
| | - Shing Po Chan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong
| | - Gary Tse
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong
| |
Collapse
|
132
|
Akdis D, Brunckhorst C, Duru F, Saguner AM. Arrhythmogenic Cardiomyopathy: Electrical and Structural Phenotypes. Arrhythm Electrophysiol Rev 2016; 5:90-101. [PMID: 27617087 PMCID: PMC5013177 DOI: 10.15420/aer.2016.4.3] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 08/03/2016] [Indexed: 12/12/2022] Open
Abstract
This overview gives an update on the molecular mechanisms, clinical manifestations, diagnosis and therapy of arrhythmogenic cardiomyopathy (ACM). ACM is mostly hereditary and associated with mutations in genes encoding proteins of the intercalated disc. Three subtypes have been proposed: the classical right-dominant subtype generally referred to as ARVC/D, biventricular forms with early biventricular involvement and left-dominant subtypes with predominant LV involvement. Typical symptoms include palpitations, arrhythmic (pre)syncope and sudden cardiac arrest due to ventricular arrhythmias, which typically occur in athletes. At later stages, heart failure may occur. Diagnosis is established with the 2010 Task Force Criteria (TFC). Modern imaging tools are crucial for ACM diagnosis, including both echocardiography and cardiac magnetic resonance imaging for detecting functional and structural alternations. Of note, structural findings often become visible after electrical alterations, such as premature ventricular beats, ventricular fibrillation (VF) and ventricular tachycardia (VT). 12-lead ECG is important to assess for depolarisation and repolarisation abnormalities, including T-wave inversions as the most common ECG abnormality. Family history and the detection of causative mutations, mostly affecting the desmosome, have been incorporated in the TFC, and stress the importance of cascade family screening. Differential diagnoses include idiopathic right ventricular outflow tract (RVOT) VT, sarcoidosis, congenital heart disease, myocarditis, dilated cardiomyopathy, athlete's heart, Brugada syndrome and RV infarction. Therapeutic strategies include restriction from endurance and competitive sports, β-blockers, antiarrhythmic drugs, heart failure medication, implantable cardioverter-defibrillators and endocardial/epicardial catheter ablation.
Collapse
Affiliation(s)
- Deniz Akdis
- Department of Cardiology, University Heart Center, Zurich, Switzerland
| | | | - Firat Duru
- Department of Cardiology, University Heart Center, Zurich, Switzerland; Center for Integrative Human Physiology, University of Zurich, Switzerland
| | - Ardan M Saguner
- Department of Cardiology, University Heart Center, Zurich, Switzerland
| |
Collapse
|
133
|
Zorzi A, Rigato I, Bauce B, Pilichou K, Basso C, Thiene G, Iliceto S, Corrado D. Arrhythmogenic Right Ventricular Cardiomyopathy: Risk Stratification and Indications for Defibrillator Therapy. Curr Cardiol Rep 2016; 18:57. [DOI: 10.1007/s11886-016-0734-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
134
|
Chelko SP, Asimaki A, Andersen P, Bedja D, Amat-Alarcon N, DeMazumder D, Jasti R, MacRae CA, Leber R, Kleber AG, Saffitz JE, Judge DP. Central role for GSK3β in the pathogenesis of arrhythmogenic cardiomyopathy. JCI Insight 2016; 1:85923. [PMID: 27170944 DOI: 10.1172/jci.insight.85923] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Arrhythmogenic cardiomyopathy (ACM) is characterized by redistribution of junctional proteins, arrhythmias, and progressive myocardial injury. We previously reported that SB216763 (SB2), annotated as a GSK3β inhibitor, reverses disease phenotypes in a zebrafish model of ACM. Here, we show that SB2 prevents myocyte injury and cardiac dysfunction in vivo in two murine models of ACM at baseline and in response to exercise. SB2-treated mice with desmosome mutations showed improvements in ventricular ectopy and myocardial fibrosis/inflammation as compared with vehicle-treated (Veh-treated) mice. GSK3β inhibition improved left ventricle function and survival in sedentary and exercised Dsg2mut/mut mice compared with Veh-treated Dsg2mut/mut mice and normalized intercalated disc (ID) protein distribution in both mutant mice. GSK3β showed diffuse cytoplasmic localization in control myocytes but ID redistribution in ACM mice. Identical GSK3β redistribution is present in ACM patient myocardium but not in normal hearts or other cardiomyopathies. SB2 reduced total GSK3β protein levels but not phosphorylated Ser 9-GSK3β in ACM mice. Constitutively active GSK3β worsens ACM in mutant mice, while GSK3β shRNA silencing in ACM cardiomyocytes prevents abnormal ID protein distribution. These results highlight a central role for GSKβ in the complex phenotype of ACM and provide further evidence that pharmacologic GSKβ inhibition improves cardiomyopathies due to desmosome mutations.
