101
|
Chun YHP, Yamakoshi Y, Kim JW, Iwata T, Hu JCC, Simmer JP. Porcine SPARC: isolation from dentin, cDNA sequence, and computer model. Eur J Oral Sci 2006; 114 Suppl 1:78-85; discussion 93-5, 379-80. [PMID: 16674666 DOI: 10.1111/j.1600-0722.2006.00280.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Genes encoding the major enamel matrix proteins and non-collagenous proteins of bone and dentin are members of the secretory calcium-binding phosphoprotein (SCPP) family, which originated from ancestral SPARC (secreted protein, acidic and rich in cysteine; BM-40/osteonectin). To better understand the role of SPARC in mineralizing systems, we isolated SPARC from developing pig teeth, deduced its primary structure from the cDNA sequence, and determined its quaternary structure by homology modelling with reference to human SPARC crystal structures. The guanidine/EDTA extract from porcine dentin was fractionated by anion-exchange and size-exclusion chromatography. Stains-all positive bands at 38 and 35 kDa gave the N-terminal sequences APQQEALPDETEV and DFEKNYNMYIFPV, which corresponded to the SPARC N terminus and an internal region of the protein. Porcine SPARC contains 300 amino acids, including the 17-amino acid signal peptide, and shares 96.2% amino acid sequence identity with human SPARC. Without post-translational modifications, the 283-amino acid secreted protein has a molecular mass of 32.3 kDa. The three-dimensional model revealed that porcine SPARC contains a single N-linked glycosylation at N113, seven intramolecular disulfide bridges, and assembles into dimers. SPARC is composed of three structural/functional domains: an acidic Ca2+-binding, a follistatin-like, and an extracellular calcium-binding domain.
Collapse
Affiliation(s)
- Yong-Hee P Chun
- University of Michigan Dental Research Laboratory, Ann Arbor, MI 48108, USA
| | | | | | | | | | | |
Collapse
|
102
|
Said N, Motamed K. Absence of host-secreted protein acidic and rich in cysteine (SPARC) augments peritoneal ovarian carcinomatosis. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 167:1739-52. [PMID: 16314484 PMCID: PMC1613196 DOI: 10.1016/s0002-9440(10)61255-2] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The matricellular glycoprotein SPARC (secreted protein acidic and rich in cysteine) possesses multifaceted roles in modulation of cell-matrix interactions, as well as tumor growth and metastasis. To investigate the influence of host-derived SPARC on peritoneal dissemination of ovarian cancer, we established a murine model that faithfully recapitulates advanced human disease by intraperitoneal injection of syngeneic ID8 ovarian cancer cells into SPARC-null and wild-type mice. Compared to wild-type mice, SPARC-null mice showed significantly shorter survival and developed extensive nodular peritoneal dissemination with hemorrhagic ascitic fluid accumulation. Ascitic fluid collected from SPARC-null mice showed significantly augmented levels and activity of vascular endothelial growth factor and gelatinases. Immunohistochemical analysis of tumor nodules from SPARC-null mice revealed higher proliferation and lower apoptosis indices with minimal staining for major extracellular matrix constituents. In vitro, SPARC significantly suppressed adhesion to and invasion of various peritoneal extracellular matrix constituents by murine and human ovarian cancer cell lines. Our findings suggest that SPARC ameliorates ovarian peritoneal carcinomatosis through abrogation of the initial steps of disease pathogenesis, namely tumor cell adhesion and invasion, inhibition of tumor cell proliferation, and induction of apoptosis. Thus, SPARC represents an important therapeutic candidate in ovarian cancer.
Collapse
Affiliation(s)
- Neveen Said
- Department of Pathology, Medical College of Georgia, Augusta, 30912, USA
| | | |
Collapse
|
103
|
Wu RX, Laser M, Han H, Varadarajulu J, Schuh K, Hallhuber M, Hu K, Ertl G, Hauck CR, Ritter O. Fibroblast migration after myocardial infarction is regulated by transient SPARC expression. J Mol Med (Berl) 2006; 84:241-52. [PMID: 16416312 DOI: 10.1007/s00109-005-0026-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2005] [Accepted: 10/27/2005] [Indexed: 11/26/2022]
Abstract
Secreted protein, acidic, and rich in cysteine (SPARC) is thought to regulate cell matrix interaction during wound repair. We hypothesized that SPARC might promote migration via integrin-dependent mechanisms. The present study was designed to clarify the contribution of SPARC in the wound healing process after myocardial infarction (MI). Adult mice received a specific alpha(v) integrin inhibitor or vehicle through osmotic mini pumps. Mice of each group were either sham-operated or MI was induced. SPARC expression was investigated 2 days, 7 days, and 1 month after the surgical procedure. For migration assays, a modified Boyden chamber assay was used. A transient increase of SPARC levels was observed, starting at day 2 (2.55+/-0.21), day 7 (3.72+/-0.28), and 1 month (1.9+/-0.16) after MI. After 2 months, SPARC expression dropped back to normal levels compared to sham-operated hearts. Immunofluorescence analysis showed an increase of SPARC in the infarcted area 2 days after MI, a strong increase in the scar area 7 days after MI, and only low levels in the scar area 2 months after MI. Integrin alpha(v) inhibition abolished the up-regulation of SPARC. In vitro migration assays demonstrated that fibronectin-stimulated haptotaxis of fibroblasts was modulated by SPARC. This study provides evidence that SPARC is significantly up-regulated in the infarcted region after MI. This up-regulation is dependent on alpha(v) integrins. As SPARC is found to regulate fibroblast migration, it appears to play an important role in the injured myocardium with regard to healing and scar formation.
