101
|
Almusa A, Delgado AHS, Ashley P, Young AM. Determination of Dental Adhesive Composition throughout Solvent Drying and Polymerization Using ATR-FTIR Spectroscopy. Polymers (Basel) 2021; 13:polym13223886. [PMID: 34833185 PMCID: PMC8623623 DOI: 10.3390/polym13223886] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 11/16/2022] Open
Abstract
The of this study aim was to develop a rapid method to determine the chemical composition, solvent evaporation rates, and polymerization kinetics of dental adhesives. Single-component, acetone-containing adhesives One-Step (OS; Bisco, Anaheim, CA, USA), Optibond Universal (OU; Kerr, Brea, CA, USA), and G-Bond (GB; GC, Tokyo, Japan) were studied. Filler levels were determined gravimetrically. Monomers and solvents were quantified by comparing their pure Attenuated Total Reflectance-Fourier Transform Infra-Red (ATR-FTIR) spectra, summed in different ratios, with those of the adhesives. Spectral changes at 37 °C, throughout passive evaporation for 5 min, then polymerisation initiated by 20 s, and blue light emitting diode (LED) (600 mW/cm2) exposure (n = 3) were determined. Evaporation and polymerisation extent versus time and final changes were calculated using acetone (1360 cm-1) and methacrylate (1320 cm-1) peaks. OS, OU, and GB filler contents were 0, 9.6, and 5.3%. FTIR suggested OS and OU were Bis-GMA based, GB was urethane dimethacrylate (UDMA) based, and that each had a different diluent and acidic monomers and possible UDMA/acetone interactions. Furthermore, initial acetone percentages were all 40-50%. After 5 min drying, they were 0% for OS and OU but 10% for GB. Whilst OS had no water, that in OU declined from 18 to 10% and in GB from 25 to 20% upon drying. Evaporation extents were 50% of final levels at 23, 25, and 113 s for OS, OU, and GB, respectively. Polymerisation extents were all 50 and 80% of final levels before 10 and at 20 s of light exposure, respectively. Final monomer polymerisation levels were 68, 69, and 88% for OS, OU, and GB, respectively. An appreciation of initial and final adhesive chemistry is important for understanding the properties. The rates of evaporation and polymerisation provide indications of relative required drying and light cure times. UDMA/acetone interactions might explain the considerably greater drying time of GB.
Collapse
Affiliation(s)
- Arwa Almusa
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, London WC1X 8DA, UK; (A.H.S.D.); (P.A.); (A.M.Y.)
- Correspondence:
| | - António H. S. Delgado
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, London WC1X 8DA, UK; (A.H.S.D.); (P.A.); (A.M.Y.)
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Monte de Caparica, 2829-511 Almada, Portugal
| | - Paul Ashley
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, London WC1X 8DA, UK; (A.H.S.D.); (P.A.); (A.M.Y.)
- Unit of Pediatric Dentistry, Department of Craniofacial Growth and Development, UCL Eastman Dental Institute, London WC1X 8DA, UK
| | - Anne M. Young
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, London WC1X 8DA, UK; (A.H.S.D.); (P.A.); (A.M.Y.)
| |
Collapse
|
102
|
Belmar da Costa M, Delgado AHS, Amorim Afonso T, Proença L, Ramos AS, Mano Azul A. Investigating a Commercial Functional Adhesive with 12-MDPB and Reactive Filler to Strengthen the Adhesive Interface in Eroded Dentin. Polymers (Basel) 2021; 13:polym13203562. [PMID: 34685320 PMCID: PMC8538624 DOI: 10.3390/polym13203562] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/07/2021] [Accepted: 10/12/2021] [Indexed: 11/30/2022] Open
Abstract
To compare the adhesive interface of eroded dentin formed by a functional dental adhesive and a gold standard strategy, by testing microtensile bond strength (μTBS), hardness/elastic modulus. Permanent sound human molars were randomly allocated to four experimental groups, all subject to artificial erosion (0.05 M citric acid; 3× daily, 5 days). Groups included control Clearfil SE Bond 2 (CFSE), and experimental group Clearfil SE Protect (CFP), at two different time points-immediate (24 h) and long term (3 months–3 M). Samples were sectioned into microspecimens for μTBS (n = 8) and into 2-mm thick slabs for nanoindentation assays (n = 3). Groups CFSE_3M and CFP_3M were stored in artificial saliva. Statistical analysis included two-way ANOVA for μTBS data, while hardness/modulus results were analyzed using Kruskal–Wallis H Test (significance level of 5%; SPSS v.27.0). Although no significant differences were found between mean μTBS values, for different adhesives and time points (p > 0.05), a positive trend, with μTBS rising in the CFP_3M group, was observed. Regarding hardness, no significant differences were seen in the hybrid layer, considering the two variables (p > 0.05), while the reduced elastic modulus rose in CFP_3M when compared to 24 h. Thus, CFP shows similar mechanical and adhesive performance to CFSE in eroded dentin, although it may comprise promising long-term results. This is advantageous in eroded substrates due to their increased enzymatic activity and need for remineralization.
Collapse
Affiliation(s)
- Madalena Belmar da Costa
- Unit of Conservative Dentistry, Instituto Universitário Egas Moniz (IUEM), Monte de Caparica, 2829-511 Almada, Portugal; (M.B.d.C.); (T.A.A.); (A.M.A.)
| | - António HS Delgado
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Monte de Caparica, 2829-511 Almada, Portugal;
- Division of Biomaterials & Tissue Engineering, UCL Eastman Dental Institute, Royal Free Hospital, Hampstead, London NW3 2PF, UK
- Correspondence:
| | - Tomás Amorim Afonso
- Unit of Conservative Dentistry, Instituto Universitário Egas Moniz (IUEM), Monte de Caparica, 2829-511 Almada, Portugal; (M.B.d.C.); (T.A.A.); (A.M.A.)
| | - Luís Proença
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Monte de Caparica, 2829-511 Almada, Portugal;
| | - Ana Sofia Ramos
- Department of Mechanical Engineering, University of Coimbra, CEMMPRE, 3030-788 Coimbra, Portugal;
| | - Ana Mano Azul
- Unit of Conservative Dentistry, Instituto Universitário Egas Moniz (IUEM), Monte de Caparica, 2829-511 Almada, Portugal; (M.B.d.C.); (T.A.A.); (A.M.A.)
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Monte de Caparica, 2829-511 Almada, Portugal;
| |
Collapse
|
103
|
Liu H, Guo J, Wang R, Wang Y. Theaflavins as a novel cross-linker quickly stabilize demineralized dentin collagen against degradation. Sci Rep 2021; 11:19699. [PMID: 34611204 PMCID: PMC8492614 DOI: 10.1038/s41598-021-99186-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 09/21/2021] [Indexed: 11/17/2022] Open
Abstract
To investigate the ability of theaflavins (TF) from black tea to protect dentin collagen against enzymatic degradation via cross-linking effect under clinically relevant conditions. 10-µm-thick dentin films were microtomed from dentin slabs of human molars. Following demineralization, films or slabs were treated with TF at two concentrations (0.4% and 2%) for 30 s. A well-known collagen cross-linker grape seed proanthocyanidins (PA) was used as control. Collagen cross-linking interactions and stabilization against enzymatic degradation were investigated by Fourier transform infrared spectroscopy, weight loss, hydroxyproline release, and scanning/transmission electron microscopy. Data were analyzed by ANOVA, Tukey’s and Student’s T test (α = 0.05%). The results showed collagen cross-linking and stabilization efficacy was dependent on TF/PA concentrations. At 2.0%, TF and PA offered nearly full protection to collagen; at 0.4%, TF exhibited a significantly better collagen stabilization effect than PA (P < 0.05), while untreated collagen was completely digested. It’s concluded that TF cross-links dentin collagen within a clinically relevant time (30 s) and offers excellent collagen protection against enzymatic degradation, with efficacy comparable to or better than PA. The study supports the potential use of TF as a novel, promising collagen cross-linker for degradation resistant, long-lasting dentin bonding in composite restorations.
Collapse
Affiliation(s)
- Hang Liu
- School of Dentistry, University of Missouri - Kansas City, Kansas City, MO, 64108, USA
| | - Jing Guo
- School of Dentistry, University of Missouri - Kansas City, Kansas City, MO, 64108, USA.,The Key Laboratory of Oral Biomedicine of Jiangxi Province, and Department of Oral General, the Affiliated Stomatological Hospital of Nanchang University, Nanchang, 330006, China
| | - Rong Wang
- School of Dentistry, University of Missouri - Kansas City, Kansas City, MO, 64108, USA
| | - Yong Wang
- School of Dentistry, University of Missouri - Kansas City, Kansas City, MO, 64108, USA.
| |
Collapse
|
104
|
Nanomaterials Application in Endodontics. MATERIALS 2021; 14:ma14185296. [PMID: 34576522 PMCID: PMC8464804 DOI: 10.3390/ma14185296] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/21/2021] [Accepted: 09/09/2021] [Indexed: 12/11/2022]
Abstract
In recent years, nanomaterials have become increasingly present in medicine, especially in dentistry. Their characteristics are proving to be very useful in clinical cases. Due to the intense research in the field of biomaterials and nanotechnology, the efficacy and possibilities of dental procedures have immensely expanded over the years. The nano size of materials allows them to exhibit properties not present in their larger-in-scale counterparts. The medical procedures in endodontics are time-consuming and mostly require several visits to be able to achieve the proper result. In this field of dentistry, there are still major issues about the removal of the mostly bacterial infection from the dental root canals. It has been confirmed that nanoparticles are much more efficient than traditional materials and appear to have superior properties when it comes to surface chemistry and bonding. Their unique antibacterial properties are also promising features in every medical procedure, especially in endodontics. High versatility of use of nanomaterials makes them a powerful tool in dental clinics, in a plethora of endodontic procedures, including pulp regeneration, drug delivery, root repair, disinfection, obturation and canal filling. This study focuses on summing up the current knowledge about the utility of nanomaterials in endodontics, their characteristics, advantages, disadvantages, and provides a number of reasons why research in this field should be continued.
Collapse
|
105
|
Stape THS, Uctasli M, Cibelik HS, Tjäderhane L, Tezvergil-Mutluay A. Dry bonding to dentin: Broadening the moisture spectrum and increasing wettability of etch-and-rinse adhesives. Dent Mater 2021; 37:1676-1687. [PMID: 34503837 DOI: 10.1016/j.dental.2021.08.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/10/2021] [Accepted: 08/27/2021] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To determine whether the effect of dentin moisture on the etch-and-rinse bonding may be minimized by dry-bonding protocols utilizing aqueous or ethanolic dimethyl sulfoxide (DMSO) pretreatments. METHODS H3PO4-etched mid-coronal dentin surfaces from human molars were randomly blot- or air-dried for 30 s and pretreated with DMSO/H2O or DMSO/EtOH solutions. Untreated samples served as control. Moisture control was performed by either blot- or air-drying. Samples were bonded with a multistep etch-and-rinse adhesive. Restored crown segments (n = 8/group) were stored in distilled water for 24 h and sectioned for microtensile bond strength testing. Resin-dentin beams (0.8 mm2) were tested under tension until fracture (0.5 mm/min) after 24 h and two years of storage in artificial saliva at 37 °C. SEM nanoleakage evaluation was performed on aged samples. Collagen wettability was also measured by sessile drops of the hydrophilic and hydrophobic bonding resins (n = 8/group). Data were examined by factorial ANOVA followed by the Tukey test (α = 0.05). RESULTS Dry bonding to untreated collagen produced inferior immediate and long-term bond strengths than wet bonding (p < 0.05). Regardless of initial hydration and moisture control, DMSO-dry bonding produced initially higher and stable bond strengths after aging (p < 0.05). DMSO-pretreated groups presented improved collagen wettability with lower silver uptake (p < 0.05). SIGNIFICANCE Despite the common belief that etch-and-rinse adhesives must be applied onto moist collagen, DMSO-dry bonding protocols not only improved bonding performance and hybrid layer integrity, but also brought more versatility to collagen hybridization by reducing overdrying-related issues.
Collapse
Affiliation(s)
- Thiago Henrique Scarabello Stape
- Department of Restorative Dentistry and Cariology, Adhesive Dentistry Research Group, Institute of Dentistry, University of Turku, Turku, Finland; Turku University Hospital, TYKS, University of Turku, Turku, Finland.
| | - Merve Uctasli
- Department of Restorative Dentistry and Cariology, Adhesive Dentistry Research Group, Institute of Dentistry, University of Turku, Turku, Finland; Turku University Hospital, TYKS, University of Turku, Turku, Finland.
| | - Hatice Sümeyye Cibelik
- Department of Restorative Dentistry and Cariology, Adhesive Dentistry Research Group, Institute of Dentistry, University of Turku, Turku, Finland; Turku University Hospital, TYKS, University of Turku, Turku, Finland
| | - Leo Tjäderhane
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland; Helsinki University Hospital, Helsinki, Finland; Research Unit of Oral Health Sciences and Medical Research Center Oulu (MRC Oulu), Oulu University Hospital and University of Oulu, Oulu, Finland.
| | - Arzu Tezvergil-Mutluay
- Department of Restorative Dentistry and Cariology, Adhesive Dentistry Research Group, Institute of Dentistry, University of Turku, Turku, Finland; Turku University Hospital, TYKS, University of Turku, Turku, Finland.
| |
Collapse
|
106
|
Chen H, Feng S, Jin Y, Hou Y, Zhu S. Comparison of bond strength of universal adhesives using different etching modes: A systematic review and meta-analysis. Dent Mater J 2021; 41:1-10. [PMID: 34471040 DOI: 10.4012/dmj.2021-111] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This review aims to evaluate whether the etch-and-rinse or self-etch mode is the better protocol for dentin adhesion by universal adhesives. A total of 15 articles were included in the meta-analysis. Two reviewers performed a literature search up to October 2020in four databases: PubMed, Web of Science, Embase, and the Cochrane Library. Without considering the difference in aging mode, the analysis of the immediate and long-term bond strength of dentin showed that there was no statistical significance between the etch-and-rinse and self-etch mode of universal adhesive, and the long-term bond strength decreased relative to the immediate. In vitro studies suggest that prior acid etching did not improve bond performance. Whether from the perspective of long-term bonding performance or simplifying operating procedures, the self-etch mode is preferred.
Collapse
Affiliation(s)
- Huan Chen
- Department of Prosthodontics, School and Hospital of Stomatology, Jilin University
| | - Shanshan Feng
- Department of Prosthodontics, School and Hospital of Stomatology, Jilin University
| | - Yifu Jin
- Department of Prosthodontics, School and Hospital of Stomatology, Jilin University
| | - Yanyan Hou
- Department of Prosthodontics, School and Hospital of Stomatology, Jilin University
| | - Song Zhu
- Department of Prosthodontics, School and Hospital of Stomatology, Jilin University.,Department of Prosthodontics, Hospital of stomatology, Jilin University
| |
Collapse
|
107
|
Comparing the Ability of Various Resin-Based Composites and Techniques to Seal Margins in Class-II Cavities. Polymers (Basel) 2021; 13:polym13172921. [PMID: 34502961 PMCID: PMC8434433 DOI: 10.3390/polym13172921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 11/16/2022] Open
Abstract
Background: Resin-based composites (RBCs) provide excellent esthetics but the marginal micro-leakage in the proximal cavities remains a major concern. The aim of the present study was to assess the ability of various dental RBCs and techniques utilized for sealing deep dentin margin in class-II cavities. Methods: Box-cavities (class-II) on the distal and mesial surfaces of extracted (premolar) teeth were prepared with a gingival margin placed 1mm apical to the cemento-enamel junction. Teeth with prepared class II cavities were randomly divided into four study groups according to the type of restorative materials (conventional RBC; bulk-fill RBC; conventional RBC lined with flowable RBC and conventional RBC lined with resin-modified glass-ionomer-cement (GIC) as open sandwich-technique). Each group was further subdivided into a total-etch subgroup in which a separate etching step was performed before applying the bonding agent and a self-etch subgroup in which a self-etch adhesive system was used (n = 10). For each group, cavities were restored using the respective restorative materials and techniques, subjected to 1000 thermocycles, and placed in the methylene-blue dye. The specimen teeth were sectioned for further microscopic examination for micro-leakage. Results: The least dye penetration values were reported for group 4 (GIC) followed by the group Bulk-fill using the self-etch adhesive system (group 2b). The highest dye penetration was reported for the group Bulk-fill using the total-etch adhesive system (2a), followed by the group conventional RBC using the total-etch adhesive system). The total-etch adhesive system had significantly greater micro-leakage compared to the self-etch adhesive system (1a) (p = 0.026). Conclusions: The self-etch adhesive system significantly reduced the micro-leakage compared to the total-etch system. Bulk-fill RBC when bonded with the self-etch adhesive provided good marginal sealing ability comparable to open sandwich-technique using GIC.