Collapse
Affiliation(s)
- Stephen P Chelko
- Department of Medicine/Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Angeliki Asimaki
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Peter Andersen
- Department of Medicine/Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Djahida Bedja
- Department of Medicine/Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Australian School of Advanced Medicine, Macquarie University, Sydney, New South Wales, Australia
| | - Nuria Amat-Alarcon
- Department of Medicine/Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Deeptankar DeMazumder
- Department of Medicine/Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ravirasmi Jasti
- Department of Medicine/Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Calum A MacRae
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA.,Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Remo Leber
- Schiller AG, Research and Development, Baar, Switzerland
| | - Andre G Kleber
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Jeffrey E Saffitz
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Daniel P Judge
- Department of Medicine/Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
135
|
Arrhythmogenic Right Ventricular Cardiomyopathy/Dysplasia (ARVC/D): Review of 16 Pediatric Cases and a Proposal of Modified Pediatric Criteria. Pediatr Cardiol 2016; 37:646-55. [PMID: 26743400 DOI: 10.1007/s00246-015-1327-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 12/15/2015] [Indexed: 10/22/2022]
Abstract
Arrhythmogenic right ventricular cardiomyopathy/dysplasia (ARVC/D) is a heritable cardiomyopathy characterized by fibro-fatty replacement of right ventricular myocardium. Diagnostic criteria, established in 1994 and modified in 2010, are based on predominately adult manifestations of ARVC/D. The goal of this paper is to review a single-center experience with pediatric ARVC/D and propose modifications of current diagnostic criteria to appropriately include pediatric ARVC/D. We identified 16 pediatric cases of ARVC/D from our tertiary care center. Patient demographics, presentation, course, genetic testing, and family history were reviewed. Sixteen patients were diagnosed with ARVC/D through the modified diagnostic criteria, genetic testing, and pathology. Five patients had positive family histories. Five patients presented with cardiac arrest, and six were found to have ventricular tachycardia. Two patients presented with heart failure. Six autopsies, six explanted hearts, and three biopsies found massive fibro-fatty infiltration of the right ventricular wall. Six patients underwent heart transplantation, and two have received automatic implantable cardioverter defibrillator. Two patients had identifiable genetic mutations previously noted in the literature. One patient had a novel mutation of a known ARVC/D gene. Many pediatric patients do not meet the current ARVC/D diagnostic criteria, resulting in delays in diagnosis and treatment. The current criteria need further revision to encompass pediatric manifestations of ARVC/D. In our opinion, pathological and clinical findings alone are sufficient for accurate diagnosis of pediatric ARVC/D. Creating modified pediatric criteria would facilitate prompt diagnosis and management of ARVC/D and facilitate structured research with the goal of improving outcomes.
