101
|
Semsarian C, Ahmad I, Giewat M, Georgakopoulos D, Schmitt JP, McConnell BK, Reiken S, Mende U, Marks AR, Kass DA, Seidman CE, Seidman J. The L-type calcium channel inhibitor diltiazem prevents cardiomyopathy in a mouse model. J Clin Invest 2002. [DOI: 10.1172/jci200214677] [Citation(s) in RCA: 214] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
102
|
Semsarian C, Ahmad I, Giewat M, Georgakopoulos D, Schmitt JP, McConnell BK, Reiken S, Mende U, Marks AR, Kass DA, Seidman CE, Seidman JG. The L-type calcium channel inhibitor diltiazem prevents cardiomyopathy in a mouse model. J Clin Invest 2002; 109:1013-20. [PMID: 11956238 PMCID: PMC150949 DOI: 10.1172/jci14677] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Dominant mutations in sarcomere protein genes cause hypertrophic cardiomyopathy, an inherited human disorder with increased ventricular wall thickness, myocyte hypertrophy, and disarray. To understand the early consequences of mutant sarcomere proteins, we have studied mice (designated alphaMHC(403/+)) bearing an Arg403Gln missense mutation in the alpha cardiac myosin heavy chain. We demonstrate that Ca(2+) is reduced in the sarcoplasmic reticulum of alphaMHC(403/+) mice, and levels of the sarcoplasmic reticulum Ca(2+)-binding protein calsequestrin are diminished in advance of changes in cardiac histology or morphology. Further evidence for dysregulation of sarcoplasmic reticulum Ca(2+) in these animals is seen in their decreased expression of the ryanodine receptor Ca(2+)-release channel and its associated membrane proteins and in an increase in ryanodine receptor phosphorylation. Early administration of the L-type Ca(2+) channel inhibitor diltiazem restores normal levels of these sarcoplasmic reticular proteins and prevents the development of pathology in alphaMHC(403/+) mice. We conclude that disruption of sarcoplasmic reticulum Ca(2+) homeostasis is an important early event in the pathogenesis of this disorder and suggest that the use of Ca(2+) channel blockers in advance of established clinical disease could prevent hypertrophic cardiomyopathy caused by sarcomere protein gene mutations.
Collapse
MESH Headings
- Animals
- Calcium/metabolism
- Calcium Channel Blockers/pharmacology
- Calcium Channels, L-Type/drug effects
- Calcium Channels, L-Type/metabolism
- Calsequestrin/metabolism
- Cardiomyopathy, Hypertrophic, Familial/genetics
- Cardiomyopathy, Hypertrophic, Familial/metabolism
- Cardiomyopathy, Hypertrophic, Familial/pathology
- Cardiomyopathy, Hypertrophic, Familial/prevention & control
- Diltiazem/pharmacology
- Disease Models, Animal
- Humans
- Mice
- Mice, Mutant Strains
- Mutation, Missense
- Myocardium/pathology
- Myosin Heavy Chains/genetics
- Ventricular Myosins/genetics
Collapse
Affiliation(s)
- Christopher Semsarian
- Department of Genetics, Howard Hughes Medical Institute and Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
103
|
Abstract
In the last decade our understanding of cardiac pathophysiology has experienced significant advances linked to major advances in molecular genetics. Although many genes are associated today with cardiac diseases, the genetics of both hypertrophic cardiomyopathy and dilated cardiomyopathy have generated great interest. The familial nature of the disease in some patients has been very useful in this regard. In addition, there are also excellent experimental models to study the implications of the genetic abnormalities. Altogether the study of the molecular genetics of the cardiomyopathies should provide not only prognostic information but also new therapeutic alternatives.
Collapse
Affiliation(s)
- Robert Roberts
- Sección de Cardiología, Baylor College of Medicine, Houston, Texas, USA.
| |
Collapse
|
104
|
Abstract
Cardiomyopathies are disorders affecting heart muscle that usually result in inadequate pumping of the heart. They are the most common cause of heart failure and each year kill more than 10,000 people in the United States. In recent years, there have been breakthroughs in understanding the molecular mechanisms involved in this group of conditions, with knowledge of the genetic basis for cardiomyopathies perhaps seeing the largest advance, enabling clinicians to devise improved diagnostic strategies and preparing the stage for new therapies.