Collapse
Affiliation(s)
- Rong Xue Wu
- Department of Medicine I, Center for Cardiovascular Medicine, University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Barker TH, Baneyx G, Cardó-Vila M, Workman GA, Weaver M, Menon PM, Dedhar S, Rempel SA, Arap W, Pasqualini R, Vogel V, Sage EH. SPARC Regulates Extracellular Matrix Organization through Its Modulation of Integrin-linked Kinase Activity. J Biol Chem 2005; 280:36483-93. [PMID: 16115889 DOI: 10.1074/jbc.m504663200] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
SPARC, a 32-kDa matricellular glycoprotein, mediates interactions between cells and their extracellular matrix, and targeted deletion of Sparc results in compromised extracellular matrix in mice. Fibronectin matrix provides provisional tissue scaffolding during development and wound healing and is essential for the stabilization of mature extracellular matrix. Herein, we report that SPARC expression does not significantly affect fibronectin-induced cell spreading but enhances fibronectin-induced stress fiber formation and cell-mediated partial unfolding of fibronectin molecules, an essential process in fibronectin matrix assembly. By phage display, we identify integrin-linked kinase as a potential binding partner of SPARC and verify the interaction by co-immunoprecipitation and colocalization in vitro. Cells lacking SPARC exhibit diminished fibronectin-induced integrin-linked kinase activation and integrin-linked kinase-dependent cell-contractile signaling. Furthermore, induced expression of SPARC in SPARC-null fibroblasts restores fibronectin-induced integrin-linked kinase activation, downstream signaling, and fibronectin unfolding. These data further confirm the function of SPARC in extracellular matrix organization and identify a novel mechanism by which SPARC regulates extracellular matrix assembly.
Collapse
Affiliation(s)
- Thomas H Barker
- Hope Heart Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington 98101, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Bampton ETW, Ma CH, Tolkovsky AM, Taylor JSH. Osteonectin is a Schwann cell-secreted factor that promotes retinal ganglion cell survival and process outgrowth. Eur J Neurosci 2005; 21:2611-23. [PMID: 15926910 DOI: 10.1111/j.1460-9568.2005.04128.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We have investigated the factors made by Schwann cells (SCs) that stimulate survival and neurite outgrowth from postnatal rat retinal ganglion cells (RGCs). These effects are preserved under K252a blockade of the Trk family of neurotrophin receptors and are not fully mimicked by the action of a number of known trophic factors. To identify novel factors responsible for this regenerative activity, we have used a radiolabelling assay. Proteins made by SCs were labelled radioactively and then fed to purified RGCs. The proteins taken up by the RGCs were then isolated and further characterized. Using this assay we have identified a major 40 kDa factor taken up by RGCs, which was microsequenced and shown to be the matricellular protein osteonectin (ON). Using an in vitro assay of purified RGCs we show that ON promotes both survival and neurite outgrowth. We conclude that ON has a potential new role in promoting CNS repair.
Collapse
Affiliation(s)
- Edward T W Bampton
- Department of Human Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | | | | | | |
Collapse
|
106
|
Sangaletti S, Gioiosa L, Guiducci C, Rotta G, Rescigno M, Stoppacciaro A, Chiodoni C, Colombo MP. Accelerated dendritic-cell migration and T-cell priming in SPARC-deficient mice. J Cell Sci 2005; 118:3685-94. [PMID: 16046482 DOI: 10.1242/jcs.02474] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
On their path to draining lymph nodes, epidermal Langerhans cells traverse collagen-dense connective tissue before reaching lymphatic vessels. The matricellular protein SPARC (secreted protein, acidic and rich in cysteine), which is induced during inflammation and tissue repair, organizes collagen deposition in tissue stroma. We analyzed Langerhans cell and dendritic-cell migration and its impact on T-cell priming in SPARC-null (SPARC–/–) and SPARC-sufficient (SPARC+/+) mice. Although the same number of Langerhans cells populate the ear skin of SPARC–/– and SPARC+/+ mice, more Langerhans cells were found in the lymph nodes draining antigen-sensitized ears of SPARC–/– mice and significantly more Langerhans cells migrated from null-mice-derived ear skin explants. Such favored Langerhans cell migration is due to the host environment, as demonstrated by SPARC+/+>SPARC–/– and reciprocal chimeras, and have a profound influence on T-cell priming. Contact-, delayed type-hypersensitivity and naive T-cell receptor-transgenic T-cell priming, together indicate that the lack of SPARC in the environment accelerates the onset of T-cell priming by hastening Langerhans cell/dendritic-cell migration.