Collapse
|
136
|
Rigato I, Corrado D, Basso C, Zorzi A, Pilichou K, Bauce B, Thiene G. Pharmacotherapy and other therapeutic modalities for managing Arrhythmogenic Right Ventricular Cardiomyopathy. Cardiovasc Drugs Ther 2016; 29:171-7. [PMID: 25894016 DOI: 10.1007/s10557-015-6583-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Arrhythmogenic Right Ventricular Cardiomyopathy (ARVC) is a genetically determined rare cardiomyopathy (1 in 5000 to 1 in 2000 in the general population), which can lead to ventricular arrhythmias and sudden death (SD). The classic form of the disease has a predilection for the right ventricle (RV), but recognition of left-dominant and biventricular variants led to the broader term "Arrhythmogenic Cardiomyopathy". The disease affects men more frequently than women and becomes clinically overt usually from the second to the fourth decade of life. Treatment consists of restriction of physical exercise, antiarrhythmic drugs, catheter ablation and ICD implantation. These treatments have the potential to change the natural history of the disease by protecting against SD and offering a good-quality and nearly normal life-expectancy. Antiarrhythmic drugs play an important role in terms of reduction of both the number and the complexity of arrhythmias, but they do not reduce the risk of SD. The results of catheter ablation are poor because of the high rate of VT recurrence. ICD should be reserved to selected patients after an accurate risk stratification. The clinical challenge is to improve risk stratification for better identification of those patients who most benefit from the above therapies. Unfortunately, a curative therapy is not yet available.
Collapse
Affiliation(s)
- Ilaria Rigato
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padua, Padua, Italy
| | | | | | | | | | | | | |
Collapse
|
137
|
Galderisi M, Cardim N, D'Andrea A, Bruder O, Cosyns B, Davin L, Donal E, Edvardsen T, Freitas A, Habib G, Kitsiou A, Plein S, Petersen SE, Popescu BA, Schroeder S, Burgstahler C, Lancellotti P. The multi-modality cardiac imaging approach to the Athlete's heart: an expert consensus of the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging 2016; 16:353. [PMID: 25681828 DOI: 10.1093/ehjci/jeu323] [Citation(s) in RCA: 162] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The term 'athlete's heart' refers to a clinical picture characterized by a slow heart rate and enlargement of the heart. A multi-modality imaging approach to the athlete's heart aims to differentiate physiological changes due to intensive training in the athlete's heart from serious cardiac diseases with similar morphological features. Imaging assessment of the athlete's heart should begin with a thorough echocardiographic examination.Left ventricular (LV) wall thickness by echocardiography can contribute to the distinction between athlete's LV hypertrophy and hypertrophic cardiomyopathy (HCM). LV end-diastolic diameter becomes larger (>55 mm) than the normal limits only in end-stage HCM patients when the LV ejection fraction is <50%. Patients with HCM also show early impairment of LV diastolic function, whereas athletes have normal diastolic function.When echocardiography cannot provide a clear differential diagnosis, cardiac magnetic resonance (CMR) imaging should be performed.With CMR, accurate morphological and functional assessment can be made. Tissue characterization by late gadolinium enhancement may show a distinctive, non-ischaemic pattern in HCM and a variety of other myocardial conditions such as idiopathic dilated cardiomyopathy or myocarditis. The work-up of athletes with suspected coronary artery disease should start with an exercise ECG. In athletes with inconclusive exercise ECG results, exercise stress echocardiography should be considered. Nuclear cardiology techniques, coronary cardiac tomography (CCT) and/or CMR may be performed in selected cases. Owing to radiation exposure and the young age of most athletes, the use of CCT and nuclear cardiology techniques should be restricted to athletes with unclear stress echocardiography or CMR.