Collapse
|
108
|
Maravić T, Baena E, Mazzitelli C, Josić U, Mancuso E, Checchi V, Generali L, Ceballos L, Breschi L, Mazzoni A. Endogenous Enzymatic Activity in Dentin Treated with a Chitosan Primer. Int J Mol Sci 2021; 22:ijms22168852. [PMID: 34445554 PMCID: PMC8396363 DOI: 10.3390/ijms22168852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/11/2021] [Accepted: 08/11/2021] [Indexed: 11/24/2022] Open
Abstract
The aim of this study was to evaluate the effect of different concentrations of chitosan polymer on dentinal enzymatic activity by means of gelatin and in situ zymography. Human dentin was frozen and ground in a miller. Dentin powder aliquots were demineralized with phosphoric acid and treated with three different concentrations of lyophilized chitosan polymer (1, 0.5 and 0.1 wt%) dissolved in distilled water. Dentin proteins were extracted from each experimental group and electrophoresed under non-reducing conditions in 10% SDS-PAGE containing fluorescein-labeled gelatin. After 48 h in the incubation buffer at 37 °C, proteolytic activity was registered under long-wave UV light scanner and quantified by using Image J software. Furthermore, additional teeth (n = 4) were prepared for the in situ zymographic analysis in unrestored as well as restored dentin pretreated with the same chitosan primers. The registered enzymatic activity was directly proportional to the chitosan concentration and higher in the restored dentin groups (p < 0.05), except for the 0.1% chitosan primer. Chitosan 0.1% only showed faint expression of enzymatic activity compared to 1% and 0.5% concentrations. Chitosan 0.1% dissolved in water can produce significant reduction in MMPs activity and could possibly contribute to bond strength preservation over time.
Collapse
Affiliation(s)
- Tatjana Maravić
- Department of Biomedical and Neuromotor Sciences, DIBINEM, University of Bologna-Alma Mater Studiorum, Via San Vitale 59, 40125 Bologna, Italy; (T.M.); (C.M.); (U.J.); (E.M.); (L.B.)
| | - Eugenia Baena
- Area of Stomatology, Health Sciences Faculty, King Juan Carlos University, Avda. de Atenas, 28922 Alcorcón, Spain; (E.B.); (L.C.)
| | - Claudia Mazzitelli
- Department of Biomedical and Neuromotor Sciences, DIBINEM, University of Bologna-Alma Mater Studiorum, Via San Vitale 59, 40125 Bologna, Italy; (T.M.); (C.M.); (U.J.); (E.M.); (L.B.)
| | - Uroš Josić
- Department of Biomedical and Neuromotor Sciences, DIBINEM, University of Bologna-Alma Mater Studiorum, Via San Vitale 59, 40125 Bologna, Italy; (T.M.); (C.M.); (U.J.); (E.M.); (L.B.)
| | - Edoardo Mancuso
- Department of Biomedical and Neuromotor Sciences, DIBINEM, University of Bologna-Alma Mater Studiorum, Via San Vitale 59, 40125 Bologna, Italy; (T.M.); (C.M.); (U.J.); (E.M.); (L.B.)
| | - Vittorio Checchi
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Transplant Surgery, Oncology and Regenerative Medicine Relevance, University of Modena & Reggio Emilia, 41124 Modena, Italy; (V.C.); (L.G.)
| | - Luigi Generali
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Transplant Surgery, Oncology and Regenerative Medicine Relevance, University of Modena & Reggio Emilia, 41124 Modena, Italy; (V.C.); (L.G.)
| | - Laura Ceballos
- Area of Stomatology, Health Sciences Faculty, King Juan Carlos University, Avda. de Atenas, 28922 Alcorcón, Spain; (E.B.); (L.C.)
| | - Lorenzo Breschi
- Department of Biomedical and Neuromotor Sciences, DIBINEM, University of Bologna-Alma Mater Studiorum, Via San Vitale 59, 40125 Bologna, Italy; (T.M.); (C.M.); (U.J.); (E.M.); (L.B.)
| | - Annalisa Mazzoni
- Department of Biomedical and Neuromotor Sciences, DIBINEM, University of Bologna-Alma Mater Studiorum, Via San Vitale 59, 40125 Bologna, Italy; (T.M.); (C.M.); (U.J.); (E.M.); (L.B.)
- Correspondence: ; Tel.: +39-051-208-8139; Fax: +39-051-22-5208
| |
Collapse
|
109
|
Iliev G, Hardan L, Kassis C, Bourgi R, Cuevas-Suárez CE, Lukomska-Szymanska M, Mancino D, Haikel Y, Kharouf N. Shelf Life and Storage Conditions of Universal Adhesives: A Literature Review. Polymers (Basel) 2021; 13:polym13162708. [PMID: 34451245 PMCID: PMC8400728 DOI: 10.3390/polym13162708] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/05/2021] [Accepted: 08/10/2021] [Indexed: 01/17/2023] Open
Abstract
This paper presents state of the art universal adhesive systems and the effect of shelf-life and storage conditions on their bond performance. Three topics are explored in this review: an introduction to the topic, the mechanisms responsible for the degradation of the hybrid layer, and the factors that play a role in the stability of universal adhesives. In addition, issues such as potential durability and clinical importance are discussed. Universal adhesive systems are promising but must be handled and stored according to the manufacturer's instructions, with careful attention given to the details of shelf-life and storage conditions for maximal success. It appears that the components of universal adhesives play an important role in their stability. Furthermore, HEMA-free formulations using methacrylamides lead to longer shelf-life. Further research is needed to prove these hypotheses.
Collapse
Affiliation(s)
- Georgi Iliev
- Department of Prosthetic Dental Medicine, Faculty of Dental Medicine, Medical University, 1431 Sofia, Bulgaria;
| | - Louis Hardan
- Department of Restorative Dentistry, School of Dentistry, Saint-Joseph University, Beirut 1107 2180, Lebanon; (L.H.); (C.K.); (R.B.)
| | - Cynthia Kassis
- Department of Restorative Dentistry, School of Dentistry, Saint-Joseph University, Beirut 1107 2180, Lebanon; (L.H.); (C.K.); (R.B.)
| | - Rim Bourgi
- Department of Restorative Dentistry, School of Dentistry, Saint-Joseph University, Beirut 1107 2180, Lebanon; (L.H.); (C.K.); (R.B.)
| | - Carlos Enrique Cuevas-Suárez
- Dental Materials Laboratory, Academic Area of Dentistry, Autonomous University of Hidalgo State, Circuito Ex Hacienda La Concepción S/N, San Agustín Tlaxiaca 42160, Hidalgo, Mexico;
| | | | - Davide Mancino
- Department of Biomaterials and Bioengineering, INSERM UMR_S 1121, Biomaterials and Bioengineering, 67000 Strasbourg, France; (D.M.); (Y.H.)
- Department of Endodontics, Faculty of Dental Medicine, Strasbourg University, 67000 Strasbourg, France
| | - Youssef Haikel
- Department of Biomaterials and Bioengineering, INSERM UMR_S 1121, Biomaterials and Bioengineering, 67000 Strasbourg, France; (D.M.); (Y.H.)
| | - Naji Kharouf
- Department of Biomaterials and Bioengineering, INSERM UMR_S 1121, Biomaterials and Bioengineering, 67000 Strasbourg, France; (D.M.); (Y.H.)
- Department of Endodontics, Faculty of Dental Medicine, Strasbourg University, 67000 Strasbourg, France
- Correspondence: ; Tel.: +33-66752-2841
| |
Collapse
|
110
|
Oltramare R, Par M, Mohn D, Wiedemeier DB, Attin T, Tauböck TT. Short- and Long-Term Dentin Bond Strength of Bioactive Glass-Modified Dental Adhesives. NANOMATERIALS 2021; 11:nano11081894. [PMID: 34443725 PMCID: PMC8398528 DOI: 10.3390/nano11081894] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 11/16/2022]
Abstract
This study investigated the short- and long-term effects of dental adhesives doped with nano-sized bioactive glass 45S5 (BAG) on the resin-dentin interfacial bond strength. Two etch-and-rinse adhesives (Adper Scotchbond Multi-Purpose (ASB) and Solobond Plus (SB)) and one self-etch adhesive (Clearfil SE Bond (CF)) were doped with different concentrations of BAG (5, 10, and 20 wt%). The unmodified (0 wt% BAG) commercial adhesives served as control groups. Dentin of 120 molars (n = 10 per group) was treated with the different adhesives, followed by buildups with a conventional composite restorative material. From each tooth, 14 sticks were prepared for micro-tensile bond strength (µTBS) testing. The sticks were stored in simulated body fluid at 37 °C and tested after 24 h or six months for µTBS and failure mode. Data were analyzed using Kruskal-Wallis tests in combination with post-hoc Conover-tests and Wilcoxon signed-rank tests at a level of significance of α = 0.05. After 24 h and six months, both etch-and-rinse adhesives with a low BAG content (up to 10 wt% for ASB and 5 wt% for SB) showed similar µTBSs as their respective control groups (0 wt% BAG). CF showed a significant decrease in µTBS even after addition of 5 wt% BAG. At a high concentration of added BAG (20 wt%), all three adhesives showed a significant decrease in µTBS compared to the unmodified controls. The CF control group showed significantly lower µTBS after 6 months of storage than after 24 h. In contrast, the µTBS of all CF groups modified with BAG was unaffected by aging. In conclusion, the tested etch-and-rinse adhesives can be modified with up to 5 wt% (SB), or 10 wt% (ASB) of BAG without reducing their short- and long-term dentin bond strength. Moreover, the addition of nano-sized BAG may prevent long-term bond strength deterioration of a self-etch adhesive.
Collapse
Affiliation(s)
- Ramona Oltramare
- Clinic of Conservative and Preventive Dentistry, Center for Dental Medicine, University of Zurich, 8032 Zurich, Switzerland; (D.M.); (T.A.); (T.T.T.)
- Correspondence: ; Tel.: +41-44-634-33-63
| | - Matej Par
- Department of Endodontics and Restorative Dentistry, School of Dental Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Dirk Mohn
- Clinic of Conservative and Preventive Dentistry, Center for Dental Medicine, University of Zurich, 8032 Zurich, Switzerland; (D.M.); (T.A.); (T.T.T.)
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Daniel B. Wiedemeier
- Statistical Services, Center for Dental Medicine, University of Zurich, 8032 Zurich, Switzerland;
| | - Thomas Attin
- Clinic of Conservative and Preventive Dentistry, Center for Dental Medicine, University of Zurich, 8032 Zurich, Switzerland; (D.M.); (T.A.); (T.T.T.)
| | - Tobias T. Tauböck
- Clinic of Conservative and Preventive Dentistry, Center for Dental Medicine, University of Zurich, 8032 Zurich, Switzerland; (D.M.); (T.A.); (T.T.T.)
| |
Collapse
|
111
|
Seredin P, Goloshchapov D, Kashkarov V, Ippolitov Y, Ippolitov I, Vongsvivut J. To the Question on the Use of Multivariate Analysis and 2D Visualisation of Synchrotron ATR-FTIR Chemical Imaging Spectral Data in the Diagnostics of Biomimetic Sound Dentin/Dental Composite Interface. Diagnostics (Basel) 2021; 11:1294. [PMID: 34359377 PMCID: PMC8307683 DOI: 10.3390/diagnostics11071294] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 01/15/2023] Open
Abstract
In this short communication, we provide information on the use of the hierarchical cluster analysis of synchrotron ATR-FTIR 2D chemical imaging spectral data as a useful and powerful approach to the microspectroscopic diagnostics of molecular composition in the hybrid sound dentin/dental composite interfaces and materials, including ones developed with the use of biomimetic strategies. The described diagnostic approach can be successfully transferred to the analysis and visualisation of 2D spectral data, collected using laboratory Raman and FTIR microspectroscopy techniques.
Collapse
Affiliation(s)
- Pavel Seredin
- Solid State Physics and Nanostructures Department, Voronezh State University, University sq.1, 394018 Voronezh, Russia; (D.G.); (V.K.)
| | - Dmitry Goloshchapov
- Solid State Physics and Nanostructures Department, Voronezh State University, University sq.1, 394018 Voronezh, Russia; (D.G.); (V.K.)
| | - Vladimir Kashkarov
- Solid State Physics and Nanostructures Department, Voronezh State University, University sq.1, 394018 Voronezh, Russia; (D.G.); (V.K.)
| | - Yuri Ippolitov
- Department of Pediatric Dentistry with Orthodontia, Voronezh State Medical University, Studentcheskaya st. 11, 394006 Voronezh, Russia; (Y.I.); (I.I.)
| | - Ivan Ippolitov
- Department of Pediatric Dentistry with Orthodontia, Voronezh State Medical University, Studentcheskaya st. 11, 394006 Voronezh, Russia; (Y.I.); (I.I.)
| | - Jitraporn Vongsvivut
- Infrared Microspectroscopy (IRM) Beamline, ANSTO—Australian Synchrotron, 800 Blackburn Road, Clayton, VIC 3168, Australia;
| |
Collapse
|
112
|
Rad IY, Lewis S, Barros MD, Kipper M, Stansbury JW. Suppression of hydrolytic degradation in labile polymer networks via integrated styrenic nanogels. Dent Mater 2021; 37:1295-1306. [PMID: 34103152 DOI: 10.1016/j.dental.2021.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 05/14/2021] [Indexed: 12/27/2022]
Abstract
OBJECTIVE The objective of this study was to demonstrate an approach with potential to increase the life of dental restorative polymers in water, by maintaining their strength and toughness with varied content of inert or reactive styrenic pre-polymeric additives. It was hypothesized that addition of styrene-co-divinylbenzene nanogels to a conventional dimethacrylate resin (e.g. TEGDMA) would reduce its susceptibility towards hydrolytic degradation, while maintaining equivalent mechanical properties. METHODS Polymerization kinetics and functional group conversions were determined by Fourier transform infrared spectroscopy. Triple-detection gel permeation chromatography was used for nanogel particle characterization. A goniometer was used to measure water contact angle on experimental and control photocured polymers. Hydrolytic degradation and mass loss evaluation was performed after extended water storage of an intentionally hydrolytically degradable polymer. Resin viscosity was determined rheometrically and polymer mechanical properties were evaluated using three-point flexural testing with TEGDMA-nanogel formulations. RESULTS The polymer network with highest level of nanogel loading (50 wt%) and the highest level of internal nanogel crosslinking (50 mol%) had the lowest degree of equilibrium swelling ratio and mass loss. The flexural modulus and ultimate strength of polymerized TEGDMA and styrenic nanogel-modified TEGDMA were not statistically different (p > 0.05). SIGNIFICANCE Due to improved shielding throughout the bulk of methacrylate-based polymers, including an example with an intentionally hydrolytically labile network structure, and a dramatic decrease of water uptake while maintaining equivalent mechanical properties, styrenic nanogel additives especially in high loading levels provide an excellent alternative to eliminate the adverse effects of water and presumably salivary fluids.
