101
|
Franklin AD, Llobet JR, Sobey CM, Daniels JM, Kannankeril PJ. Stellate Ganglion Catheter Effective for Treatment of Ventricular Tachycardia Storm in a Pediatric Patient on Extracorporeal Membrane Oxygenation: A Case Report. A A Pract 2019; 13:245-249. [DOI: 10.1213/xaa.0000000000001036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
102
|
Shi Y, Li Y, Yin J, Hu H, Xue M, Li X, Cheng W, Wang Y, Li X, Wang Y, Tan J, Yan S. A novel sympathetic neuronal GABAergic signalling system regulates NE release to prevent ventricular arrhythmias after acute myocardial infarction. Acta Physiol (Oxf) 2019; 227:e13315. [PMID: 31116911 PMCID: PMC6813916 DOI: 10.1111/apha.13315] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 05/09/2019] [Accepted: 05/16/2019] [Indexed: 11/30/2022]
Abstract
AIM Overactivation of the sympathetic nerve may lead to severe ventricular arrhythmias (VAs) after myocardial infarction (MI). Thus, targeting sympathetic nerve activity is an effective strategy to prevent VAs clinically. The superior cervical ganglion (SCG), the extracardiac sympathetic ganglion innervating cardiac muscles, has been found to have a GABAergic signalling system, the physiological significance of which is obscure. We aimed to explore the functional significance of SCG post MI and whether the GABAergic signal system is involved in the process. METHODS Adult male Sprague-Dawley rats were divided into seven different groups. Rats in the MI groups underwent ligation of the left anterior descending coronary artery. All animals were used for electrophysiological testing, renal sympathetic nerve activity (RSNA) testing, and ELISA. Primary SCG sympathetic neurons were used for the in vitro study. RESULTS The GABAA receptor agonist muscimol significantly decreased the ATP-induced increase in intracellular Ca2+ (P < 0.05). GABA treatment in MI rats significantly attenuated the level of serum and cardiac norepinephrine (NE; P < 0.05). Sympathetic activity and inducible VAs were also lower in MI + GABA rats than in MI rats (P < 0.05). Knockdown of the GABAA Rs β2 subunit (GABAA Rβ2 ) in the SCG of MI rats increased the NE levels in serum and cardiac tissue, RSNA and inducible VAs compared with vehicle shRNA (P < 0.05). CONCLUSION The GABAergic signalling system is functionally expressed in SCG sympathetic neurons, and activation of this system suppresses sympathetic activity, thereby facilitating cardiac protection and making it a potential target to alleviate VAs.
Collapse
Affiliation(s)
- Yugen Shi
- Department of CardiologyShandong Provincial Qianfoshan Hospital, Shandong UniversityShandongChina
| | - Yan Li
- Medical Research CenterShandong Provincial Qianfoshan Hospital, Shandong UniversityShandongChina
- School of MedicineShandong UniversityShandongChina
| | - Jie Yin
- Department of CardiologyShandong Provincial Qianfoshan Hospital, Shandong UniversityShandongChina
| | - Hesheng Hu
- Department of CardiologyShandong Provincial Qianfoshan Hospital, Shandong UniversityShandongChina
| | - Mei Xue
- Department of CardiologyShandong Provincial Qianfoshan Hospital, Shandong UniversityShandongChina
| | - Xiaolu Li
- Department of CardiologyShandong Provincial Qianfoshan Hospital, Shandong UniversityShandongChina
| | - Wenjuan Cheng
- Department of CardiologyShandong Provincial Qianfoshan Hospital, Shandong UniversityShandongChina
| | - Ye Wang
- Department of CardiologyShandong Provincial Qianfoshan Hospital, Shandong UniversityShandongChina
| | - Xinran Li
- Department of CardiologyShandong Provincial Qianfoshan Hospital, Shandong UniversityShandongChina
| | - Yu Wang
- Department of CardiologyShandong Provincial Qianfoshan Hospital, Shandong UniversityShandongChina
| | - Jiayu Tan
- Department of CardiologyShandong Provincial Qianfoshan Hospital, Shandong UniversityShandongChina
| | - Suhua Yan
- Department of CardiologyShandong Provincial Qianfoshan Hospital, Shandong UniversityShandongChina
| |
Collapse
|
103
|
Krokhaleva Y, Vaseghi M. Update on prevention and treatment of sudden cardiac arrest. Trends Cardiovasc Med 2019; 29:394-400. [PMID: 30449537 PMCID: PMC6685756 DOI: 10.1016/j.tcm.2018.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 10/10/2018] [Accepted: 11/02/2018] [Indexed: 01/09/2023]
Abstract
Sudden cardiac arrest is the leading cause of cardiovascular mortality, posing a substantial public health burden. The incidence and epidemiology of sudden death are a function of age, with primary arrhythmia syndromes and inherited cardiomyopathies representing the predominant causes in younger patients, while coronary artery disease being the leading etiology in those who are 35 years of age and older. Internal cardioverter defibrillators remain the mainstay of primary and secondary prevention of sudden cardiac arrest. In the acute phase, cardiac chain of survival, early reperfusion, and therapeutic hypothermia are the key steps in improving outcomes. In the chronic settings, ventricular tachycardia ablation has been shown to improve patients' quality of life by reducing frequency of defibrillator shocks. Moreover, recent studies have suggested that it may increase survival. Neuromodulation represents a novel therapeutic modality that has a great potential for improving treatment of ventricular arrhythmias.
Collapse
Affiliation(s)
- Yuliya Krokhaleva
- UCLA Cardiac Arrhythmia Center, UCLA Health System, David Geffen School of Medicine at UCLA, 100 UCLA Medical Plaza, Suite 660, Los Angeles, CA, USA
| | - Marmar Vaseghi
- UCLA Cardiac Arrhythmia Center, UCLA Health System, David Geffen School of Medicine at UCLA, 100 UCLA Medical Plaza, Suite 660, Los Angeles, CA, USA.
| |
Collapse
|
104
|
Wang J, Dai M, Cao Q, Yu Q, Luo Q, Shu L, Zhang Y, Bao M. Carotid baroreceptor stimulation suppresses ventricular fibrillation in canines with chronic heart failure. Basic Res Cardiol 2019; 114:41. [PMID: 31502080 DOI: 10.1007/s00395-019-0750-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 09/06/2019] [Indexed: 12/16/2022]
Abstract
Carotid baroreceptor stimulation (CBS) has been shown to improve cardiac dysfunction and pathological structure remodelling. This study aimed to investigate the effects of CBS on the ventricular electrophysiological properties in canines with chronic heart failure (CHF). Thirty-eight beagles were randomized into control (CON), CHF, low-level CBS (LL-CBS), and moderate-level CBS (ML-CBS) groups. The CHF model was established with 6 weeks of rapid right ventricular pacing (RVP), and concomitant LL-CBS and ML-CBS were applied in the LL-CBS and ML-CBS groups, respectively. After 6 weeks of RVP, ventricular electrophysiological parameters and left stellate ganglion (LSG) neural activity and function were measured. Autonomic neural remodelling in the LSG and left ventricle (LV) and ionic remodelling in the LV were detected. Compared with the CHF group, both LL-CBS and ML-CBS decreased spatial dispersion of action potential duration (APD), suppressed APD alternans, reduced ventricular fibrillation (VF) inducibility, and inhibited enhanced LSG neural discharge and function. Only ML-CBS significantly inhibited ventricular repolarization prolongation and increased the VF threshold. Moreover, ML-CBS inhibited the increase in growth-associated protein-43 and tyrosine hydroxylase-positive nerve fibre densities in LV, increased acetylcholinesterase protein expression in LSG, and decreased nerve growth factor protein expression in LSG and LV. Chronic RVP resulted in a remarkable reduction in protein expression encoding both potassium and L-type calcium currents; these changes were partly amended by ML-CBS and LL-CBS. In conclusion, CBS suppresses VF in CHF canines, potentially by modulating autonomic nerve and ion channels. In addition, the effects of ML-CBS on ventricular electrophysiological properties, autonomic remodelling, and ionic remodelling were superior to those of LL-CBS.
Collapse
Affiliation(s)
- Jing Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei, People's Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People's Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, People's Republic of China
| | - Mingyan Dai
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei, People's Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People's Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, People's Republic of China
| | - Quan Cao
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei, People's Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People's Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, People's Republic of China
| | - Qiao Yu
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei, People's Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People's Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, People's Republic of China
| | - Qiang Luo
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei, People's Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People's Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, People's Republic of China
| | - Ling Shu
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei, People's Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People's Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, People's Republic of China
| | - Yijie Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei, People's Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People's Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, People's Republic of China
| | - Mingwei Bao
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei, People's Republic of China.
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People's Republic of China.
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, People's Republic of China.
| |
Collapse
|
105
|
Tian Y, Wittwer ED, Kapa S, McLeod CJ, Xiao P, Noseworthy PA, Mulpuru SK, Deshmukh AJ, Lee HC, Ackerman MJ, Asirvatham SJ, Munger TM, Liu XP, Friedman PA, Cha YM. Effective Use of Percutaneous Stellate Ganglion Blockade in Patients With Electrical Storm. Circ Arrhythm Electrophysiol 2019; 12:e007118. [DOI: 10.1161/circep.118.007118] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background:
Percutaneous stellate ganglion blockade (SGB) has been used for drug-refractory electrical storm due to ventricular arrhythmia (VA); however, the effects and long-term outcomes have not been well studied.
Methods:
This study included 30 consecutive patients who had drug-refractory electrical storm and underwent percutaneous SGB between October 1, 2013, and March 31, 2018. Bupivacaine, alone or combined with lidocaine, was injected into the neck with good local anesthetic spread in the vicinity of the left stellate ganglion (n=15) or both stellate ganglia (n=15). Data were collected for patient clinical characteristics, immediate and long-term outcomes, and procedure-related complications.
