101
|
Kalafati L, Mitroulis I, Verginis P, Chavakis T, Kourtzelis I. Neutrophils as Orchestrators in Tumor Development and Metastasis Formation. Front Oncol 2020; 10:581457. [PMID: 33363012 PMCID: PMC7758500 DOI: 10.3389/fonc.2020.581457] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 11/10/2020] [Indexed: 12/16/2022] Open
Abstract
Several lines of clinical and experimental evidence suggest that immune cell plasticity is a central player in tumorigenesis, tumor progression, and metastasis formation. Neutrophils are able to promote or inhibit tumor growth. Through their interaction with tumor cells or their crosstalk with other immune cell subsets in the tumor microenvironment, they modulate tumor cell survival. Here, we summarize current knowledge with regards to the mechanisms that underlie neutrophil–mediated effects on tumor establishment and metastasis development. We also discuss the tumor-mediated effects on granulopoiesis and neutrophil precursors in the bone marrow and the involvement of neutrophils in anti-tumor therapeutic modalities.
Collapse
Affiliation(s)
- Lydia Kalafati
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.,National Center for Tumor Diseases, Partner Site Dresden and German Cancer Research Center, Heidelberg, Germany
| | - Ioannis Mitroulis
- National Center for Tumor Diseases, Partner Site Dresden and German Cancer Research Center, Heidelberg, Germany.,Department of Hematology and Laboratory of Molecular Hematology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Panayotis Verginis
- University of Crete, School of Medicine, Heraklion, Greece.,Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece
| | - Triantafyllos Chavakis
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Ioannis Kourtzelis
- York Biomedical Research Institute, Hull York Medical School, University of York, York, United Kingdom
| |
Collapse
|
102
|
Garg SK, Welsh EA, Fang B, Hernandez YI, Rose T, Gray J, Koomen JM, Berglund A, Mulé JJ, Markowitz J. Multi-Omics and Informatics Analysis of FFPE Tissues Derived from Melanoma Patients with Long/Short Responses to Anti-PD1 Therapy Reveals Pathways of Response. Cancers (Basel) 2020; 12:cancers12123515. [PMID: 33255891 PMCID: PMC7768436 DOI: 10.3390/cancers12123515] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 11/21/2020] [Indexed: 01/14/2023] Open
Abstract
Simple Summary Immune based therapies have benefited many melanoma patients, but many patients still do not respond. This study analyzes biospecimens obtained from patients undergoing a type of immune based therapy called anti-PD-1 to understand mechanisms of response and resistance to this treatment. The operational definition of good response utilized in this investigation permitted us to examine the biochemical pathways that are facilitating anti-PD-1 responses independent of prior therapies received by patients. Currently, there are no clinically available tests to reliably test for the outcome of patients treated with anti-PD-1 therapy. The purpose of this study was to facilitate the development of prospective biomarker-directed trials to guide therapy, as even though the side effect profile is favorable for anti-PD-1 therapy, some patients do not respond to therapy with significant toxicity. Each patient may require testing for the pathways upregulated in the tumor to predict optimal benefit to anti-PD-1 treatment. Abstract Anti-PD-1 based immune therapies are thought to be dependent on antigen processing and presentation mechanisms. To characterize the immune-dependent mechanisms that predispose stage III/IV melanoma patients to respond to anti-PD-1 therapies, we performed a multi-omics study consisting of expression proteomics and targeted immune-oncology-based mRNA sequencing. Formalin-fixed paraffin-embedded tissue samples were obtained from stage III/IV patients with melanoma prior to anti-PD-1 therapy. The patients were first stratified into poor and good responders based on whether their tumors had or had not progressed while on anti-PD-1 therapy for 1 year. We identified 263 protein/gene candidates that displayed differential expression, of which 223 were identified via proteomics and 40 via targeted-mRNA analyses. The downstream analyses of expression profiles using MetaCore software demonstrated an enrichment of immune system pathways involved in antigen processing/presentation and cytokine production/signaling. Pathway analyses showed interferon (IFN)-γ-mediated signaling via NF-κB and JAK/STAT pathways to affect immune processes in a cell-specific manner and to interact with the inducible nitric oxide synthase. We review these findings within the context of available literature on the efficacy of anti-PD-1 therapy. The comparison of good and poor responders, using efficacy of PD-1-based therapy at 1 year, elucidated the role of antigen presentation in mediating response or resistance to anti-PD-1 blockade.
Collapse
Affiliation(s)
- Saurabh K. Garg
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; (S.K.G.); (Y.I.H.)
| | - Eric A. Welsh
- Biostatistics and Bioinformatics Shared Resource, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA;
| | - Bin Fang
- Proteomics & Metabolomics Core, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; (B.F.); (J.M.K.)
| | - Yuliana I. Hernandez
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; (S.K.G.); (Y.I.H.)
| | - Trevor Rose
- Department of Radiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA;
- Department of Oncologic Sciences, University of South Florida Health Morsani College of Medicine, Tampa, FL 33620, USA; (J.G.); (A.B.); (J.J.M.)
| | - Jhanelle Gray
- Department of Oncologic Sciences, University of South Florida Health Morsani College of Medicine, Tampa, FL 33620, USA; (J.G.); (A.B.); (J.J.M.)
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - John M. Koomen
- Proteomics & Metabolomics Core, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; (B.F.); (J.M.K.)
- Department of Oncologic Sciences, University of South Florida Health Morsani College of Medicine, Tampa, FL 33620, USA; (J.G.); (A.B.); (J.J.M.)
| | - Anders Berglund
- Department of Oncologic Sciences, University of South Florida Health Morsani College of Medicine, Tampa, FL 33620, USA; (J.G.); (A.B.); (J.J.M.)
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - James J. Mulé
- Department of Oncologic Sciences, University of South Florida Health Morsani College of Medicine, Tampa, FL 33620, USA; (J.G.); (A.B.); (J.J.M.)
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Joseph Markowitz
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; (S.K.G.); (Y.I.H.)
- Department of Oncologic Sciences, University of South Florida Health Morsani College of Medicine, Tampa, FL 33620, USA; (J.G.); (A.B.); (J.J.M.)