Collapse
Affiliation(s)
- Ima Y Rad
- University of Colorado-Anschutz Medical Campus, Craniofacial Biology Department, Research Complex-I North, 13065 E. 17th Avenue, Aurora, CO 80045 United States of America.
| | - Steven Lewis
- University of Colorado-Anschutz Medical Campus, Craniofacial Biology Department, Research Complex-I North, 13065 E. 17th Avenue, Aurora, CO 80045 United States of America.
| | - Matthew D Barros
- University of Colorado-Anschutz Medical Campus, Craniofacial Biology Department, Research Complex-I North, 13065 E. 17th Avenue, Aurora, CO 80045 United States of America.
| | - Matt Kipper
- Colorado State University, Chemical and Biological Engineering, Suzanne and Walter Scott, Jr. Bioengineering Building, 700 Meridian Ave, Fort Collins, CO 80523 United States of America.
| | - Jeffrey W Stansbury
- University of Colorado-Anschutz Medical Campus, Craniofacial Biology Department, Research Complex-I North, 13065 E. 17th Avenue, Aurora, CO 80045 United States of America.
| |
Collapse
|
113
|
Effect of chlorhexidine-loaded poly(amido amine) dendrimer on matrix metalloproteinase activities and remineralization in etched human dentin in vitro. J Mech Behav Biomed Mater 2021; 121:104625. [PMID: 34130080 DOI: 10.1016/j.jmbbm.2021.104625] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/19/2021] [Accepted: 05/23/2021] [Indexed: 02/08/2023]
Abstract
To investigate the effect of chlorhexidine (CHX)-loaded carboxyl-terminated poly (amido amine) dendrimer (CHX-PAMAM-COOH) on matrix metalloproteinase (MMP) activities and remineralization in human dentin, CHX-PAMAM-COOH was prepared and characterized by Fourier-transform infrared spectroscopy. The inhibitory effects of CHX, PAMAM-COOH, and CHX-PAMAM-COOH on soluble recombinant human matrix metalloproteinase (rhMMP-2) and dentin-bound endogenous MMP activity were measured using an MMP Activity Assay Kit. In situ zymography was performed to evaluate the gelatinase activity in dentin pretreated with CHX, PAMAM-COOH, and CHX-PAMAM-COOH. The remineralization of etched dentin pretreated with CHX, PAMAM-COOH, and CHX-PAMAM-COOH was evaluated by field emission-scanning electron microscopy (SEM) and energy disperse spectroscopy (EDS) after incubation in artificial saliva for 14 days. The results of the rhMMP-2 activity assay showed that the MMP-2 activity in the CHX-PAMAM-COOH group and the CHX group decreased significantly to 5.58 ± 0.85% (P < 0.05) and 4.86 ± 1.12% (P < 0.05), respectively, but that in the PAMAM-COOH group increased significantly to 213.38 ± 0.11% (P < 0.05). The results of total MMP activity and in situ zymography showed a significant reduction in endogenous gelatinase activity in dentin in the CHX-PAMAM-COOH group and the CHX group. The SEM and EDS results showed that rod-like crystals were formed on the etched dentin surface in the PAMAM-COOH group and the CHX-PAMAM-COOH group, and their Ca/P ratios were 1.73 and 1.71, respectively. In conclusion, CHX-PAMAM-COOH can inhibit dentin-bound endogenous MMPs and induce remineralization in etched dentin simultaneously. However, it is important to note that the catalytic role of PAMAM dendrimers may have an undesired excitatory effect on MMP activity, which cannot be ignored if PAMAM dendrimers were used alone in the oral environment.
Collapse
|
114
|
Hass V, Li Y, Wang R, Nguyen D, Peng Z, Wang Y. Methacrylate-functionalized proanthocyanidins as novel polymerizable collagen cross-linkers - Part 1: Efficacy in dentin collagen bio-stabilization and cross-linking. Dent Mater 2021; 37:1183-1192. [PMID: 33994202 DOI: 10.1016/j.dental.2021.04.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 04/05/2021] [Accepted: 04/24/2021] [Indexed: 01/06/2023]
Abstract
OBJECTIVE The aim of the study was to investigate the effects of methacrylate-functionalized proanthocyanidins (MAPAs) on dentin collagen's bio-stabilization against enzymatic degradation and crosslinking capability. METHODS Three MAPAs were synthesized via varying methacrylate (MA) to proanthocyanidins (PA) feeding ratios of 1:2, 1:1, and 2:1 to obtain MAPA-1, MAPA-2, and MAPA-3, respectively. The three MAPAs were structurally characterized by proton nuclear magnetic resonance (1H NMR) and Fourier transform infrared (FTIR) spectroscopic methods. 5-μm-thick dentin films were microtomed from dentin slabs of third molars. Following demineralization, films or slabs were treated with 1% MAPAs or PA in ethanol for 30 s. Collagen bio-stabilization against enzymatic degradation was analyzed by weight loss (WL) and hydroxyproline release (HYP) of films, as well as scanning electron microscopy (SEM) on dentin slabs. Crosslinking capacity and interactions of MAPAs with collagen were investigated by FTIR. Data were analyzed by ANOVA and Tukey's test (α = 0.05%). RESULTS MA:PA feeding ratios affected MAPAs' chemical structures which in turn led to different collagen stabilization efficacy against degradation and varied collagen crosslinking capabilities. Higher collagen stabilization efficacy was detected using MAPA-1 (WL 10.52%; HYP 13.53 μg/mg) and MAPA-2 (WL 5.99%; HYP 11.02 μg/mg), which was comparable to that using PA (WL 8.79%; HYP 13.17 μg/mg) (p > 0.05), while a lower collagen stability occurred in MAPA-3 (WL 38.48%; HYP 29.49 μg/mg), indicating excessive MA-functionalization would compromise its stabilization efficacy. In comparison, complete digestion was detected for untreated collagen (WL 100%; HYP 102.76 μg/mg). The above results were consistent with collagen crosslinking efficacy of the three MAPAs revealed by SEM and FTIR. SIGNIFICANCE A new class of novel polymerizable collagen cross-linkers MAPAs was synthesized and shown that, when appropriate MA:PA ratios were applied, the resulting MAPAs could render high collagen stability and the ability to copolymerize with resin monomers, overcoming the drawbacks of PA. These new polymerizable crosslinkers, when included in adhesives, could lead to long-lasting dentin bonding.
Collapse
Affiliation(s)
- Viviane Hass
- School of Dentistry, University of Missouri - Kansas City, Kansas City, MO, 64108, USA
| | - Yong Li
- Department of Chemistry, University of Missouri - Kansas City, MO, 64110, USA
| | - Rong Wang
- School of Dentistry, University of Missouri - Kansas City, Kansas City, MO, 64108, USA
| | - Dung Nguyen
- Department of Chemistry, University of Missouri - Kansas City, MO, 64110, USA
| | - Zhonghua Peng
- Department of Chemistry, University of Missouri - Kansas City, MO, 64110, USA.
| | - Yong Wang
- School of Dentistry, University of Missouri - Kansas City, Kansas City, MO, 64108, USA.
| |
Collapse
|
115
|
Spencer P, Ye Q, Kamathewatta NJB, Woolfolk SK, Bohaty BS, Misra A, Tamerler C. Chemometrics-Assisted Raman Spectroscopy Characterization of Tunable Polymer-Peptide Hybrids for Dental Tissue Repair. FRONTIERS IN MATERIALS 2021; 8:681415. [PMID: 34113623 PMCID: PMC8186416 DOI: 10.3389/fmats.2021.681415] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The interfaces that biological tissues form with biomaterials are invariably defective and frequently the location where failure initiates. Characterizing the phenomena that lead to failure is confounded by several factors including heterogeneous material/tissue interfaces. To seamlessly analyze across these diverse structures presents a wealth of analytical challenges. This study aims to develop a molecular-level understanding of a peptide-functionalized adhesive/collagen hybrid biomaterial using Raman spectroscopy combined with chemometrics approach. An engineered hydroxyapatite-binding peptide (HABP) was copolymerized in dentin adhesive and dentin was demineralized to provide collagen matrices that were partially infiltrated with the peptide-functionalized adhesive. Partial infiltration led to pockets of exposed collagen-a condition that simulates defects in adhesive/dentin interfaces. The spectroscopic results indicate that co-polymerizable HABP tethered to the adhesive promoted remineralization of the defects. The spatial distribution of collagen, adhesive, and mineral as well as crystallinity of the mineral across this heterogeneous material/tissue interface was determined using micro-Raman spectroscopy combined with chemometrics approach. The success of this combined approach in the characterization of material/tissue interfaces stems from its ability to extract quality parameters that are related to the essential and relevant portions of the spectral data, after filtering out noise and non-relevant information. This ability is critical when it is not possible to separate components for analysis such as investigations focused on, in situ chemical characterization of interfaces. Extracting essential information from complex bio/material interfaces using data driven approaches will improve our understanding of heterogeneous material/tissue interfaces. This understanding will allow us to identify key parameters within the interfacial micro-environment that should be harnessed to develop durable biomaterials.
Collapse
Affiliation(s)
- Paulette Spencer
- Institute for Bioengineering Research, University of Kansas, Lawrence, KS, United States
- Department of Mechanical Engineering, University of Kansas, Lawrence, KS, United States
- Bioengineering Program, University of Kansas, Lawrence, KS, United States
- Correspondence: Paulette Spencer, , Qiang Ye,
| | - Qiang Ye
- Institute for Bioengineering Research, University of Kansas, Lawrence, KS, United States
- Correspondence: Paulette Spencer, , Qiang Ye,
| | - Nilan J. B. Kamathewatta
- Institute for Bioengineering Research, University of Kansas, Lawrence, KS, United States
- Bioengineering Program, University of Kansas, Lawrence, KS, United States
| | - Sarah K. Woolfolk
- Institute for Bioengineering Research, University of Kansas, Lawrence, KS, United States
- Bioengineering Program, University of Kansas, Lawrence, KS, United States
| | - Brenda S. Bohaty
- Department of Pediatric Dentistry, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO, United States
| | - Anil Misra
- Institute for Bioengineering Research, University of Kansas, Lawrence, KS, United States
- Department of Civil Engineering, University of Kansas, Lawrence, KS, United States
| | - Candan Tamerler
- Institute for Bioengineering Research, University of Kansas, Lawrence, KS, United States
- Department of Mechanical Engineering, University of Kansas, Lawrence, KS, United States
- Bioengineering Program, University of Kansas, Lawrence, KS, United States
| |
Collapse
|
116
|
Asthana G, Khambhala R, Govil S, Dhanak N, Kanodia S, Parmar A. Effect of chemical cross-linkers on surface topography and microtensile bond strength of sound dentin: An in vitro study. J Conserv Dent 2021; 24:288-292. [PMID: 35035156 PMCID: PMC8717847 DOI: 10.4103/jcd.jcd_607_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/19/2021] [Accepted: 07/04/2021] [Indexed: 11/11/2022] Open
Abstract
AIM AND OBJECTIVES The aim of the study was to investigate the effect of two different collagen cross-linking agents proanthocyanidin (Grape seed extract [GSE] and 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide) on the surface topography of etched dentin and microtensile bond strength (μTBS) of resin dentin bond. MATERIALS AND METHODS Fifty-two sound human 3rd molars were collected, and their occlusal surfaces were ground flat to expose dentin. Dentin surfaces were etched using phosphoric acid and then teeth were randomly divided into four groups, according to the dentin treatment: Group 1: wet bonding technique, Group 2: dry bonding technique, Group 3: 6.5% proanthocyanidin, and Group 4: 0.1M carbodiimide. Scanning electron microscope analysis was done for twenty specimens (n = 5 per group) at ×10,000 and ×30,000 magnification. Remaining 32 specimens were restored with TETRIC N-Bond adhesive systems and resin composite. After 24 h, teeth were sectioned to produce a cross-sectional surface area of 1.0 mm2 and tested for μTBS. STATISTICAL ANALYSIS Data were statistically analyzed using ANOVA and post hoc least significant difference test (P < 0.05). CONCLUSION When acid-etched dentin is treated by 6.5% proanthocyanidin (GSE) and 0.1M carbodiimide, followed by application of adhesives, it results in increased μTBS due to cross-linking of collagen fibrils.
Collapse
Affiliation(s)
- Geeta Asthana
- Department of Conservative Dentistry and Endodontics, Govt. Dental College and Hospital, Ahmedabad, Gujarat, India
| | - Ram Khambhala
- Department of Conservative Dentistry and Endodontics, Govt. Dental College and Hospital, Ahmedabad, Gujarat, India
| | - Shrusti Govil
- Department of Conservative Dentistry and Endodontics, Govt. Dental College and Hospital, Ahmedabad, Gujarat, India
| | - Nupur Dhanak
- Department of Conservative Dentistry and Endodontics, Govt. Dental College and Hospital, Ahmedabad, Gujarat, India
| | - Shikha Kanodia
- Department of Conservative Dentistry and Endodontics, Govt. Dental College and Hospital, Ahmedabad, Gujarat, India
| | - Abhishek Parmar
- Department of Conservative Dentistry and Endodontics, Govt. Dental College and Hospital, Ahmedabad, Gujarat, India
| |
Collapse
|
117
|
Almutairi B, Kattan HF, BinMahfooz AM, Qutub OA, Basunbul G, ArRejaie AS, Farooq I, Vohra F, Abduljabbar T. Synergistic effect of graphene oxide/calcium phosphate nanofiller in a dentin adhesive on its dentin bond integrity and degree of conversion. A scanning electron microscopy, energy dispersive X-ray spectroscopy, Fourier transform infrared, micro-Raman, and bond strength study. Microsc Res Tech 2021; 84:2082-2094. [PMID: 33913221 DOI: 10.1002/jemt.23764] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 02/06/2021] [Accepted: 03/19/2021] [Indexed: 12/20/2022]
Abstract
The objective was to formulate and analyze a dentin adhesive incorporated with graphene oxide (GO) nanoparticle and calcium phosphate (CaP) composite. Methods comprising of scanning electron microscopy (SEM)-energy dispersive X-ray spectroscopy (EDX), micro-Raman spectroscopy, shear bond strength (SBS), and Fourier transform infrared (FTIR) spectroscopy were used to characterize nanoparticle composite, dentin bond toughness, degree of conversion (DC), and adhesive-dentin interaction. Postsynthesis of GO nanoparticles, they were functionalized with CaP using standard process. The GO-CaP composite was not added to experimental adhesive (negative control group, GO-CaP-0%), and added at 2.5 and 5 wt% to yield GO-CaP-2.5% and GO-CaP 5% groups, respectively. Teeth were set to form bonded samples utilizing adhesives in three groups for SBS testing, with and without thermocycling. The homogenous diffusion of GO-CaP composite was verified in the adhesive. Resin tags having standard penetrations were observed on SEM micrographs. The EDX analysis confirmed the occurrence of calcium, phosphorus, and carbon ions in the composite containing adhesives. The SBS test revealed highest mean values for GO-CaP-5% followed by GO-CaP-2.5%. The FTIR spectra verified the presence of apatite peaks and the micro-Raman spectra showed characteristic D and G bands for GO nanoparticles. GO-CaP composite in dentin adhesive may improve its bond strength. The addition of 5 wt% resulted in a bond strength that was superior to all other groups. GO-CaP-5% group demonstrated lower DC (to control), uniform distribution of GO and CaP composite within adhesive, appropriate dentin interaction, and resin tag formation.
Collapse
Affiliation(s)
- Basil Almutairi
- Department of Restorative Dental Sciences, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | - Hiba F Kattan
- Preventive Dental Science Department, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Abdulelah M BinMahfooz
- Department of Oral and Maxillofacial Prosthodontics, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Osama A Qutub
- Department of Oral and Maxillofacial Prosthodontics, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ghadeer Basunbul
- Department of Oral and Maxillofacial Prosthodontics, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Aws S ArRejaie
- Department of Prosthetic Dental Science, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | - Imran Farooq
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Fahim Vohra
- Department of Prosthetic Dental Science, College of Dentistry, King Saud University; Research Chair for Biological Research in Dental Health, Riyadh, Saudi Arabia
| | - Tariq Abduljabbar
- Department of Prosthetic Dental Science, College of Dentistry, King Saud University; Research Chair for Biological Research in Dental Health, Riyadh, Saudi Arabia
| |
Collapse
|
118
|
Bertolo MVL, Guarda MB, Fronza BM, Abuna GF, Vitti RP, Geraldeli S, Sinhoreti MAC. Electric current effects on bond strength, nanoleakage, degree of conversion and dentinal infiltration of adhesive systems. J Mech Behav Biomed Mater 2021; 119:104529. [PMID: 33910131 DOI: 10.1016/j.jmbbm.2021.104529] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 04/08/2021] [Accepted: 04/12/2021] [Indexed: 11/25/2022]
Abstract
To evaluate the effect of three adhesive systems applied under electric current on microtensile bond strength (μTBS) and degree of conversion (DC). Molar teeth were restored with the aid of three adhesive systems (Adper Single Bond 2-SB2; Clearfil SE Bond-CSE; and Single Bond Universal-SBU) under different electric current intensities (0 μA; 25 μA; and 50 μA). Composite resin blocks were built up in increments (2 mm) and sectioned into 1 × 1 mm beams. The μTBS was tested after 24 h and 1 y distilled water storages. Samples (n = 10) from 24 h to 1 y storages were immersed in a 50% ammoniacal silver nitrate solution and submitted to scanning electron microscopy. The silver nitrate in the hybrid layer was quantified (ImageJ software). The adhesive systems' dentinal infiltration was analyzed using confocal laser scanning microscopy. Fourier transform near infrared spectroscopy was used to measure the DC. The μTBS data were submitted to two-way ANOVA (time vs. electric current) and Bonferroni's test (α = 0.05). Quantitative nanoleakage data were submitted to two-way ANOVA (electric current vs. adhesive) and Bonferroni's test (α = 0.05). DC data were submitted to one-way ANOVA and Tukey's test (α = 0.05) for each adhesive system. The electric current statistically increased the μTBS for SB2 and CSE in 24 h storage, as well as for SB2, CSE and SBU in 1 y storage. No significant difference was observed between storage time for CSE and SBU. When compared to the control, electric currents (25 μA and 50 μA) showed significantly higher DC mean values for SB2 and SBU, and had no effect on CSE. The electric currents (25 μA and 50 μA) reduced the adhesive system's nanoleakage after 1-year storage, and improved the infiltration of SB2 and CSE. Both electric current intensities improved dentinal interface stability.