Results:
Clinical characteristics included age, 58±14 years; men, 73.3%; and left ventricular ejection fraction, 34±16%. At 24 hours, 60% of patients were free of VA. Patients whose VA was controlled had a lower hospital mortality rate than patients whose VA continued (5.6% versus 50.0%;
P
=0.009). Implantable cardioverter-defibrillator interrogation showed a significant 92% reduction in VA episodes from 26±41 to 2±4 in the 72 hours after SGB (
P
<0.001). Patients who died during the same hospitalization (n=7) were more likely to have ischemic cardiomyopathy (100% versus 43.5%;
P
=0.03) and recurrent VA within 24 hours (85.7% versus 26.1%;
P
=0.009). There were no procedure-related major complications.
Conclusions:
SGB effectively attenuated electrical storm in more than half of patients without procedure-related complications. Percutaneous SGB may be considered for stabilizing ventricular rhythm in patients for whom other therapies have failed.
Collapse
Affiliation(s)
- Ying Tian
- Division of Heart Rhythm Services, Department of Cardiovascular Medicine (Y.T., S.K., P.X., P.A.N., S.K.M., A.J.D., H.-C.L., M.J.A., S.J.A., T.M.M., P.A.F., Y.-M.C.), Mayo Clinic, Rochester, MN
- Department of Cardiovascular Diseases, Beijing Chaoyang Hospital, China (Y.T., X.-P.L.)
| | - Erica D. Wittwer
- Department of Anesthesiology and Perioperative Medicine (E.D.W.), Mayo Clinic, Rochester, MN
| | - Suraj Kapa
- Division of Heart Rhythm Services, Department of Cardiovascular Medicine (Y.T., S.K., P.X., P.A.N., S.K.M., A.J.D., H.-C.L., M.J.A., S.J.A., T.M.M., P.A.F., Y.-M.C.), Mayo Clinic, Rochester, MN
| | | | - Peilin Xiao
- Division of Heart Rhythm Services, Department of Cardiovascular Medicine (Y.T., S.K., P.X., P.A.N., S.K.M., A.J.D., H.-C.L., M.J.A., S.J.A., T.M.M., P.A.F., Y.-M.C.), Mayo Clinic, Rochester, MN
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Chongqing Medical University, China (P.X.)
| | - Peter A. Noseworthy
- Division of Heart Rhythm Services, Department of Cardiovascular Medicine (Y.T., S.K., P.X., P.A.N., S.K.M., A.J.D., H.-C.L., M.J.A., S.J.A., T.M.M., P.A.F., Y.-M.C.), Mayo Clinic, Rochester, MN
| | - Siva K. Mulpuru
- Division of Heart Rhythm Services, Department of Cardiovascular Medicine (Y.T., S.K., P.X., P.A.N., S.K.M., A.J.D., H.-C.L., M.J.A., S.J.A., T.M.M., P.A.F., Y.-M.C.), Mayo Clinic, Rochester, MN
| | - Abhishek J. Deshmukh
- Division of Heart Rhythm Services, Department of Cardiovascular Medicine (Y.T., S.K., P.X., P.A.N., S.K.M., A.J.D., H.-C.L., M.J.A., S.J.A., T.M.M., P.A.F., Y.-M.C.), Mayo Clinic, Rochester, MN
| | - Hon-Chi Lee
- Division of Heart Rhythm Services, Department of Cardiovascular Medicine (Y.T., S.K., P.X., P.A.N., S.K.M., A.J.D., H.-C.L., M.J.A., S.J.A., T.M.M., P.A.F., Y.-M.C.), Mayo Clinic, Rochester, MN
| | - Michael J. Ackerman
- Division of Heart Rhythm Services, Department of Cardiovascular Medicine (Y.T., S.K., P.X., P.A.N., S.K.M., A.J.D., H.-C.L., M.J.A., S.J.A., T.M.M., P.A.F., Y.-M.C.), Mayo Clinic, Rochester, MN
| | - Samuel J. Asirvatham
- Division of Heart Rhythm Services, Department of Cardiovascular Medicine (Y.T., S.K., P.X., P.A.N., S.K.M., A.J.D., H.-C.L., M.J.A., S.J.A., T.M.M., P.A.F., Y.-M.C.), Mayo Clinic, Rochester, MN
| | - Thomas M. Munger
- Division of Heart Rhythm Services, Department of Cardiovascular Medicine (Y.T., S.K., P.X., P.A.N., S.K.M., A.J.D., H.-C.L., M.J.A., S.J.A., T.M.M., P.A.F., Y.-M.C.), Mayo Clinic, Rochester, MN
| | - Xing-Peng Liu
- Department of Cardiovascular Diseases, Beijing Chaoyang Hospital, China (Y.T., X.-P.L.)
| | - Paul A. Friedman
- Division of Heart Rhythm Services, Department of Cardiovascular Medicine (Y.T., S.K., P.X., P.A.N., S.K.M., A.J.D., H.-C.L., M.J.A., S.J.A., T.M.M., P.A.F., Y.-M.C.), Mayo Clinic, Rochester, MN
| | - Yong-Mei Cha
- Division of Heart Rhythm Services, Department of Cardiovascular Medicine (Y.T., S.K., P.X., P.A.N., S.K.M., A.J.D., H.-C.L., M.J.A., S.J.A., T.M.M., P.A.F., Y.-M.C.), Mayo Clinic, Rochester, MN
| |
Collapse
|
106
|
Waldron NH, Fudim M, Mathew JP, Piccini JP. Neuromodulation for the Treatment of Heart Rhythm Disorders. JACC Basic Transl Sci 2019; 4:546-562. [PMID: 31468010 PMCID: PMC6712352 DOI: 10.1016/j.jacbts.2019.02.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/22/2019] [Accepted: 02/22/2019] [Indexed: 12/13/2022]
Abstract
Derangement of autonomic nervous signaling is an important contributor to cardiac arrhythmogenesis. Modulation of autonomic nervous signaling holds significant promise for the prevention and treatment of cardiac arrhythmias. Further clinical investigation is necessary to establish the efficacy and safety of autonomic modulatory therapies in reducing cardiac arrhythmias.
There is an increasing recognition of the importance of interactions between the heart and the autonomic nervous system in the pathophysiology of arrhythmias. These interactions play a role in both the initiation and maintenance of arrhythmias and are important in both atrial and ventricular arrhythmia. Given the importance of the autonomic nervous system in the pathophysiology of arrhythmias, there has been notable effort in the field to improve existing therapies and pioneer additional interventions directed at cardiac-autonomic targets. The interventions are targeted to multiple and different anatomic targets across the neurocardiac axis. The purpose of this review is to provide an overview of the rationale for neuromodulation in the treatment of arrhythmias and to review the specific treatments under evaluation and development for the treatment of both atrial fibrillation and ventricular arrhythmias.
Collapse
Key Words
- AERP, atrial effective refractory period
- AF, atrial fibrillation
- AGP, autonomic ganglionic plexus
- ANS, autonomic nervous system
- CABG, coronary artery bypass grafting
- HRV, heart rate variability
- ICD, implantable cardioverter-defibrillator
- LLVNS, low-level vagal nerve stimulation
- OSA, obstructive sleep apnea
- POAF, post-operative atrial fibrillation
- PVI, pulmonary vein isolation
- RDN, renal denervation
- SCS, spinal cord stimulation
- SGB, stellate ganglion blockade
- SNS, sympathetic nervous system
- VF, ventricular fibrillation
- VNS, vagal nerve stimulation
- VT, ventricular tachycardia
- arrhythmia
- atrial fibrillation
- autonomic nervous system
- ganglionated plexi
- neuromodulation
- ventricular arrhythmias
Collapse
Affiliation(s)
- Nathan H Waldron
- Department of Anesthesia, Duke University Medical Center, Durham, North Carolina.,Duke Clinical Research Institute, Durham, North Carolina
| | - Marat Fudim
- Duke Clinical Research Institute, Durham, North Carolina.,Electrophysiology Section, Duke University Medical Center, Durham, North Carolina
| | - Joseph P Mathew
- Department of Anesthesia, Duke University Medical Center, Durham, North Carolina.,Duke Clinical Research Institute, Durham, North Carolina
| | - Jonathan P Piccini
- Duke Clinical Research Institute, Durham, North Carolina.,Electrophysiology Section, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
107
|
Neuromodulation for Ventricular Tachycardia and Atrial Fibrillation: A Clinical Scenario-Based Review. JACC Clin Electrophysiol 2019; 5:881-896. [PMID: 31439288 DOI: 10.1016/j.jacep.2019.06.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/30/2019] [Accepted: 06/04/2019] [Indexed: 12/17/2022]
Abstract
Autonomic dysregulation in cardiovascular disease plays a major role in the pathogenesis of arrhythmias. Cardiac neural control relies on complex feedback loops consisting of efferent and afferent limbs, which carry sympathetic and parasympathetic signals from the brain to the heart and sensory signals from the heart to the brain. Cardiac disease leads to neural remodeling and sympathovagal imbalances with arrhythmogenic effects. Preclinical studies of modulation at central and peripheral levels of the cardiac autonomic nervous system have yielded promising results, leading to early stage clinical studies of these techniques in atrial fibrillation and refractory ventricular arrhythmias, particularly in patients with inherited primary arrhythmia syndromes and structural heart disease. However, significant knowledge gaps in basic cardiac neurophysiology limit the success of these neuromodulatory therapies. This review discusses the recent advances in neuromodulation for cardiac arrhythmia management, with a clinical scenario-based approach aimed at bringing neurocardiology closer to the realm of the clinical electrophysiologist.