Collapse
Affiliation(s)
- J A Towbin
- Department of Pediatrics (Cardiology), Baylor College of Medicine, Houston, Texas 77030, USA.
| | | |
Collapse
|
105
|
Marian AJ, Salek L, Lutucuta S. Molecular genetics and pathogenesis of hypertrophic cardiomyopathy. Minerva Med 2001; 92:435-51. [PMID: 11740432 PMCID: PMC2910253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Advances in molecular genetics of hypertrophic cardiomyopathy (HCM) have led to identification of mutations in 11 genes coding for sarcomeric proteins. In addition, mutations in gene coding for the gamma subunit of AMP-activated protein kinase and triplet-repeat syndromes, as well as in mitochondrial DNA have been identified in patients with HCM. Mutations in genes coding for the beta-myosin heavy chain, myosin binding protein-C, and cardiac troponin T account for approximately 2/3 of all HCM cases. Accordingly, HCM is considered a disease of contractile sarcomeric proteins. Genotype-phenotype correlation studies show mutations and the genetic background affect the phenotypic expression of HCM. The final phenotype is the result of interactions between the causal genes, genetic background (modifier genes), and probably the environmental factors. The molecular pathogenesis of HCM is not completely understood. The initial defects caused by the mutant proteins are diverse. However, despite their diversity, they converge into common final pathway of impaired cardiac myocyte function. The latter leads to an increased myocyte stress and subsequent activation of stress-responsive signaling kinases and trophic factors, which activate the transcriptional machinery inducing cardiac hypertrophy, interstitial fibrosis and myocyte disarray, the pathological characteristics of HCM. Studies in transgenic animal models show that cardiac hypertrophy, interstitial fibrosis, and myocyte disarray are potentially reversible. These findings raise the possibility of reversal of evolving phenotype or prevention of phenotypes in human patients with HCM. Elucidation of the molecular genetic basis and the pathogenesis of HCM could provide the opportunity for genetic based diagnosis, risk stratification, and implementation of preventive and therapeutic measures in those who have inherited the causal mutations for HCM.
Collapse
Affiliation(s)
- A J Marian
- Section of Cardiology, Department of Medicine, Baylor College of Medicine, Houston, TX, USA.
| | | | | |
Collapse
|
106
|
Li D, Czernuszewicz GZ, Gonzalez O, Tapscott T, Karibe A, Durand JB, Brugada R, Hill R, Gregoritch JM, Anderson JL, Quiñones M, Bachinski LL, Roberts R. Novel cardiac troponin T mutation as a cause of familial dilated cardiomyopathy. Circulation 2001; 104:2188-93. [PMID: 11684629 DOI: 10.1161/hc4301.098285] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Familial dilated cardiomyopathy (FDCM) and hypertrophic cardiomyopathy (FHCM) are the 2 most common forms of primary cardiac muscle diseases. Studies indicate that mutations in sarcomeric proteins are responsible for FHCM and suggest that mutations in cytoskeletal proteins cause FDCM. Evidence is evolving, however, that such conclusions are premature. METHODS AND RESULTS A novel missense mutation in the cardiac troponin T gene was identified by direct sequencing and confirmed by endonuclease restriction analysis in a large family with FDCM that we had previously mapped to chromosome 1q32. The mutation substitutes tryptophan for a highly conserved amino acid, arginine, at amino acid residue 141 (Arg141Trp). The mutation occurs within the tropomyosin-binding domain of cardiac troponin T and alters the charge of the residue. This mutation cosegregates with the disease, being present in all 14 living affected individuals. The mutation was not found in 100 normal control subjects. Clinical features were congestive heart failure with premature deaths. The age of onset and severity of the disease are highly variable, with incomplete penetrance. Because 15 mutations in troponin T are known to cause FHCM, 219 probands with FHCM were screened, and none had the mutation. CONCLUSIONS Thus, the novel cardiac troponin T mutation Arg141Trp is responsible for FDCM in our family. Because several mutations in troponin T have already been recognized to be responsible for FHCM, it appears that the phenotype, whether it be hypertrophy or dilatation, is determined by the specific mutation rather than the gene.