Collapse
MESH Headings
- Adult
- Arrhythmogenic Right Ventricular Dysplasia/diagnosis
- Cardiac Imaging Techniques/methods
- Cardiac-Gated Single-Photon Emission Computer-Assisted Tomography
- Cardiomegaly/diagnosis
- Cardiomegaly, Exercise-Induced
- Cardiomyopathy, Dilated/diagnosis
- Cardiomyopathy, Hypertrophic/diagnosis
- Consensus
- Contrast Media
- Death, Sudden, Cardiac/prevention & control
- Echocardiography, Stress/methods
- Electrocardiography
- European Union
- Gadolinium
- Humans
- Hypertrophy, Left Ventricular/diagnosis
- Magnetic Resonance Imaging, Cine
- Predictive Value of Tests
- Sensitivity and Specificity
- Societies, Medical
- Technetium Tc 99m Sestamibi
- Tomography, Emission-Computed, Single-Photon
- Tomography, X-Ray Computed/methods
Collapse
|
138
|
James CA. Nature and Nurture in Arrhythmogenic Right Ventricular Cardiomyopathy - A Clinical Perspective. Arrhythm Electrophysiol Rev 2016; 4:156-62. [PMID: 26835118 DOI: 10.15420/aer.2015.4.3.156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 10/05/2015] [Indexed: 12/17/2022] Open
Abstract
Arrhythmogenic right ventricular dysplasia/cardiomyopathy (ARVD/C) is an inherited cardiomyopathy characterised by frequent ventricular arrhythmias and slowly progressive predominant RV dysfunction. Up to two-thirds of ARVD/C patients have mutations in genes encoding the cardiac desmosome. Mutations in other genes are increasingly recognised. Inheritance of ARVD/C is generally autosomal dominant with reduced age-related penetrance and significant variable expressivity. While the full explanation for this phenotypic heterogeneity remains unclear, there is increasing evidence that exercise plays a major role in disease penetrance and arrhythmic risk. The disproportionate representation of athletes among ARVD/C patients has long been noted. Recently, the association of exercise with earlier onset and more severe arrhythmic and structural disease has been documented. This article reviews current evidence regarding the association of genotype, exercise and clinical outcomes and discusses the emerging paradigm in which genetic predisposition and environmental factors (exercise) interact around a threshold for phenotypic expression of ARVD/C.
Collapse
Affiliation(s)
- Cynthia A James
- Division of Cardiology, Johns Hopkins University, Baltimore, Maryland, US
| |
Collapse
|
139
|
Ermakov S, Scheinman M. Arrhythmogenic Right Ventricular Cardiomyopathy - Antiarrhythmic Therapy. Arrhythm Electrophysiol Rev 2016; 4:86-9. [PMID: 26835106 DOI: 10.15420/aer.2015.04.02.86] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Arrhythmogenic right ventricular cardiomyopathy is an inherited disorder characterised by progressive replacement of ventricular myocardium by fibrofatty tissue that predisposes patients to ventricular arrhythmias, heart failure and sudden death. Treatment focuses on slowing disease progression, decreasing the burden of arrhythmias and preventing sudden cardiac death through placement of implantable cardioverter-defibrillators (ICDs), catheter ablation and the use of antiarrhythmic medication. Although only ICDs have been demonstrated to affect patient mortality, antiarrhythmic medications are important adjuncts in reducing patient morbidity and inappropriate ICD therapy. Of the individual antiarrhythmic agents available, sotalol, beta-blockers and amiodarone appear to be most effective in arrhythmia suppression. Calcium-channel blockers may be effective in selected patients. For patients who are refractory to single agent therapy, combination therapy may be considered with the most effective combinations being sotalol + flecainide and amiodarone + beta-blockers.
Collapse
Affiliation(s)
- Simon Ermakov
- Stanford University Hospital and Clinics, California, US
| | | |
Collapse
|
140
|
Sports in patients with arrhythmogenic right ventricular dysplasia/cardiomyopathy and desmosomal mutations. Herz 2016; 40:402-9. [PMID: 25963172 DOI: 10.1007/s00059-015-4223-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Arrhythmogenic right ventricular dysplasia/cardiomyopathy (ARVD/C) is a rare cardiomyopathy associated with life-threatening arrhythmias and an increased risk of sudden cardiac death. In addition to mutations in desmosomal genes, environmental factors such as exercise and sport have been implicated in the pathogenesis of the disease. Recent studies have shown that exercise may be associated with adverse outcomes in patients with ARVD/C. On the basis of current evidence, patients with ARVD/C are recommended to limit exercise irrespective of their mutation status. Some studies have suggested the presence of an entirely acquired form of the disease caused by exercise, which has been dubbed "exercise-induced ARVD/C."