Collapse
Affiliation(s)
- Marcus Vinícius Loureiro Bertolo
- Department of Restorative Dentistry, Dental Materials Division, Piracicaba Dental School, University of Campinas, Piracicaba, SP, Brazil
| | - Maurício Bottene Guarda
- Department of Restorative Dentistry, Dental Materials Division, Piracicaba Dental School, University of Campinas, Piracicaba, SP, Brazil
| | - Bruna Marin Fronza
- Department of Biomaterials and Oral Biology, School of Dentistry, University of São Paulo, São Paulo, SP, Brazil
| | - Gabriel Flores Abuna
- Division of Biomedical Materials, School of Dental Medicine, East Carolina University, Greenville, NC, USA
| | - Rafael Pino Vitti
- Department of Prosthodontics, School of Dentistry, University of Taubaté, Taubaté, SP, Brazil
| | - Saulo Geraldeli
- Division of Biomedical Materials, School of Dental Medicine, East Carolina University, Greenville, NC, USA
| | - Mário Alexandre Coelho Sinhoreti
- Department of Restorative Dentistry, Dental Materials Division, Piracicaba Dental School, University of Campinas, Piracicaba, SP, Brazil.
| |
Collapse
|
119
|
Effects of Dentine Pretreatment Solutions Containing Flavonoids on the Resin Polymer-Dentine Interface Created Using a Modern Universal Adhesive. Polymers (Basel) 2021; 13:polym13071145. [PMID: 33918441 PMCID: PMC8038197 DOI: 10.3390/polym13071145] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/27/2021] [Accepted: 03/28/2021] [Indexed: 11/22/2022] Open
Abstract
The aim of the present study was to evaluate the influence of several experimental pretreatment crosslinker solutions on the resin polymer–dentine interface created using a representative universal adhesive system, by means of microtensile bond strength testing (μTBS), nanomechanical properties and ultramorphology confocal laser scanning microscopy (CLSM). Five experimental solutions containing different flavonoids were applied as dentine pretreatment after acid etching. A control pretreatment group containing no flavonoid was also employed. A representative modern universal adhesive was then applied, followed by a 3 mm thick composite built up. Specimens were sectioned into sticks and submitted to a μTBS test or nanoindentation analysis along the interface (24 h or 25,000 thermocycles). The ultramorphology of the polymer–resin interface was also evaluated using CLSM. The results were analyzed using two-way ANOVA and Bonferroni’s post hoc test (α = 0.05). All flavonoids improved short- and long-term μTBS values (p < 0.01), while only some specific such solutions improved the nanomechanical properties (p < 0.05) and preserved the structural morphology of the interface after aging. Pretreatment of acid-etched dentine using specific flavonoid-containing solutions may be a promising approach to improve both the nanomechanical properties and the durability of modern universal adhesive systems.
Collapse
|
120
|
Yu F, Luo ML, Xu RC, Huang L, Yu HH, Meng M, Jia JQ, Hu ZH, Wu WZ, Tay FR, Xiao YH, Niu LN, Chen JH. A novel dentin bonding scheme based on extrafibrillar demineralization combined with covalent adhesion using a dry-bonding technique. Bioact Mater 2021; 6:3557-3567. [PMID: 33842741 PMCID: PMC8022110 DOI: 10.1016/j.bioactmat.2021.03.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/26/2021] [Accepted: 03/11/2021] [Indexed: 01/21/2023] Open
Abstract
Dentin bonding is a dynamic process that involves the penetration of adhesive resin monomers into the extrafibrillar and intrafibrillar demineralized collagen matrix using a wet-bonding technique. However, adhesive resin monomers lack the capacity to infiltrate the intrafibrillar space, and the excess water that is introduced by the wet-bonding technique remains at the bonding interface. This imperfectly bonded interface is inclined to hydrolytic degradation, severely jeopardizing the longevity of bonded clinical restorations. The present study introduces a dentin bonding scheme based on a dry-bonding technique, combined with the use of extrafibrillar demineralization and a collagen-reactive monomer (CRM)-based adhesive (CBA). Selective extrafibrillar demineralization was achieved using 1-wt% high-molecular weight (MW) carboxymethyl chitosan (CMCS) within a clinically acceptable timeframe to create a less aggressive bonding substance for dentin bonding due to its selectively extrafibrillar demineralization capacity. CMCS demineralization decreased the activation of in situ collagenase, improved the shrinking resistance of demineralized collagen, and thus provided stronger and more durable bonding than traditional phosphoric acid etching. The new dentin bonding scheme that contained CMCS and CBA and used a dry-bonding technique achieved an encouraging dentin bonding strength and durability with low technical sensitivity. This bonding scheme can be used to improve the stability of the resin-dentin interface and foster the longevity of bonded clinical restorations.
Collapse
Affiliation(s)
- F Yu
- Department of Stomatology, 920 Hospital of Joint Logistics Support Force, PLA, Kunming, 650032, China
| | - M L Luo
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - R C Xu
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China.,Department of Stomatology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China
| | - L Huang
- Department of General Dentistry and Emergency, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - H H Yu
- National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - M Meng
- National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - J Q Jia
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Z H Hu
- Department of Stomatology, 920 Hospital of Joint Logistics Support Force, PLA, Kunming, 650032, China
| | - W Z Wu
- Department of Stomatology, 920 Hospital of Joint Logistics Support Force, PLA, Kunming, 650032, China
| | - F R Tay
- The Dental College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Y H Xiao
- Department of Stomatology, 920 Hospital of Joint Logistics Support Force, PLA, Kunming, 650032, China
| | - L N Niu
- National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - J H Chen
- National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
121
|
Porto ICCDM, Rocha ABDB, Ferreira IIS, de Barros BM, Ávila EC, da Silva MC, de Oliveira MPS, Lôbo TDLGF, Oliveira JMDS, do Nascimento TG, de Freitas JMD, de Freitas JD. Polyphenols and Brazilian red propolis incorporated into a total-etching adhesive system help in maintaining bonding durability. Heliyon 2021; 7:e06237. [PMID: 33665421 PMCID: PMC7898005 DOI: 10.1016/j.heliyon.2021.e06237] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 11/21/2020] [Accepted: 02/05/2021] [Indexed: 11/28/2022] Open
Abstract
Objectives The aim of this study was to evaluate the degree of conversion and bond strength of a commercial dental adhesive modified by the incorporation of quercetin, resveratrol (RES), and Brazilian red propolis (BRP). Methods BRP markers were identified using ultra-performance liquid chromatography coupled with a diode array detector, and the antioxidant activity (AAO) of the three substances was analyzed. Single Bond 2 adhesive (3M ESPE) was modified by adding BRP, quercetin, and RES, separately, at 20 μg/mL, 250 μg/mL, and 500 μg/mL, respectively. The degree of conversion (DC) was measured using near-infrared spectroscopy 24 h after photopolymerization. Measurements of the resin-dentin microtensile bond strength (μTBS) were carried out after 1 day and 1 year. Student's t test and ANOVA with Tukey's test were used for data analysis (α = 0.05). Results The markers daidzein, liquiritigenin, pinobanksin, isoliquiritigenin, formononetin, pinocembrin, and biochanin A were found in the ethanolic extract of BRP. Quercetin, RES, and BRP showed high AAO. The DC of the tested adhesives remained adequate for this category of material, with a slight increase in the DC of adhesives with quercetin and BRP (P > 0.05). Comparisons between μTBS measurements made at 1 day and 1 year showed that, contrary to the control group, μTBS values for all modified adhesives were maintained after 1 year in distilled water (P > 0.05). Conclusions These findings suggest that quercetin, RES, or BRP might be useful in adhesive dentistry to help improve hybrid layer resistance. Clinical significance Dentin bonding agents with quercetin, RES, and BRP have potential to increase the longevity of composite restorations.
Collapse
Affiliation(s)
- Isabel Cristina Celerino de Moraes Porto
- Laboratoty of Characterization and Analysis of Biomaterials, Faculty of Dentistry, Federal University of Alagoas, Campus AC Simões, Av. Lourival Melo Mota, S/N, Tabuleiro do Martins, CEP 57072-970, Maceió, Alagoas, Brazil.,Laboratory of Pharmaceutical and Food Analysis, Postgraduate Program in Pharmaceutical Sciences, Institute of Pharmaceutical Sciences, Federal University of Alagoas, Campus A. C. Simões, CEP 57072-970, Maceió, Alagoas, Brazil
| | - Arthur Bezerra de Barros Rocha
- Laboratoty of Characterization and Analysis of Biomaterials, Faculty of Dentistry, Federal University of Alagoas, Campus AC Simões, Av. Lourival Melo Mota, S/N, Tabuleiro do Martins, CEP 57072-970, Maceió, Alagoas, Brazil
| | - Iverson Iago Soares Ferreira
- Laboratoty of Characterization and Analysis of Biomaterials, Faculty of Dentistry, Federal University of Alagoas, Campus AC Simões, Av. Lourival Melo Mota, S/N, Tabuleiro do Martins, CEP 57072-970, Maceió, Alagoas, Brazil
| | - Bruna Muritiba de Barros
- Laboratoty of Characterization and Analysis of Biomaterials, Faculty of Dentistry, Federal University of Alagoas, Campus AC Simões, Av. Lourival Melo Mota, S/N, Tabuleiro do Martins, CEP 57072-970, Maceió, Alagoas, Brazil
| | - Eryck Canabarra Ávila
- Laboratoty of Characterization and Analysis of Biomaterials, Faculty of Dentistry, Federal University of Alagoas, Campus AC Simões, Av. Lourival Melo Mota, S/N, Tabuleiro do Martins, CEP 57072-970, Maceió, Alagoas, Brazil
| | - Matheus Corrêa da Silva
- Laboratoty of Characterization and Analysis of Biomaterials, Faculty of Dentistry, Federal University of Alagoas, Campus AC Simões, Av. Lourival Melo Mota, S/N, Tabuleiro do Martins, CEP 57072-970, Maceió, Alagoas, Brazil
| | - Marcos Paulo Santana de Oliveira
- Laboratoty of Characterization and Analysis of Biomaterials, Faculty of Dentistry, Federal University of Alagoas, Campus AC Simões, Av. Lourival Melo Mota, S/N, Tabuleiro do Martins, CEP 57072-970, Maceió, Alagoas, Brazil
| | - Teresa de Lisieux Guedes Ferreira Lôbo
- Laboratory of Pharmaceutical and Food Analysis, Postgraduate Program in Pharmaceutical Sciences, Institute of Pharmaceutical Sciences, Federal University of Alagoas, Campus A. C. Simões, CEP 57072-970, Maceió, Alagoas, Brazil
| | - José Marcos Dos Santos Oliveira
- Postgraduate Program in Health Research, Cesmac University Center, Rua Prof. Ângelo Neto, 51, Farol, CEP 57051-530, Maceió, Alagoas, Brazil
| | - Ticiano Gomes do Nascimento
- Laboratory of Pharmaceutical and Food Analysis, Postgraduate Program in Pharmaceutical Sciences, Institute of Pharmaceutical Sciences, Federal University of Alagoas, Campus A. C. Simões, CEP 57072-970, Maceió, Alagoas, Brazil
| | - Jeniffer Mclaine Duarte de Freitas
- Laboratory of Pharmaceutical and Food Analysis, Postgraduate Program in Nutrition, Faculty of Nutrition, Federal University of Alagoas, Campus A. C. Simões, CEP 57072-970, Maceió, Alagoas, Brazil
| | - Johnnatan Duarte de Freitas
- Department of Chemistry, Federal Institute of Alagoas, Rua Mizael Domingues, 75, Campus Maceió, CEP 57020-600, Maceió, Alagoas, Brazil
| |
Collapse
|
122
|
Akram Z, Daood U, Aati S, Ngo H, Fawzy AS. Formulation of pH-sensitive chlorhexidine-loaded/mesoporous silica nanoparticles modified experimental dentin adhesive. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 122:111894. [DOI: 10.1016/j.msec.2021.111894] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/11/2021] [Accepted: 01/18/2021] [Indexed: 12/19/2022]
|
123
|
Awad MM, Alhalabi F, Alshehri A, Aljeaidi Z, Alrahlah A, Özcan M, Hamama HH. Effect of Non-Thermal Atmospheric Plasma on Micro-Tensile Bond Strength at Adhesive/Dentin Interface: A Systematic Review. MATERIALS 2021; 14:ma14041026. [PMID: 33671580 PMCID: PMC7926439 DOI: 10.3390/ma14041026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/18/2021] [Accepted: 02/18/2021] [Indexed: 01/29/2023]
Abstract
Objective: The objective of this review was to evaluate the effect of non-thermal atmospheric plasma (NTAP) on adhesives resin–dentin micro-tensile bond strength (μTBS) in previously published studies. Methods: Electronic search was conducted using the Medline, Cochrane library, and Scopus databases. The included studies were laboratory studies that investigated the effect of NTAP on adhesives μTBS to coronal dentin. Studies that evaluated the effect of NTAP on bond strength to indirect substrates, enamel or root dentin, were excluded. The methodological quality of included studies was assessed. Results: Thirteen studies were included in this systematic review. All the included studies were considered to have a medium risk of bias. NTAP significantly improved μTBS at 24 h or after short-term aging in five studies (38.5%) and both immediate and after long-term aging in 5 studies (38.5%). In two studies (15.4%), NTAP resulted in a short-term material-dependent effect that was not stable after long-term aging. Interestingly, in one study (7.7%), NTAP had a positive effect only in the etch-and-rinse (ER) mode after long-term aging. Conclusion: Within the limitations of this systematic review, NTAP application could enhance resin–dentin μTBS of ER adhesives or universal adhesives (UAs) applied in the ER mode. In the ER mode, the rewetting step after NTAP seems to be unnecessary. Because of the limited information currently available in the literature, further studies are required to evaluate the effect of the NTAP application on self-etch (SE) adhesives or UAs applied in the SE mode.
Collapse
Affiliation(s)
- Mohamed M. Awad
- Department of Conservative Dental Sciences, College of Dentistry, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (F.A.); (A.A.); (Z.A.)
- Correspondence: or
| | - Feras Alhalabi
- Department of Conservative Dental Sciences, College of Dentistry, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (F.A.); (A.A.); (Z.A.)
| | - Abdullah Alshehri
- Department of Conservative Dental Sciences, College of Dentistry, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (F.A.); (A.A.); (Z.A.)
| | - Zaid Aljeaidi
- Department of Conservative Dental Sciences, College of Dentistry, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (F.A.); (A.A.); (Z.A.)
| | - Ali Alrahlah
- Department of Restorative Dental Science, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia;
- Engineer Abdullah Bugshan Research Chair for Dental and Oral Rehabilitation, King Saud University, Riyadh 11545, Saudi Arabia
| | - Mutlu Özcan
- Division of Dental Biomaterials, Center for Dental and Oral Medicine, University of Zürich, 8032 Zürich, Switzerland;
| | - Hamdi Hosni Hamama
- Department of Operative Dentistry, Faculty of Dentistry, Mansoura University, Mansoura 35516, Egypt;
| |
Collapse
|
124
|
Moreira KM, Bertassoni LE, Davies RP, Joia F, Höfling JF, Nascimento FD, Puppin-Rontani RM. Impact of biomineralization on resin/biomineralized dentin bond longevity in a minimally invasive approach: An "in vitro" 18-month follow-up. Dent Mater 2021; 37:e276-e289. [PMID: 33608139 DOI: 10.1016/j.dental.2021.01.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 11/24/2022]
Abstract
OBJECTIVES To determine the impact of treating caries-affected dentin (CAD) with: 0.2% sodium fluoride (NaF), casein phosphopeptide-amorphous calcium phosphate (CPP-ACP/MI Paste™) or peptide P11-4 (Curodont™ Repair) on the longevity of resin/CAD interface at storage times of 24 -h, 6- and 18-month. METHODS 255 caries-free third molars were used, and CAD was produced by a biological method. The teeth were randomly distributed into: G1- Sound dentin (SD); G2- CAD; G3- CAD + 0.2% NaF (CAD/NaF); G4- CAD + CPP-ACP (CAD/ACP); G5- CAD + Curodont™ Repair (CAD/P11-4). The Filtek Z350 composite resin block was bonded to dentin using Adper™ Single 2 (4 mm/height). Resin/dentin blocks were stored in a solution of Simulated Body Fluid at 37 °C, pressures were modified to simulate natural pulpal pressures. Specimens were investigated by microtensile bond strength (μTBS) (n = 8), Scanning Electron Microscopy (to assess the failure mode) (n = 8), nanoinfiltration (to assess the interface sealing) (n = 3), in situ zymography (to assess the gelatinolytic activity) (n = 3) and micro-computed microtomography (μ-CT) (to assess the mineralization) (n = 3). Data from μTBS, μ-CT and, nanoinfiltration and hybrid layer formation/degradation were submitted to two-way ANOVA and Tukey tests, and failure patterns and in situ zymography to Kruskal-Wallis and Dunn tests (α = 5%). RESULTS The highest mineral density change by μ-CT, smallest silver nitrate infiltration and proteolytic activity in the adhesive layer were obtained significantly for the groups SD, CAD/ACP and CAD/P11-4, with most mixed fractures at 18-month (p < 0.001). CAD/NaF showed significantly similar values to CAD, CAD and CAD/NaF which presented a high percentage of adhesive fracture (p < 0.001) at all time periods. SIGNIFICANCE Treating caries-affected dentin with remineralizing agents CPP-ACP and Curodont™ Repair, has the potential to be a clinically relevant treatment protocol to increase the longevity of adhesive restorations.