Collapse
Affiliation(s)
- D Li
- Section of Cardiology, Baylor College of Medicine, M.D. Anderson Cancer Center, Houston, Texas, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
107
|
Affiliation(s)
- R Roberts
- Section of Cardiology, Baylor College of Medicine, Houston, Tex, and The Royal Brompton Hospital, London, UK.
| | | |
Collapse
|
108
|
Affiliation(s)
- R Roberts
- Section of Cardiology, Baylor College of Medicine, Houston, TX 77030, USA.
| | | |
Collapse
|
109
|
Takeishi Y, Walsh RA. Cardiac hypertrophy and failure: lessons learned from genetically engineered mice. ACTA PHYSIOLOGICA SCANDINAVICA 2001; 173:103-11. [PMID: 11678732 DOI: 10.1046/j.1365-201x.2001.00890.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Congestive heart failure is a major and growing public health problem. Because of improved survival of myocardial infarction patients produced by thrombolytic therapy or per-cutaneous revascularization it represents the only form of cardiovascular disease with significantly increased incidence and prevalence. Clinicians view this clinical syndrome as the final common pathway of diverse pathologies such as myocardial infarction and haemodynamic overload. Insights into mechanisms for heart failure historically derived from physiological and biochemical studies which identified compensatory adaptations for the haemodynamic burden associated with the pathological condition including utilization of the Frank Starling mechanism, augmentation of muscle mass, and neurohormonal activation to increase contractility. Therapy has largely been phenomenological and designed to prevent or limit the deleterious effects of these compensatory processes. More recently insights from molecular and cell biology have contributed to a more mechanistic understanding of potential causes of cardiac hypertrophy and failure. Many different analytical approaches have been employed for this purpose. These include the use of conventional animal models which permit serial observation of the onset and progression of heart failure and a sequential analysis of underlying biochemical and molecular events. Neonatal murine cardiomyocytes have been a powerful tool to examine in vitro subcellular mechanisms devoid of the confounding functional effects of multicellular preparations and heterogeneity of cell type. Finally, significant progress has been made by utilizing tissue from human cardiomyopathic hearts explanted at the time of orthotopic transplantation. Each of these methods has significant advantages and disadvantages. Arguably the greatest advance in our understanding of cardiac hypertrophy and failure over the past decade has been the exploitation of genetically engineered mice as biological reagents to study in vivo the effects of alterations in the murine genome. The power of this approach, in principle, derives from the ability to precisely overexpress or ablate a gene of interest and examine the phenotypic consequences in a cardiac specific post-natal manner. In contrast to conventional animal models of human disease which employ some form of environmental stress, genetic engineering involves a signal known molecular perturbation which produces the phenotype.
Collapse
Affiliation(s)
- Y Takeishi
- Department of Medicine, Case Western Reserve University and University Hospital of Cleveland, Cleveland, OH 44106-5029, USA
| | | |
Collapse
|
110
|
Abstract
The seminal discovery of the R403Q mutation in the beta-myosin heavy chain (MyHC) gene as a cause of hypertrophic cardiomyopathy (HCM) by Dr. Thierfelder’s group a decade ago (1) ushered in a new era in the molecular genetics of HCM. To date, over 120 mutations in 10 genes, all encoding sarcomeric proteins, have been identified in patients with HCM (2), leading to the notion that HCM is a disease of contractile sarcomeric proteins (3). Mutations in nonsarcomeric genes, mitochondrial genome and genes responsible for the triplet repeat syndromes also have been found in patients with HCM (2). Although no large-scale systematic search has yet been performed, the existing data suggest that mutations in the beta-MyHC, myosin binding protein-C (MyBP-C) and cardiac troponin T (cTnT) are the most common causes of HCM, collectively accounting for approximately 60% to 70% of all HCM cases (2). It has also become evident that the frequency of each particular causal mutation in the HCM population is relatively low (<5%). Overall, genetic studies indicate significant allelic and nonallelic heterogeneity of HCM, an issue that complicates the feasibility of genetic diagnosis.