Collapse
|
141
|
Boukens BJ, Coronel R, Christoffels VM. Embryonic development of the right ventricular outflow tract and arrhythmias. Heart Rhythm 2016; 13:616-22. [DOI: 10.1016/j.hrthm.2015.11.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Indexed: 12/19/2022]
|
142
|
Cheung CC, Laksman ZWM, Mellor G, Sanatani S, Krahn AD. Exercise and Inherited Arrhythmias. Can J Cardiol 2016; 32:452-8. [PMID: 26927864 DOI: 10.1016/j.cjca.2016.01.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 12/29/2015] [Accepted: 01/06/2016] [Indexed: 01/11/2023] Open
Abstract
Sudden cardiac death (SCD) in an apparently healthy individual is a tragedy that prompts a series of investigations to identify the cause of death and to prevent SCD in potentially at-risk family members. Several inherited channelopathies and cardiomyopathies, including long QT syndrome (LQTS), catecholaminergic polymorphic ventricular cardiomyopathy (CPVT), hypertrophic cardiomyopathy (HCM), and arrhythmogenic right ventricular cardiomyopathy (ARVC) are associated with exercise-related SCD. Exercise restriction has been a historical mainstay of therapy for these conditions. Syncope and cardiac arrest occur during exercise in LQTS and CPVT because of ventricular arrhythmias, which are managed with β-blockade and exercise restriction. Exercise may provoke hemodynamic or ischemic changes in HCM, leading to ventricular arrhythmias. ARVC is a disease of the desmosome, whose underlying disease process is accelerated by exercise. On this basis, expert consensus has erred on the side of caution, recommending rigorous exercise restriction for all inherited arrhythmias. With time, as familiarity with inherited arrhythmia conditions has increased and patients with milder forms of disease are diagnosed, practitioners have questioned the historical rigorous restrictions advocated for all. This change has been driven by the fact that these are often children and young adults who wish to lead active lives. Recent evidence suggests a lower risk of exercise-related arrhythmias in treated patients than was previously assumed, including those with previous symptoms managed with an implantable cardioverter-defibrillator. In this review, we emphasize shared decision making, monitored medical therapy, individual and team awareness of precautions and emergency response measures, and a more permissive approach to recreational and competitive exercise.
Collapse
Affiliation(s)
- Christopher C Cheung
- Division of Cardiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Zachary W M Laksman
- Division of Cardiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Gregory Mellor
- Division of Cardiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Shubhayan Sanatani
- Children's Heart Centre, BC Children's Hospital, Vancouver, British Columbia, Canada
| | - Andrew D Krahn
- Division of Cardiology, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
143
|
Sawant AC, te Riele AS, Tichnell C, Murray B, Bhonsale A, Tandri H, Judge DP, Calkins H, James CA. Safety of American Heart Association-recommended minimum exercise for desmosomal mutation carriers. Heart Rhythm 2016; 13:199-207. [DOI: 10.1016/j.hrthm.2015.08.035] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Indexed: 11/30/2022]
|
144
|
Eijsvogels TMH, Fernandez AB, Thompson PD. Are There Deleterious Cardiac Effects of Acute and Chronic Endurance Exercise? Physiol Rev 2016; 96:99-125. [PMID: 26607287 PMCID: PMC4698394 DOI: 10.1152/physrev.00029.2014] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Multiple epidemiological studies document that habitual physical activity reduces the risk of atherosclerotic cardiovascular disease (ASCVD), and most demonstrate progressively lower rates of ASCVD with progressively more physical activity. Few studies have included individuals performing high-intensity, lifelong endurance exercise, however, and recent reports suggest that prodigious amounts of exercise may increase markers for, and even the incidence of, cardiovascular disease. This review examines the evidence that extremes of endurance exercise may increase cardiovascular disease risk by reviewing the causes and incidence of exercise-related cardiac events, and the acute effects of exercise on cardiovascular function, the effect of exercise on cardiac biomarkers, including "myocardial" creatine kinase, cardiac troponins, and cardiac natriuretic peptides. This review also examines the effect of exercise on coronary atherosclerosis and calcification, the frequency of atrial fibrillation in aging athletes, and the possibility that exercise may be deleterious in individuals genetically predisposed to such cardiac abnormalities as long QT syndrome, right ventricular cardiomyopathy, and hypertrophic cardiomyopathy. This review is to our knowledge unique because it addresses all known potentially adverse cardiovascular effects of endurance exercise. The best evidence remains that physical activity and exercise training benefit the population, but it is possible that prolonged exercise and exercise training can adversely affect cardiac function in some individuals. This hypothesis warrants further examination.