Collapse
Affiliation(s)
- Kelly Maria Moreira
- Department of Science Health and Pediatric Dentistry, Division of Pediatric Dentistry, Piracicaba Dental School, University of Campinas - UNICAMP, Piracicaba 13414-903, SP, Brazil.
| | - Luiz Eduardo Bertassoni
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, Oregon Health and Science University, Portland, OR 97201, USA.
| | - Robert Phill Davies
- Division of Oral Biology, School of Dentistry, Faculty of Medicine & Health, University of Leeds, Leeds S9 7TF, UK.
| | - Felipe Joia
- Department of Oral Diagnosis, Piracicaba Dental School University of Campinas - UNICAMP, Piracicaba 13414-903, SP, Brazil.
| | - José Francisco Höfling
- Department of Oral Diagnosis, Piracicaba Dental School University of Campinas - UNICAMP, Piracicaba 13414-903, SP, Brazil.
| | - Fabio Duprat Nascimento
- Interdisciplinary Center of Biochemistry Investigation, University of Mogi das Cruzes, Mogi das Cruzes 08780-911, SP, Brazil.
| | - Regina Maria Puppin-Rontani
- Department of Science Health and Pediatric Dentistry, Division of Pediatric Dentistry, Piracicaba Dental School, University of Campinas - UNICAMP, Piracicaba 13414-903, SP, Brazil.
| |
Collapse
|
125
|
Salim Al-Ani AAS, Salim IA, Seseogullari-Dirihan R, Mutluay M, Tjäderhane L, Tezvergil-Mutluay A. Incorporation of dimethyl sulfoxide into experimental hydrophilic and hydrophobic adhesive resins: evaluation of cytotoxic activities. Eur J Oral Sci 2021; 129:e12756. [PMID: 33511712 DOI: 10.1111/eos.12756] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 11/28/2022]
Abstract
This study evaluated the cytotoxicity of methacrylate-based resins containing dimethyl sulfoxide (DMSO). DMSO was incorporated into hydrophobic (R2) and hydrophilic (R5) resins at weight concentrations of 0, 0.01, 0.1, 1, 5, or 10 w/w %. Resin discs (n = 10/group) were prepared. Human gingival fibroblasts (HGF-1) were exposed to resin eluates for 24 h. Furthermore, dentin barrier test was performed using 3-D cultures of odontoblast-like cells (SV40 transfected pulp derived cells) with dentin slices of 400 µm thickness (n = 8). After acid etching of dentin, DMSO-modified resins were applied into the cavity part of the device and light-cured for 20 s. Cell viability (%) was assessed by MTT and analyzed spectrometrically. Data were analyzed by ANOVA and Tukey test (α = 0.05). Resin eluates showed statistically significantly lower % cell viability for all neat and DMSO-modified resins than seen for the negative control. Moreover, DMSO-R5 eluates resulted in significantly lower % cell viability than DMSO-R2 emulates. The dentin barrier test showed that DMSO-R2 did not result in significantly lower % cell viability, whereas incorporation of 1-10 w/w % DMSO into R5 resulted in significantly lower % of cell viability. Incorporating DMSO into hydrophilic self-etching resins may increase cytotoxicity. The biocompatibility is not influenced by the addition of DMSO into hydrophobic resin.
Collapse
Affiliation(s)
- Anas Aaqel Salim Salim Al-Ani
- Finnish Doctoral Program in Oral Sciences (FINDOS), Institute of Dentistry, Faculty of Medicine, University of Turku, Turku, Finland.,Department of Cariology and Restorative Dentistry, Institute of Dentistry, University of Turku, Turku, Finland.,Adhesive Dentistry Research Group, Biomaterials and Medical Device Research Program, Turku, Finland
| | - Ikram Aqel Salim
- Finnish Doctoral Program in Oral Sciences (FINDOS), Institute of Dentistry, Faculty of Medicine, University of Turku, Turku, Finland.,Department of Cariology and Restorative Dentistry, Institute of Dentistry, University of Turku, Turku, Finland.,Adhesive Dentistry Research Group, Biomaterials and Medical Device Research Program, Turku, Finland
| | - Roda Seseogullari-Dirihan
- Department of Cariology and Restorative Dentistry, Institute of Dentistry, University of Turku, Turku, Finland.,Adhesive Dentistry Research Group, Biomaterials and Medical Device Research Program, Turku, Finland
| | - Murat Mutluay
- Department of Cariology and Restorative Dentistry, Institute of Dentistry, University of Turku, Turku, Finland.,Adhesive Dentistry Research Group, Biomaterials and Medical Device Research Program, Turku, Finland.,Department of Prosthetic Dentistry, Institute of Dentistry, University of Eastern Finland, Kuopio, Finland
| | - Leo Tjäderhane
- Department of Oral and Maxillofacial Diseases, Helsinki University Hospital, University of Helsinki, Helsinki, Finland.,Research Unit of Oral Health Sciences, Medical Research Center Oulu (MRC Oulu), Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Arzu Tezvergil-Mutluay
- Department of Cariology and Restorative Dentistry, Institute of Dentistry, University of Turku, Turku, Finland.,Adhesive Dentistry Research Group, Biomaterials and Medical Device Research Program, Turku, Finland.,Turku University Hospital, TYKS, University of Turku, Turku, Finland
| |
Collapse
|
126
|
Pharmacological and Antioxidant Activities of Rhus coriaria L. (Sumac). Antioxidants (Basel) 2021; 10:antiox10010073. [PMID: 33430013 PMCID: PMC7828031 DOI: 10.3390/antiox10010073] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/31/2020] [Accepted: 01/05/2021] [Indexed: 12/17/2022] Open
Abstract
Rhus coriaria L. (Anacardiaceae), commonly known as sumac, is a commonly used spice, condiment, and flavoring agent, especially in the Mediterranean region. Owing to its bountiful beneficial values, sumac has been used in traditional medicine for the management and treatment of many ailments including hemorrhoids, wound healing, diarrhea, ulcer, and eye inflammation. This plant is rich in various classes of phytochemicals including flavonoids, tannins, polyphenolic compounds, organic acids, and many others. By virtue of its bioactive, Rhus coriaria possesses powerful antioxidant capacities that have ameliorative and therapeutic benefits for many common diseases including cardiovascular disease, diabetes, and cancer. This review describes the phytochemical properties of R. coriaria and then focuses on the potent antioxidant capacities of sumac. We then dissect the cellular and molecular mechanisms of sumac’s action in modulating many pathophysiological instigators. We show how accumulating evidence supports the antibacterial, antinociceptive, antidiabetic, cardioprotective, neuroprotective, and anticancer effects of this plant, especially that toxicity studies show that sumac is very safe to consume by humans and has little toxicity. Taken together, the findings we summarize here support the utilization of this plant as an attractive target for drug discovery.
Collapse
|
127
|
Sarikaya R, Song L, Yuca E, Xie SX, Boone K, Misra A, Spencer P, Tamerler C. Bioinspired multifunctional adhesive system for next generation bio-additively designed dental restorations. J Mech Behav Biomed Mater 2021; 113:104135. [PMID: 33160267 PMCID: PMC8101502 DOI: 10.1016/j.jmbbm.2020.104135] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 07/17/2020] [Accepted: 10/07/2020] [Indexed: 12/16/2022]
Abstract
Resin-based composite has overtaken dental amalgam as the most popular material for the repair of lost or damaged tooth structure. In spite of the popularity, the average composite lifetime is about half that of amalgam restorations. The leading cause of composite-restoration failure is decay at the margin where the adhesive is applied. The adhesive is intended to seal the composite/tooth interface, but the adhesive seal to dentin is fragile and readily degraded by acids, enzymes and other oral fluids. The inherent weakness of this material system is attributable to several factors including the lack of antimicrobial properties, remineralization capabilities and durable mechanical performance - elements that are central to the integrity of the adhesive/dentin (a/d) interfacial seal. Our approach to this problem offers a transition from a hybrid to a biohybrid structure. Discrete peptides are tethered to polymers to provide multi-bio-functional adhesive formulations that simultaneously achieve antimicrobial and remineralization properties. The bio-additive materials design combines several functional properties with the goal of providing an adhesive that will serve as a durable barrier to recurrent decay at the composite/tooth interface. This article provides an overview of our multi-faceted approach which uses peptides tethered to polymers and new polymer chemistries to achieve the next generation adhesive system - an adhesive that provides antimicrobial properties, repair of defective dentin and enhanced mechanical performance.
Collapse
Affiliation(s)
- Rizacan Sarikaya
- Institute for Bioengineering Research (IBER), University of Kansas (KU), 1530 W. 15th St, Lawrence, KS, 66045, USA; Department of Mechanical Engineering, University of Kansas (KU), 1530 W. 15th St, Lawrence, KS, 66045, USA
| | - Linyong Song
- Institute for Bioengineering Research (IBER), University of Kansas (KU), 1530 W. 15th St, Lawrence, KS, 66045, USA
| | - Esra Yuca
- Institute for Bioengineering Research (IBER), University of Kansas (KU), 1530 W. 15th St, Lawrence, KS, 66045, USA; Department of Molecular Biology and Genetics, Yildiz Technical University, Istanbul, 34210, Turkey
| | - Sheng-Xue Xie
- Institute for Bioengineering Research (IBER), University of Kansas (KU), 1530 W. 15th St, Lawrence, KS, 66045, USA
| | - Kyle Boone
- Institute for Bioengineering Research (IBER), University of Kansas (KU), 1530 W. 15th St, Lawrence, KS, 66045, USA; Bioengineering Program, University of Kansas, 1530 W. 15th St, University of Kansas (KU), Lawrence, KS, 66045, USA
| | - Anil Misra
- Institute for Bioengineering Research (IBER), University of Kansas (KU), 1530 W. 15th St, Lawrence, KS, 66045, USA; Civil, Environmental and Architectural Engineering Department, University of Kansas (KU), 1530 W. 15th St, Lawrence, KS, 66045, USA
| | - Paulette Spencer
- Institute for Bioengineering Research (IBER), University of Kansas (KU), 1530 W. 15th St, Lawrence, KS, 66045, USA; Department of Mechanical Engineering, University of Kansas (KU), 1530 W. 15th St, Lawrence, KS, 66045, USA; Bioengineering Program, University of Kansas, 1530 W. 15th St, University of Kansas (KU), Lawrence, KS, 66045, USA
| | - Candan Tamerler
- Institute for Bioengineering Research (IBER), University of Kansas (KU), 1530 W. 15th St, Lawrence, KS, 66045, USA; Department of Mechanical Engineering, University of Kansas (KU), 1530 W. 15th St, Lawrence, KS, 66045, USA; Bioengineering Program, University of Kansas, 1530 W. 15th St, University of Kansas (KU), Lawrence, KS, 66045, USA.
| |
Collapse
|
128
|
Bhandari S, Kondody R, Nair A, Mathew R, Divakar KP, Nambiar M. Evaluation of Aloe vera as matrix metalloproteinase inhibitor in human dentin with and without dentin-bonding agent: An in vitro study. J Conserv Dent 2021; 24:491-495. [PMID: 35399770 PMCID: PMC8989161 DOI: 10.4103/jcd.jcd_474_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 11/24/2022] Open
Abstract
Background: Proper hybrid layer formation lays the foundation of resin–dentin bonding. The resin infiltration in demineralized dentin collagen couples with the adhesive/resin composites in the mineralized dentin surface. However, the activation of enzymatic activity in the collagen matrix can degrade the hybrid layer. Over the time, it leads to reduced bond strength. Mainly, the enzymes involved are matrix metalloproteinases (MMPs) which are involved in degrading most of the extracellular matrix components. Aloe vera is an herb with an anti-inflammatory effect, but its role in human dentin as an enzyme inhibitor has not been verified yet. Aims: The purpose of the study was designed for evaluating the inhibitory action of Aloe vera on MMP in human dentin with and without dentin bonding agents. Materials and Methods: A total of 15 freshly extracted healthy human teeth were collected and stored at 4°C until use. The roots were separated. The enamel and remnant pulp tissue were removed, and collected teeth were pulverized with liquid nitrogen in the minimum volume of 50-mM phosphate buffer to obtain dentin powder extract. The dentin powder extract is the source of MMPs, and therefore, the extract was treated with A. vera solution and incubated to assess the enzyme inhibition by the plate assay method and zymographic analysis. Results: A. vera treated sample with and without dentin bonding agent showed inhibition of dentin MMP's activity by plate assay method and confirmed by zymogram analysis. Conclusions: A. vera has the potential for inhibiting the MMPs enzyme activity of human dentin collagen with and without dentin bonding agents.
Collapse
|
129
|
Akter RS, Ahmed Z, Yamauti M, Carvalho RM, Chowdhury AFMA, Sano H. Effects of remaining dentin thickness, smear layer and aging on the bond strengths of self-etch adhesives to dentin. Dent Mater J 2020; 40:538-546. [PMID: 33328395 DOI: 10.4012/dmj.2019-436] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This study evaluated the effects of remaining dentin thickness (RDT), different smear layers, and aging on the microtensile bond strength (µTBS) of universal adhesives to dentin when applied in self-etch mode. Ninety-six human third molars were randomly allocated to 12 groups (n=8) based on adhesives: ClearfilTM SE Bond 2 (SE, control), ClearfilTM Universal Bond (CU) and ScotchBondTM Universal Adhesive (SB); smear layers: prepared either with 600-grit SiC paper (P) or regular diamond bur (B); and aging: stored in distilled water at 37ºC for 24 hours (24h) or 1 year (1y). µTBS was significantly affected by the type of adhesives, smear layers, and aging (p<0.001). A statistically significant and positive linear relationship was also observed between µTBS and RDT (p<0.05) in all the tested groups, except for SEB1y and CUB24h (p>0.05). RDT, smear layer types, and aging can influence the bonding performances of universal adhesives when applied in self-etch mode.