Collapse
|
111
|
Patel R, Nagueh SF, Tsybouleva N, Abdellatif M, Lutucuta S, Kopelen HA, Quinones MA, Zoghbi WA, Entman ML, Roberts R, Marian AJ. Simvastatin induces regression of cardiac hypertrophy and fibrosis and improves cardiac function in a transgenic rabbit model of human hypertrophic cardiomyopathy. Circulation 2001; 104:317-24. [PMID: 11457751 PMCID: PMC2768618 DOI: 10.1161/hc2801.094031] [Citation(s) in RCA: 190] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Hypertrophic cardiomyopathy is a genetic disease characterized by cardiac hypertrophy, myocyte disarray, interstitial fibrosis, and left ventricular (LV) dysfunction. We have proposed that hypertrophy and fibrosis, the major determinants of mortality and morbidity, are potentially reversible. We tested this hypothesis in beta-myosin heavy chain-Q(403) transgenic rabbits. METHODS AND RESULTS We randomized 24 beta-myosin heavy chain-Q(403) rabbits to treatment with either a placebo or simvastatin (5 mg. kg(-1). d(-1)) for 12 weeks and included 12 nontransgenic controls. We performed 2D and Doppler echocardiography and tissue Doppler imaging before and after treatment. Demographic data were similar among the groups. Baseline mean LV mass and interventricular septal thickness in nontransgenic, placebo, and simvastatin groups were 3.9+/-0.7, 6.2+/-2.0, and 7.5+/-2.1 g (P<0.001) and 2.2+/-0.2, 3.1+/-0.5, and 3.3+/-0.5 mm (P=0.002), respectively. Simvastatin reduced LV mass by 37%, interventricular septal thickness by 21%, and posterior wall thickness by 13%. Doppler indices of LV filling pressure were improved. Collagen volume fraction was reduced by 44% (P<0.001). Disarray was unchanged. Levels of activated extracellular signal-regulated kinase (ERK) 1/2 were increased in the placebo group and were less than normal in the simvastatin group. Levels of activated and total p38, Jun N-terminal kinase, p70S6 kinase, Ras, Rac, and RhoA and the membrane association of Ras, RhoA, and Rac1 were unchanged. CONCLUSIONS Simvastatin induced the regression of hypertrophy and fibrosis, improved cardiac function, and reduced ERK1/2 activity in the beta-myosin heavy chain-Q(403) rabbits. These findings highlight the need for clinical trials to determine the effects of simvastatin on cardiac hypertrophy, fibrosis, and dysfunction in humans with hypertrophic cardiomyopathy and heart failure.
Collapse
Affiliation(s)
- R Patel
- Section of Cardiology, Department of Medicine, The DeBakey Heart Center, The Methodist Hospital and Baylor College of Medicine, Houston, Texas, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
112
|
Simvastatin Induces Regression of Cardiac Hypertrophy and Fibrosis and Improves Cardiac Function in a Transgenic Rabbit Model of Human Hypertrophic Cardiomyopathy. Circulation 2001. [DOI: 10.1161/01.cir.104.3.317] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background
Hypertrophic cardiomyopathy is a genetic disease characterized by cardiac hypertrophy, myocyte disarray, interstitial fibrosis, and left ventricular (LV) dysfunction. We have proposed that hypertrophy and fibrosis, the major determinants of mortality and morbidity, are potentially reversible. We tested this hypothesis in β-myosin heavy chain–Q
403
transgenic rabbits.
Methods and Results
We randomized 24 β-myosin heavy chain–Q
403
rabbits to treatment with either a placebo or simvastatin (5 mg · kg
−1
· d
−1
) for 12 weeks and included 12 nontransgenic controls. We performed 2D and Doppler echocardiography and tissue Doppler imaging before and after treatment. Demographic data were similar among the groups. Baseline mean LV mass and interventricular septal thickness in nontransgenic, placebo, and simvastatin groups were 3.9±0.7, 6.2±2.0, and 7.5±2.1 g (
P
<0.001) and 2.2±0.2, 3.1±0.5, and 3.3±0.5 mm (
P
=0.002), respectively. Simvastatin reduced LV mass by 37%, interventricular septal thickness by 21%, and posterior wall thickness by 13%. Doppler indices of LV filling pressure were improved. Collagen volume fraction was reduced by 44% (
P
<0.001). Disarray was unchanged. Levels of activated extracellular signal-regulated kinase (ERK) 1/2 were increased in the placebo group and were less than normal in the simvastatin group. Levels of activated and total p38, Jun N-terminal kinase, p70S6 kinase, Ras, Rac, and RhoA and the membrane association of Ras, RhoA, and Rac1 were unchanged.