Collapse
|
108
|
|
109
|
Assis FR, Krishnan A, Zhou X, James CA, Murray B, Tichnell C, Berger R, Calkins H, Tandri H, Mandal K. Cardiac sympathectomy for refractory ventricular tachycardia in arrhythmogenic right ventricular cardiomyopathy. Heart Rhythm 2019; 16:1003-1010. [DOI: 10.1016/j.hrthm.2019.01.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Indexed: 11/28/2022]
|
110
|
Abstract
BACKGROUND Electrical storm (ES) is a major life-threatening event, which announces a possible negative outcome and poor prognosis and poses challenging questions concerning etiology and management. DATA SOURCES A literature search was conducted through MEDLINE and EMBASE (past 30 years until the end of September 2018) using the following search terms: ES, ventricular fibrillation, ventricular tachycardia, ablation, and implantable defibrillator. Clinicaltrials.gov was also consulted for studies that are ongoing or completed. Additional articles were identified through bibliographical citations. AREA OF UNCERTAINTY There is no homogeneous attitude, and therapeutic strategies vary widely. THERAPEUTIC ADVANCES The aim of this review is to define the concept of ES, to review the incidence and prognostic implications, and to describe the most common strategies of therapeutic advances and trends. The management strategy should be decided after an accurate risk stratification is done in initial evaluation according to hemodynamic tolerability and presence of triggers and comorbidities. General care should be provided in an intensive cardiovascular care unit. The cornerstone of acute medical therapy used in ES is mainly represented by amiodarone and beta-blockers. Deep sedation and mechanical ventilation should provide comfort for treatment administration. First-choice drugs are benzodiazepines and short-acting analgesics. General care may also include thoracic epidural anesthesia to modulate neuroaxial efferents to the heart and to decrease sympathetic hyperactivity. We include a special focus on ablation as a reliable tool to target the mechanism of arrhythmia, finally building an up-to-date standardization. CONCLUSIONS ES management needs a complex assessment and interpretation of a critical situation in a life-threatening condition. Optimal implantable cardioverter-defibrillator-reprogramming, antiarrhythmic drug therapy and sedation are in first-line approach. Catheter ablation is the elective therapy and plays a central key role in the treatment of ES if possible in combination with hemodynamic support.
Collapse
|
111
|
Hoogerwaard AF, Elvan A. Is renal denervation still a treatment option in cardiovascular disease? Trends Cardiovasc Med 2019; 30:189-195. [PMID: 31147257 DOI: 10.1016/j.tcm.2019.05.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 05/13/2019] [Accepted: 05/16/2019] [Indexed: 11/19/2022]
Abstract
The role of renal sympathetic denervation (RDN) has been the topic of ongoing debate ever since the impressive initial results. The rationale of RDN is strong and supported by non-clinical studies, which lies in uncoupling the autonomic nervous crosstalk between the kidneys and the central nervous system. Since we know that cardiovascular diseases, such as hypertension, atrial, ventricular arrhythmias and heart failure (HF) are related to sympathetic (over)activity, modulation of the renal nerve activity appears to be a reasonable and attractive therapeutic target in these patients. This review will focus on the existing evidence and potential future perspectives for RDN as treatment option in cardiovascular disease.
Collapse
Affiliation(s)
- Annemiek F Hoogerwaard
- Department of Cardiology, Isala Heart Centre, Isala Hospital, Dr. Van Heesweg 2, 8025 AB Zwolle, The Netherlands
| | - Arif Elvan
- Department of Cardiology, Isala Heart Centre, Isala Hospital, Dr. Van Heesweg 2, 8025 AB Zwolle, The Netherlands.
| |
Collapse
|
112
|
|
113
|
Cronin EM, Bogun FM, Maury P, Peichl P, Chen M, Namboodiri N, Aguinaga L, Leite LR, Al-Khatib SM, Anter E, Berruezo A, Callans DJ, Chung MK, Cuculich P, d'Avila A, Deal BJ, Della Bella P, Deneke T, Dickfeld TM, Hadid C, Haqqani HM, Kay GN, Latchamsetty R, Marchlinski F, Miller JM, Nogami A, Patel AR, Pathak RK, Saenz Morales LC, Santangeli P, Sapp JL, Sarkozy A, Soejima K, Stevenson WG, Tedrow UB, Tzou WS, Varma N, Zeppenfeld K. 2019 HRS/EHRA/APHRS/LAHRS expert consensus statement on catheter ablation of ventricular arrhythmias. Heart Rhythm 2019; 17:e2-e154. [PMID: 31085023 PMCID: PMC8453449 DOI: 10.1016/j.hrthm.2019.03.002] [Citation(s) in RCA: 208] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Indexed: 01/10/2023]
Abstract
Ventricular arrhythmias are an important cause of morbidity and mortality and come in a variety of forms, from single premature ventricular complexes to sustained ventricular tachycardia and fibrillation. Rapid developments have taken place over the past decade in our understanding of these arrhythmias and in our ability to diagnose and treat them. The field of catheter ablation has progressed with the development of new methods and tools, and with the publication of large clinical trials. Therefore, global cardiac electrophysiology professional societies undertook to outline recommendations and best practices for these procedures in a document that will update and replace the 2009 EHRA/HRS Expert Consensus on Catheter Ablation of Ventricular Arrhythmias. An expert writing group, after reviewing and discussing the literature, including a systematic review and meta-analysis published in conjunction with this document, and drawing on their own experience, drafted and voted on recommendations and summarized current knowledge and practice in the field. Each recommendation is presented in knowledge byte format and is accompanied by supportive text and references. Further sections provide a practical synopsis of the various techniques and of the specific ventricular arrhythmia sites and substrates encountered in the electrophysiology lab. The purpose of this document is to help electrophysiologists around the world to appropriately select patients for catheter ablation, to perform procedures in a safe and efficacious manner, and to provide follow-up and adjunctive care in order to obtain the best possible outcomes for patients with ventricular arrhythmias.
Collapse
Affiliation(s)
| | | | | | - Petr Peichl
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Minglong Chen
- Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Narayanan Namboodiri
- Sree Chitra Institute for Medical Sciences and Technology, Thiruvananthapuram, India
| | | | | | | | - Elad Anter
- Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | | | | | | | | | - Andre d'Avila
- Hospital Cardiologico SOS Cardio, Florianopolis, Brazil
| | - Barbara J Deal
- Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | | | | | | | - Claudio Hadid
- Hospital General de Agudos Cosme Argerich, Buenos Aires, Argentina
| | - Haris M Haqqani
- University of Queensland, The Prince Charles Hospital, Chermside, Australia
| | - G Neal Kay
- University of Alabama at Birmingham, Birmingham, Alabama
| | | | | | - John M Miller
- Indiana University School of Medicine, Krannert Institute of Cardiology, Indianapolis, Indiana
| | | | - Akash R Patel
- University of California San Francisco Benioff Children's Hospital, San Francisco, California
| | | | | | | | - John L Sapp
- Queen Elizabeth II Health Sciences Centre, Halifax, Canada
| | - Andrea Sarkozy
- University Hospital Antwerp, University of Antwerp, Antwerp, Belgium
| | | | | | | | | | | | | |
Collapse
|
114
|
Abstract
PURPOSE OF REVIEW This review aims to describe the latest advances in autonomic neuromodulation approaches to treating cardiac arrhythmias, with a focus on ventricular arrhythmias. RECENT FINDINGS The increasing understanding of neuronal remodeling in cardiac diseases has led to the development and improvement of novel neuromodulation therapies targeting multiple levels of the autonomic nervous system. Thoracic epidural anesthesia, spinal cord stimulation, stellate ganglion modulatory therapies, vagal stimulation, renal denervation, and interventions on the intracardiac nervous system have all been studied in preclinical models, with encouraging preliminary clinical data. The autonomic nervous system regulates all the electrical processes of the heart and plays an important role in the pathophysiology of cardiac arrhythmias. Despite recent advances in the clinical application of cardiac neuromodulation, our comprehension of the anatomy and function of the cardiac autonomic nervous system is still limited. Hopefully in the near future, more preclinical data combined with larger clinical trials will lead to further improvements in neuromodulatory treatment for heart rhythm disorders.
Collapse
|
115
|
Lai Y, Yu L, Jiang H. Autonomic Neuromodulation for Preventing and Treating Ventricular Arrhythmias. Front Physiol 2019; 10:200. [PMID: 30914967 PMCID: PMC6421499 DOI: 10.3389/fphys.2019.00200] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 02/15/2019] [Indexed: 12/18/2022] Open
Abstract
The cardiac autonomic nervous system (CANS) is associated with modulation of cardiac electrophysiology and arrhythmogenesis. In this mini review, we will briefly introduce cardiac autonomic anatomy and autonomic activity in ventricular arrhythmias (VAs) and discuss novel approaches of CANS modulation for treating VAs. Studies over the decades have provided a better understanding of cardiac autonomic innervation and revealed overwhelming evidence of the relationship between autonomic tone and VAs. A high sympathetic tone and low parasympathetic (vagal) tone are considered as the major triggers of VAs in patients with myocardial ischemia, which can cause sudden cardiac death. In recent years, novel methods of autonomic neuromodulation have been investigated to prevent VAs, and they have been verified as being beneficial for malignant VAs in animal models and humans. The clinical outcome of autonomic neuromodulation depends on the level of cardiac neuraxis, stimulation parameters, and patient's pathological status. Since autonomic modulation for VA treatment is still in the early stage of clinical application, more basic and clinical studies should be performed to clarify these mechanisms and optimize autonomic neuromodulation therapies for patients with VAs in the future.