Collapse
Affiliation(s)
- Rime Shamme Akter
- Department of Restorative Dentistry, Division of Oral Health Science, Graduate School and Faculty of Dental Medicine, Hokkaido University
| | - Zubaer Ahmed
- Department of Restorative Dentistry, Division of Oral Health Science, Graduate School and Faculty of Dental Medicine, Hokkaido University
| | - Monica Yamauti
- Department of Restorative Dentistry, Division of Oral Health Science, Graduate School and Faculty of Dental Medicine, Hokkaido University
| | - Ricardo M Carvalho
- Department of Oral Biological and Medical Science, Division of Biomaterials, Faculty of Dentistry, University of British Columbia
| | - Abu Faem Mohammad Almas Chowdhury
- Department of Restorative Dentistry, Division of Oral Health Science, Graduate School and Faculty of Dental Medicine, Hokkaido University.,Department of Conservative Dentistry and Endodontics, Sapporo Dental College and Hospital
| | - Hidehiko Sano
- Department of Restorative Dentistry, Division of Oral Health Science, Graduate School and Faculty of Dental Medicine, Hokkaido University
| |
Collapse
|
130
|
Al-Hamdan RS, Almutairi B, Kattan HF, Alsuwailem NA, Farooq I, Vohra F, Abduljabbar T. Influence of Hydroxyapatite Nanospheres in Dentin Adhesive on the Dentin Bond Integrity and Degree of Conversion: A Scanning Electron Microscopy (SEM), Raman, Fourier Transform-Infrared (FTIR), and Microtensile Study. Polymers (Basel) 2020; 12:E2948. [PMID: 33321699 PMCID: PMC7764663 DOI: 10.3390/polym12122948] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/01/2020] [Accepted: 12/04/2020] [Indexed: 12/18/2022] Open
Abstract
An experimental adhesive incorporated with different nano-hydroxyapatite (n-HA) particle concentrations was synthesized and analyzed for dentin interaction, micro-tensile bond strength (μTBS), and degree of conversion (DC). n-HA powder (5 wt % and 10 wt %) were added in adhesive to yield three groups; gp-1: control experimental adhesive (CEA, 0 wt % HA), gp-2: 5 wt % n-HA (HAA-5%), and gp-3: 10 wt % n-HA (HAA-10%). The morphology of n-HA spheres was evaluated using Scanning Electron Microscopy (SEM). Their interaction in the adhesives was identified with SEM, Energy-Dispersive X-ray (EDX), and Micro-Raman spectroscopy. Teeth were sectioned, divided in study groups, and assessed for μTBS and failure mode. Employing Fourier Transform-Infrared (FTIR) spectroscopy, the DC of the adhesives was assessed. EDX mapping revealed the occurrence of oxygen, calcium, and phosphorus in the HAA-5% and HAA-10% groups. HAA-5% had the greatest μTBS values followed by HAA-10%. The presence of apatite was shown by FTIR spectra and Micro-Raman demonstrated phosphate and carbonate groups for n-HA spheres. The highest DC was observed for the CEA group followed by HAA-5%. n-HA spheres exhibited dentin interaction and formed a hybrid layer with resin tags. HAA-5% demonstrated superior μTBS compared with HAA-10% and control adhesive. The DC for HAA-5% was comparable to control adhesive.
Collapse
Affiliation(s)
- Rana S Al-Hamdan
- Department of Restorative Dental Sciences, College of Dentistry, King Saud University, 60169, Riyadh 11545, Saudi Arabia; (R.SA.-H.); (B.A.)
| | - Basil Almutairi
- Department of Restorative Dental Sciences, College of Dentistry, King Saud University, 60169, Riyadh 11545, Saudi Arabia; (R.SA.-H.); (B.A.)
| | - Hiba F Kattan
- Preventive Dental Science Department, Princess Nourah bint Abdulrahman University, Riyadh 11545, Saudi Arabia;
| | | | - Imran Farooq
- Faculty of Dentistry, University of Toronto, Toronto, ON M5S 1A1, Canada;
| | - Fahim Vohra
- Department of Prosthetic Dental Science, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia;
- Research Chair for Biological Research in Dental Health, College of Dentistry, Riyadh 11545, Saudi Arabia
| | - Tariq Abduljabbar
- Department of Prosthetic Dental Science, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia;
- Research Chair for Biological Research in Dental Health, College of Dentistry, Riyadh 11545, Saudi Arabia
| |
Collapse
|
131
|
Zhao L, Sun J, Zhang C, Chen C, Chen Y, Zheng B, Pan H, Shao C, Jin B, Tang R, Gu X. Effect of aspartic acid on the crystallization kinetics of ACP and dentin remineralization. J Mech Behav Biomed Mater 2020; 115:104226. [PMID: 33302092 DOI: 10.1016/j.jmbbm.2020.104226] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 11/22/2020] [Accepted: 11/24/2020] [Indexed: 12/14/2022]
Abstract
Type I collagen and non-collagen proteins are the main organic components of dentin. This study aimed to investigate the biomimetic remineralization of demineralized dentin by aspartic acid (Asp), which is abundant in non-collagenous proteins (NCPs). Asp was added to a mineralizing solution containing polyacrylic acid (PAA) to explore the mechanism of Asp regulating the pure amorphous calcium phosphate (ACP) phase transition process. The remineralization process and superstructure of the remineralized layer of demineralized dentin were evaluated and analyzed by transmission electron microscope (TEM) and scanning electron microscope (SEM), and the biological stability of the remineralized layer was investigated by collagenase degradation experiment. It demonstrated that Asp promoted the crystallization kinetics of PAA-stabilized amorphous calcium phosphate to hydroxyapatite (HAP), and shortened the remineralization time of demineralized dentin from 7 days to 2 days. The newly formed remineralized dentin had similar morphology and biological stability to the natural dentin layer. The presence of a large number of Asp residues in NCPs promoted the phase transformation of ACP, and further revealed the mechanism of action of NCPs in dentin biomineralization. This experiment also showed that Asp promoted the biomimetic remineralization of dentin; the morphology and hierarchical structure of remineralized layer was similar to that of natural teeth, and had good biological properties.
Collapse
Affiliation(s)
- Luyi Zhao
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang, 310006, China
| | - Jian Sun
- Department of Stomatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China
| | - Ce Zhang
- Department of Plastic and Reconstructive Surgery, Zhejiang Provincial People's Hospital, Hangzhou, PR China
| | - Chaoqun Chen
- Department of Stomatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China
| | - Yi Chen
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang, 310006, China
| | - Bo Zheng
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang, 310006, China
| | - Haihua Pan
- Centre for Biopathways and Biomaterials and Department of Chemistry, Zhejiang University, Hangzhou, PR China
| | - Changyu Shao
- Centre for Biopathways and Biomaterials and Department of Chemistry, Zhejiang University, Hangzhou, PR China
| | - Biao Jin
- Centre for Biopathways and Biomaterials and Department of Chemistry, Zhejiang University, Hangzhou, PR China
| | - Ruikang Tang
- Centre for Biopathways and Biomaterials and Department of Chemistry, Zhejiang University, Hangzhou, PR China
| | - Xinhua Gu
- Department of Stomatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China.
| |
Collapse
|
132
|
Comba A, Maravić T, Villalta V, Tozzola S, Mazzitelli C, Checchi V, Mancuso E, Scotti N, Tay FR, Breschi L, Mazzoni A. Effect of an ethanol cross-linker on universal adhesive. Dent Mater 2020; 36:1645-1654. [DOI: 10.1016/j.dental.2020.10.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 10/04/2020] [Accepted: 10/06/2020] [Indexed: 02/02/2023]
|
133
|
Zn-doping of silicate and hydroxyapatite-based cements: Dentin mechanobiology and bioactivity. J Mech Behav Biomed Mater 2020; 114:104232. [PMID: 33290910 DOI: 10.1016/j.jmbbm.2020.104232] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/17/2020] [Accepted: 11/24/2020] [Indexed: 12/14/2022]
Abstract
The objective was to state zinc contribution in the effectiveness of novel zinc-doped dentin cements to achieve dentin remineralization, throughout a literature or narrative exploratory review. Literature search was conducted using electronic databases, such as PubMed, MEDLINE, DIMDI, Embase, Scopus and Web of Science. Both zinc-doping silicate and hydroxyapatite-based cements provoked an increase of both bioactivity and intrafibrillar mineralization of dentin. Zinc-doped hydroxyapatite-based cements (oxipatite) also induced an increase in values of dentin nano-hardness, Young's modulus and dentin resistance to deformation. From Raman analyses, it was stated higher intensity of phosphate peaks and crystallinity as markers of dentin calcification, in the presence of zinc. Zinc-based salt formations produced low microleakage and permeability values with hermetically sealed tubules at radicular dentin. Dentin treated with oxipatite attained preferred crystal grain orientation with polycrystalline lattices. Thereby, oxipatite mechanically reinforced dentin structure, by remineralization. Dentin treated with oxipatite produced immature crystallites formations, accounting for high hydroxyapatite solubility, instability and enhanced remineralizing activity.
Collapse
|
134
|
AlQranei MS, Balhaddad AA, Melo MAS. The burden of root caries: Updated perspectives and advances on management strategies. Gerodontology 2020; 38:136-153. [PMID: 33236462 DOI: 10.1111/ger.12511] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/26/2020] [Accepted: 11/02/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Root caries has gained much attention in the last few years. As the world's population is ageing and people currently tend to retain more teeth compared with older generations, there is an increased prevalence of periodontal disease and gingival recession, which may accelerate the onset of root caries. OBJECTIVE This review aims to summarise recent findings related to the diagnosis, prevention and treatment of root caries. MATERIALS AND METHODS MEDLINE (OVID) and Scopus (Elsevier) searches were performed to identify and discuss articles that address the pathogenicity and clinical management of root caries. RESULTS Root caries is a multifactorial disease. Cariogenic species involved in root caries are less dependent on carbohydrates since collagen degradation inside the dentinal tubules can provide nutrients and microcavities for the invading microorganisms. Furthermore, the root surface has fewer minerals in comparison with enamel, which may accelerate the onset of demineralisation. Root caries could be prevented by patient education, modification of risk factors, and the use of in-office and home remineralisation tools. The use of non-invasive approaches to control root caries is recommended, as the survival rate of root caries restorations is poor. When plaque control is impossible and a deep/large cavity is present, glass ionomer or resin-based restorations can be placed. CONCLUSION The assessment of root carious lesions is critical to determine the lesion activity and the required intervention. Dental practitioners should also be aware of different prevention and treatment approaches to design optimum oral health care for root caries-affected patients.
Collapse
Affiliation(s)
- Mohammed S AlQranei
- Department of Preventive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Abdulrahman A Balhaddad
- Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Mary A S Melo
- Division of Operative Dentistry, Department of General Dentistry, University of Maryland Dental School, Baltimore, MD, USA
| |
Collapse
|
135
|
Effect of Remineralized Collagen on Dentin Bond Strength through Calcium Phosphate Ion Clusters or Metastable Calcium Phosphate Solution. NANOMATERIALS 2020; 10:nano10112203. [PMID: 33158249 PMCID: PMC7694251 DOI: 10.3390/nano10112203] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 10/26/2020] [Accepted: 11/02/2020] [Indexed: 01/09/2023]
Abstract
This study aimed to investigate whether dentin remineralization and micro-tensile bond strength increase when using calcium phosphate ion clusters (CPICs) or metastable Ca-P. After being etched, each dentin specimen was designated into four groups and treated with the appropriate solution for 1 min: 100% ethanol, 2 and 1 mg/mL of CPICs, and metastable Ca-P. The specimens were then prepared for scanning electron microscopy (SEM), transmission electron microscropy (TEM) imaging, a matrix metalloproteinases inhibition assay, and the micro-tensile bond strength test. To compare among the groups, one-way analysis of variance was performed. In the SEM imaging, with a rising concentration of CPICs, the degree of remineralization of dentin increased significantly. The metastable Ca-P treated specimens showed a similar level of remineralization as the 1 mg/mL CPICs treated specimens. The TEM imaging also revealed that dentin remineralization occurs in a CPICs concentration-dependent manner between the demineralized dentin and the resin layer. Furthermore, the results of micro-tensile bond strength showed the same trend as the results confirmed by SEM and TEM. We demonstrated that a 1 min pretreatment of CPICs or metastable Ca-P in etched dentin collagen fibril can achieve biomimetic remineralization and increase micro-tensile bond strength.
Collapse
|
136
|
Chen R, Jin R, Li X, Fang X, Yuan D, Chen Z, Yao S, Tang R, Chen Z. Biomimetic remineralization of artificial caries dentin lesion using Ca/P-PILP. Dent Mater 2020; 36:1397-1406. [DOI: 10.1016/j.dental.2020.08.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 06/19/2020] [Accepted: 08/29/2020] [Indexed: 10/23/2022]
|
137
|
Gungormus M, Tulumbaci F. Peptide-assisted pre-bonding remineralization of dentin to improve bonding. J Mech Behav Biomed Mater 2020; 113:104119. [PMID: 33035925 DOI: 10.1016/j.jmbbm.2020.104119] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/23/2020] [Accepted: 09/28/2020] [Indexed: 01/18/2023]
Abstract
Bonding with dentin is a complex process involving physical and chemical adhesion where the adhesive must be able to penetrate and envelop collagen fibers. Acid etching clears the dentin of debris, which prevents adhesives to interact with dentin. However, it also demineralizes the outermost surface of dentin and exposes collagen fibers. The mineral-free collagen is susceptible to collapse after drying and to proteolytic or microbial attack, ultimately impairing the bonding with dentin. To address this, we have attempted a pre-bonding rapid remineralization approach to recover the mineral content of etched dentin. We have used a mineralization-promoting peptide and high calcium/phosphate concentration to achieve this in a clinically applicable timeframe. Partial remineralization was confirmed via SEM and XRD analyses. The mechanical properties and the stability of the partially remineralized dentin were investigated via microhardness, collagen hydrolysis and shrinkage tests. The bonding properties were investigated via shear bond strength (SBS) and microleakage tests. Pre-bonding remineralization of dentin with peptide for 10 min significantly increased the stiffness, resistance to hydrolysis and reduced shrinkage due to drying. SBS was increased with both an etch&rinse and a self-etch adhesive. However, pre-bonding remineralization resulted in reduced microleakage only with the etch&rinse adhesive. The described method is readily applicable to clinic since it is expected to add only 10 min to the procedure. Future in situ and/or in vivo studies will help to confirm the benefits observed in this in vitro study and allow optimize the parameters of the method.
Collapse
Affiliation(s)
- Mustafa Gungormus
- Department of Basic Sciences, School of Dentistry, Ankara Yildirim Beyazit University, Ankara, Turkey; Department of Biomedical Engineering, School of Engineering and Natural Sciences Ankara Yildirim Beyazit University, Ankara, Turkey.
| | - Fatih Tulumbaci
- Department of Pediatric Dentistry, School of Dentistry, Ankara Yildirim Beyazit University, Ankara, Turkey
| |
Collapse
|
138
|
Saffarpour A, Valizadeh S, Amini A, Kharazifard MJ, Rohaninasab M. Effect of matrix metalloproteinase inhibitors on microtensile bond strength of dental composite restorations to dentin in use of an etch-and-rinse adhesive system. Clin Exp Dent Res 2020; 6:686-692. [PMID: 32989895 PMCID: PMC7745076 DOI: 10.1002/cre2.313] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/22/2020] [Accepted: 06/20/2020] [Indexed: 11/19/2022] Open
Abstract
Aim This study assesses the effect of matrix metalloproteinases on microtensile bond strength (μTBS) of an etch‐and‐rinse adhesive system. Methods This in vitro study evaluated 88 extracted premolars. The teeth were sectioned to expose dentin and were then randomly divided into four groups (n = 22). In group 1 (control), dentin surface was etched, and Adper Single Bond 2 was applied. In groups 2–4, dentin surface was etched and chlorhexidine (CHX), 1‐ethyl‐3‐(3‐dimethylaminopropyl) carbodiimide (EDC), and dimethyl sulfoxide (DMSO) were applied on the surfaces, respectively, and blotted dry. Next, Adper Single Bond 2 was applied and all teeth were built up with Z350 composite. In each group, half the samples immediately and the other half after 10,000 thermal cycles underwent μTBS test. Data were analyzed using ANOVA and Tukey's test (α = .05). Results In thermocycled samples, maximum μTBS was noted in CHX group followed by DMSO, EDC, and control group (p < .001). The thermocycled μTBS of composite to dentin was significantly higher in CHX group compared with EDC, DMSO, and control groups (p < .001) but was not significantly different in EDC and DMSO groups (p = .498). Conclusion The thermocycled μTBS obtained by the application of CHX, EDC, and DMSO was significantly higher compared with the value to the control group.
Collapse
Affiliation(s)
- Aida Saffarpour
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran.,Department of Operative Dentistry, School of Dentistry, Tehran University of Medical Sciences (International Campus), Tehran, Iran
| | - Sara Valizadeh
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran.,Restorative Dentistry Department, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mohammad-Javd Kharazifard
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Marzieh Rohaninasab
- Department of Operative Dentistry, School of Dentistry, Tehran University of Medical Sciences (International Campus), Tehran, Iran
| |
Collapse
|
139
|
Gomes BS, Rossi AL, da Silva EM, Moreira KTT, Dos Santos JC, Ferreira-Pereira A, Portela MB. Effects of a biomimetic analog-based experimental bonding system on caries-affected and sound dentin. Microsc Res Tech 2020; 83:1610-1622. [PMID: 32920955 DOI: 10.1002/jemt.23557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/29/2020] [Accepted: 07/01/2020] [Indexed: 11/07/2022]
Abstract
This study compared the ultrastructure, chemical composition, and proteases activity (PA) of sound (SD) and caries-affected dentin (CAD) in the dentin hybrid layer after using an experimental bonding system containing pyromellitic dianhydride glycerol methacrylate and biomimetic analogs. The bonding system used a three step and a total-etch procedure. Polyacrylic acid (5%) and sodium trimetaphosphate (5%) were added to the primer and monocalcium phosphate monohydrate (9%), beta-tricalcium phosphate (10.5%), and calcium hydroxide (0.5%) were added to the adhesive. Transmission electron microscopy (TEM) was used to evaluate the resultant structure, particularly the adhesive-dentin and the demineralized-SD interfaces. The chemical composition was evaluated through energy-dispersive X-ray spectroscopy (EDS) and selected area electron diffraction (SAED). The PA was measured with the Coomassie Blue-G250 coloring test, and the PA data were analyzed by ANOVA. EDS identified the presence of isolated calcium phosphate nanoparticles in the demineralized region; however, the SAED analysis did not show any evidences of hydroxyapatite (HA) neoformation in SD and CAD. The biomimetic analog-based adhesive system inhibited the activities of dentin proteases immediately after treatment. Additionally, the proteolytic activity on the affected dentin resembled that of the SD. In conclusion, no HA formed in the demineralized SD and CAD although there were calcium and phosphate deposits. The experimental adhesive system inhibited dentin proteases. The present study uses a new approach to investigate the hybrid layer behavior in dentin. The experimental adhesive system was synthesized and used on sound and affected-caries dentin as the substrate to reproduce real clinical conditions.