Conclusions
Simvastatin induced the regression of hypertrophy and fibrosis, improved cardiac function, and reduced ERK1/2 activity in the β-myosin heavy chain–Q
403
rabbits. These findings highlight the need for clinical trials to determine the effects of simvastatin on cardiac hypertrophy, fibrosis, and dysfunction in humans with hypertrophic cardiomyopathy and heart failure.
Collapse
|
113
|
Nagueh SF, Bachinski LL, Meyer D, Hill R, Zoghbi WA, Tam JW, Quiñones MA, Roberts R, Marian AJ. Tissue Doppler imaging consistently detects myocardial abnormalities in patients with hypertrophic cardiomyopathy and provides a novel means for an early diagnosis before and independently of hypertrophy. Circulation 2001; 104:128-30. [PMID: 11447072 PMCID: PMC2900859 DOI: 10.1161/01.cir.104.2.128] [Citation(s) in RCA: 392] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Left ventricular hypertrophy (LVH), the clinical hallmark of familial hypertrophic cardiomyopathy (FHCM), is absent in a significant number of subjects with causal mutations. In transgenic rabbits that fully recapitulate the FHCM phenotype, reduced myocardial tissue Doppler (TD) velocities accurately identified the mutant rabbits, even in the absence of LVH. We tested whether humans with FHCM also consistently showed reduced myocardial TD velocities, irrespective of LVH. METHODS AND RESULTS We performed 2D and Doppler echocardiography and TD imaging in 30 subjects with FHCM, 13 subjects who were positive for various mutations but did not have LVH, and 30 age- and sex-matched controls (all adults; 77% women). LV wall thickness and mass were significantly greater in FHCM subjects (P<0.01 versus those without LVH and controls). There were no significant differences in 2D echocardiographic, mitral, and pulmonary venous flow indices between mutation-positives without LVH and controls. In contrast, systolic and early diastolic TD velocities were significantly lower in both mutation-positives without LVH and in FHCM patients than in controls (P<0.001). Reduced TD velocities had a sensitivity of 100% and a specificity of 93% for identifying mutation-positives without LVH. CONCLUSIONS Myocardial contraction and relaxation velocities, detected by TD imaging, are reduced in FHCM, including in those without LVH. Before and independently of LVH, TD imaging is an accurate and sensitive method for identifying subjects who are positive for FHCM mutations.
Collapse
Affiliation(s)
- S F Nagueh
- Department of Medicine, Section of Cardiology, Baylor College of Medicine, Houston, TX, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
114
|
Abstract
It is a basic tenet of molecular and clinical medicine that specific protein complements underlie cell and organ function. Since cellular and ultimately organ function depend upon the polypeptides that are present, it is not surprising that when function is altered changes in the protein pools occur. In the heart, numerous examples of contractile protein changes correlate with functional alterations, both during normal development and during the development of numerous pathologies. Similarly, different congenital heart diseases are characterized by certain shifts in the motor proteins. To understand these relationships, and to establish models in which the pathogenic processes can be studied longitudinally, it is necessary to direct the heart to stably synthesize, in the absence of other peliotropic changes, the candidate protein. Subsequently, one can determine if the protein's presence causes the effects directly or indirectly with the goal being to define potential therapeutic targets. By affecting the heart's protein complement in a defined manner, one has the means to establish both mechanism and the function of the different mutated proteins of protein isoforms. Gene targeting and transgenesis in the mouse provides a means to modify the mammalian genome and the cardiac motor protein complement. By directing expression of an engineered protein to the heart, one is now able to effectively remodel the cardiac protein profile and study the consequences of a single genetic manipulation at the molecular, biochemical, cytological and physiologic levels, both under normal and stress stimuli.