Collapse
Affiliation(s)
- Thijs M H Eijsvogels
- Department of Cardiology, Hartford Hospital, Hartford, Connecticut; and Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Antonio B Fernandez
- Department of Cardiology, Hartford Hospital, Hartford, Connecticut; and Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Paul D Thompson
- Department of Cardiology, Hartford Hospital, Hartford, Connecticut; and Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
145
|
|
146
|
Sweeting J, Ingles J, Ball K, Semsarian C. Challenges of exercise recommendations and sports participation in genetic heart disease patients. ACTA ACUST UNITED AC 2015; 8:178-86. [PMID: 25691687 DOI: 10.1161/circgenetics.114.000784] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Joanna Sweeting
- From the Agnes Ginges Centre for Molecular Cardiology, Centenary Institute, Newtown, NSW, Australia (J.S., J.I., C.S.); Sydney Medical School, University of Sydney, Sydney, NSW, Australia (J.S., J.I., C.S.); Centre for Physical Activity and Nutrition Research, Deakin University, Melbourne, Australia (K.B.); and Department of Cardiology, Royal Prince Alfred Hospital, Sydney, NSW, Australia (C.S.)
| | - Jodie Ingles
- From the Agnes Ginges Centre for Molecular Cardiology, Centenary Institute, Newtown, NSW, Australia (J.S., J.I., C.S.); Sydney Medical School, University of Sydney, Sydney, NSW, Australia (J.S., J.I., C.S.); Centre for Physical Activity and Nutrition Research, Deakin University, Melbourne, Australia (K.B.); and Department of Cardiology, Royal Prince Alfred Hospital, Sydney, NSW, Australia (C.S.)
| | - Kylie Ball
- From the Agnes Ginges Centre for Molecular Cardiology, Centenary Institute, Newtown, NSW, Australia (J.S., J.I., C.S.); Sydney Medical School, University of Sydney, Sydney, NSW, Australia (J.S., J.I., C.S.); Centre for Physical Activity and Nutrition Research, Deakin University, Melbourne, Australia (K.B.); and Department of Cardiology, Royal Prince Alfred Hospital, Sydney, NSW, Australia (C.S.)
| | - Christopher Semsarian
- From the Agnes Ginges Centre for Molecular Cardiology, Centenary Institute, Newtown, NSW, Australia (J.S., J.I., C.S.); Sydney Medical School, University of Sydney, Sydney, NSW, Australia (J.S., J.I., C.S.); Centre for Physical Activity and Nutrition Research, Deakin University, Melbourne, Australia (K.B.); and Department of Cardiology, Royal Prince Alfred Hospital, Sydney, NSW, Australia (C.S.).
| |
Collapse
|
147
|
Lubitz SA. Genetics, Exercise, and Early-Onset Arrhythmogenic Right Ventricular Cardiomyopathy. JACC Clin Electrophysiol 2015; 1:561-562. [PMID: 29759409 DOI: 10.1016/j.jacep.2015.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 09/24/2015] [Indexed: 10/22/2022]
Affiliation(s)
- Steven A Lubitz
- Cardiac Arrhythmia Service, Cardiovascular Genetics Program, and Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts; and the Medical and Population Genetics Program, The Broad Institute, Cambridge, Massachusetts.