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
- Correspondence: ; Tel.: +1-813-745-8581
| |
Collapse
|
103
|
Kienzl M, Kargl J, Schicho R. The Immune Endocannabinoid System of the Tumor Microenvironment. Int J Mol Sci 2020; 21:ijms21238929. [PMID: 33255584 PMCID: PMC7728085 DOI: 10.3390/ijms21238929] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/16/2020] [Accepted: 11/23/2020] [Indexed: 02/06/2023] Open
Abstract
Leukocytes are part of the tumor microenvironment (TME) and are critical determinants of tumor progression. Because of the immunoregulatory properties of cannabinoids, the endocannabinoid system (ECS) may have an important role in shaping the TME. Members of the ECS, an entity that consists of cannabinoid receptors, endocannabinoids and their synthesizing/degrading enzymes, have been associated with both tumor growth and rejection. Immune cells express cannabinoid receptors and produce endocannabinoids, thereby forming an “immune endocannabinoid system”. Although in vitro effects of exogenous cannabinoids on immune cells are well described, the role of the ECS in the TME, and hence in tumor development and immunotherapy, is still elusive. This review/opinion discusses the possibility that the “immune endocannabinoid system” can fundamentally influence tumor progression. The widespread influence of cannabinoids on immune cell functions makes the members of the ECS an interesting target that could support immunotherapy.
Collapse
Affiliation(s)
- Melanie Kienzl
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria; (M.K.); (J.K.)
- BioTechMed, 8010 Graz, Austria
| | - Julia Kargl
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria; (M.K.); (J.K.)
| | - Rudolf Schicho
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria; (M.K.); (J.K.)
- BioTechMed, 8010 Graz, Austria
- Correspondence: ; Tel.: +43-316-385-74132; Fax: +43-316-385-79613
| |
Collapse
|
104
|
Theron AJ, Steel HC, Rapoport BL, Anderson R. Contrasting Immunopathogenic and Therapeutic Roles of Granulocyte Colony-Stimulating Factor in Cancer. Pharmaceuticals (Basel) 2020; 13:ph13110406. [PMID: 33233675 PMCID: PMC7699711 DOI: 10.3390/ph13110406] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/16/2020] [Accepted: 11/16/2020] [Indexed: 12/15/2022] Open
Abstract
Tumor cells are particularly adept at exploiting the immunosuppressive potential of neutrophils as a strategy to achieve uncontrolled proliferation and spread. Recruitment of neutrophils, particularly those of an immature phenotype, known as granulocytic myeloid-derived suppressor cells, is achieved via the production of tumor-derived granulocyte colony-stimulating factor (G-CSF) and neutrophil-selective chemokines. This is not the only mechanism by which G-CSF contributes to tumor-mediated immunosuppression. In this context, the G-CSF receptor is expressed on various cells of the adaptive and innate immune systems and is associated with induction of T cell polarization towards the Th2 and regulatory T cell (Treg) phenotypes. In contrast to the potentially adverse effects of sustained, endogenous production of G-CSF by tumor cells, stringently controlled prophylactic administration of recombinant (r) G-CSF is now a widely practiced strategy in medical oncology to prevent, and in some cases treat, chemotherapy-induced severe neutropenia. Following an overview of the synthesis, structure and function of G-CSF and its receptor, the remainder of this review is focused on: (i) effects of G-CSF on the cells of the adaptive and innate immune systems; (ii) mechanisms by which this cytokine promotes tumor progression and invasion; and (iii) current clinical applications and potential risks of the use of rG-CSF in medical oncology.
Collapse
Affiliation(s)
- Annette J. Theron
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (H.C.S.); (B.L.R.); (R.A.)
- Correspondence: ; Tel.: +27-12-319-2355
| | - Helen C. Steel
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (H.C.S.); (B.L.R.); (R.A.)
| | - Bernardo L. Rapoport
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (H.C.S.); (B.L.R.); (R.A.)
- The Medical Oncology Centre of Rosebank, Johannesburg 2196, South Africa
| | - Ronald Anderson
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (H.C.S.); (B.L.R.); (R.A.)
| |
Collapse
|
105
|
Bracci L, Fragale A, Gabriele L, Moschella F. Towards a Systems Immunology Approach to Unravel Responses to Cancer Immunotherapy. Front Immunol 2020; 11:582744. [PMID: 33193392 PMCID: PMC7649803 DOI: 10.3389/fimmu.2020.582744] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/01/2020] [Indexed: 12/23/2022] Open
Abstract
Immunotherapy, particularly immune checkpoint blockade and chimeric antigen receptor (CAR)-T cells, holds a great promise against cancer. These treatments have markedly improved survival in solid as well as in hematologic tumors previously considered incurable. However, durable responses occur in a fraction of patients, and existing biomarkers (e.g. PD-L1) have shown limited prediction power. This scenario highlights the need to dissect the complex interplay between immune and tumor cells to identify reliable biomarkers of response to be used for patients’ selection. In this context, systems immunology represents indeed the new frontier to address important clinical challenges in biomarker discovery. Through the integration of multiple layers of data obtained with several high-throughput approaches, systems immunology may give insights on the vast range of inter-individual differences and on the influences of genes and factors that cooperatively shape the individual immune response to a given treatment. In this Mini Review, we give an overview of the current high-throughput methodologies, including genomics, epigenomics, transcriptomics, metabolomics, proteomics, and multi-parametric phenotyping suitable for systems immunology as well as on the key steps of data integration and biological interpretation. Additionally, we review recent studies in which multi-omics technologies have been used to characterize mechanisms of response and to identify powerful biomarkers of response to checkpoint inhibitors, CAR-T cell therapy, dendritic cell-based and peptide-based cancer vaccines. We also highlight the need of favoring the collaboration of researchers with complementary expertise and of integrating multi-omics data into biological networks with the final goal of developing accurate markers of therapeutic response.
Collapse
Affiliation(s)
- Laura Bracci
- Tumor Immunology Unit, Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Alessandra Fragale
- Tumor Immunology Unit, Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Lucia Gabriele
- Tumor Immunology Unit, Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Federica Moschella
- Tumor Immunology Unit, Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
106
|
Hofman P. New insights into the interaction of the immune system with non-small cell lung carcinomas. Transl Lung Cancer Res 2020; 9:2199-2213. [PMID: 33209644 PMCID: PMC7653157 DOI: 10.21037/tlcr-20-178] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The basis of current and future lung cancer immunotherapy depends mainly on our knowledge of the molecular mechanisms of interactions between cancer and immune cells (ICs), as well as on interactions occurring between the different populations of intra-tumor ICs. These interactions are very complex, as virtually all immune cell types, including macrophages, neutrophils, mast cells, natural killer (NK) cells, dendritic cells and T and B lymphocytes can infiltrate lung cancer tissues at the same time. Moreover these interactions lead to progressive emergence of an imbalance in ICs. Initially ICs have an anti-tumor effect but then induce immune tolerance and eventually tumor progression and dissemination. All the cells of innate and adaptive intra-tumor immunity engage in this progressive phenotypic switch. A majority of non-small cell lung carcinoma (NSCLC) patients do not benefit from the expected positive responses associated with current immunotherapy. Thus, there is urgent need to better understand the different roles of the associated cancer ICs. This review summarizes some of the new insights into this domain, with particular focus on: the myeloid cell population associated with tumors, the tertiary lymphoid structures (TLSs), the role of the P2 purinergic receptors (P2R) and ATP, and the new concept of the “liquid microenvironment” implying blood circulating ICs.