Collapse
Affiliation(s)
- Sabina Sangaletti
- Immunotherapy and Gene Therapy Unit, Department of Experimental Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori, 20133 Milano, Italy
| | | | | | | | | | | | | | | |
Collapse
|
107
|
Puolakkainen PA, Bradshaw AD, Brekken RA, Reed MJ, Kyriakides T, Funk SE, Gooden MD, Vernon RB, Wight TN, Bornstein P, Sage EH. SPARC-thrombospondin-2-double-null mice exhibit enhanced cutaneous wound healing and increased fibrovascular invasion of subcutaneous polyvinyl alcohol sponges. J Histochem Cytochem 2005; 53:571-81. [PMID: 15872050 DOI: 10.1369/jhc.4a6425.2005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Secreted protein acidic and rich in cysteine (SPARC) and thrombospondin-2 (TSP-2) are structurally unrelated matricellular proteins that have important roles in cell-extracellular matrix (ECM) interactions and tissue repair. SPARC-null mice exhibit accelerated wound closure, and TSP-2-null mice show an overall enhancement in wound healing. To assess potential compensation of one protein for the other, we examined cutaneous wound healing and fibrovascular invasion of subcutaneous sponges in SPARC-TSP-2 (ST) double-null and wild-type (WT) mice. Epidermal closure of cutaneous wounds was found to occur significantly faster in ST-double-null mice, compared with WT animals: histological analysis of dermal wound repair revealed significantly more mature phases of healing at 1, 4, 7, 10, and 14 days after wounding, and electron microscopy showed disrupted ECM at 14 days in these mice. ST-double-null dermal fibroblasts displayed accelerated migration, relative to WT fibroblasts, in a wounding assay in vitro, as well as enhanced contraction of native collagen gels. Zymography indicated that fibroblasts from ST-double-null mice also produced higher levels of matrix metalloproteinase (MMP)-2. These data are consistent with the increased fibrovascular invasion of subcutaneous sponge implants seen in the double-null mice. The generally accelerated wound healing of ST-double-null mice reflects that described for the single-null animals. Importantly, the absence of both proteins results in elevated MMP-2 levels. SPARC and TSP-2 therefore perform similar functions in the regulation of cutaneous wound healing, but fine-tuning with respect to ECM production and remodeling could account for the enhanced response seen in ST-double-null mice.
Collapse
Affiliation(s)
- Pauli A Puolakkainen
- Hope Heart Program, Benaroya Research Institute at Virginia Mason, 1201 9th Ave., Seattle, WA 98101, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Gruber HE, Sage EH, Norton HJ, Funk S, Ingram J, Hanley EN. Targeted deletion of the SPARC gene accelerates disc degeneration in the aging mouse. J Histochem Cytochem 2005; 53:1131-8. [PMID: 15879573 DOI: 10.1369/jhc.5a6687.2005] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
SPARC (secreted protein, acidic, and rich in cysteine) is a matricellular protein that is present in the intervertebral disc; in man, levels of SPARC decrease with aging and degeneration. In this study, we asked whether targeted deletion of SPARC in the mouse influenced disc morphology. SPARC-null and wild-type (WT) mice were studied at 0.3-21 months of age. Radiologic examination of spines from 2-month-old SPARC-null mice revealed wedging, endplate calcification, and sclerosis, features absent in age-matched WT spines. Discs from 3-month-old SPARC-null mice had a greater number of annulus cells than those of WT animals (1884.6 +/- 397.9 [mean +/- SD] vs 1500.2 +/- 188.2, p=0.031). By 19 months discs from SPARC-null mice contained fewer cells than WT counterparts (1383.6 +/- 363.3 vs 1466.8 +/- 148.0, p=0.033). Histology of midsagittal spines showed herniations of lower lumbar discs of SPARC-null mice ages 14-19 months; in contrast, no herniations were seen in WT age-matched animals. Ultrastructural studies showed uniform collagen fibril diameters in the WT annulus, whereas in SPARC-null disc fibrils were of variable size with irregular margins. Consistent with the connective tissue deficits observed in other tissues of SPARC-null mice, our findings support a fundamental role for SPARC in the production, assembly, or maintenance of the disc extracellular matrix.
Collapse
Affiliation(s)
- Helen E Gruber
- Department of Orthopaedic Surgery, Carolinas Medical Center, PO Box 32861, Charlotte, NC 28232, USA.
| | | | | | | | | | | |
Collapse
|
109
|
Abstract
Matricellular proteins mediate interactions between cells and their extracellular environment. This functional protein family includes several structurally unrelated members, such as SPARC, thrombospondin 1, tenascin C, and osteopontin, as well as some homologs of these proteins, such as thrombospondin 2 and tensascin X. SPARC, a prototypic matricellular protein, and its homolog hevin, have deadhesive effects on cultured cells and have been characterized as antiproliferative factors in some cellular contexts. Both proteins are produced at high levels in many types of cancers, especially by cells associated with tumor stroma and vasculature. In this Prospect article we summarize evidence for SPARC and hevin in the regulation of tumor cell growth, differentiation, and metastasis, and we propose that matricellular proteins such as these perform critical functions in desmoplastic responses of tumors that culminate in their dissemination and eventual colonization of other sites.