Collapse
Affiliation(s)
- F Dalloz
- Department of Pediatrics, Division of Molecular Cardiovascular Biology, Children's Hospital Research Foundation, Cincinnati, USA
| | | | | |
Collapse
|
115
|
Abstract
Hypertrophic cardiomyopathy (HCM), a relatively common disease, is diagnosed clinically by unexplained cardiac hypertrophy and pathologically by myocyte hypertrophy, disarray, and interstitial fibrosis. HCM is the most common cause of sudden cardiac death (SCD) in the young and a major cause of morbidity and mortality in elderly. Hypertrophy and fibrosis are the major determinants of morbidity and SCD. More than 100 mutations in nine genes, all encoding sarcomeric proteins have been identified in patients with HCM, which had led to the notion that HCM is a disease of contractile sarcomeric proteins. The beta -myosin heavy chain (MyHC), cardiac troponin T (cTnT) and myosin binding protein-C (MyBP-C) are the most common genes accounting for approximately 2/3 of all HCM cases. Genotype-phenotype correlation studies suggest that mutations in the beta -MyHC gene are associated with more extensive hypertrophy and a higher risk of SCD as compared to mutations in genes coding for other sarcomeric proteins, such as MyBP-C and cTnT. The prognostic significance of mutations is related to their hypertrophic expressivity and penetrance, with the exception of those in the cTnT, which are associated with mild hypertrophic response and a high incidence of SCD. However, there is a significant variability and factors, such as modifier genes and probably the environmental factors affect the phenotypic expression of HCM. The molecular pathogenesis of HCM is not completely understood. In vitro and in vivo studies suggest that mutations impart a diverse array of functional defects including reduced ATPase activity of myosin, acto-myosin interaction, cross-bridging kinetics, myocyte contractility, and altered Ca2+ sensitivity. Hypertrophy and other clinical and pathological phenotypes are considered compensatory phenotypes secondary to functional defects. In summary, the molecular genetic basis of HCM has been identified, which affords the opportunity to delineate its pathogenesis. Understanding the pathogenesis of HCM could provide for genetic based diagnosis, risk stratification, treatment and prevention of cardiac phenotypes.
Collapse
Affiliation(s)
- A J Marian
- Section of Cardiology, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA.
| | | |
Collapse
|
116
|
Olsson MC, Palmer BM, Leinwand LA, Moore RL. Gender and aging in a transgenic mouse model of hypertrophic cardiomyopathy. Am J Physiol Heart Circ Physiol 2001; 280:H1136-44. [PMID: 11179057 DOI: 10.1152/ajpheart.2001.280.3.h1136] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mutations in the cardiac myosin heavy chain (MHC) can cause familial hypertrophic cardiomyopathy (FHC). A transgenic mouse model has been developed in which a missense (R403Q) allele and an actin-binding deletion in the alpha-MHC are expressed in the heart. We used an isovolumic left heart preparation to study the contractile characteristics of hearts from transgenic (TG) mice and their wild-type (WT) littermates. Both male and female TG mice developed left ventricular (LV) hypertrophy at 4 mo of age. LV hypertrophy was accompanied by LV diastolic dysfunction, but LV systolic function was normal and supranormal in the young TG females and males, respectively. At 10 mo of age, the females continued to present with LV concentric hypertrophy, whereas the males began to display LV dilation. In female TG mice at 10 mo of age, impaired LV diastolic function persisted without evidence of systolic dysfunction. In contrast, in 10-mo-old male TG mice, LV diastolic function worsened and systolic performance was impaired. Diminished coronary flow was observed in both 10-mo-old TG groups. These types of changes may contribute to the functional decompensation typically seen in hypertrophic cardiomyopathy. Collectively, these results further underscore the potential utility of this transgenic mouse model in elucidating pathogenesis of FHC.
Collapse
Affiliation(s)
- M C Olsson
- Department of Kinesiology and Applied Physiology, University of Colorado, Boulder 80309-0354, USA
| | | | | | | |
Collapse
|
117
|
Seidman JG, Seidman C. The genetic basis for cardiomyopathy: from mutation identification to mechanistic paradigms. Cell 2001; 104:557-67. [PMID: 11239412 DOI: 10.1016/s0092-8674(01)00242-2] [Citation(s) in RCA: 723] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- J G Seidman
- Department of Genetics and Medicine, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA.
| | | |
Collapse
|
118
|
Dalloz F, Osinska H, Robbins J. Manipulating the contractile apparatus: genetically defined animal models of cardiovascular disease. J Mol Cell Cardiol 2001; 33:9-25. [PMID: 11133219 DOI: 10.1006/jmcc.2000.1289] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Within the last 10 years via gene targeting and transgenesis, numerous models of cardiovascular disease have been established and used to determine if a protein's presence or absence causes cardiovascular disease. By affecting the heart's protein complement in a defined manner, the function of the different mutated proteins or protein isoforms present in the contractile apparatus can be determined and pathogenic mechanism(s) explored. We can now remodel the cardiac protein profile and effect replacement of even the most abundant contractile proteins. Precise genetic manipulation allows exploration of the structure-function relationships which underlie cardiac function, and the consequences of defined mutations at the molecular, biochemical, cytological and physiologic levels can be determined.