Collapse
Affiliation(s)
- Paul Hofman
- CHU Nice, FHU OncoAge, Laboratory of Clinical and Experimental Pathology, Pasteur Hospital, Université Côte d'Azur, Nice, France.,CNRS, INSERM, IRCAN, FHU OncoAge, Team 4, Hospital-Integrated Biobank, Université Côte d'Azur, Nice, France.,CHU Nice, FHU OncoAge, Hospital-Integrated Biobank, Université Côte d'Azur, Nice, France
| |
Collapse
|
107
|
Jaillon S, Ponzetta A, Di Mitri D, Santoni A, Bonecchi R, Mantovani A. Neutrophil diversity and plasticity in tumour progression and therapy. Nat Rev Cancer 2020; 20:485-503. [PMID: 32694624 DOI: 10.1038/s41568-020-0281-y] [Citation(s) in RCA: 573] [Impact Index Per Article: 143.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/04/2020] [Indexed: 12/11/2022]
Abstract
Neutrophils play a key role in defence against infection and in the activation and regulation of innate and adaptive immunity. In cancer, tumour-associated neutrophils (TANs) have emerged as an important component of the tumour microenvironment. Here, they can exert dual functions. TANs can be part of tumour-promoting inflammation by driving angiogenesis, extracellular matrix remodelling, metastasis and immunosuppression. Conversely, neutrophils can also mediate antitumour responses by direct killing of tumour cells and by participating in cellular networks that mediate antitumour resistance. Neutrophil diversity and plasticity underlie the dual potential of TANs in the tumour microenvironment. Myeloid checkpoints as well as the tumour and tissue contexture shape neutrophil function in response to conventional therapies and immunotherapy. We surmise that neutrophils can provide tools to tailor current immunotherapy strategies and pave the way to myeloid cell-centred therapeutic strategies, which would be complementary to current approaches.
Collapse
Affiliation(s)
- Sebastien Jaillon
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (MI), Italy.
- Humanitas Clinical and Research Center IRCCS, Rozzano (MI), Italy.
| | - Andrea Ponzetta
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (MI), Italy
- Humanitas Clinical and Research Center IRCCS, Rozzano (MI), Italy
| | - Diletta Di Mitri
- Humanitas Clinical and Research Center IRCCS, Rozzano (MI), Italy
| | - Angela Santoni
- Dipartimento di Medicina Molecolare Istituto Pasteur-Fondazione Cenci Bolognetti, Università di Roma 'La Sapienza', Rome, Italy
- IRCCS Neuromed, Pozzilli (IS), Italy
| | - Raffaella Bonecchi
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (MI), Italy
- Humanitas Clinical and Research Center IRCCS, Rozzano (MI), Italy
| | - Alberto Mantovani
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (MI), Italy.
- Humanitas Clinical and Research Center IRCCS, Rozzano (MI), Italy.
- The William Harvey Research Institute, Queen Mary University of London, London, UK.
| |
Collapse
|
108
|
Huang Y, Shen A. The prediction potential of neutrophil-to-lymphocyte ratio for the therapeutic outcomes of programmed death receptor-1/programmed death ligand 1 inhibitors in non-small cell lung cancer patients: A meta-analysis. Medicine (Baltimore) 2020; 99:e21718. [PMID: 32846790 PMCID: PMC7447402 DOI: 10.1097/md.0000000000021718] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Programmed death receptor-1 (PD-1)/programmed death ligand 1 (PD-L1) inhibitors have been demonstrated to improve the prognosis of patients with advanced non-small cell lung cancer (NSCLC) compared with chemotherapy. However, there were still some non-responders. Thus, how to effectively screen the responder may be an important issue. Recent studies revealed the immune-related indicator, neutrophil-lymphocyte ratio (NLR), may predict the therapeutic effects of anti-PD1/PD-L1 antibodies; however, the results were controversial. This study was to re-evaluate the prognostic potential of NLR for NSCLC patients receiving PD1/PD-L1 inhibitors by performing a meta-analysis. METHODS Eligible studies were identified by searching online databases of PubMed, EMBASE and Cochrane Library. The predictive values of NLR for overall survival, (OS), progression free survival (PFS) and overall response rate (ORR) were estimated by hazard ratio (HR) with 95% confidence interval (CI). RESULTS Twenty-four studies involving 2196 patients were included. The pooled analysis demonstrated that elevated NLR before PD-1/PD-L1 inhibitor treatment was a predictor of poor OS (HR = 2.17; 95% CI: 1.64 - 2.87, P < .001), PFS (HR = 1.54; 95% CI: 1.34 - 1.78, P < .001) and low ORR (HR = 0.64; 95% CI: 0.44 - 0.95, P = .027) in NSCLC patients. Subgroup analysis revealed the predictive ability of NLR for OS and PFS was not changed by ethnicity, sample size, cut-off, HR source, study design or inhibitor type (except the combined anti-PD-L1 group); while its association with ORR was only significant when the cut-off value was less than 5 and the studies were prospectively designed. CONCLUSION Our findings suggest patients with lower NLR may benefit from the use of PD-1/PD-L1 inhibitors to prolong their survival period.
Collapse
|
109
|
Bocanegra A, Blanco E, Fernandez-Hinojal G, Arasanz H, Chocarro L, Zuazo M, Morente P, Vera R, Escors D, Kochan G. PD-L1 in Systemic Immunity: Unraveling Its Contribution to PD-1/PD-L1 Blockade Immunotherapy. Int J Mol Sci 2020; 21:E5918. [PMID: 32824655 PMCID: PMC7460585 DOI: 10.3390/ijms21165918] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/11/2020] [Accepted: 08/13/2020] [Indexed: 12/21/2022] Open
Abstract
The use of monoclonal antibodies targeting PD-1/PD-L1 axis completely changed anticancer treatment strategies. However, despite the significant improvement in overall survival and progression-free survival of patients undergoing these immunotherapy treatments, the only clinically accepted biomarker with some prediction capabilities for the outcome of the treatment is PD-L1 expression in tumor biopsies. Nevertheless, even when having PD-L1-positive tumors, numerous patients do not respond to these treatments. Considering the high cost of these therapies and the risk of immune-related adverse events during therapy, it is necessary to identify additional biomarkers that would facilitate stratifying patients in potential responders and non-responders before the start of immunotherapies. Here, we review the utility of PD-L1 expression not only in tumor cells but in immune system cells and their influence on the antitumor activity of immune cell subsets.