Collapse
Affiliation(s)
- Paul E Framson
- Department of Vascular Biology, The Hope Heart Institute, 1124 Columbia Street, Seattle, Washington 98104, USA
| | | |
Collapse
|
110
|
Reed MJ, Bradshaw AD, Shaw M, Sadoun E, Han N, Ferara N, Funk S, Puolakkainen P, Sage EH. Enhanced angiogenesis characteristic of SPARC-null mice disappears with age. J Cell Physiol 2005; 204:800-7. [PMID: 15795937 DOI: 10.1002/jcp.20348] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The impairment of angiogenesis in aging has been attributed, in part, to alterations in proteins associated with the extracellular matrix (ECM). SPARC (secreted protein acidic and rich in cysteine/osteonectin/BM-40) is a matricellular protein that regulates endothelial cell function as well as cell-ECM interactions. We have previously shown that angiogenesis, as reflected by fibrovascular invasion into subcutaneously implanted polyvinyl alcohol (PVA) sponges, is increased in SPARC-null mice (6-9 months of age) relative to their wild-type (WT) counterparts. In this study, we define the influence of aging on (a) the expression of SPARC and (b) fibrovascular invasion into sponge implants in SPARC-null and WT mice. The expression of SPARC in fibroblasts and endothelial cells derived from young donors (humans mean age less than 30 years and mice 4-6 months of age) and old donors (humans mean age over 65 years and mice 22-27 months of age) decreased 1.6 to 2.3-fold with age. Analysis of fibrovascular invasion into sponges implanted into old (22-27 months) SPARC-null and WT mice showed no differences in percent area of invasion or collagenous ECM. Moreover, sponges from old SPARC-null and WT mice contained similar levels of VEGF that were significantly lower than those from young (4-6 months) mice. In contrast to fibroblasts from young SPARC-null mice, dermal fibroblasts from old SPARC-null mice did not migrate farther, proliferate faster, or produce greater amounts of VEGF relative to their old WT counterparts. However, when stimulated with TGF-beta1, primary cells isolated from the sponge implants, and dermal fibroblasts from both old SPARC-null and WT mice, showed marked increases in VEGF secretion. These data indicate that aging results in a loss of enhanced angiogenesis in SPARC-null mice, as a result of the detrimental impact of age on cellular functions, collagen deposition, and VEGF synthesis. However, the influence of aging on these processes may be reversed, in part, by growth factor stimulation.
Collapse
Affiliation(s)
- May J Reed
- Department of Medicine, The University of Washington, Seattle, WA 98104, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
111
|
Adwan H, Bäuerle TJ, Berger MR. Downregulation of osteopontin and bone sialoprotein II is related to reduced colony formation and metastasis formation of MDA-MB-231 human breast cancer cells. Cancer Gene Ther 2004; 11:109-20. [PMID: 14647232 DOI: 10.1038/sj.cgt.7700659] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Osteopontin (OPN), bone sialoprotein (BSPII), and osteonectin (ON) belong to a family of glycoproteins, which have been linked to cancer metastasis and progression. Here, we report on the selection of antisense oligonucleotides (ASOs), which are effective in reducing their protein levels. In human MDA-MB-231 breast cancer cells, the maximum inhibition of protein expression ranged from 84% (OPN) to 75% (BSPII) and 70% (ON). Erucylphospho-NNN-trimethylpropanolamine (ErPC3) was used as positive control and combination partner. Exposure to ErPC3 inhibited colony formation of MDA-MB-231 cells by 11% (10 microM), 45% (14 microM) and 78% (20 microM). The clonogenicity of breast cancer cells was reduced by 15%, 11%, 8% (5 microM), 39%, 19%, 14% (10 microM) and 46%, 39%, 21% (20 microM) in response to ASO-OPN-04, ASO-BSPII-06 and ASO-ON-03, respectively. Combination of ErPC3 with the ASOs caused additive combination effects. Pre-exposure to the ASOs, but not to the NSO, inhibited formation of osteolytic metastasis in three of four (ASO-OPN-04, P<0.03) and two of four (ASO-BSPII-06) nude rats, and reduced metastasis lesions significantly (T/C%=4.3 and 9.1, P=0.05, respectively). We conclude that downregulation of OPN and BSPII reduces colony formation of MDA-MB-231 cells and formation of osteolytic metastasis in nude rats.