Collapse
Affiliation(s)
- Yanqiu Lai
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Lilei Yu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Hong Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| |
Collapse
|
116
|
Kumar S, Tedrow UB, Stevenson WG. Adjunctive Interventional Techniques When Percutaneous Catheter Ablation for Drug Refractory Ventricular Arrhythmias Fail: A Contemporary Review. Circ Arrhythm Electrophysiol 2019; 10:e003676. [PMID: 28213504 DOI: 10.1161/circep.116.003676] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Saurabh Kumar
- From the Cardiovascular Division, Brigham and Women's Hospital, Boston, MA (S.K., U.B.T., W.G.S.); and Department of Cardiology, Westmead Hospital, University of Sydney, NSW, Australia (S.K.)
| | - Usha B Tedrow
- From the Cardiovascular Division, Brigham and Women's Hospital, Boston, MA (S.K., U.B.T., W.G.S.); and Department of Cardiology, Westmead Hospital, University of Sydney, NSW, Australia (S.K.)
| | - William G Stevenson
- From the Cardiovascular Division, Brigham and Women's Hospital, Boston, MA (S.K., U.B.T., W.G.S.); and Department of Cardiology, Westmead Hospital, University of Sydney, NSW, Australia (S.K.).
| |
Collapse
|
117
|
Mittnacht AJ, Shariat A, Weiner MM, Malhotra A, Miller MA, Mahajan A, Bhatt HV. Regional Techniques for Cardiac and Cardiac-Related Procedures. J Cardiothorac Vasc Anesth 2019; 33:532-546. [DOI: 10.1053/j.jvca.2018.09.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Indexed: 12/31/2022]
|
118
|
Carnagarin R, Kiuchi MG, Ho JK, Matthews VB, Schlaich MP. Sympathetic Nervous System Activation and Its Modulation: Role in Atrial Fibrillation. Front Neurosci 2019; 12:1058. [PMID: 30728760 PMCID: PMC6351490 DOI: 10.3389/fnins.2018.01058] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 12/31/2018] [Indexed: 12/17/2022] Open
Abstract
The autonomic nervous system (ANS) has a significant influence on the structural integrity and electrical conductivity of the atria. Aberrant activation of the sympathetic nervous system can induce heterogeneous changes with arrhythmogenic potential which can result in atrial tachycardia, atrial tachyarrhythmias and atrial fibrillation (AF). Methods to modulate autonomic activity primarily through reduction of sympathetic outflow reduce the incidence of spontaneous or induced atrial arrhythmias in animal models and humans, suggestive of the potential application of such strategies in the management of AF. In this review we focus on the relationship between the ANS, sympathetic overdrive and the pathophysiology of AF, and the potential of sympathetic neuromodulation in the management of AF. We conclude that sympathetic activity plays an important role in the initiation and maintenance of AF, and modulating ANS function is an important therapeutic approach to improve the management of AF in selected categories of patients. Potential therapeutic applications include pharmacological inhibition with central and peripheral sympatholytic agents and various device based approaches. While the role of the sympathetic nervous system has long been recognized, new developments in science and technology in this field promise exciting prospects for the future.
Collapse
Affiliation(s)
- Revathy Carnagarin
- Dobney Hypertension Centre, School of Medicine, Royal Perth Hospital Unit, Medical Research Foundation, The University of Western Australia, Perth, WA, Australia
| | - Marcio G Kiuchi
- Dobney Hypertension Centre, School of Medicine, Royal Perth Hospital Unit, Medical Research Foundation, The University of Western Australia, Perth, WA, Australia
| | - Jan K Ho
- Dobney Hypertension Centre, School of Medicine, Royal Perth Hospital Unit, Medical Research Foundation, The University of Western Australia, Perth, WA, Australia
| | - Vance B Matthews
- Dobney Hypertension Centre, School of Medicine, Royal Perth Hospital Unit, Medical Research Foundation, The University of Western Australia, Perth, WA, Australia
| | - Markus P Schlaich
- Dobney Hypertension Centre, School of Medicine, Royal Perth Hospital Unit, Medical Research Foundation, The University of Western Australia, Perth, WA, Australia.,Departments of Cardiology and Nephrology, Royal Perth Hospital, Perth, WA, Australia.,Neurovascular Hypertension and Kidney Disease Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| |
Collapse
|
119
|
Téllez LJ, Garzón JC, Vinck EE, Castellanos JD. Video-assisted thoracoscopic cardiac denervation of refractory ventricular arrhythmias and electrical storms: a single-center series. J Cardiothorac Surg 2019; 14:17. [PMID: 30665431 PMCID: PMC6341718 DOI: 10.1186/s13019-019-0838-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 01/14/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The combined treatment of beta-blockers with ablation and Implanted cardioverter defibrillation therapy, continues to be the mainstay treatment for ventricular arrhythmias (VAs). Despite treatment, some patients remain refractory. Recent studies have shown success rates using video-assisted thoracoscopic (VATS) cardiac denervation as an effective therapeutic option for these patients. CASE SERIES PRESENTATION During a period of three years, from 2015 through 2017, twenty patients (N = 20) failed traditional medical and interventional treatment for the management of ventricular arrhythmias and electrical storms. After remaining refractory, the patients were referred to our thoracic surgery department for a VATS based treatment. The patients all had ventricular arrhythmias and electrical storms secondary to different cardiomyopathies. The patients were refractory to combined medical (beta-blockers), Implanted Cardioverter defibrillation (ICD) and ablation therapy. All twenty patients agreed to surgery and were taken to cardiac denervation using a bilateral VATS approach by two thoracic surgeons at a single Cardiothoracic center. During the month prior to bilateral VATS denervation a combined total of twenty-nine (N = 29) ICD shocks were registered in addition to six (N = 6) cases of electrical storms averaging three (N = 3) shocks per day. Mean shocks per patient was 2.3. During the first three months following VATS, the patients had a 90% (N = 18/20) total resolution of ICD registered shocks, a 100% (N = 6/6) resolution of electrical storms, and a 92% (N = 11/12) resolution of shocks in patients having previous ablation therapy. No complications were documented following surgery except for one case of pneumothorax as a result of the procedure, and there were no peri-operative mortalities. CONCLUSIONS Bilateral thoracoscopic cardiac denervation can be a safe and seemingly effective therapeutic option for patients presenting with life-threatening refractory ventricular arrhythmias and electrical storms in a variety of cardiomyopathies including Chagas disease.
Collapse
Affiliation(s)
- Luis Jaime Téllez
- Department of Thoracic Surgery, Fundación Cardioinfantil, Bogotá, Colombia
| | - Juan Carlos Garzón
- Department of Thoracic Surgery, Fundación Cardioinfantil, Bogotá, Colombia
| | - Eric Edward Vinck
- Department of Surgery, El Bosque University, Av. Cra 9 No. 131 A - 02, Bogotá, Colombia.
| | | |
Collapse
|
120
|
Shinde S, Basantwani S, Tendolkar B. Management of ventricular storm with thoracic epidural anesthesia. Ann Card Anaesth 2019; 22:439-441. [PMID: 31621684 PMCID: PMC6813710 DOI: 10.4103/aca.aca_98_18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The incidence of recurrent ventricular arrhythmias is increasing these days. Ventricular electrical storm can be of three types as follows: monomorphic ventricular tachycardia (VT), polymorphic VT, and ventricular fibrillation. The mechanism of ventricular storm is complex, and its management is quite a challenge for the clinicians due to its life-threatening consequences. We report a case of ventricular storm in whom all the conventional methods for the management of arrhythmias were ineffective, and the case is managed effectively with thoracic epidural anesthesia (TEA). A 60-year-old male patient was admitted to recurrent ventricular arrhythmias. He received defibrillator shocks and other antiarrhythmic drugs, but he was not responding to the treatment. We managed to revert the ventricular arrhythmias to the sinus rhythm with TEA. Ventricular storm is a challenging complication, which can be managed effectively with timely diagnosis and effective management.
Collapse
|
121
|
Bhaskaran A, Tung R, Stevenson WG, Kumar S. Catheter Ablation of VT in Non-Ischaemic Cardiomyopathies: Endocardial, Epicardial and Intramural Approaches. Heart Lung Circ 2019; 28:84-101. [DOI: 10.1016/j.hlc.2018.10.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 10/03/2018] [Indexed: 02/06/2023]
|
122
|
Ashwini J, Durgesh M, Girish D. Thoracic Epidural Blockade for Ventricular Tachycardia Storm in Patient with Takotsubo Cardiomyopathy. Indian J Crit Care Med 2019; 23:529-532. [PMID: 31911746 PMCID: PMC6900886 DOI: 10.5005/jp-journals-10071-23282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Introduction Takotsubo cardiomyopathy is acute nonischemic myocardial dysfunction of the left and/or right ventricle which usually recovers completely within several days to weeks. We report a case where thoracic epidural analgesia was used to manage sympathetic storm in Takotsubo cardiomyopathy. Case description A 58-year-old diabetic female who was being treated for urinary tract infection and diabetic ketoacidosis for the past 2 days sustained an episode of pulseless ventricular tachycardia which was treated as per ACLS protocol. Troponin levels were raised, and 2D echocardiography was showing "Takotsubo cardiomyopathy" with typical apical ballooning of the left ventricle at the time of admission, and she was mechanically ventilated and receiving vasopressors. She continued to get episodes of ill-sustained ventricular tachycardia. In spite of conventional management, episodes of ill-sustained ventricular tachycardia continued, and hence, sympathetic blockade with thoracic epidural catheter was administered to control the ventricular tachycardia storm. Conclusion Sympathetic blockade to treat ventricular tachycardia is a promising approach which needs to be validated with more evidence. How to cite this article Ashwini J, Durgesh M, Girish D. Thoracic Epidural Blockade for Ventricular Tachycardia Storm in Patient with Takotsubo Cardiomyopathy. IJCCM 2019;23(11):529-532.