Collapse
Affiliation(s)
- Ana Bocanegra
- Oncoimmunology Group, Biomedical Research Centre Navarrabiomed-UPNA, IdISNA, Irunlarrea 3, 31008 Pamplona, Spain; (E.B.); (H.A.); (L.C.); (M.Z.); (P.M.); (D.E.)
| | - Ester Blanco
- Oncoimmunology Group, Biomedical Research Centre Navarrabiomed-UPNA, IdISNA, Irunlarrea 3, 31008 Pamplona, Spain; (E.B.); (H.A.); (L.C.); (M.Z.); (P.M.); (D.E.)
| | - Gonzalo Fernandez-Hinojal
- Department of Oncology, Complejo Hospitalario de Navarra, IdISNA, Irunlarrea 3, 31008 Pamplona, Spain; (G.F.-H.); (R.V.)
| | - Hugo Arasanz
- Oncoimmunology Group, Biomedical Research Centre Navarrabiomed-UPNA, IdISNA, Irunlarrea 3, 31008 Pamplona, Spain; (E.B.); (H.A.); (L.C.); (M.Z.); (P.M.); (D.E.)
| | - Luisa Chocarro
- Oncoimmunology Group, Biomedical Research Centre Navarrabiomed-UPNA, IdISNA, Irunlarrea 3, 31008 Pamplona, Spain; (E.B.); (H.A.); (L.C.); (M.Z.); (P.M.); (D.E.)
| | - Miren Zuazo
- Oncoimmunology Group, Biomedical Research Centre Navarrabiomed-UPNA, IdISNA, Irunlarrea 3, 31008 Pamplona, Spain; (E.B.); (H.A.); (L.C.); (M.Z.); (P.M.); (D.E.)
| | - Pilar Morente
- Oncoimmunology Group, Biomedical Research Centre Navarrabiomed-UPNA, IdISNA, Irunlarrea 3, 31008 Pamplona, Spain; (E.B.); (H.A.); (L.C.); (M.Z.); (P.M.); (D.E.)
| | - Ruth Vera
- Department of Oncology, Complejo Hospitalario de Navarra, IdISNA, Irunlarrea 3, 31008 Pamplona, Spain; (G.F.-H.); (R.V.)
| | - David Escors
- Oncoimmunology Group, Biomedical Research Centre Navarrabiomed-UPNA, IdISNA, Irunlarrea 3, 31008 Pamplona, Spain; (E.B.); (H.A.); (L.C.); (M.Z.); (P.M.); (D.E.)
| | - Grazyna Kochan
- Oncoimmunology Group, Biomedical Research Centre Navarrabiomed-UPNA, IdISNA, Irunlarrea 3, 31008 Pamplona, Spain; (E.B.); (H.A.); (L.C.); (M.Z.); (P.M.); (D.E.)
| |
Collapse
|
110
|
Zhang H, Houghton AM. Good cops turn bad: The contribution of neutrophils to immune-checkpoint inhibitor treatment failures in cancer. Pharmacol Ther 2020; 217:107662. [PMID: 32805297 DOI: 10.1016/j.pharmthera.2020.107662] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/10/2020] [Indexed: 12/29/2022]
Abstract
Immune checkpoint inhibitor therapy activates tumor-killing T-cells by releasing the brake of anti-tumor immunity. It has been approved as first- or second-line therapy in many cancer types. Unfortunately, a majority of immune checkpoint inhibitor recipients are refractory to the therapy. Recent investigations of the peripheral blood and tumor microenvironment of cancer patients indicate that high neutrophil content is associated with poor response rates, suggesting an opportunity for synergistic therapy. In the current review, we discuss the mechanisms of neutrophil-mediated immunosuppression in cancer and recent findings suggesting that neutrophil antagonism will improve the efficacy of immune checkpoint inhibitor therapy.
Collapse
Affiliation(s)
- Huajia Zhang
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - A McGarry Houghton
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America.
| |
Collapse
|
111
|
Mazzaschi G, Minari R, Zecca A, Cavazzoni A, Ferri V, Mori C, Squadrilli A, Bordi P, Buti S, Bersanelli M, Leonetti A, Cosenza A, Ferri L, Rapacchi E, Missale G, Petronini PG, Quaini F, Tiseo M. Soluble PD-L1 and Circulating CD8+PD-1+ and NK Cells Enclose a Prognostic and Predictive Immune Effector Score in Immunotherapy Treated NSCLC patients. Lung Cancer 2020; 148:1-11. [PMID: 32768804 DOI: 10.1016/j.lungcan.2020.07.028] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/15/2020] [Accepted: 07/24/2020] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Upfront criteria to foresee immune checkpoint inhibitors (ICIs) efficacy are far from being identified. Thus, we integrated blood descriptors of pro-inflammatory/immunosuppressive or effective anti-tumor response to non-invasively define predictive immune profiles in ICI-treated advanced non-small cell lung cancer (NSCLC). METHODS Peripheral blood (PB) was prospectively collected at baseline from 109 consecutive NSCLC patients undergoing ICIs as first or more line treatment. Soluble PD-L1 (sPD-L1) (immunoassay), CD8+PD-1+ and NK (FACS) cells were assessed and interlaced to generate an Immune effector Score (IeffS). Lung Immune Prognostic Index (LIPI) was computed by LDH levels and derived Neutrophil-to-Lymphocyte Ratio (dNLR). All these parameters were correlated with survival outcome and treatment response. RESULTS High sPD-L1 and low CD8+PD-1+ and NK number had negative impact on PFS (P < 0.001), OS (P < 0.01) and ICI-response (P < 0.05). Thus, sPD-L1high, CD8+PD-1+low and NKlow were considered as risk factors encompassing IeffS, whose prognostic power outperformed that of individual features and slightly exceeded that of LIPI. Accordingly, the absence of these risk factors portrayed a favorable IeffS characterizing patients with significantly (P < 0.001) prolonged PFS (median NR vs 2.3 months) and OS (median NR vs 4.1) and greater benefit from ICIs (P < 0.01). We then combined each risk parameter composing IeffS and LIPI (LDHhigh, dNLRhigh), thus defining three distinct prognostic classes. A remarkable impact of IeffS-LIPI integration was documented on survival outcome (PFS, HR = 4.61; 95%CI = 2.32-9.18; P < 0.001; OS, HR=4.03; 95%CI=1.91-8.67; P < 0.001) and ICI-response (AUC=0.90, 95%CI=0.81-0.97, P < 0.001). CONCLUSION Composite risk models based on blood parameters featuring the tumor-host interaction might provide accurate prognostic scores able to predict ICI benefit in NSCLC patients.