Collapse
Affiliation(s)
- Hassan Adwan
- Unit of Toxicology and Chemotherapy, Deutsches Krebsforschungszentrum Heidelberg, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | | | | |
Collapse
|
112
|
Siddiq F, Sarkar FH, Wali A, Pass HI, Lonardo F. Increased osteonectin expression is associated with malignant transformation and tumor associated fibrosis in the lung. Lung Cancer 2004; 45:197-205. [PMID: 15246191 DOI: 10.1016/j.lungcan.2004.01.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2003] [Revised: 01/21/2004] [Accepted: 01/26/2004] [Indexed: 10/26/2022]
Abstract
Chemical transformation of the SV-40 immortalized bronchial epithelial cell line BEAS2-B induces alterations in molecules involved in cell cycle control, including up-regulation of EGFR and cyclin E [Oncogene 13 (1996) 1983; Clin Cancer Res 8 (2002) 54]. The finding that these changes also occur in vivo, in both pre-invasive and invasive lung cancer [Cancer Res 55 (1995) 1365; Cancer Res 59 (1999) 2470], proves this to be a suitable model to study lung carcinogenesis. The current study tested the hypothesis that chemical treatment of BEAS2-B with Cigarette Smoke Condensate (CSC) may affect levels of gene products involved in cell adhesion and tissue remodeling. To this end, we studied the extent of changes in osteonectin (ON) protein levels induced in BEAS 2 B-cells by CSC treatment and its timing to changes occurring in the anchorage independent cloning efficiency. ON, a multimodular protein component of the extra-cellular matrix, has been implicated in tissue remodeling occurring in neoplastic and non-neoplastic conditions, but its role in lung carcinogenesis is incompletely characterized. To validate the in vitro findings, as in our previous reports, we studied resected lung tissue, to assess whether ON expression in neoplastic lung tissue differs from normal, and to determine its cellular localization. We found that CSC treatment of BEAS2-B cells results in a 7-16-fold increase in ON protein levels, that is associated with increased colony forming efficiency. ON is absent in normal lung; in contrast it is present in the majority (39/52) of non-small cell lung cancer (NSCLC). Here, its expression is restricted to peritumoral fibroblasts in squamous cell carcinoma and adenocarcinoma. In contrast, it is localized to tumor cells in pulmonary sarcomatoid carcinoma (8/10). Thus, up-regulated ON is linked in vitro to cell transformation and in vivo, it is frequently expressed in tumor-associated fibrosis, compatible with its proposed role in tissue remodelling. Increased ON expression by tumor cells appears to represent a marker of sarcomatoid NSCLC.
Collapse
Affiliation(s)
- Fauzia Siddiq
- Laboratory of Thoracic Oncology, Wayne State University Medical School, Harper University Hospital and Karmanos Cancer Institute, Detroit, MI 48201, USA
| | | | | | | | | |
Collapse
|
113
|
Puolakkainen PA, Brekken RA, Muneer S, Sage EH. Enhanced Growth of Pancreatic Tumors in SPARC-Null Mice Is Associated With Decreased Deposition of Extracellular Matrix and Reduced Tumor Cell Apoptosis. Mol Cancer Res 2004. [DOI: 10.1158/1541-7786.215.2.4] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
SPARC, a matricellular glycoprotein, modulates cellular interaction with the extracellular matrix (ECM). Tumor growth and metastasis occur in the context of the ECM, the levels and deposition of which are controlled in part by SPARC. Tumor-derived SPARC is reported to stimulate or retard tumor progression depending on the tumor type, whereas the function of host-derived SPARC in tumorigenesis has not been explored fully. To evaluate the function of endogenous SPARC, we have examined the growth of pancreatic tumors in SPARC-null (SP−/−) mice and their wild-type (SP+/+) counterparts. Mouse pancreatic adenocarcinoma cells injected s.c. grew significantly faster in SP−/− mice than cells injected into SP+/+ animals, with mean tumor weights at sacrifice of 0.415 ± 0.08 and 0.086 ± 0.03 g (P < 0.01), respectively. Lack of endogenous SPARC resulted in decreased collagen deposition and fiber formation, alterations in the distribution of tumor-infiltrating macrophages, and decreased tumor cell apoptosis. There was no difference in microvessel density of tumors from SP−/− or SP+/+ mice. However, tumors grown in SP−/− had a lower percentage of blood vessels that expressed smooth muscle α-actin, a marker of pericytes. These data reflect the importance of ECM deposition in regulating tumor growth and demonstrate that host-derived SPARC is a critical factor in the response of host tissue to tumorigenesis.
Collapse
Affiliation(s)
- Pauli A. Puolakkainen
- 1Department of Vascular Biology, Hope Heart Institute, and
- 2Department of Medicine, University of Washington, Seattle, Washington
- 3Department of Surgery, Helsinki University Central Hospital, Helsinki, Finland; and
| | - Rolf A. Brekken
- 1Department of Vascular Biology, Hope Heart Institute, and
- 4Division of Surgical Oncology, Department of Pharmacology, and Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Sabeeha Muneer
- 4Division of Surgical Oncology, Department of Pharmacology, and Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas
| | - E. Helene Sage
- 1Department of Vascular Biology, Hope Heart Institute, and
| |
Collapse
|
114
|
Abstract
The cellular capacity to internalise objects, involving attachment, engulfment and uptake, exists in virtually all organisms. Many uptake reactions are associated with cell signalling. However, the mechanical forces that form endocytotic vesicles are not known. We propose a 'leverage-mediated' uptake mechanism involving lateral cross-linking processes on the cell surface that can generate the configurational energy to create an inverse curvature of the membrane.