Collapse
Affiliation(s)
- Bianca Silva Gomes
- Analytical Laboratory of Restorative Biomaterials, School of Dentistry, Universidade Federal Fluminense, Niterói, Brazil
| | | | - Eduardo Moreira da Silva
- Analytical Laboratory of Restorative Biomaterials, School of Dentistry, Universidade Federal Fluminense, Niterói, Brazil
| | - Karla Tatiana Toro Moreira
- Analytical Laboratory of Restorative Biomaterials, School of Dentistry, Universidade Federal Fluminense, Niterói, Brazil
| | - Juliane Cucinello Dos Santos
- Analytical Laboratory of Restorative Biomaterials, School of Dentistry, Universidade Federal Fluminense, Niterói, Brazil
| | - Antônio Ferreira-Pereira
- General Microbiology Department, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maristela Barbosa Portela
- Analytical Laboratory of Restorative Biomaterials, School of Dentistry, Universidade Federal Fluminense, Niterói, Brazil
- Laboratory of Oral Microbiology, School of Dentistry, Universidade Federal Fluminense, Niterói, Brazil
| |
Collapse
|
140
|
Tao S, Su Z, Xiang Z, Xu HHK, Weir MD, Fan M, Yu Z, Zhou X, Liang K, Li J. Nano-calcium phosphate and dimethylaminohexadecyl methacrylate adhesive for dentin remineralization in a biofilm-challenged environment. Dent Mater 2020; 36:e316-e328. [PMID: 32847685 DOI: 10.1016/j.dental.2020.08.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 08/06/2020] [Indexed: 02/08/2023]
Abstract
OBJECTIVE Dentin remineralization at the bonded interface would protect it from external risk factors, therefore, would enhance the longevity of restoration and combat secondary caries. Dental biofilm, as one of the critical biological factors in caries formation, should not be neglected in the assessment of caries preventive agents. In this work, the remineralization effectiveness of demineralized human dentin in a multi-species dental biofilm environment via an adhesive containing nanoparticles of amorphous calcium phosphate (NACP) and dimethylaminohexadecyl methacrylate (DMAHDM) was investigated. METHODS Dentin demineralization was promoted by subjecting samples to a three-species acidic biofilm containing Streptococcus mutans, Streptococcus sanguinis, Streptococcus gordonii for 24h. Samples were divided into a control group, a DMAHDM adhesive group, an NACP group, and an NACP+DMAHDM adhesive group. A bonded model containing a control-bonded group, a DMAHDM-bonded group, an NACP-bonded group, and an NACP+DMAHDM-bonded group was also included in this study. All samples were subjected to a remineralization protocol consisting of 4-h exposure per 24-h period in brain heart infusion broth plus 1% sucrose (BHIS) followed by immersion in artificial saliva for the remaining period. The pH of BHIS after 4-h immersion was measured every other day. After 14 days, the biofilm was assessed for colony-forming unit (CFU) count, lactic acid production, live/dead staining, and calcium and phosphate content. The mineral changes in the demineralized dentin samples were analyzed by transverse microradiography. RESULTS The in vitro experiment results showed that the NACP+DMAHDM adhesive effectively achieved acid neutralization, decreased biofilm colony-forming unit (CFU) count, decreased biofilm lactic acid production, and increased biofilm calcium and phosphate content. The NACP+DMAHDM adhesive group had higher remineralization value than the NACP or DMAHDM alone adhesive group. SIGNIFICANCE The NACP+DMAHDM adhesive was effective in remineralizing dentin lesion in a biofilm model. It is promising to use NACP+DMAHDM adhesive to protect bonded interface, inhibit secondary caries, and prolong the longevity of restoration.
Collapse
Affiliation(s)
- Siying Tao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zhifei Su
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zhenting Xiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Hockin H K Xu
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Michael D Weir
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Menglin Fan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zhaohan Yu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Kunneng Liang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Jiyao Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
141
|
Schwendicke F, Splieth CH, Bottenberg P, Breschi L, Campus G, Doméjean S, Ekstrand K, Giacaman RA, Haak R, Hannig M, Hickel R, Juric H, Lussi A, Machiulskiene V, Manton D, Jablonski-Momeni A, Opdam N, Paris S, Santamaria R, Tassery H, Zandona A, Zero D, Zimmer S, Banerjee A. How to intervene in the caries process in adults: proximal and secondary caries? An EFCD-ORCA-DGZ expert Delphi consensus statement. Clin Oral Investig 2020; 24:3315-3321. [PMID: 32643090 DOI: 10.1007/s00784-020-03431-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 06/23/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVES To provide consensus recommendations on how to intervene in the caries process in adults, specifically proximal and secondary carious lesions. METHODS Based on two systematic reviews, a consensus conference and followed by an e-Delphi consensus process were held with EFCD/ORCA/DGZ delegates. RESULTS Managing an individual's caries risk using non-invasive means (oral hygiene measures including flossing/interdental brushes, fluoride application) is recommended, as both proximal and secondary carious lesions may be prevented or their activity reduced. For proximal lesions, only cavitated lesions (confirmed by visual-tactile, or radiographically extending into the middle/inner dentine third) should be treated invasively/restoratively. Non-cavitated lesions may be successfully arrested using non-invasive measures in low-risk individuals or if radiographically confined to the enamel. In high-risk individuals or if radiographically extended into dentine, for these lesions, additional micro-invasive (lesion sealing and infiltration) treatment should be considered. For restoring proximal lesions, adhesive direct restorations allow minimally invasive, tooth-preserving preparations. Amalgams come with a lower risk of secondary lesions and may be preferable in more clinically complex scenarios, dependent on specific national guidelines. In structurally compromised (especially endodontically treated) teeth, indirect cuspal coverage restorations may be indicated. Detection methods for secondary lesions should be tailored according to the individual's caries risk. Avoiding false positive detection and over-treatment is a priority. Bitewing radiographs should be combined with visual-tactile assessment to confirm secondary caries detections. Review/refurbishing/resealing/repairing instead of replacing partially defective restorations should be considered for managing secondary caries, if possible. CONCLUSIONS An individualized and lesion-specific approach is recommended for intervening in the caries process in adults. CLINICAL SIGNIFICANCE Dental clinicians have an increasing number of interventions available for the management of dental caries. Many of them are grounded in the growing understanding of the disease. The best evidence, patients' expectations, clinicians' expertise, and the individual clinical scenario all need to be considered during the decision-making process.
Collapse
Affiliation(s)
- Falk Schwendicke
- Department of Operative Dentistry, Charité - Universitätsmedizin, Berlin, Germany.
| | - Christian H Splieth
- Preventive and Pediatric Dentistry, Center for Oral Health, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Peter Bottenberg
- Oral Health Research Group, Vrije Universiteit Brussel, Brussel, Belgium
| | - Lorenzo Breschi
- Department of Biomedical and Neuromotor Sciences, DIBINEM, University of Bologna - Alma Mater Studiorum, Bologna, Italy
| | - Guglielmo Campus
- Department of Restorative, Preventive and Paediatric Dentistry, Zahnmedizinische Kliniken (ZMK), University of Bern, Freiburgstrasse 7, 3010, Bern, Switzerland
- Department of Surgery, Microsurgery and Medicine Sciences, School of Dentistry, University of Sassari, Sassari, Italy
| | - Sophie Doméjean
- Département d'Odontologie Conservatrice, Univ Clermont Auvergne, UFR d'Odontologie; Centre de Recherche en Odontologie Clinique EA 4847, F-63100, Clermont-Ferrand, France
- CHU Estaing Clermont-Ferrand, Service d'Odontologie, F-63001, Clermont-Ferrand, France
| | - Kim Ekstrand
- Cariology and Endodontics, Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rodrigo A Giacaman
- Cariology Unit, Department of Oral Rehabilitation, Faculty of Health Sciences, University of Talca, Talca, Chile
| | - Rainer Haak
- Department of Cariology, Endodontology and Periodontology, University Leipzig, Leipzig, Germany
| | - Matthias Hannig
- Clinic of Operative Dentistry and Periodontology, Saarland University, Universitätsklinikum des Saarlandes, Homburg/Saar, Germany
| | - Reinhard Hickel
- Department of Conservative Dentistry and Periodontology, University Hospital, LMU Munich, Munich, Germany
| | - Hrvoje Juric
- Department of Paediatric and Preventive Dentistry, School of Dental Medicine, University of Zagreb, Zagreb, Croatia
| | - Adrian Lussi
- School of Dental Medicine, University of Bern, Bern, Switzerland and Department of Operative Dentistry and Periodontology, Faculty of Dentistry, University Medical Centre, Freiburg, Germany
| | - Vita Machiulskiene
- Clinic of Dental and Oral Pathology, Faculty of odontology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - David Manton
- Centrum van Tandheelkunde en Mondzorgkunde, UMCG, Groningen, Netherlands
| | | | - Niek Opdam
- Radboud University Medical Centre, Department of Dentistry, Radboud Institute for Health Sciences, Nijmegen, The Netherlands
| | - Sebastian Paris
- Department of Operative Dentistry, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ruth Santamaria
- Preventive and Pediatric Dentistry, Center for Oral Health, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Hervé Tassery
- Faculté d'Odontologie Marseille, Preventive and Restorative Department, Marseille cedex, Aix-Marseille-Université, Marseille, France
- EA 4203 Laboratory, Université de Montpellier, Montpellier, France
| | - Andrea Zandona
- Department of Comprehensive Care, School of Dental Medicine, Tufts University, Boston, Massachusetts, USA
| | - Domenick Zero
- Department of Cariology, Operative Dentistry and Dental Public Health, Oral Health Research Institute, School of Dentistry Indiana University, Indianapolis, IN, USA
| | - Stefan Zimmer
- Department of Operative and Preventive Dentistry, Faculty of Health, Dental School, Witten/Herdecke University, Witten, Germany
| | - Avijit Banerjee
- Conservative & MI Dentistry, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| |
Collapse
|
142
|
Yao C, Ahmed MH, Li X, Nedeljkovic I, Vandooren J, Mercelis B, Zhang F, Van Landuyt KL, Huang C, Van Meerbeek B. Zinc-Calcium-Fluoride Bioglass-Based Innovative Multifunctional Dental Adhesive with Thick Adhesive Resin Film Thickness. ACS APPLIED MATERIALS & INTERFACES 2020; 12:30120-30135. [PMID: 32530270 DOI: 10.1021/acsami.0c06865] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Apart from producing high bond strength to tooth enamel and dentin, a dental adhesive with biotherapeutic potential is clinically desirable, aiming to further improve tooth restoration longevity. In this laboratory study, an experimental two-step universal adhesive, referred to as Exp_2UA, applicable in both the etch-and-rinse (E&R) and self-etch (SE) modes and combining a primer, containing 10-methacryloyloxydecyldihydrogen phosphate as a functional monomer with chemical binding potential to hydroxyapatite, with a bioglass-containing hydrophobic adhesive resin, was multifactorially investigated. In addition to primary property assessment, including measurement of bond strength, water sorption, solubility, and polymerization efficiency, the resultant adhesive-dentin interface was characterized by transmission electron microscopy (TEM), the filler composition was analyzed by energy-dispersive X-ray spectroscopy, and the bioactive potential of the adhesive was estimated by measuring the long-term ion release and assessing its antienzymatic and antibacterial potential. Four representative commercial adhesives were used as reference/controls. Application in both the E&R and SE modes resulted in a durable bonding performance to dentin, as evidenced by favorable 1 year aged bond strength data and a tight interfacial ultrastructure that, as examined by TEM, remained ultramorphologically unaltered upon 1 year of water storage aging. TEM revealed a 20 μm thick hydrophobic adhesive layer with a homogeneous bioglass filler distribution. Adequate polymerization conversion resulted in extremely low water sorption and solubility. In situ zymography revealed reduced endogenous proteolytic activity, while Streptococcus mutans biofilm formation was inhibited. In conclusion, the three-/two-step E&R/SE Exp_2UA combines the high bonding potential and bond degradation resistance with long-term ion release, rendering the adhesive antienzymatic and antibacterial potential.
Collapse
Affiliation(s)
- Chenmin Yao
- Department of Oral Health Sciences, BIOMAT & UZ Leuven (University Hospitals Leuven), Dentistry, KU Leuven (University of Leuven), , 3000 Leuven, Belgium
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education (KLOBM), School & Hospital of Stomatology, Wuhan University, 430079 Wuhan, China
| | - Mohammed H Ahmed
- Department of Oral Health Sciences, BIOMAT & UZ Leuven (University Hospitals Leuven), Dentistry, KU Leuven (University of Leuven), , 3000 Leuven, Belgium
- Faculty of Dentistry, Department of Dental Biomaterials, Tanta University, 31511 Tanta, Egypt
| | - Xin Li
- Department of Oral Health Sciences, BIOMAT & UZ Leuven (University Hospitals Leuven), Dentistry, KU Leuven (University of Leuven), , 3000 Leuven, Belgium
| | - Ivana Nedeljkovic
- Department of Oral Health Sciences, BIOMAT & UZ Leuven (University Hospitals Leuven), Dentistry, KU Leuven (University of Leuven), , 3000 Leuven, Belgium
- Department of Dental Material Sciences, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, 1081 LA Amsterdam, The Netherlands
| | - Jennifer Vandooren
- Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven (University of Leuven), 3000 Leuven, Belgium
| | - Ben Mercelis
- Department of Oral Health Sciences, BIOMAT & UZ Leuven (University Hospitals Leuven), Dentistry, KU Leuven (University of Leuven), , 3000 Leuven, Belgium
| | - Fei Zhang
- Department of Oral Health Sciences, BIOMAT & UZ Leuven (University Hospitals Leuven), Dentistry, KU Leuven (University of Leuven), , 3000 Leuven, Belgium
- Department of Materials Engineering, KU Leuven (University of Leuven), 3001 Leuven, Belgium
| | - Kirsten L Van Landuyt
- Department of Oral Health Sciences, BIOMAT & UZ Leuven (University Hospitals Leuven), Dentistry, KU Leuven (University of Leuven), , 3000 Leuven, Belgium
| | - Cui Huang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education (KLOBM), School & Hospital of Stomatology, Wuhan University, 430079 Wuhan, China
| | - Bart Van Meerbeek
- Department of Oral Health Sciences, BIOMAT & UZ Leuven (University Hospitals Leuven), Dentistry, KU Leuven (University of Leuven), , 3000 Leuven, Belgium
| |
Collapse
|
143
|
Daood U, Matinlinna JP, Pichika MR, Mak KK, Nagendrababu V, Fawzy AS. A quaternary ammonium silane antimicrobial triggers bacterial membrane and biofilm destruction. Sci Rep 2020; 10:10970. [PMID: 32620785 PMCID: PMC7335202 DOI: 10.1038/s41598-020-67616-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 06/03/2020] [Indexed: 02/06/2023] Open
Abstract
To study the antimicrobial effects of quaternary ammonium silane (QAS) exposure on Streptococcus mutans and Lactobacillus acidophilus bacterial biofilms at different concentrations. Streptococcus mutans and Lactobacillus acidophilus biofilms were cultured on dentine disks, and incubated for bacterial adhesion for 3-days. Disks were treated with disinfectant (experimental QAS or control) and returned to culture for four days. Small-molecule drug discovery-suite was used to analyze QAS/Sortase-A active site. Cleavage of a synthetic fluorescent peptide substrate, was used to analyze inhibition of Sortase-A. Raman spectroscopy was performed and biofilms stained for confocal laser scanning microscopy (CLSM). Dentine disks that contained treated dual-species biofilms were examined using scanning electron microscopy (SEM). Analysis of DAPI within biofilms was performed using CLSM. Fatty acids in bacterial membranes were assessed with succinic-dehydrogenase assay along with time-kill assay. Sortase-A protein underwent conformational change due to QAS molecule during simulation, showing fluctuating alpha and beta strands. Spectroscopy revealed low carbohydrate intensities in 1% and 2% QAS. SEM images demonstrated absence of bacterial colonies after treatment. DAPI staining decreased with 1% QAS (p < 0.05). Fatty acid compositions of dual specie biofilm increased in both 1% and 2% QAS specimens (p < 0.05). Quaternary ammonium silane demonstrated to be a potent antibacterial cavity disinfectant and a plaque inhibitor and can be of potential significance in eliminating caries-forming bacteria.