Collapse
Affiliation(s)
- G Mazzaschi
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy; Department of Medicine & Surgery, University of Parma, Italy
| | - R Minari
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy.
| | - A Zecca
- Infectious Diseases and Hepatology Unit, Laboratory of Viral Immunopathology, University Hospital of Parma, Italy
| | - A Cavazzoni
- Department of Medicine & Surgery, University of Parma, Italy
| | - V Ferri
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| | - C Mori
- Infectious Diseases and Hepatology Unit, Laboratory of Viral Immunopathology, University Hospital of Parma, Italy
| | - A Squadrilli
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| | - P Bordi
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| | - S Buti
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| | - M Bersanelli
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| | - A Leonetti
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| | - A Cosenza
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| | - L Ferri
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| | - E Rapacchi
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| | - G Missale
- Department of Medicine & Surgery, University of Parma, Italy; Infectious Diseases and Hepatology Unit, Laboratory of Viral Immunopathology, University Hospital of Parma, Italy
| | - P G Petronini
- Department of Medicine & Surgery, University of Parma, Italy
| | - F Quaini
- Department of Medicine & Surgery, University of Parma, Italy
| | - M Tiseo
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy; Department of Medicine & Surgery, University of Parma, Italy
| |
Collapse
|
112
|
Riudavets M, Auclin E, Mezquita L. Host circulating biomarkers for immune-checkpoint inhibitors: single-agent and combinations. Future Oncol 2020; 16:1665-1668. [PMID: 32422071 DOI: 10.2217/fon-2020-0182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Mariona Riudavets
- Medical Oncology Department, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona (UAB) Medicine Department, Barcelona, 08041, Spain
| | - Edouard Auclin
- Medical Oncology Department, Hôpital Européen Georges Pompidou, Paris, 75015, France
| | - Laura Mezquita
- Medical Oncology Department, Hospital Clinic, Barcelona, 08036, Spain
| |
Collapse
|
113
|
Abstract
Immunotherapy with checkpoint blockade induces rapid and durable immune control of cancer in some patients and has driven a monumental shift in cancer treatment. Neoantigen-specific CD8+ T cells are at the forefront of current immunotherapy strategies, and the majority of drug discovery and clinical trials revolve around further harnessing these immune effectors. Yet the immune system contains a diverse range of antitumour effector cells, and these must function in a coordinated and synergistic manner to overcome the immune-evasion mechanisms used by tumours and achieve complete control with tumour eradication. A key antitumour effector is the natural killer (NK) cells, cytotoxic innate lymphocytes present at high frequency in the circulatory system and identified by their exquisite ability to spontaneously detect and lyse transformed or stressed cells. Emerging data show a role for intratumoural NK cells in driving immunotherapy response and, accordingly, there have been renewed efforts to further elucidate and target the pathways controlling NK cell antitumour function. In this Review, we discuss recent clinical evidence that NK cells are a key immune constituent in the protective antitumour immune response and highlight the major stages of the cancer-NK cell immunity cycle. We also perform a new analysis of publicly available transcriptomic data to provide an overview of the prognostic value of NK cell gene expression in 25 tumour types. Furthermore, we discuss how the role of NK cells evolves with tumour progression, presenting new opportunities to target NK cell function to enhance cancer immunotherapy response rates across a more diverse range of cancers.
Collapse
Affiliation(s)
- Nicholas D Huntington
- Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia.
- oNKo-Innate Pty Ltd, Moonee Ponds, Victoria, Australia.
| | - Joseph Cursons
- Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia.
- oNKo-Innate Pty Ltd, Moonee Ponds, Victoria, Australia.
| | - Jai Rautela
- Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
- oNKo-Innate Pty Ltd, Moonee Ponds, Victoria, Australia
| |
Collapse
|
114
|
Zhu K, Li P, Mo Y, Wang J, Jiang X, Ge J, Huang W, Liu Y, Tang Y, Gong Z, Liao Q, Li X, Li G, Xiong W, Zeng Z, Yu J. Neutrophils: Accomplices in metastasis. Cancer Lett 2020; 492:11-20. [PMID: 32745581 DOI: 10.1016/j.canlet.2020.07.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 07/14/2020] [Accepted: 07/24/2020] [Indexed: 12/16/2022]
Abstract
Metastasis is a critical cause of treatment failure and death in patients with advanced malignancies. Tumor cells can leave the primary site and enter the bloodstream; these circulating tumor cells then colonize target organs by overcoming blood shear stress, evading immune surveillance, and silencing the offensive capabilities of immune cells, eventually forming metastatic foci. From leaving the primary focus to the completion of distant metastasis, malignant tumor cells are supported and/or antagonized by certain immune cells. In particular, it has been found that myeloid granulocytes play an important role in this process. This review therefore aims to comprehensively describe the significance of neutrophils in solid tumor metastasis in terms of their supporting role in initiating the invasion and migration of tumor cells and assisting the colonization of circulating tumor cells in distant target organs, with the hope of providing insight into and ideas for anti-tumor metastasis treatment of tumor patients.
Collapse
Affiliation(s)
- Kunjie Zhu
- Department of Head and Neck Surgery, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; NHC Key Laboratory of Carcinogenesis, and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Panchun Li
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yongzhen Mo
- NHC Key Laboratory of Carcinogenesis, and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Jie Wang
- NHC Key Laboratory of Carcinogenesis, and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Xianjie Jiang
- NHC Key Laboratory of Carcinogenesis, and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Junshang Ge
- NHC Key Laboratory of Carcinogenesis, and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Weilun Huang
- Department of Head and Neck Surgery, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yan Liu
- Department of Plastic and Cosmetic Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yanyan Tang
- Department of Head and Neck Surgery, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Zhaojian Gong
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qianjin Liao
- Department of Head and Neck Surgery, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Xiaoling Li
- Department of Head and Neck Surgery, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; NHC Key Laboratory of Carcinogenesis, and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Guiyuan Li
- Department of Head and Neck Surgery, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; NHC Key Laboratory of Carcinogenesis, and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Wei Xiong
- Department of Head and Neck Surgery, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; NHC Key Laboratory of Carcinogenesis, and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Zhaoyang Zeng
- Department of Head and Neck Surgery, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; NHC Key Laboratory of Carcinogenesis, and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.