Collapse
Affiliation(s)
- Otto Schmidt
- Insect Molecular Biology, Faculty of Sciences, University of Adelaide, Glen Osmond, SA 5064 Australia.
| | | |
Collapse
|
115
|
Vannahme C, Gösling S, Paulsson M, Maurer P, Hartmann U. Characterization of SMOC-2, a modular extracellular calcium-binding protein. Biochem J 2003; 373:805-14. [PMID: 12741954 PMCID: PMC1223551 DOI: 10.1042/bj20030532] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2003] [Accepted: 05/13/2003] [Indexed: 01/11/2023]
Abstract
We have isolated the novel gene SMOC-2, which encodes a secreted modular protein containing an EF-hand calcium-binding domain homologous to that in BM-40. It further consists of two thyroglobulin-like domains, a follistatin-like domain and a novel domain found only in the homologous SMOC-1. Phylogenetic analysis of the calcium-binding domain sequences showed that SMOC-1 and -2 form a separate group within the BM-40 family. The human and mouse SMOC-2 sequences are coded for by genes consisting of 13 exons located on chromosomes 6 and 17, respectively. Analysis of recombinantly expressed protein showed that SMOC-2 is a glycoprotein with a calcium-dependent conformation. Results from Northern blots and reverse transcription PCR revealed a widespread expression in many tissues.
Collapse
Affiliation(s)
- Christian Vannahme
- Center for Biochemistry, Medical Faculty, University of Cologne, Joseph-Stelzmann Strasse 52, D-50931 Cologne, Germany
| | | | | | | | | |
Collapse
|
116
|
Berryhill BL, Kane B, Stramer BM, Fini ME, Hassell JR. Increased SPARC accumulation during corneal repair. Exp Eye Res 2003; 77:85-92. [PMID: 12823991 DOI: 10.1016/s0014-4835(03)00060-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Keratocytes can become fibroblasts and myofibroblasts during corneal injury and wound healing. We used the in vitro bovine keratocyte repair model system, which involves culturing collagenase-isolated keratocytes in serum-free media and then adding serum or serum plus TGF-beta to the culture media to induce the fibroblast and myofibroblast phenotypes, respectively, to evaluate the synthesis of secreted products by the cells. Serum and serum plus TGF-beta rapidly induced the fibroblast morphology and alpha smooth muscle actin, a marker of myofibroblasts. Keratocytes cultured in serum and serum plus TGF-beta also increased the synthesis of several high molecular weight products (approximately 100kD and larger) and the accumulation of a 43kD protein shown to be osteonectin/SPARC by both sequencing tryptic peptides from the protein and by reaction with antisera to osteonectin/SPARC. Immunohistochemical staining of mouse corneas with antisera to SPARC seven days post-wounding also demonstrated an increased accumulation of SPARC in the regions undergoing repair. These results indicate SPARC accumulation is a marker for stromal repair.
Collapse
Affiliation(s)
- Bridgette L Berryhill
- The Department of Biochemistry and Molecular Biology, College of Medicine, University of South Florida, Tampa, FL, USA
| | | | | | | | | |
Collapse
|
117
|
Boskey AL, Moore DJ, Amling M, Canalis E, Delany AM. Infrared analysis of the mineral and matrix in bones of osteonectin-null mice and their wildtype controls. J Bone Miner Res 2003; 18:1005-11. [PMID: 12817752 DOI: 10.1359/jbmr.2003.18.6.1005] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Osteonectin function in bone was investigated by infrared analysis of bones from osteonectin-null (KO) and wildtype mice (four each at 11, 17, and 36 weeks). An increase in mineral content and crystallinity in newly formed KO bone and collagen maturity at all sites was found using FTIR microspectroscopy and imaging; consistent with osteonectin's postulated role in regulating bone formation and remodeling. Mineral and matrix properties of tibias of osteonectin-null mice and their age- and background-matched wildtype controls were compared using Fourier-transform infrared microspectroscopy (FTIRM) and infrared imaging (FTIRI) at 10- and 7-mm spatial resolution, respectively. The bones came from animals that were 11, 17, and 36 weeks of age. Individual FTIRM spectra were acquired from 20 x 20 microm areas, whereas 4096 simultaneous FTIRI spectra were acquired from 400 x 400 microm areas. The FTIRM data for mineral-to-matrix, mineral crystallinity, and collagen maturity were highly correlated with the FTIRI data in similar regions. In general, the osteonectin-null mice bones had higher mineral contents and greater crystallinity (crystal size and perfection) than the age-matched wildtype controls. Specifically, the mineral content of the newly forming periosteal bone was increased in the osteonectin-null mice; the crystallinity of the cortical bone was decreased in all but the oldest animals, relative to the wildtype. The most significant finding, however, was increased collagen maturity in both the cortical and trabecular bone of the osteonectin-null mice. These spectroscopic data are consistent with a mechanism of decreased bone formation and remodeling.