Collapse
Affiliation(s)
- Jahagirdar Ashwini
- Department of Critical Care Medicine, Sahyadri Super Speciality Hospital, Pune, Maharashtra, India
| | - Makwana Durgesh
- Department of Critical Care Medicine, Sahyadri Super Speciality Hospital, Pune, Maharashtra, India
| | - Date Girish
- Department of Critical Care Medicine, Sahyadri Super Speciality Hospital, Pune, Maharashtra, India
| |
Collapse
|
123
|
Geraghty L, Santangeli P, Tedrow UB, Shivkumar K, Kumar S. Contemporary Management of Electrical Storm. Heart Lung Circ 2019; 28:123-133. [DOI: 10.1016/j.hlc.2018.10.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 10/02/2018] [Indexed: 01/10/2023]
|
124
|
Chadda KR, Ajijola OA, Vaseghi M, Shivkumar K, Huang CLH, Jeevaratnam K. Ageing, the autonomic nervous system and arrhythmia: From brain to heart. Ageing Res Rev 2018; 48:40-50. [PMID: 30300712 DOI: 10.1016/j.arr.2018.09.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 08/21/2018] [Accepted: 09/30/2018] [Indexed: 02/08/2023]
Abstract
An ageing myocardium possesses significant electrophysiological alterations that predisposes the elderly patient to arrhythmic risk. Whilst these alterations are intrinsic to the cardiac myocytes, they are modulated by the cardiac autonomic nervous system (ANS) and consequently, ageing of the cardiac ANS is fundamental to the development of arrhythmias. A systems-based approach that incorporates the influence of the cardiac ANS could lead to better mechanistic understanding of how arrhythmogenic triggers and substrates interact spatially and temporally to produce sustained arrhythmia and why its incidence increases with age. Despite the existence of physiological oscillations of ANS activity on the heart, pathological oscillations can lead to defective activation and recovery properties of the myocardium. Such changes can be attributable to the decrease in functionality and structural alterations to ANS specific receptors in the myocardium with age. These altered ANS adaptive responses can occur either as a normal ageing process or accelerated in the presence of specific cardiac pathologies, such as genetic mutations or neurodegenerative conditions. Targeted intervention that seek to manipulate the ageing ANS influence on the myocardium may prove to be an efficacious approach for the management of arrhythmia in the ageing population.
Collapse
Affiliation(s)
- Karan R Chadda
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7AL, United Kingdom; Physiological Laboratory, University of Cambridge, Downing Street, Cambridge, CB2 3EG, United Kingdom
| | - Olujimi A Ajijola
- UCLA Cardiac Arrhythmia Center, UCLA Health System/David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Marmar Vaseghi
- UCLA Cardiac Arrhythmia Center, UCLA Health System/David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Kalyanam Shivkumar
- UCLA Cardiac Arrhythmia Center, UCLA Health System/David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Christopher L-H Huang
- Physiological Laboratory, University of Cambridge, Downing Street, Cambridge, CB2 3EG, United Kingdom; Department of Biochemistry, Hopkins Building, University of Cambridge, Cambridge, CB2 1QW, United Kingdom
| | - Kamalan Jeevaratnam
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7AL, United Kingdom; Physiological Laboratory, University of Cambridge, Downing Street, Cambridge, CB2 3EG, United Kingdom.
| |
Collapse
|
125
|
|
126
|
D'souza S, Saksena S, Butani M. Calming the Electrical Storm: Use of Stellate Ganglion Block and Thoracic Epidural in Intractable Ventricular Tachycardia. Indian J Crit Care Med 2018; 22:743-745. [PMID: 30405288 PMCID: PMC6201651 DOI: 10.4103/ijccm.ijccm_33_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Imbalances in the autonomic nervous system contribute to ventricular tachyarrhythmias. Sympatholysis with thoracic epidural analgesia or a stellate ganglion block attenuates myocardial excitability and the proarrhythmic effects of sympathetic hyperactivity.
Collapse
Affiliation(s)
- Supriya D'souza
- Department of Anaesthesiology, P D Hinduja Hospital and Medical Research Centre, Mumbai, Maharashtra, India
| | - Shalini Saksena
- Department of Anaesthesiology, P D Hinduja Hospital and Medical Research Centre, Mumbai, Maharashtra, India
| | - Manju Butani
- Department of Anaesthesiology, P D Hinduja Hospital and Medical Research Centre, Mumbai, Maharashtra, India
| |
Collapse
|
127
|
Shivkumar K, Ardell JL. Cardiac autonomic control in health and disease. J Physiol 2018; 594:3851-2. [PMID: 27417670 DOI: 10.1113/jp272580] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 04/19/2016] [Indexed: 12/16/2022] Open
Affiliation(s)
- Kalyanam Shivkumar
- UCLA Cardiac Arrhythmia Center and Neurocardiology Research Center of Excellence, Los Angeles, CA, USA
| | - Jeffrey L Ardell
- UCLA Cardiac Arrhythmia Center and Neurocardiology Research Center of Excellence, Los Angeles, CA, USA
| |
Collapse
|
128
|
Chauhan RA, Coote J, Allen E, Pongpaopattanakul P, Brack KE, Ng GA. Functional selectivity of cardiac preganglionic sympathetic neurones in the rabbit heart. Int J Cardiol 2018; 264:70-78. [PMID: 29657079 PMCID: PMC5968349 DOI: 10.1016/j.ijcard.2018.03.119] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 03/21/2018] [Accepted: 03/26/2018] [Indexed: 01/26/2023]
Abstract
BACKGROUND Studies have shown regional and functional selectivity of cardiac postganglionic neurones indicating there might exist a similar heterogeneity in spinal segmental preganglionic neurones, which requires further investigation. METHODS Right and left sympathetic chains were electrically stimulated from T6 to T1 in the innervated isolated rabbit heart preparation (n = 18). Sinus rate, left ventricular pressure, retrograde ventriculo-atrial conduction, monophasic action potential duration, effective refractory period, ventricular fibrillation threshold and electrical restitution were measured. RESULTS Right sympathetic stimulation had a greater influence on heart rate (T1-T2: right; 59.9 ± 6.0%, left; 41.1 ± 5.6% P < 0.001) and left stimulation had greater effects on left ventricular pressure (T1-T2: right; 20.7 ± 3.2%, left; 40.3 ± 5.4%, P < 0.01) and ventriculo-atrial conduction (T1-T2: right; -6.8 ± 1.1%, left; -15.5 ± 0.2%) at all levels, with greater effects at rostral levels (T1-T3). Left sympathetic stimulation caused shorter monophasic action potentials at the base (T4-T5: right; 119.3 ± 2.7 ms, left; 114.7 ± 2.5 ms. P < 0.05) and apex (T4-T5: right; 118.8 ± 1.2 ms, left; 114.6 ± 2.6 ms. P < 0.05), greater shortening of effective refractory period (T4-T5: right; -3.6 ± 1.3%, left; -7.7 ± 1.8%. P < 0.05), a steeper maximum slope of restitution (T4-T5 base: right; 1.3 ± 0.2, left; 1.8 ± 0.2. P < 0.01. T4-T5 apex: right; 1.0 ± 0.2, left; 1.6 ± 0.3. P < 0.05) and a greater decrease in ventricular fibrillation threshold (T4-T5: right; -22.3 ± 6.8%, left;-39.0 ± 1.7%), with dominant effects at caudal levels (T4-T6). CONCLUSIONS The preganglionic sympathetic efferent axons show functionally distinct pathways to the heart. The caudal segments (T4-T6) of the left sympathetic chain had a greater potential for arrhythmia generation and hence could pose a target for more focused clinical treatments for impairments in cardiac function.
Collapse
Affiliation(s)
- Reshma A Chauhan
- Department of Cardiovascular Sciences, University of Leicester, UK
| | - John Coote
- Department of Cardiovascular Sciences, University of Leicester, UK; University of Birmingham, UK
| | - Emily Allen
- Department of Cardiovascular Sciences, University of Leicester, UK
| | | | - Kieran E Brack
- Department of Cardiovascular Sciences, University of Leicester, UK
| | - G Andre Ng
- Department of Cardiovascular Sciences, University of Leicester, UK; NIHR Leicester Biomedical Research Centre, Leicester, UK; University Hospitals of Leicester NHS Trust, Leicester, UK.
| |
Collapse
|
129
|
Abstract
BACKGROUND Bilateral thoracoscopic stellectomy has antiarrhythmic effects, but the procedure is invasive with associated morbidity. Sympathetic nerves from both stellate ganglia form the deep cardiac plexus (CP) in the aortopulmonary window, anterior to the trachea. OBJECTIVE The purpose of this study was to demonstrate a novel and minimally invasive transtracheal approach to block the CP in porcine models. METHODS In 12 Yorkshire pigs, right (RSG) and left (LSG) stellate ganglia were electrically stimulated and sympathetic baseline response recorded (hemodynamic parameters and T-wave pattern). Aortopulmonary window was accessed transtracheally with endobronchial ultrasound guidance, and local stimulation of CP confirmed the location. Injection of 1% lidocaine (n = 10) or saline solution (n = 2) was performed, and RSG and LSG responses were re-evaluated and compared with baseline. RESULTS Transtracheal lidocaine injection into the CP successfully blocked bilateral sympathetic induced changes (%) in T-wave amplitude (282.8% ± 152.2% vs 20.1% ± 16.5%; P <.001 [LSG]; 338.9% ± 189.8% vs 28% ± 18.3%; P <.001 [RSG]), Tp-Te interval (87.9% ± 37.2% vs 6.9% ± 6.7%; P <.001 [LSG]; 32.6% ± 27.4% vs 6.9% ± 4.7%; P <.035 [RSG]), and left ventricular dP/dTmax (148.3% ± 108.5% vs 16.5% ± 13.4%; P <.001 [LSG]; 243.1% ± 105.2% vs 19.0% ± 12.4%; P <.001 [RSG]). RSG-induced elevations of systemic, left ventricular, and pulmonary arterial pressures were blocked by lidocaine injection into CP (P <.005 for all comparisons). Stellate ganglia response was not affected in sham studies. No complications were observed during the procedures. CONCLUSION Minimally invasive transtracheal injection of lidocaine into the CP blocked the sympathetic response of either RSG and LSG. Transtracheal assessment of CP may allow for minimally invasive and selective ablation of cardiac innervation, extending the cardiac sympathectomy denervation benefits to those not suitable for surgery.