| | - Jianjun Yu
- Department of Head and Neck Surgery, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.
| |
Collapse
|
115
|
Yu S, Hu C, Liu L, Cai L, Du X, Yu Q, Lin F, Zhao J, Zhao Y, Zhang C, Liu X, Li W. Comprehensive analysis and establishment of a prediction model of alternative splicing events reveal the prognostic predictor and immune microenvironment signatures in triple negative breast cancer. J Transl Med 2020; 18:286. [PMID: 32723333 PMCID: PMC7388537 DOI: 10.1186/s12967-020-02454-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 07/21/2020] [Indexed: 12/15/2022] Open
Abstract
Background Triple-negative breast cancer (TNBC) is widely concerning because of high malignancy and poor prognosis. There is increasing evidence that alternative splicing (AS) plays an important role in the development of cancer and the formation of the tumour microenvironment. However, comprehensive analysis of AS signalling in TNBC is still lacking and urgently needed. Methods Transcriptome and clinical data of 169 TNBC tissues and 15 normal tissues were obtained and integrated from the cancer genome atlas (TCGA), and an overview of AS events was downloaded from the SpliceSeq database. Then, differential comparative analysis was performed to obtain cancer-associated AS events (CAAS). Metascape was used to perform parent gene enrichment analysis based on CAAS. Unsupervised cluster analysis was performed to analyse the characteristics of immune infiltration in the microenvironment. A splicing network was established based on the correlation between CAAS events and splicing factors (SFs). We then constructed prediction models and assessed the accuracy of these models by receiver operating characteristic (ROC) curve and Kaplan–Meier survival analyses. Furthermore, a nomogram was adopted to predict the individualized survival rate of TNBC patients. Results We identified 1194 cancer-associated AS events (CAAS) and evaluated the enrichment of 981 parent genes. The top 20 parent genes with significant differences were mostly related to cell adhesion, cell component connection and other pathways. Furthermore, immune-related pathways were also enriched. Unsupervised clustering analysis revealed the heterogeneity of the immune microenvironment in TNBC. The splicing network also suggested an obvious correlation between SFs expression and CAAS events in TNBC patients. Univariate and multivariate Cox regression analyses showed that the survival-related AS events were detected, including some significant participants in the carcinogenic process. A nomogram incorporating risk, AJCC and radiotherapy showed good calibration and moderate discrimination. Conclusion Our study revealed AS events related to tumorigenesis and the immune microenvironment, elaborated the potential correlation between SFs and CAAS, established a prognostic model based on survival-related AS events, and created a nomogram to better predict the individual survival rate of TNBC patients, which improved our understanding of the relationship between AS events and TNBC.
Collapse
Affiliation(s)
- Shanshan Yu
- Department of Chemoradiation Oncology, The First Affiliated Hospital of Wenzhou Medical University, 2 Fuxue Road, Wenzhou, Zhejiang, 325000, People's Republic of China
| | - Chuan Hu
- Department of Orthopaedic Surgery, the Affiliated Hospital of Qingdao University, Qingdao, 266071, China
| | - Lixiao Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Luya Cai
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Xuedan Du
- Department of Chemoradiation Oncology, The First Affiliated Hospital of Wenzhou Medical University, 2 Fuxue Road, Wenzhou, Zhejiang, 325000, People's Republic of China
| | - Qiongjie Yu
- Department of Chemoradiation Oncology, The First Affiliated Hospital of Wenzhou Medical University, 2 Fuxue Road, Wenzhou, Zhejiang, 325000, People's Republic of China
| | - Fan Lin
- Department of Dermatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Jinduo Zhao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Ye Zhao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Cheng Zhang
- Department of Dermatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Xuan Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Wenfeng Li
- Department of Chemoradiation Oncology, The First Affiliated Hospital of Wenzhou Medical University, 2 Fuxue Road, Wenzhou, Zhejiang, 325000, People's Republic of China.
| |
Collapse
|
116
|
Rapoport BL, Theron AJ, Vorobiof DA, Langenhoven L, Hall JM, Van Eeden RI, Smit T, Chan SW, Botha MC, Raats JI, Necker MD, Anderson R. Prognostic significance of the neutrophil/lymphocyte ratio in patients undergoing treatment with nivolumab for recurrent non-small-cell lung cancer. Lung Cancer Manag 2020; 9:LMT37. [PMID: 32774468 PMCID: PMC7399612 DOI: 10.2217/lmt-2020-0014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aim We investigated the prognostic potential of pretherapy measurement of the neutrophil/lymphocyte ratio (NLR) in patients (n = 56) with non-small-cell lung cancer deemed suitable for treatment with nivolumab. Materials & methods This was a multicenter, noninterventional, retrospective data analysis, involving five oncology centers. Results Patients with prenivolumab NLR values of <5 and ≥5 had respective median overall survival (OS) values of 14.5 and 7.02 months (p = 0.0026). Patients with ≤2 and >2 metastatic sites had median OS values of 11.4 and 6.1 months, respectively (p = 0.0174). A Cox multiple regression model revealed baseline NLR ≥5 as the only variable significantly associated with decreased OS (p < 0.0447). Conclusion Pretreatment elevated NLR values are associated with poor outcomes in patients with recurrent metastatic non-small-cell lung cancer treated with nivolumab.