Collapse
Affiliation(s)
- Adele L Boskey
- Research Division, Hospital for Special Surgery, New York, New York 10021, USA.
| | | | | | | | | |
Collapse
|
118
|
Bradshaw AD, Puolakkainen P, Dasgupta J, Davidson JM, Wight TN, Helene Sage E. SPARC-null mice display abnormalities in the dermis characterized by decreased collagen fibril diameter and reduced tensile strength. J Invest Dermatol 2003; 120:949-55. [PMID: 12787119 DOI: 10.1046/j.1523-1747.2003.12241.x] [Citation(s) in RCA: 172] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Although collagen and elastic fibers are among the major structural constituents responsible for the mechanical properties of skin, proteins that associate with these components are also important for directing formation and maintaining the stability of these fibers. We present evidence that SPARC (secreted protein acidic and rich in cysteine) contributes to collagen fibril formation in the dermis. The skin of SPARC-null adult mice had approximately half the tensile strength as that of wild-type skin. Moreover, the collagen content of SPARC-null skin, as measured by hydroxyproline analysis, was substantially reduced in adult mice. At 2 weeks of age, no differences in collagen content were observed; within 2 months, however, the dermis of SPARC-null mice displayed a reduced collagen content that persisted through adulthood until approximately 20 months, when collagen levels of SPARC-null skin approximated those of wild-type controls. The collagen fibrils present in SPARC-null skin were smaller and more uniform in diameter, in comparison with those of wild-type skin. At 5 months of age, the average fibril diameter in SPARC-null versus wild-type skin was 60.2 nm versus 87.9 nm, respectively. Extraction of soluble dermal collagen revealed a relative increase in collagen VI, accompanied by a decrease in collagen I, in SPARC-null mice. A reduction in the relative amounts of higher-molecular weight collagen complexes was also observed in extracts of dermis from SPARC-null animals. Thus the absence of SPARC compromises the mechanical properties of the dermis, an effect that we attribute, at least in part, to the changes in the structure and composition of its collagenous extracellular matrix.
Collapse
Affiliation(s)
- Amy D Bradshaw
- The Hope Heart Institute, Seattle, Washington 98104, USA
| | | | | | | | | | | |
Collapse
|
119
|
Bradshaw AD, Graves DC, Motamed K, Sage EH. SPARC-null mice exhibit increased adiposity without significant differences in overall body weight. Proc Natl Acad Sci U S A 2003; 100:6045-50. [PMID: 12721366 PMCID: PMC156323 DOI: 10.1073/pnas.1030790100] [Citation(s) in RCA: 161] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Secreted protein acidic and rich in cysteine/osteonectin/BM-40 (SPARC) is a matrix-associated protein that elicits changes in cell shape, inhibits cell-cycle progression, and influences the synthesis of extracellular matrix (ECM). The absence of SPARC in mice gives rise to aberrations in the structure and composition of the ECM that result in generation of cataracts, development of severe osteopenia, and accelerated closure of dermal wounds. In this report we show that SPARC-null mice have greater deposits of s.c. fat and larger epididymal fat pads in comparison with wild-type mice. Similar to earlier studies of SPARC-null dermis, we observed a reduction in collagen I in SPARC-null fat pads in comparison with wild-type. Although elevated levels of serum leptin were observed in SPARC-null mice, their overall body weights were not significantly different from those of wild-type counterparts. The diameters of adipocytes from SPARC-null versus wild-type epididymal fat pads were 252 +/- 61 and 161 +/- 33 microm (means +/- SD), respectively, and there was an increase in adipocyte number within SPARC-null fat pads in comparison with wild-type pads. Thus the absence of SPARC appears to result in an increase in the size of individual adipocytes as well as an increase in the number of adipocytes per fat pad. In fat pads isolated from wild-type mice, SPARC mRNA was associated with both the stromal/vascular and adipocyte fractions. We propose that SPARC limits the accumulation of adipose tissue in mice in part through its demonstrated effects on the regulation of cell shape and production of ECM.
Collapse
Affiliation(s)
- A D Bradshaw
- Department of Vascular Biology, Hope Heart Institute, Seattle, WA 98104, USA
| | | | | | | |
Collapse
|
120
|
Schlingemann J, Hess J, Wrobel G, Breitenbach U, Gebhardt C, Steinlein P, Kramer H, Fürstenberger G, Hahn M, Angel P, Lichter P. Profile of gene expression induced by the tumour promotor TPA in murine epithelial cells. Int J Cancer 2003; 104:699-708. [PMID: 12640676 DOI: 10.1002/ijc.11008] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Malignant transformation of mouse skin by chemical carcinogens and tumour promoters, such as the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA), is a multistage process that leads to squamous cell carcinoma (SCC) formation. In an effort to identify tumour-associated genes, we studied the influence of short-term TPA-treatment on the gene expression profile of murine skin. A comprehensive microarray with some 5,000 murine gene specific cDNA fragments was established and hybridised with pooled RNA derived from control and TPA-treated dorsal skin samples. Of these genes, 54 were up- and 35 were down-regulated upon TPA application. Additionally, we performed suppression subtractive hybridisation (SSH) with respective RNA pools to generate and analyse a cDNA library enriched for TPA-inducible genes. Expression data of selected genes were confirmed by quantitative real-time PCR and Northern blot analysis. Comparison of microarray and SSH data revealed that 26% of up-regulated genes identified by expression profiling matched with those present in the SSH library. Besides numerous known genes, we identified a large set of unknown cDNAs that represent previously unrecognised TPA-regulated genes in murine skin with potential function in tumour promotion. Additionally, some TPA-induced genes, such as Sprr1A, Saa3, JunB, Il4ralpha, Gp38, RalGDS and Slpi exhibit high basal level in advanced stages of skin carcinogenesis, suggesting that at least a subgroup of the identified TPA-regulated genes may contribute to tumour progression and metastasis.