Collapse
Affiliation(s)
- F Dalloz
- Department of Pediatrics, Children's Hospital Research Foundation, Cincinnati, OH 45229-3039, USA
| | | | | |
Collapse
|
119
|
James J, Zhang Y, Osinska H, Sanbe A, Klevitsky R, Hewett TE, Robbins J. Transgenic modeling of a cardiac troponin I mutation linked to familial hypertrophic cardiomyopathy. Circ Res 2000; 87:805-11. [PMID: 11055985 DOI: 10.1161/01.res.87.9.805] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Multiple mutations in cardiac troponin I (cTnI) have been associated with familial hypertrophic cardiomyopathy. Two mutations are located in the cTnI inhibitory domain, a highly negatively charged region that alternately binds to either actin or troponin C, depending on the intracellular concentration of calcium. This region is critical to the inhibition of actin-myosin crossbridge formation when intracellular calcium is low. We modeled one of the inhibitory domain mutations, arginine145-->glycine (TnI(146Gly) in the mouse sequence), by cardiac-specific expression of the mutated protein in transgenic mice. Multiple lines were generated with varying degrees of expression to establish a dose relationship; the severity of phenotype could be correlated directly with transgene expression levels. Transgenic mice overexpressing wild-type cTnI were generated as controls and analyzed in parallel with the TnI(146Gly) animals. The control mice showed no abnormalities, indicating that the phenotype of TnI(146Gly) was not simply an artifact of transgenesis. In contrast, TnI(146Gly) mice showed cardiomyocyte disarray and interstitial fibrosis and suffered premature death. The functional alterations that seem to be responsible for the development of cardiac disease include increased skinned fiber sensitivity to calcium and, at the whole organ level, hypercontractility with diastolic dysfunction. Severely affected lines develop a pathology similar to human familial hypertrophic cardiomyopathy but within a dramatically shortened time frame. These data establish the causality of this mutation for cardiac disease, provide an animal model for understanding the resultant pathogenic structure-function relationships, and highlight the differences in phenotype severity of the troponin mutations between human and mouse hearts.
Collapse
Affiliation(s)
- J James
- Department of Pediatrics, Division of Molecular Cardiovascular Biology, The Children's Hospital Research Foundation, Cincinnati, Ohio, USA
| | | | | | | | | | | | | |
Collapse
|
120
|
Nagueh SF, Kopelen HA, Lim DS, Zoghbi WA, Quiñones MA, Roberts R, Marian AJ. Tissue Doppler imaging consistently detects myocardial contraction and relaxation abnormalities, irrespective of cardiac hypertrophy, in a transgenic rabbit model of human hypertrophic cardiomyopathy. Circulation 2000; 102:1346-50. [PMID: 10993850 PMCID: PMC2907266 DOI: 10.1161/01.cir.102.12.1346] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Hypertrophic cardiomyopathy (HCM) is diagnosed clinically by the presence of left ventricular hypertrophy (LVH). However, LVH is absent in a significant number of genotype-positive patients. Because myocyte dysfunction and disarray are the primary abnormalities in HCM, we reasoned that tissue Doppler imaging could identify contraction and relaxation abnormalities, irrespective of hypertrophy, in a transgenic rabbit model of human HCM. METHODS AND RESULTS M-mode, 2D, Doppler echocardiography and tissue Doppler imaging were performed in nontransgenic (n=24), wild-type beta-myosin heavy chain-arginine(403) (n=14), and mutant beta-myosin heavy chain-glutamic acid(403) (n=24) transgenic rabbits. Mean septal thicknesses were 2.0+/-0.3, 2.0+/-0.25, and 2.75+/-0.3 mm in the 3 groups, respectively (P:=0.001). LVH was absent in 9 of the 24 mutant rabbits. Left ventricular dimensions, systolic function, heart rate, mitral inflow velocities, and time intervals were similar in the groups. However, the difference between atrial reversal and transmitral A wave duration was increased in the mutant rabbits (P:<0.001). More importantly, systolic and early diastolic tissue Doppler velocities were significantly lower in all mutant rabbits (7.45+/-2.2 versus 10.8+/-2.3 cm/s in nontransgenic and 9. 0+/-0.76 cm/s in wild-type; P:<0.001), including the 9 without LVH. A systolic velocity <8.5 cm/s had an 86% sensitivity and 100% specificity in identifying the mutant transgenic rabbits. CONCLUSIONS Myocardial contraction and relaxation were reduced in the mutant beta-myosin heavy chain-glutamic acid(403) transgenic rabbit model of human HCM, irrespective of the presence or absence of LVH. In addition, tissue Doppler imaging is more sensitive than conventional echocardiography for HCM screening.