Collapse
Affiliation(s)
- Bernardo L Rapoport
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, PO Box 667, Pretoria 0001, South Africa.,The Medical Oncology Centre of Rosebank, 129 Oxford Rd, Corner Northwold Rd, Saxonwold, Johannesburg 2196, South Africa
| | - Annette J Theron
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, PO Box 667, Pretoria 0001, South Africa
| | | | - Lizanne Langenhoven
- Panorama Centre for Surgical Oncology, Intercare Building, Rothschild Boulevard, Panorama, Cape Town 7506, South Africa
| | - Jacqueline M Hall
- Oncology Unit, Vincent Pallotti Hospital, Pinelands, Cape Town 7405, South Africa
| | - Ronwyn I Van Eeden
- The Medical Oncology Centre of Rosebank, 129 Oxford Rd, Corner Northwold Rd, Saxonwold, Johannesburg 2196, South Africa
| | - Teresa Smit
- The Medical Oncology Centre of Rosebank, 129 Oxford Rd, Corner Northwold Rd, Saxonwold, Johannesburg 2196, South Africa
| | - Sze-Wai Chan
- Medical Oncology, Sandton Oncology Centre, 200 Rivonia Road, Morningside 2057, South Africa
| | - Michael C Botha
- GVI Oncology-Outeniqua Oncology, 3 Gloucester Lane, George 6529, South Africa
| | - Johann I Raats
- Oncology Unit, Vincent Pallotti Hospital, Pinelands, Cape Town 7405, South Africa.,Cancercare Rondebosch, Rondebosch Medical Centre; Klipfontein Road, Rondebosch, Cape Town 7700, South Africa
| | - Margriet De Necker
- TCD Outcomes Research, 121 Amkor Rd, Lyttleton, Centurion 0157, South Africa
| | - Ronald Anderson
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, PO Box 667, Pretoria 0001, South Africa
| |
Collapse
|
117
|
Rapoport BL, Steel HC, Theron AJ, Heyman L, Smit T, Ramdas Y, Anderson R. High Mobility Group Box 1 in Human Cancer. Cells 2020; 9:E1664. [PMID: 32664328 PMCID: PMC7407638 DOI: 10.3390/cells9071664] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 12/12/2022] Open
Abstract
High mobility group box 1 (HMGB1) is an extremely versatile protein that is located predominantly in the nucleus of quiescent eukaryotic cells, where it is critically involved in maintaining genomic structure and function. During cellular stress, however, this multifaceted, cytokine-like protein undergoes posttranslational modifications that promote its translocation to the cytosol, from where it is released extracellularly, either actively or passively, according to cell type and stressor. In the extracellular milieu, HMGB1 triggers innate inflammatory responses that may be beneficial or harmful, depending on the magnitude and duration of release of this pro-inflammatory protein at sites of tissue injury. Heightened awareness of the potentially harmful activities of HMGB1, together with a considerable body of innovative, recent research, have revealed that excessive production of HMGB1, resulting from misdirected, chronic inflammatory responses, appears to contribute to all the stages of tumorigenesis. In the setting of established cancers, the production of HMGB1 by tumor cells per se may also exacerbate inflammation-related immunosuppression. These pro-inflammatory mechanisms of HMGB1-orchestrated tumorigenesis, as well as the prognostic potential of detection of elevated expression of this protein in the tumor microenvironment, represent the major thrusts of this review.
Collapse
Affiliation(s)
- Bernardo L. Rapoport
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (H.C.S.); (A.J.T.); (R.A.)
- The Medical Oncology Centre of Rosebank, Johannesburg 2196, South Africa; (L.H.); (T.S.)
| | - Helen C. Steel
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (H.C.S.); (A.J.T.); (R.A.)
| | - Annette J. Theron
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (H.C.S.); (A.J.T.); (R.A.)
| | - Liezl Heyman
- The Medical Oncology Centre of Rosebank, Johannesburg 2196, South Africa; (L.H.); (T.S.)
| | - Teresa Smit
- The Medical Oncology Centre of Rosebank, Johannesburg 2196, South Africa; (L.H.); (T.S.)
| | - Yastira Ramdas
- The Breast Care Centre, Netcare Milpark, 9 Guild Road, Parktown, Johannesburg 2193, South Africa;
| | - Ronald Anderson
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (H.C.S.); (A.J.T.); (R.A.)
| |
Collapse
|
118
|
Zhao Y, Rahmy S, Liu Z, Zhang C, Lu X. Rational targeting of immunosuppressive neutrophils in cancer. Pharmacol Ther 2020; 212:107556. [PMID: 32343986 DOI: 10.1016/j.pharmthera.2020.107556] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 04/23/2020] [Indexed: 02/07/2023]
Abstract
Neutrophils, the most abundant circulating leukocytes in human, play an indispensable role in the innate immune response to microbial infections. However, the contribution of tumor-associated neutrophils (TANs) to cancer progression and tumor immunity has been a matter of debate for decades. A higher neutrophil-to-lymphocyte ratio is associated with adverse overall survival in many solid tumors. Preclinical evidence exists to support both anti-tumor and pro-tumor activities of TANs, and TANs employ diverse mechanisms to influence tumor progression and metastasis. Here, we focus our review on the immunosuppressive mechanism of TANs and highlight how neutrophils can operate to dampen both innate and adaptive immunity to promote tumorigenesis. Here we discuss the intriguing and sometimes controversial connection between TANs and granulocytic/polymorphonuclear myeloid-derived suppressor cells (G/PMN-MDSCs). The molecular mechanisms underlying neutrophils' role in immunosuppression provide potential therapeutic targets for cancer treatment, either as monotherapies or as a part of combinatorial regimens. Therefore, we also highlight a number of neutrophil-targeting approaches that may improve the efficacy of current anticancer therapies, especially cancer immunotherapy. Currently interest is surging in the understanding and targeting of immunosuppressive neutrophils, with the goal of developing novel therapeutic strategies in the battle against cancer.
Collapse
Affiliation(s)
- Yun Zhao
- Department of Cardiac Surgery, Shanghai East Hospital, Tongji University, Shanghai 200092, China; Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Sharif Rahmy
- Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA; Integrated Biomedical Sciences Graduate Program, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Zhongmin Liu
- Department of Cardiac Surgery, Shanghai East Hospital, Tongji University, Shanghai 200092, China
| | - Chao Zhang
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| | - Xin Lu
- Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA; Integrated Biomedical Sciences Graduate Program, University of Notre Dame, Notre Dame, IN 46556, USA; Tumor Microenvironment and Metastasis Program, Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, IN 46202, USA.
| |
Collapse
|
119
|
Rapoport BL, Steel HC, Theron AJ, Smit T, Anderson R. Role of the Neutrophil in the Pathogenesis of Advanced Cancer and Impaired Responsiveness to Therapy. Molecules 2020; 25:molecules25071618. [PMID: 32244751 PMCID: PMC7180559 DOI: 10.3390/molecules25071618] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 03/26/2020] [Accepted: 03/26/2020] [Indexed: 02/07/2023] Open
Abstract
Notwithstanding the well-recognized involvement of chronic neutrophilic inflammation in the initiation phase of many types of epithelial cancers, a growing body of evidence has also implicated these cells in the pathogenesis of the later phases of cancer development, specifically progression and spread. In this setting, established tumors have a propensity to induce myelopoiesis and to recruit neutrophils to the tumor microenvironment (TME), where these cells undergo reprogramming and transitioning to myeloid-derived suppressor cells (MDSCs) with a pro-tumorigenic phenotype. In the TME, these MDSCs, via the production of a broad range of mediators, not only attenuate the anti-tumor activity of tumor-infiltrating lymphocytes, but also exclude these cells from the TME. Realization of the pro-tumorigenic activities of MDSCs of neutrophilic origin has resulted in the development of a range of adjunctive strategies targeting the recruitment of these cells and/or the harmful activities of their mediators of immunosuppression. Most of these are in the pre-clinical or very early clinical stages of evaluation. Notable exceptions, however, are several pharmacologic, allosteric inhibitors of neutrophil/MDSC CXCR1/2 receptors. These agents have entered late-stage clinical assessment as adjuncts to either chemotherapy or inhibitory immune checkpoint-targeted therapy in patients with various types of advanced malignancy. The current review updates the origins and identities of MDSCs of neutrophilic origin and their spectrum of immunosuppressive mediators, as well as current and pipeline MDSC-targeted strategies as potential adjuncts to cancer therapies. These sections are preceded by a consideration of the carcinogenic potential of neutrophils.