| |
Collapse
|
148
|
Martherus R, Jain R, Takagi K, Mendsaikhan U, Turdi S, Osinska H, James JF, Kramer K, Purevjav E, Towbin JA. Accelerated cardiac remodeling in desmoplakin transgenic mice in response to endurance exercise is associated with perturbed Wnt/β-catenin signaling. Am J Physiol Heart Circ Physiol 2015; 310:H174-87. [PMID: 26545710 DOI: 10.1152/ajpheart.00295.2015] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 10/02/2015] [Indexed: 12/13/2022]
Abstract
Arrhythmogenic ventricular cardiomyopathy (AVC) is a frequent underlying cause for arrhythmias and sudden cardiac death especially during intense exercise. The mechanisms involved remain largely unknown. The purpose of this study was to investigate how chronic endurance exercise contributes to desmoplakin (DSP) mutation-induced AVC pathogenesis. Transgenic mice with overexpression of desmoplakin, wild-type (Tg-DSP(WT)), or the R2834H mutant (Tg-DSP(R2834H)) along with control nontransgenic (NTg) littermates were kept sedentary or exposed to a daily running regimen for 12 wk. Cardiac function and morphology were analyzed using echocardiography, electrocardiography, histology, immunohistochemistry, RNA, and protein analysis. At baseline, 4-wk-old mice from all groups displayed normal cardiac function. When subjected to exercise, all mice retained normal cardiac function and left ventricular morphology; however, Tg-DSP(R2834H) mutants displayed right ventricular (RV) dilation and wall thinning, unlike NTg and Tg-DSP(WT). The Tg-DSP(R2834H) hearts demonstrated focal fat infiltrations in RV and cytoplasmic aggregations consisting of desmoplakin, plakoglobin, and connexin 43. These aggregates coincided with disruption of the intercalated disks, intermediate filaments, and microtubules. Although Tg-DSP(R2834H) mice already displayed high levels of p-GSK3-β(Ser9) and p-AKT1(Ser473) under sedentary conditions, decrease of nuclear GSK3-β and AKT1 levels with reduced p-GSK3-β(Ser9), p-AKT1(Ser473), and p-AKT1(Ser308) and loss of nuclear junctional plakoglobin was apparent after exercise. In contrast, Tg-DSP(WT) showed upregulation of p-AKT1(Ser473), p-AKT1(Ser308), and p-GSK3-β(Ser9) in response to exercise. Our data suggest that endurance exercise accelerates AVC pathogenesis in Tg-DSP(R2834H) mice and this event is associated with perturbed AKT1 and GSK3-β signaling. Our study suggests a potential mechanism-based approach to exercise management in patients with AVC.
Collapse
Affiliation(s)
- Ruben Martherus
- Cardiology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Rahul Jain
- Department of Cardiology, Indiana University, Indianapolis, Indiana; and
| | - Ken Takagi
- Cardiology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Jikei University, Tokyo, Japan
| | - Uzmee Mendsaikhan
- Cardiology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Subat Turdi
- Cardiology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Hanna Osinska
- Cardiology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Jeanne F James
- Cardiology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Kristen Kramer
- Cardiology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Enkhsaikhan Purevjav
- Cardiology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Jeffrey A Towbin
- Cardiology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio;
| |
Collapse
|
149
|
Maron BJ, Udelson JE, Bonow RO, Nishimura RA, Ackerman MJ, Estes NAM, Cooper LT, Link MS, Maron MS. Eligibility and Disqualification Recommendations for Competitive Athletes With Cardiovascular Abnormalities: Task Force 3: Hypertrophic Cardiomyopathy, Arrhythmogenic Right Ventricular Cardiomyopathy and Other Cardiomyopathies, and Myocarditis: A Scientific Statement From the American Heart Association and American College of Cardiology. Circulation 2015; 132:e273-80. [PMID: 26621644 DOI: 10.1161/cir.0000000000000239] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
150
|
Maron BJ, Udelson JE, Bonow RO, Nishimura RA, Ackerman MJ, Estes NAM, Cooper LT, Link MS, Maron MS. Eligibility and Disqualification Recommendations for Competitive Athletes With Cardiovascular Abnormalities: Task Force 3: Hypertrophic Cardiomyopathy, Arrhythmogenic Right Ventricular Cardiomyopathy and Other Cardiomyopathies, and Myocarditis: A Scientific Statement From the American Heart Association and American College of Cardiology. J Am Coll Cardiol 2015; 66:2362-2371. [PMID: 26542657 DOI: 10.1016/j.jacc.2015.09.035] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|