Collapse
|
130
|
Zhang D, Tu H, Wadman MC, Li YL. Substrates and potential therapeutics of ventricular arrhythmias in heart failure. Eur J Pharmacol 2018; 833:349-356. [PMID: 29940156 DOI: 10.1016/j.ejphar.2018.06.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/30/2018] [Accepted: 06/19/2018] [Indexed: 12/30/2022]
Abstract
Heart failure (HF) is a clinical syndrome characterized by ventricular contractile dysfunction. About 50% of death in patients with HF are due to fetal ventricular arrhythmias including ventricular tachycardia and ventricular fibrillation. Understanding ventricular arrhythmic substrates and discovering effective antiarrhythmic interventions are extremely important for improving the prognosis of patients with HF and reducing its mortality. In this review, we discussed ventricular arrhythmic substrates and current clinical therapeutics for ventricular arrhythmias in HF. Base on the fact that classic antiarrhythmic drugs have the limited efficacy, side effects, and proarrhythmic potentials, we also updated some therapeutic strategies for the development of potential new antiarrhythmic interventions for patients with HF.
Collapse
Affiliation(s)
- Dongze Zhang
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Huiyin Tu
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Michael C Wadman
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Yu-Long Li
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
131
|
Mayo EC, Lloren NV. Effectiveness of stellate ganglion blockade on refractory ventricular arrhythmias: a systematic review protocol. JBI DATABASE OF SYSTEMATIC REVIEWS AND IMPLEMENTATION REPORTS 2018; 16:1161-1166. [PMID: 29762310 DOI: 10.11124/jbisrir-2017-003491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
REVIEW QUESTION The question of this review is: what is the effectiveness of stellate ganglion blockade on refractory ventricular arrhythmias in patients 18 years or over?
Collapse
Affiliation(s)
- Elizabeth C Mayo
- The Center for Translational Research: a Joanna Briggs Institute Centre of Excellence
| | | |
Collapse
|
132
|
Meng L, Shivkumar K, Ajijola O. Autonomic Regulation and Ventricular Arrhythmias. CURRENT TREATMENT OPTIONS IN CARDIOVASCULAR MEDICINE 2018; 20:38. [DOI: 10.1007/s11936-018-0633-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
133
|
Markman TM, McBride DA, Liang JJ. Catheter Ablation for Ventricular Tachycardia in Patients with Structural Heart Disease. US CARDIOLOGY REVIEW 2018. [DOI: 10.15420/usc.2017:28:3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Ventricular tachycardia is a potentially fatal arrhythmia that occurs most frequently in patients with structural heart disease. Acute and long- term management can be complex, requiring an integrated approach with multiple therapeutic modalities including antiarrhythmic drugs, implantable cardioverter defibrillators, and catheter ablation. Each of these options has a role in management of ventricular tachycardia and are generally used in combination. It is essential to be aware that each approach has potential deleterious consequences that must be balanced while establishing a treatment strategy. Catheter ablation for ventricular tachycardia is performed with increasing frequency with rapidly evolving techniques. In this review, we discuss the acute and long-term management of ventricular tachycardia with a focus on techniques and evidence for catheter ablation.
Collapse
|
134
|
Bradfield JS, Ajijola OA, Vaseghi M, Shivkumar K. Mechanisms and management of refractory ventricular arrhythmias in the age of autonomic modulation. Heart Rhythm 2018; 15:1252-1260. [PMID: 29454137 DOI: 10.1016/j.hrthm.2018.02.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Indexed: 01/21/2023]
Abstract
Ventricular arrhythmias are responsible for hundreds of thousands of deaths every year. Catheter ablation of ventricular tachycardia (VT) is an essential component of the management of these life-threatening arrhythmias. However, in many patients, despite medical and interventional therapy, VT recurs. Furthermore, some VT substrates (mid-myocardial, left ventricular summit, and intraseptal) are not easily targeted because of limitations of currently available technology. In certain clinical settings, ventricular fibrillation (VF) episodes that have premature ventricular contraction triggers can also be targeted with catheter ablation. However, in most patients there is no clear VF trigger to target, and therefore polymorphic VT or VF cannot be adequately treated with catheter ablation. The autonomic nervous system plays a crucial role in all aspects of ventricular arrhythmias, yet interventions specific to the cardiac neuronal axis have been largely underutilized. This underutilization has been most pronounced in patients with structural heart disease. However, there is a growing body of literature on the physiology and pathophysiology of cardiac neural control and the benefits of neuromodulation to treat refractory ventricular arrhythmias in these patients. We present case-based examples of neuromodulatory interventions currently available and a review of the literature supporting their use.
Collapse
Affiliation(s)
- Jason S Bradfield
- UCLA Cardiac Arrhythmia Center, David Geffen School of Medicine at UCLA, Los Angeles, California.
| | - Olujimi A Ajijola
- UCLA Cardiac Arrhythmia Center, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Marmar Vaseghi
- UCLA Cardiac Arrhythmia Center, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Kalyanam Shivkumar
- UCLA Cardiac Arrhythmia Center, David Geffen School of Medicine at UCLA, Los Angeles, California
| |
Collapse
|
135
|
Wakefield BJ, Mehta AR. Transapical Ablation of Symptomatic Premature Ventricular Contractions in a Patient With Mechanical Mitral and Aortic Valves. J Cardiothorac Vasc Anesth 2018; 32:2700-2704. [PMID: 29395817 DOI: 10.1053/j.jvca.2017.12.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Indexed: 11/11/2022]
Affiliation(s)
| | - Anand R Mehta
- Anesthesiology Institute, Department of Cardiothoracic Anesthesiology, Cleveland Clinic, Cleveland, OH
| |
Collapse
|
136
|
Montgomery ML, Oloomi M, El-Eshmawi A, Adams DH. Electrical Storm After Coronary Artery Bypass Grafting: Diagnosing and Treating the Trigger. J Cardiothorac Vasc Anesth 2018; 33:497-500. [PMID: 29548904 DOI: 10.1053/j.jvca.2018.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Indexed: 01/10/2023]
Affiliation(s)
| | - Mehdi Oloomi
- Department of Anesthesiology, Mount Sinai Medical Center, New York, NY
| | - Ahmed El-Eshmawi
- Department of Cardiothoracic Surgery, Mount Sinai Medical Center, New York, NY
| | - David H Adams
- Department of Cardiothoracic Surgery, Mount Sinai Medical Center, New York, NY
| |
Collapse
|
137
|
Autonomic Control of the Heart. Neuromodulation 2018. [DOI: 10.1016/b978-0-12-805353-9.00104-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
138
|
Neuromodulation Therapies for Cardiac Disease. Neuromodulation 2018. [DOI: 10.1016/b978-0-12-805353-9.00129-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
139
|
Tang PT, Do DH, Li A, Boyle NG. Team Management of the Ventricular Tachycardia Patient. Arrhythm Electrophysiol Rev 2018; 7:238-246. [PMID: 30588311 DOI: 10.15420/aer.2018.37.2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 08/03/2018] [Indexed: 12/16/2022] Open
Abstract
Ventricular tachycardia is a common arrhythmia in patients with structural heart disease and heart failure, and is now seen more frequently as these patients survive longer with modern therapies. In addition, these patients often have multiple comorbidities. While anti-arrhythmic drug therapy, implantable cardioverter-defibrillator implantation and ventricular tachycardia ablation are the mainstay of therapy, well managed by the cardiac electrophysiologist, there are many other facets in the care of these patients, such as heart failure management, treatment of comorbidities and anaesthetic interventions, where the expertise of other specialists is essential for optimal patient care. A coordinated team approach is therefore essential to achieve the best possible outcomes for these complex patients.
Collapse
Affiliation(s)
- Pok Tin Tang
- Cardiology Department, John Radcliffe Hospital Oxford, UK
| | - Duc H Do
- UCLA Cardiac Arrhythmia Center, UCLA Health System, David Geffen School of Medicine at UCLA Los Angeles, California, USA
| | - Anthony Li
- Cardiology Department, St George's University Hospital London, UK
| | - Noel G Boyle
- UCLA Cardiac Arrhythmia Center, UCLA Health System, David Geffen School of Medicine at UCLA Los Angeles, California, USA
| |
Collapse
|
140
|
Huang WA, Boyle NG, Vaseghi M. Cardiac Innervation and the Autonomic Nervous System in Sudden Cardiac Death. Card Electrophysiol Clin 2017; 9:665-679. [PMID: 29173409 PMCID: PMC5777242 DOI: 10.1016/j.ccep.2017.08.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Neural remodeling in the autonomic nervous system contributes to sudden cardiac death. The fabric of cardiac excitability and propagation is controlled by autonomic innervation. Heart disease predisposes to malignant ventricular arrhythmias by causing neural remodeling at the level of the myocardium, the intrinsic cardiac ganglia, extracardiac intrathoracic sympathetic ganglia, extrathoracic ganglia, spinal cord, and the brainstem, as well as the higher centers and the cortex. Therapeutic strategies at each of these levels aim to restore the balance between the sympathetic and parasympathetic branches. Understanding this complex neural network will provide important therapeutic insights into the treatment of sudden cardiac death.
Collapse
Affiliation(s)
- William A Huang
- UCLA Cardiac Arrhythmia Center, David Geffen School of Medicine at UCLA, 100 MP, Suite 660, Los Angeles, CA 90095, USA
| | - Noel G Boyle
- UCLA Cardiac Arrhythmia Center, David Geffen School of Medicine at UCLA, 100 MP, Suite 660, Los Angeles, CA 90095, USA
| | - Marmar Vaseghi
- UCLA Cardiac Arrhythmia Center, David Geffen School of Medicine at UCLA, 100 MP, Suite 660, Los Angeles, CA 90095, USA.
| |
Collapse
|
141
|
Do DH, Bradfield J, Ajijola OA, Vaseghi M, Le J, Rahman S, Mahajan A, Nogami A, Boyle NG, Shivkumar K. Thoracic Epidural Anesthesia Can Be Effective for the Short-Term Management of Ventricular Tachycardia Storm. J Am Heart Assoc 2017; 6:JAHA.117.007080. [PMID: 29079570 PMCID: PMC5721785 DOI: 10.1161/jaha.117.007080] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Background Novel therapies aimed at modulating the autonomic nervous system, including thoracic epidural anesthesia (TEA), have been shown in small case series to be beneficial in treating medically refractory ventricular tachycardia (VT) storm. However, it is not clear when these options should be considered. We reviewed a multicenter experience with TEA in the management of VT storm to determine its optimal therapeutic use. Methods and Results Data for 11 patients in whom TEA was instituted for VT storm between July 2005 and March 2016 were reviewed to determine the clinical characteristics, outcomes, and role in management. The clinical presentation was incessant VT in 7 (64%), with polymorphic VT in 3 (27%) and monomorphic VT in 8 (73%). The underlying conditions were nonischemic cardiomyopathy in 5 (45%), ischemic cardiomyopathy in 3 (27%), and hypertrophic cardiomyopathy, Brugada syndrome, and cardiac lipoma in 1 (9%) each. Five (45%) had a complete and 1 (9%) had a partial response to TEA; 4 of the complete responders had incessant VT. All 4 patients with a documented response to deep sedation demonstrated a complete response to TEA. Conclusions More than half of the patients with VT storm in our series responded to TEA. TEA may be effective and should be considered as a therapeutic option in patients with VT storm, especially incessant VT, who are refractory to initial management. Improvement in VT burden with deep sedation may suggest that sympathoexcitation plays a key role in perpetuating VT and predict a positive response to TEA.