Collapse
Affiliation(s)
- Bernardo L. Rapoport
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (H.C.S.); (A.J.T.); (R.A.)
- The Medical Oncology Centre of Rosebank, Johannesburg 2196, South Africa;
- Correspondence: ; Tel.: +27-11-880-4169
| | - Helen C. Steel
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (H.C.S.); (A.J.T.); (R.A.)
| | - Annette J. Theron
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (H.C.S.); (A.J.T.); (R.A.)
| | - Teresa Smit
- The Medical Oncology Centre of Rosebank, Johannesburg 2196, South Africa;
| | - Ronald Anderson
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (H.C.S.); (A.J.T.); (R.A.)
| |
Collapse
|
120
|
Mandelli GE, Missale F, Bresciani D, Benerini Gatta L, Scapini P, Caveggion E, Roca E, Bugatti M, Monti M, Cristinelli L, Belotti S, Simeone C, Calza S, Melocchi L, Vermi W. Tumor Infiltrating Neutrophils Are Enriched in Basal-Type Urothelial Bladder Cancer. Cells 2020; 9:cells9020291. [PMID: 31991796 PMCID: PMC7072276 DOI: 10.3390/cells9020291] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/16/2020] [Accepted: 01/23/2020] [Indexed: 01/19/2023] Open
Abstract
Background: Urothelial bladder cancers (UBCs) are distinct in two main molecular subtypes, namely basal and luminal type. Subtypes are also diverse in term of immune contexture, providing a rationale for patient selection to immunotherapy. Methods: By digital microscopy analysis of a muscle-invasive BC (MIBC) cohort, we explored the density and clinical significance of CD66b+ tumor-associated-neutrophils (TAN) and CD3+ T cells. Bioinformatics analysis of UBC datasets and gene expression analysis of UBC cell lines were additionally performed. Results: Basal type BC contained a significantly higher density of CD66b+ TAN compared to the luminal type. This finding was validated on TCGA, GSE32894 and GSE124305 datasets by computing a neutrophil signature. Of note, basal-type MIBC display a significantly higher level of chemokines (CKs) attracting neutrophils. Moreover, pro-inflammatory stimuli significantly up-regulate CXCL1, CXCL2 and CXCL8 in 5637 and RT4 UBC cell lines and induce neutrophil chemotaxis. In term of survival, a high density of T cells and TAN was significantly associated to a better outcome, with TAN density showing a more limited statistical power and following a non-linear predicting model. Conclusions: TAN are recruited in basal type MIBC by pro-inflammatory CKs. This finding establishes a groundwork for a better understanding of the UBC immunity and its relevance.
Collapse
Affiliation(s)
- Giulio Eugenio Mandelli
- Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, 25125 Brescia, Italy; (G.E.M.); (F.M.); (D.B.); (L.B.G.); (M.B.); (M.M.)
| | - Francesco Missale
- Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, 25125 Brescia, Italy; (G.E.M.); (F.M.); (D.B.); (L.B.G.); (M.B.); (M.M.)
- IRCCS Ospedale Policlinico San Martino, 16121 Genova, Italy
- Department of Otorhinolaryngology, Head and Neck Surgery—University of Genoa, 16121 Genova, Italy
| | - Debora Bresciani
- Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, 25125 Brescia, Italy; (G.E.M.); (F.M.); (D.B.); (L.B.G.); (M.B.); (M.M.)
| | - Luisa Benerini Gatta
- Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, 25125 Brescia, Italy; (G.E.M.); (F.M.); (D.B.); (L.B.G.); (M.B.); (M.M.)
- Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, 25100 Brescia, Italy; (E.R.); (L.C.); (S.B.); (C.S.)
| | - Patrizia Scapini
- Section of General Pathology, Department of Medicine, University of Verona, 37134 Verona, Italy; (P.S.); (E.C.)
| | - Elena Caveggion
- Section of General Pathology, Department of Medicine, University of Verona, 37134 Verona, Italy; (P.S.); (E.C.)
| | - Elisa Roca
- Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, 25100 Brescia, Italy; (E.R.); (L.C.); (S.B.); (C.S.)
- ASST Spedali Civili di Brescia, 25100 Brescia, Italy
| | - Mattia Bugatti
- Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, 25125 Brescia, Italy; (G.E.M.); (F.M.); (D.B.); (L.B.G.); (M.B.); (M.M.)
- ASST Spedali Civili di Brescia, 25100 Brescia, Italy
| | - Matilde Monti
- Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, 25125 Brescia, Italy; (G.E.M.); (F.M.); (D.B.); (L.B.G.); (M.B.); (M.M.)
| | - Luca Cristinelli
- Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, 25100 Brescia, Italy; (E.R.); (L.C.); (S.B.); (C.S.)
- ASST Spedali Civili di Brescia, 25100 Brescia, Italy
| | - Sandra Belotti
- Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, 25100 Brescia, Italy; (E.R.); (L.C.); (S.B.); (C.S.)
- ASST Spedali Civili di Brescia, 25100 Brescia, Italy
| | - Claudio Simeone
- Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, 25100 Brescia, Italy; (E.R.); (L.C.); (S.B.); (C.S.)
- ASST Spedali Civili di Brescia, 25100 Brescia, Italy
| | - Stefano Calza
- Unit of Biostatistics, Department of Molecular and Translational Medicine, University of Brescia, 25125 Brescia, Italy;
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Laura Melocchi
- Department of Pathology, Fondazione Poliambulanza, 25100 Brescia, Italy;
| | - William Vermi
- Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, 25125 Brescia, Italy; (G.E.M.); (F.M.); (D.B.); (L.B.G.); (M.B.); (M.M.)
- ASST Spedali Civili di Brescia, 25100 Brescia, Italy
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63130, USA
- Correspondence: ; Tel.: +39-030-399-8425
| |
Collapse
|