Collapse
Affiliation(s)
- Umer Daood
- Division of Clinical Dentistry, Faculty of Dentistry, School of Dentistry, International Medical University Kuala Lumpur, 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Wilayah Persekutuan Kuala Lumpur, Malaysia.
| | - Jukka P Matinlinna
- Dental Materials Science, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, Sai Ying Pun, Hong Kong, SAR, People's Republic of China
| | - Malikarjuna Rao Pichika
- Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University Kuala Lumpur, 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Kit-Kay Mak
- Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University Kuala Lumpur, 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Venkateshbabu Nagendrababu
- Division of Clinical Dentistry, Faculty of Dentistry, School of Dentistry, International Medical University Kuala Lumpur, 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Amr S Fawzy
- UWA Dental School, University of Western Australia, Nedlands, WA, 6009, Australia
| |
Collapse
|
144
|
Daood U, Omar H, Qasim S, Nogueira LP, Pichika MR, Mak KK, Steier L, Cky Y, Lin SL, Fawzy AS. New antimicrobial and collagen crosslinking formulated dentin adhesive with improved bond durability. J Mech Behav Biomed Mater 2020; 110:103927. [PMID: 32957222 DOI: 10.1016/j.jmbbm.2020.103927] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/07/2020] [Accepted: 06/09/2020] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Here we describe a novel formulation, based on quaternary ammonium (QA) and riboflavin (RF), which combines antimicrobial activities and protease inhibitory properties with collagen crosslinking without interference to bonding capabilities, was investigated. METHODS Experimental adhesives modified with different fractions of dioctadecyldimethyl ammonium bromide quaternary ammonium and riboflavin (QARF) were formulated. Dentine specimens were bonded to resincomposites with control or the experimental adhesives to be evaluated for bond strength, interfacial morphology, micro-Raman analysis, nano-CT and nano-leakage expression. In addition, the antibacterial and biocompatibilities of the experimental adhesives were investigated. The endogenous proteases activities and their molecular binding-sites were studied. RESULTS Modifying the experimental adhesives with QARF did not adversely affect micro-tensile bond strength or the degree of conversion along with the demonstration of anti-proteases and antibacterial abilities with acceptable biocompatibilities. In general, all experimental adhesives demonstrated favourable bond strength with increased and improved values in 1% QARF adhesive at 24 h (39.2 ± 3.0 MPa) and following thermocycling (34.8 ± 4.3 MPa). SIGNIFICANCE It is possible to conclude that the use of QARF with defined concentration can maintain bond strength values when an appropriate protocol is used and have contributed in ensuring a significant decrease in microbial growth of biofilms. Incorporation of 1% QARF in the experimental adhesive lead to simultaneous antimicrobial and anti-proteolytic effects with low cytotoxic effects, acceptable bond strength and interfacial morphology.
Collapse
Affiliation(s)
- Umer Daood
- Clinical Dentistry, Restorative Division, Faculty of Dentistry, International Medical University Kuala Lumpur, 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Bukit Jalil, Wilayah Persekutuan Kuala Lumpur, Malaysia.
| | - Hanan Omar
- Missouri School of Dentistry and Oral Health (MOSDOH) - ATSU, USA
| | - Saad Qasim
- Department of Bioclinical Sciences, Faculty of Dentistry, Kuwait University, P.O Box - 24923, Kuwait; Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Geitmyrsveien 69-71, 0455, Oslo, Norway
| | - Liebert P Nogueira
- Department of Bioclinical Sciences, Faculty of Dentistry, Kuwait University, P.O Box - 24923, Kuwait; Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Geitmyrsveien 69-71, 0455, Oslo, Norway
| | - Malikarjuna Rao Pichika
- Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University Kuala Lumpur, 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Bukit Jalil, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Kit-Kay Mak
- Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University Kuala Lumpur, 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Bukit Jalil, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Liviu Steier
- Post-Graduate Program in Dentistry, Federal University of Rio Grande do Sul, Brazil; Royal College of Surgeons of Edinburgh, United Kingdom
| | - Yiu Cky
- Paediatric Dentistry and Orthodontics, Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, 34 Hospital Road, Sai Ying Pun, Hong Kong SAR, China
| | - Seow Liang Lin
- Clinical Dentistry, Restorative Division, Faculty of Dentistry, International Medical University Kuala Lumpur, 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Bukit Jalil, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Amr S Fawzy
- UWA Dental School, University of Western Australia, 17 Monash Avenue, Nedlands WA 6009, Australia.
| |
Collapse
|
145
|
Isocyanate-terminated urethane-based methacrylate for in situ collagen scaffold modification. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 112:110902. [DOI: 10.1016/j.msec.2020.110902] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/10/2020] [Accepted: 03/25/2020] [Indexed: 12/17/2022]
|
146
|
Development of Chlorhexidine Loaded Halloysite Nanotube Based Experimental Resin Composite with Enhanced Physico-Mechanical and Biological Properties for Dental Applications. JOURNAL OF COMPOSITES SCIENCE 2020. [DOI: 10.3390/jcs4020081] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Objective: The objective of this study was to explore the effect of Chlorhexidine-loaded Halloysite nanotubes (HNT/CHX) fillers (diverse mass fractions from 1 to 10 wt.%) on physicochemical, morphological and biological properties of newly developed experimental dental resin composite, in order to compare with the properties of composites composed of conventional glass fillers. Methods: The dental resin composites were prepared by incorporating various proportions of HNT/CHX. Six different groups of specimens: control group and five groups composed of varied mass fractions of HNT/CHX (e.g., 1.0, 2.5, 5.0, 7.5 and 10 wt.%) as fillers in each group were fabricated. Mechanical properties of the composites were monitored, using UTM. The degree of conversion of dental resin composites and their depth of cure were also evaluated. Antimicrobial properties of dental composites were studied in vitro by applying agar diffusion test on strain Streptococcus mutans and cytotoxicity were studied using NIH-3T3 cell line. Results: The incorporation of varied mass fractions (1.0 to 5.0 wt.%) of HNT/CHX in dental resins composites enhanced mechanical properties considerably with significant antibacterial activity. The slight decrease in curing depth and degree of conversion values of composites indicates its durability. No cytotoxicity was noticed on NIH-3T3 cell lines. Significance: Consistent distribution of HNT/CHX as a filler into dental composites could substantially improve not only mechanical properties but also biological properties of dental composites.
Collapse
|
147
|
de Moraes IQS, do Nascimento TG, da Silva AT, de Lira LMSS, Parolia A, Porto ICCDM. Inhibition of matrix metalloproteinases: a troubleshooting for dentin adhesion. Restor Dent Endod 2020; 45:e31. [PMID: 32839712 PMCID: PMC7431940 DOI: 10.5395/rde.2020.45.e31] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 02/17/2020] [Accepted: 03/05/2020] [Indexed: 02/07/2023] Open
Abstract
Matrix metalloproteinases (MMPs) are enzymes that can degrade collagen in hybrid layer and reduce the longevity of adhesive restorations. As scientific understanding of the MMPs has advanced, useful strategies focusing on preventing these enzymes' actions by MMP inhibitors have quickly developed in many medical fields. However, in restorative dentistry, it is still not well established. This paper is an overview of the strategies to inhibit MMPs that can achieve a long-lasting material-tooth adhesion. Literature search was performed comprehensively using the electronic databases: PubMed, ScienceDirect and Scopus including articles from May 2007 to December 2019 and the main search terms were “matrix metalloproteinases”, “collagen”, and “dentin” and “hybrid layer”. MMPs typical structure consists of several distinct domains. MMP inhibitors can be divided into 2 main groups: synthetic (synthetic-peptides, non-peptide molecules and compounds, tetracyclines, metallic ions, and others) and natural bioactive inhibitors mainly flavonoids. Selective inhibitors of MMPs promise to be the future for specific targeting of preventing dentin proteolysis. The knowledge about MMPs functionality should be considered to synthesize drugs capable to efficiently and selectively block MMPs chemical routes targeting their inactivation in order to overcome the current limitations of the therapeutic use of MMPs inhibitors, i.e., easy clinical application and long-lasting effect.
Collapse
Affiliation(s)
- Izadora Quintela Souza de Moraes
- Laboratory of Pharmaceutical and Food Analysis, Institute of Pharmaceutical Sciences, Federal University of Alagoas, Campus A. C. Simões, Maceió, Alagoas, Brazil
| | - Ticiano Gomes do Nascimento
- Laboratory of Pharmaceutical and Food Analysis, Institute of Pharmaceutical Sciences, Federal University of Alagoas, Campus A. C. Simões, Maceió, Alagoas, Brazil
| | - Antonio Thomás da Silva
- Laboratory of Pharmaceutical and Food Analysis, Institute of Pharmaceutical Sciences, Federal University of Alagoas, Campus A. C. Simões, Maceió, Alagoas, Brazil
| | - Lilian Maria Santos Silva de Lira
- Laboratory of Pharmaceutical and Food Analysis, Institute of Pharmaceutical Sciences, Federal University of Alagoas, Campus A. C. Simões, Maceió, Alagoas, Brazil
| | - Abhishek Parolia
- Division of Clinical Dentistry, School of Dentistry, International Medical University, Kuala Lumpur, Malaysia
| | - Isabel Cristina Celerino de Moraes Porto
- Laboratory of Pharmaceutical and Food Analysis, Institute of Pharmaceutical Sciences, Federal University of Alagoas, Campus A. C. Simões, Maceió, Alagoas, Brazil.,Department of Restorative Dentistry, Faculty of Dentistry, Federal University of Alagoas, Campus A. C. Simões, Maceió, Alagoas, Brazil
| |
Collapse
|
148
|
Effect of Chitosan as a Cross-Linker on Matrix Metalloproteinase Activity and Bond Stability with Different Adhesive Systems. Mar Drugs 2020; 18:md18050263. [PMID: 32443628 PMCID: PMC7280998 DOI: 10.3390/md18050263] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 02/07/2023] Open
Abstract
The aim of the present study was to evaluate the effect of 0.1% chitosan (Ch) solution as an additional primer on the mechanical durability and enzymatic activity on dentine using an etch-and-rinse (E&R) adhesive and a universal self-etch (SE) adhesive. Microtensile bond strength and interfacial nanoleakage expression of the bonded interfaces for all adhesives (with or without pretreatment with 0.1% Ch solution for 1 min and air-dried for 5 s) were analyzed immediately and after 10,000 thermocycles. Zymograms of protein extracts from human dentine powder incubated with Optibond FL and Scotchbond Universal on untreated or Ch-treated dentine were obtained to examine dentine matrix metalloproteinase (MMP) activities. The use of 0.1% Ch solution as an additional primer in conjunction with the E&R or SE adhesive did not appear to have influenced the immediate bond strength (T0) or bond strength after thermocycling (T1). Zymography showed a reduction in MMP activities only for mineralized and demineralized dentine powder after the application of Ch. Application of 0.1% Ch solution does not increase the longevity of resin–dentine bonds. Nonetheless, the procedure appears to be proficient in reducing dentine MMP activities within groups without adhesive treatments. Further studies are required to comprehend the cross-linking of Ch with dentine collagen.
Collapse
|
149
|
Laronha H, Carpinteiro I, Portugal J, Azul A, Polido M, Petrova KT, Salema-Oom M, Caldeira J. Challenges in Matrix Metalloproteinases Inhibition. Biomolecules 2020; 10:biom10050717. [PMID: 32380782 PMCID: PMC7277161 DOI: 10.3390/biom10050717] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 04/27/2020] [Accepted: 04/30/2020] [Indexed: 12/17/2022] Open
Abstract
Matrix metalloproteinases are enzymes that degrade the extracellular matrix. They have different substrates but similar structural organization. Matrix metalloproteinases are involved in many physiological and pathological processes and there is a need to develop inhibitors for these enzymes in order to modulate the degradation of the extracellular matrix (ECM). There exist two classes of inhibitors: endogenous and synthetics. The development of synthetic inhibitors remains a great challenge due to the low selectivity and specificity, side effects in clinical trials, and instability. An extensive review of currently reported synthetic inhibitors and description of their properties is presented.
Collapse
Affiliation(s)
- Helena Laronha
- Centro de Investigação Interdisciplinar Egas Moniz, Instituto Universitário Egas Moniz, 2829-511 Caparica, Portugal; (H.L.); (I.C.); (A.A.); (M.P.); (M.S.-O.)
- UCIBIO and LAQV, Requimte, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal;
| | - Inês Carpinteiro
- Centro de Investigação Interdisciplinar Egas Moniz, Instituto Universitário Egas Moniz, 2829-511 Caparica, Portugal; (H.L.); (I.C.); (A.A.); (M.P.); (M.S.-O.)
| | - Jaime Portugal
- Faculdade de Medicina Dentária Universidade de Lisboa, 1649-003 Lisboa, Portugal;
| | - Ana Azul
- Centro de Investigação Interdisciplinar Egas Moniz, Instituto Universitário Egas Moniz, 2829-511 Caparica, Portugal; (H.L.); (I.C.); (A.A.); (M.P.); (M.S.-O.)
| | - Mário Polido
- Centro de Investigação Interdisciplinar Egas Moniz, Instituto Universitário Egas Moniz, 2829-511 Caparica, Portugal; (H.L.); (I.C.); (A.A.); (M.P.); (M.S.-O.)
| | - Krasimira T. Petrova
- UCIBIO and LAQV, Requimte, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal;
| | - Madalena Salema-Oom
- Centro de Investigação Interdisciplinar Egas Moniz, Instituto Universitário Egas Moniz, 2829-511 Caparica, Portugal; (H.L.); (I.C.); (A.A.); (M.P.); (M.S.-O.)
- UCIBIO and LAQV, Requimte, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal;
| | - Jorge Caldeira
- Centro de Investigação Interdisciplinar Egas Moniz, Instituto Universitário Egas Moniz, 2829-511 Caparica, Portugal; (H.L.); (I.C.); (A.A.); (M.P.); (M.S.-O.)
- UCIBIO and LAQV, Requimte, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal;
- Correspondence: ; Tel.: +351-919553592
| |
Collapse
|
150
|
Tosun S, Karataslioglu E. Does Caffeic Acid Phenethyl Ester as an Irrigation Solution Increase the Adhesive Quality of Root Canal Sealer? JOURNAL OF ADVANCED ORAL RESEARCH 2020. [DOI: 10.1177/2320206820911766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Aim: To evaluate the effect of the caffeic acid phenethyl ester (CAPE) as a root canal irrigation agent on the push-out bond strength of the AH-Plus sealer. Materials and Methods: A total of 75 single-rooted teeth were decoronated and were randomly divided into 5 groups of 15 roots for irrigation protocols: Group NaOCl: 5.25 percent NaOCl; Group CAPE: 0.5 percent CAPE; Group NaOCl + ethylenediaminetetraacetic acid (EDTA): 5.25 percent NaOCl-17 percent EDTA; Group NaOCl + CAPE: 5.25 percent NaOCl-0.5 percent CAPE; and Group CAPE + EDTA: 0.5 percent CAPE-17 percent EDTA (for 3 min each group). All root canals were then obturated and 1-mm-thick horizontal slices were obtained from different root thirds of the root canal (coronal, middle, and apical, respectively). The groups were challenged with push-out tests. Modes of failure were determined under a stereomicroscope. Results: The CAPE-EDTA-treated group presented the highest mean bond strength in the coronal region of root dentin ( P < .05). The CAPE-treated group had a higher mean bond strength than the NaOCl-treated group ( P < .05). The mixed mode of failure was most predominant in all groups. Conclusion: Under the presented in vitro conditions, CAPE alone or in combination with EDTA or NaOCl demonstrated a positive effect that increased the push-out bond strength of the AH-Plus sealer to root dentin.
Collapse
Affiliation(s)
- Samet Tosun
- Faculty of Dentistry, Department of Endodontics, Pamukkale University, Denizli, Turkey
| | - Emrah Karataslioglu
- Faculty of Dentistry, Department of Endodontics, zmir KatipÇelebi University, zmir, Turkey
| |
Collapse
|