Collapse
Affiliation(s)
- Duc H Do
- UCLA Cardiac Arrhythmia Center and Neurocardiology Center of Excellence UCLA Health System David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Jason Bradfield
- UCLA Cardiac Arrhythmia Center and Neurocardiology Center of Excellence UCLA Health System David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Olujimi A Ajijola
- UCLA Cardiac Arrhythmia Center and Neurocardiology Center of Excellence UCLA Health System David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Marmar Vaseghi
- UCLA Cardiac Arrhythmia Center and Neurocardiology Center of Excellence UCLA Health System David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - John Le
- UCLA Department of Anesthesiology, UCLA Health System, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Siamak Rahman
- UCLA Department of Anesthesiology, UCLA Health System, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Aman Mahajan
- UCLA Department of Anesthesiology, UCLA Health System, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | | | - Noel G Boyle
- UCLA Cardiac Arrhythmia Center and Neurocardiology Center of Excellence UCLA Health System David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Kalyanam Shivkumar
- UCLA Cardiac Arrhythmia Center and Neurocardiology Center of Excellence UCLA Health System David Geffen School of Medicine at UCLA, Los Angeles, CA
| |
Collapse
|
142
|
Japundžić-Žigon N, Šarenac O, Lozić M, Vasić M, Tasić T, Bajić D, Kanjuh V, Murphy D. Sudden death: Neurogenic causes, prediction and prevention. Eur J Prev Cardiol 2017; 25:29-39. [PMID: 29053016 PMCID: PMC5724572 DOI: 10.1177/2047487317736827] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Sudden death is a major health problem all over the world. The most common causes of sudden death are cardiac but there are also other causes such as neurological conditions (stroke, epileptic attacks and brain trauma), drugs, catecholamine toxicity, etc. A common feature of all these diverse pathologies underlying sudden death is the imbalance of the autonomic nervous system control of the cardiovascular system. This paper reviews different pathologies underlying sudden death with emphasis on the autonomic nervous system contribution, possibilities of early diagnosis and prognosis of sudden death using various clinical markers including autonomic markers (heart rate variability and baroreflex sensitivity), present possibilities of management and promising prevention by electrical neuromodulation.
Collapse
Affiliation(s)
| | | | - Maja Lozić
- 1 Faculty of Medicine, University of Belgrade, Serbia
| | - Marko Vasić
- 1 Faculty of Medicine, University of Belgrade, Serbia
| | - Tatjana Tasić
- 1 Faculty of Medicine, University of Belgrade, Serbia
| | - Dragana Bajić
- 2 Faculty of Technical Sciences, University of Novi Sad, Serbia
| | - Vladimir Kanjuh
- 3 Department of Medical Sciences, Serbian Academy of Sciences and Arts, Serbia
| | - David Murphy
- 4 School of Clinical Sciences, University of Bristol, UK
| |
Collapse
|
143
|
Muser D, Liang JJ, Santangeli P. Electrical Storm in Patients with Implantable Cardioverter-defibrillators: A Practical Overview. J Innov Card Rhythm Manag 2017; 8:2853-2861. [PMID: 32477756 PMCID: PMC7252660 DOI: 10.19102/icrm.2017.081002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 07/30/2017] [Indexed: 12/17/2022] Open
Abstract
Electrical storm (ES) is an increasingly common medical emergency characterized by clustered episodes of sustained ventricular arrhythmias (VAs) that lead to repeated appropriate implantable cardioverter-defibrillator (ICD) therapies. A diagnosis of ES can be made with the occurrence of three or more sustained episodes of VAs, or of three or more appropriate ICD therapies within 24 hours in patients with implanted devices. ES is associated with poor outcomes in patients with structural heart disease, particularly those with severe left ventricular dysfunction. In large clinical trials involving patients with ICDs for primary and secondary prevention, ES appears to be a predictor of cardiac death, with notably higher rates of mortality soon after the event. ES management is challenging and requires special medical attention with accurate patient risk stratification and a multidisciplinary approach that includes the use of pharmacologic therapies such as antiarrhythmic drugs (AADs) and interventional approaches like catheter ablation, surgical ablation, or sympathetic neuromodulation. Initial management involves determining and addressing the underlying ischemia, any electrolyte imbalances, and/or other causative factors. Hemodynamic support needs to be considered in high-risk patients with unstable VAs or those with severe comorbidities such as low left ventricular ejection fraction, advanced New York Heart Association class, and/or chronic pulmonary disease. Following the acute phase of ES, treatment should shift towards maximizing therapeutic efforts to address heart failure, performing revascularization, and preventing subsequent VAs. In the present manuscript, we offer an overview of the most relevant clinical aspects of ES with regard to novel therapeutic strategies.
Collapse
Affiliation(s)
- Daniele Muser
- Electrophysiology Section, Cardiovascular Division, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Jackson J Liang
- Electrophysiology Section, Cardiovascular Division, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Pasquale Santangeli
- Electrophysiology Section, Cardiovascular Division, Hospital of the University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
144
|
Yoshie K, Ajijola OA. Managing ventricular arrhythmias after failed catheter ablation: Interrupting the reentrant loop of repeat ablation. Heart Rhythm 2017; 15:63-64. [PMID: 28958931 DOI: 10.1016/j.hrthm.2017.09.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Indexed: 11/18/2022]
Affiliation(s)
- Koji Yoshie
- UCLA Cardiac Arrhythmia Center, UCLA Neurocardiology Center for Excellence, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Olujimi A Ajijola
- UCLA Cardiac Arrhythmia Center, UCLA Neurocardiology Center for Excellence, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California.
| |
Collapse
|
145
|
Ajijola OA, Hoover DB, Simerly TM, Brown TC, Yanagawa J, Biniwale RM, Lee JM, Sadeghi A, Khanlou N, Ardell JL, Shivkumar K. Inflammation, oxidative stress, and glial cell activation characterize stellate ganglia from humans with electrical storm. JCI Insight 2017; 2:94715. [PMID: 28931760 DOI: 10.1172/jci.insight.94715] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 08/08/2017] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Neuronal remodeling in human heart disease is not well understood. METHODS Stellate ganglia from patients with cardiomyopathy (CMY) and refractory ventricular arrhythmias undergoing cardiac sympathetic denervation (n = 8), and from organ donors with normal hearts (n = 8) collected at the time of organ procurement were compared. Clinical data on all subjects were reviewed. Electron microscopy (EM), histologic, and immunohistochemical assessments of neurotransmitter profiles, glial activation and distribution, and lipofuscin deposition, a marker of oxidative stress, were quantified. RESULTS In CMY specimens, lipofuscin deposits were larger, and present in more neurons (26.3% ± 6.3% vs. 16.7% ± 7.6%, P < 0.043), than age-matched controls. EM analysis revealed extensive mitochondrial degeneration in CMY specimens. T cell (CD3+) infiltration was identified in 60% of the CMY samples, with one case having large inflammatory nodules, while none were identified in controls. Myeloperoxidase-immunoreactive neutrophils were also identified at parenchymal sites distinct from inflammatory foci in CMY ganglia, but not in controls. The adrenergic phenotype of pathologic samples revealed a decrease in tyrosine hydroxylase staining intensity compared with controls. Evaluation of cholinergic phenotype by staining for the vesicular acetylcholine transporter revealed a low but comparable number of cholinergic neurons in ganglia from both groups and demonstrated that preganglionic cholinergic innervation was maintained in CMY ganglia. S100 staining (a glial cell marker) demonstrated no differences in glial distribution and relationship to neurons; however, glial activation demonstrated by glial fibrillary acidic protein (GFAP) staining was substantially increased in pathologic specimens compared with controls. CONCLUSIONS Stellate ganglia from patients with CMY and arrhythmias demonstrate inflammation, neurochemical remodeling, oxidative stress, and satellite glial cell activation. These changes likely contribute to excessive and dysfunctional efferent sympathetic tone, and provide a rationale for sympathectomy as a treatment for arrhythmias in this population. FUNDING This work was made possible by support from NIH grants HL125730 to OAA, GM107949 to DBH, and HL084261 and OT2OD023848 to KS.