Collapse
Affiliation(s)
- S F Nagueh
- Section of Cardiology, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA.
| | | | | | | | | | | | | |
Collapse
|
121
|
Abstract
Western civilization had two great epochs--the sixth century B.C. and the 18th century. The 21st century is likely to be the third great epoch. Although cardiology has advanced more in the last 50 years than in the previous 2,000, it is likely to advance more in the next two or three decades than in the previous 2,000 years, including those 50 golden years. The engines of ingenuity to provide the thrust for the 21th century will come from molecular genetics and the application of recombinant deoxyribonucleic acid (DNA) techniques. Identification of all human genes (50,000 to 100,000) in the next two to three years will help link thousands of etiologies and risk factors with their respective diseases, which represents a new paradigm in medicine. This is illustrated by the implications to be drawn from familial hypertrophic cardiomyopathy and the 50 new genes already identified to be responsible for cardiac disease. The hope for prevention and treatment of human disease is unprecedented. Twenty diseases account for 80% of the deaths in the Western world and are due to 100 to 200 genes, all of which will be available in a couple of years. The Phoenician alphabet (inclusive of the Greek vowels) of 26 letters launched two millenniums of Western civilization, whereas the DNA alphabet of only four letters will launch and dominate the next millennium.
Collapse
Affiliation(s)
- R Roberts
- Section of Cardiology, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
122
|
Chien KR. Meeting Koch's postulates for calcium signaling in cardiac hypertrophy. J Clin Invest 2000; 105:1339-42. [PMID: 10811840 PMCID: PMC315474 DOI: 10.1172/jci10079] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- K R Chien
- University of California at San Diego (UCSD)-Salk Program in Molecular Medicine, UCSD School of Medicine, Basic Science Building 0613-C, 9500 Gilman Drive, La Jolla, California 92093, USA.
| |
Collapse
|
123
|
Abstract
Familial hypertrophic cardiomyopathy (FHC) is an autosomal-dominant disease that is both clinically and genetically heterogeneous. Disease-causing mutations have been found in eight genes encoding structural components of the thick and thin filament systems of the cardiac myocyte; it has therefore been coined a disease of the sarcomere. How each mutation leads to the diverse clinical phenotypes is still obscure, and research in this area is very active. Many approaches have been used to characterize the pathogenesis of the disease. Biochemical characterization of mutant alleles expressed in vitro has shed some insight into the functional deficits of several mutant alleles of myosin heavy chain, troponin-T, and alpha-tropomyosin. Transgenic animal models for FHC have been created to gain further insight into the pathogenesis of this disease. Most of these models have been made in mice; however, recently a transgenic rabbit model has been created. In addition, there are several natural-occurring forms of FHC in animals that will be interesting to explore. The discovery of additional responsible genes and the elucidation of the molecular mechanisms of pathogenesis through the use of animal models promise improved and early diagnosis and the potential for developing specific, mutation-, or mechanism-based therapeutics.
Collapse
Affiliation(s)
- A Maass
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder 80309, USA
| | | |
Collapse
|
124
|
Affiliation(s)
- G Shah
- Section of Cardiology, Baylor College of Medicine, Houston, Tex 77030, USA
| | | |
Collapse
|