Collapse
Affiliation(s)
- Olujimi A Ajijola
- UCLA Cardiac Arrhythmia Center and.,UCLA Neurocardiology Research Center of Excellence, University of California, Los Angeles, California, USA
| | - Donald B Hoover
- Department of Biomedical Sciences.,Center for Inflammation, Infectious Disease, and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA. Departments of
| | - Thomas M Simerly
- Department of Biomedical Sciences.,Center for Inflammation, Infectious Disease, and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA. Departments of
| | - T Christopher Brown
- Department of Biomedical Sciences.,Center for Inflammation, Infectious Disease, and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA. Departments of
| | | | | | | | | | - Negar Khanlou
- Pathology, University of California, Los Angeles, California, USA
| | - Jeffrey L Ardell
- UCLA Cardiac Arrhythmia Center and.,UCLA Neurocardiology Research Center of Excellence, University of California, Los Angeles, California, USA
| | - Kalyanam Shivkumar
- UCLA Cardiac Arrhythmia Center and.,UCLA Neurocardiology Research Center of Excellence, University of California, Los Angeles, California, USA
| |
Collapse
|
146
|
Kopecky K, Afzal A, Felius J, Hall SA, Mendez JC, Assar M, Mason DP, Bindra AS. Bilateral sympathectomy for treatment of refractory ventricular tachycardia. PACING AND CLINICAL ELECTROPHYSIOLOGY: PACE 2017; 41:93-95. [PMID: 28851062 DOI: 10.1111/pace.13164] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/06/2017] [Accepted: 07/30/2017] [Indexed: 12/26/2022]
Abstract
Ventricular tachycardia (VT) commonly occurs in patients with ischemic or nonischemic cardiomyopathy and requires antiarrhythmic drugs, ablation, or advanced circulatory support. However, life-threatening VT may be refractory to these therapies, and may cause frequent implantable cardioverter defibrillator (ICD) discharges. Left cardiac sympathetic denervation reduces the occurrence of these fatal arrhythmias by inhibiting the sympathetic outflow to the cardiac tissue. We present a 69-year-old man with nonischemic cardiomyopathy, life-threatening VT, and hemodynamic instability with numerous ICD discharges, who remained refractory to antiarrhythmic drug therapy and ablation attempts. He was effectively treated with bilateral cardiac sympathectomy. Six months later, he remained free of VT with no ICD discharges.
Collapse
Affiliation(s)
- Kathleen Kopecky
- Division of Cardiology, Baylor University Medical Center, Dallas, Texas
| | - Aasim Afzal
- Division of Cardiology, Baylor University Medical Center, Dallas, Texas
| | - Joost Felius
- Center for Advanced Heart and Lung Disease, Baylor University Medical Center, Dallas, Texas
| | - Shelley A Hall
- Division of Cardiology, Baylor University Medical Center, Dallas, Texas.,Center for Advanced Heart and Lung Disease, Baylor University Medical Center, Dallas, Texas
| | - Jose C Mendez
- Division of Cardiology, Baylor University Medical Center, Dallas, Texas.,Center for Advanced Heart and Lung Disease, Baylor University Medical Center, Dallas, Texas
| | - Manish Assar
- Division of Cardiology, Baylor University Medical Center, Dallas, Texas.,Center for Advanced Heart and Lung Disease, Baylor University Medical Center, Dallas, Texas
| | - David P Mason
- Center for Advanced Heart and Lung Disease, Baylor University Medical Center, Dallas, Texas
| | - Amarinder S Bindra
- Division of Cardiology, Baylor University Medical Center, Dallas, Texas.,Center for Advanced Heart and Lung Disease, Baylor University Medical Center, Dallas, Texas
| |
Collapse
|
147
|
Abstract
Ventricular arrhythmias are a significant cause of morbidity and mortality in patients with ischemic structural heart disease. Endocardial and epicardial mapping strategies include scar characterization channel identification, and recording and ablation of late potentials and local abnormal ventricular activities. Catheter ablation along with new technology and techniques of bipolar ablation, needle catheter, and autonomic modulation may increase efficacy in difficult to ablate ventricular arrhythmias. Catheter ablation of ventricular arrhythmias seem to confer mortality and morbidity benefits in patients with ischemic heart disease.
Collapse
Affiliation(s)
- Ronald Lo
- Electrophysiology and Arrhythmia Service, Veterans Administration Medical Center, Loma Linda University, Mail Code 111C, 11201 Benton Street, Loma Linda, CA 92357, USA
| | - Karin K M Chia
- Department of Cardiology, Royal North Shore Hospital, The University of Sydney, Level 5, Acute Service Building, St Leonards, Sydney, North South Wales 2065, Australia
| | - Henry H Hsia
- Arrhythmia Service, Veterans Administration Medical Center-San Francisco, MC 111C-6, 4150 Clement Street, San Francisco, CA 94121, USA.
| |
Collapse
|
148
|
Percutaneous extracorporeal membrane oxygenation in electrical storm: five case reports addressing efficacy, transferring allowance or radiofrequency ablation support. EUROPEAN HEART JOURNAL-ACUTE CARDIOVASCULAR CARE 2017; 7:484-489. [DOI: 10.1177/2048872617730036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Extracorporeal membrane oxygenation systems have undergone rapid technological improvements and are now feasible options for medium-term support of severe cardiac or pulmonary failure. We report five cases of electrical storm that was rescued by the insertion of peripheral veno-arterial extracorporeal membrane oxygenation systems. This device could help to restore systemic circulation as well as permitting organ perfusion in patients with cardiogenic shock in relation to electrical storm thus achieving greater electrical stability. Also, in some cases extracorporeal membrane oxygenation support could facilitate electrophysiology study.
Collapse
|
149
|
Vaseghi M, Barwad P, Malavassi Corrales FJ, Tandri H, Mathuria N, Shah R, Sorg JM, Gima J, Mandal K, Sàenz Morales LC, Lokhandwala Y, Shivkumar K. Cardiac Sympathetic Denervation for Refractory Ventricular Arrhythmias. J Am Coll Cardiol 2017. [PMID: 28641796 DOI: 10.1016/j.jacc.2017.04.035] [Citation(s) in RCA: 227] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Cardiac sympathetic denervation (CSD) has been shown to reduce the burden of implantable cardioverter-defibrillator (ICD) shocks in small series of patients with structural heart disease (SHD) and recurrent ventricular tachyarrhythmias (VT). OBJECTIVES This study assessed the value of CSD and the characteristics associated with outcomes in this population. METHODS Patients with SHD who underwent CSD for refractory VT or VT storm at 5 international centers were analyzed by the International Cardiac Sympathetic Denervation Collaborative Group. Kaplan-Meier analysis was used to estimate freedom from ICD shock, heart transplantation, and death. Cox proportional hazards models were used to analyze variables associated with ICD shock recurrence and mortality after CSD. RESULTS Between 2009 and 2016, 121 patients (age 55 ± 13 years, 26% female, mean ejection fraction of 30 ± 13%) underwent left or bilateral CSD. One-year freedom from sustained VT/ICD shock and ICD shock, transplant, and death were 58% and 50%, respectively. CSD reduced the burden of ICD shocks from a mean of 18 ± 30 (median 10) in the year before study entry to 2.0 ± 4.3 (median 0) at a median follow-up of 1.1 years (p < 0.01). On multivariable analysis, pre-procedure New York Heart Association functional class III and IV heart failure and longer VT cycle lengths were associated with recurrent ICD shocks, whereas advanced New York Heart Association functional class, longer VT cycle lengths, and a left-sided-only procedure predicted the combined endpoint of sustained VT/ICD shock recurrence, death, and transplantation. Of the 120 patients taking antiarrhythmic medications before CSD, 39 (32%) no longer required them at follow-up. CONCLUSIONS CSD decreased sustained VT and ICD shock recurrence in patients with refractory VT. Characteristics independently associated with recurrence and mortality were advanced heart failure, VT cycle length, and a left-sided-only procedure.
Collapse
Affiliation(s)
- Marmar Vaseghi
- UCLA Cardiac Arrhythmia Center, University of California, Los Angeles, California; Neurocardiology Research Center of Excellence at UCLA, Los Angeles, California.
| | - Parag Barwad
- Holy Family Heart Institute, Holy Family Hospital, Mumbai, India
| | | | - Harikrishna Tandri
- Johns Hopkins Heart and Vascular Institute, Johns Hopkins University, Baltimore, Maryland
| | - Nilesh Mathuria
- Baylor St. Luke's Medical Center/Texas Heart Institute, Baylor College of Medicine, Houston, Texas
| | - Rushil Shah
- Holy Family Heart Institute, Holy Family Hospital, Mumbai, India
| | - Julie M Sorg
- UCLA Cardiac Arrhythmia Center, University of California, Los Angeles, California
| | - Jean Gima
- UCLA Cardiac Arrhythmia Center, University of California, Los Angeles, California
| | - Kaushik Mandal
- Johns Hopkins Heart and Vascular Institute, Johns Hopkins University, Baltimore, Maryland
| | - Luis C Sàenz Morales
- Centro Internacional de Arritmias, Fundacion Cardio Infantil-Instituto de Cardiologia, Bogota, Colombia
| | - Yash Lokhandwala
- Holy Family Heart Institute, Holy Family Hospital, Mumbai, India
| | - Kalyanam Shivkumar
- UCLA Cardiac Arrhythmia Center, University of California, Los Angeles, California; Neurocardiology Research Center of Excellence at UCLA, Los Angeles, California
| |
Collapse
|
150
|
Cardona-Guarache R, Padala SK, Velazco-Davila L, Cassano A, Abbate A, Ellenbogen KA, Koneru JN. Stellate ganglion blockade and bilateral cardiac sympathetic denervation in patients with life-threatening ventricular arrhythmias. J Cardiovasc Electrophysiol 2017; 28:903-908. [DOI: 10.1111/jce.13249] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/17/2017] [Accepted: 05/02/2017] [Indexed: 11/28/2022]
Affiliation(s)
| | - Santosh K. Padala
- Division of Cardiology; Virginia Commonwealth University; Richmond Virginia USA
| | - Luis Velazco-Davila
- Department of Cardiac Surgery; Virginia Commonwealth University; Richmond Virginia USA
| | - Anthony Cassano
- Department of Cardiac Surgery; Virginia Commonwealth University; Richmond Virginia USA
| | - Antonio Abbate
- Division of Cardiology; Virginia Commonwealth University; Richmond Virginia USA
| | | | - Jayanthi N. Koneru
- Division of Cardiology; Virginia Commonwealth University; Richmond Virginia USA
| |
Collapse
|