Collapse
Affiliation(s)
- Joerg Schlingemann
- Division of Molecular Genetics, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
121
|
Brekken RA, Puolakkainen P, Graves DC, Workman G, Lubkin SR, Sage EH. Enhanced growth of tumors in SPARC null mice is associated with changes in the ECM. J Clin Invest 2003; 111:487-95. [PMID: 12588887 PMCID: PMC151926 DOI: 10.1172/jci16804] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
SPARC, a 32-kDa glycoprotein, participates in the regulation of morphogenesis and cellular differentiation through its modulation of cell-matrix interactions. Major functions defined for SPARC in vitro are de-adhesion and antiproliferation. In vivo, SPARC is restricted in its expression to remodeling tissues, including pathologies such as cancer. However, the function of endogenous SPARC in tumor growth and progression is not known. Here, we report that implanted tumors grew more rapidly in mice lacking SPARC. We observed that tumors grown in SPARC null mice showed alterations in the production and organization of ECM components and a decrease in the infiltration of macrophages. However, there was no change in the levels of angiogenic growth factors in comparison to tumors grown in wild-type mice, although there was a statistically significant difference in total vascular area. Whereas SPARC did inhibit the growth of tumor cells in vitro, it did not have a demonstrable effect on the proliferation or apoptosis of tumor cells in vivo. These data indicate that host-derived SPARC is important for the appropriate organization of the ECM in response to implanted tumors and highlight the importance of the ECM in regulating tumor growth.
Collapse
Affiliation(s)
- Rolf A Brekken
- Department of Vascular Biology, The Hope Heart Institute, Seattle, Washington 98104-2046, USA
| | | | | | | | | | | |
Collapse
|
122
|
Puolakkainen P, Bradshaw AD, Kyriakides TR, Reed M, Brekken R, Wight T, Bornstein P, Ratner B, Sage EH. Compromised production of extracellular matrix in mice lacking secreted protein, acidic and rich in cysteine (SPARC) leads to a reduced foreign body reaction to implanted biomaterials. THE AMERICAN JOURNAL OF PATHOLOGY 2003; 162:627-35. [PMID: 12547720 PMCID: PMC1851143 DOI: 10.1016/s0002-9440(10)63856-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
SPARC (secreted protein, acidic and rich in cysteine), a matricellular glycoprotein, modulates the interaction of cells with the extracellular matrix (ECM). Recently, accelerated cutaneous wound closure and altered deposition of collagen were reported in SPARC-null mice. Herein we asked whether SPARC might influence the foreign body reaction to biomaterial implants. Polydimethylsiloxane (silicone rubber) disks and cellulose Millipore filters were implanted into wild-type and SPARC-null mice. In wild-type animals, significant levels of SPARC were observed in the cells and the ECM comprising the capsules around the implants. After 4 weeks, SPARC-null mice exhibited a significant decrease in the thickness of the foreign body capsule, as compared to that observed in wild-type mice. A significant reduction in capsular vascular density was also associated with the silicone implants in the SPARC-null animals. Electron microscopy revealed that collagen fibers in the capsules produced by SPARC-null mice were smaller and more uniform in size than those in wild-type animals. Furthermore, staining with picrosirius-red showed that the collagen fibers were less mature in SPARC-null than in wild-type mice. The altered ECM resulting in decreased capsular thickness, indicative of an altered foreign body reaction in SPARC-null mice, implicates SPARC as an important modulator of the encapsulation of implanted biomaterials.
Collapse
Affiliation(s)
- Pauli Puolakkainen
- Department of Vascular Biology, The Hope Heart Institute, University of Washington, Seattle, Washington 98104, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
123
|
Zhou X, Tan FK, Reveille JD, Wallis D, Milewicz DM, Ahn C, Wang A, Arnett FC. Association of novel polymorphisms with the expression of SPARC in normal fibroblasts and with susceptibility to scleroderma. ARTHRITIS AND RHEUMATISM 2002; 46:2990-9. [PMID: 12428242 DOI: 10.1002/art.10601] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
OBJECTIVE Fibroblasts from patients with systemic sclerosis (SSc) have an activated phenotype characterized by increased synthesis of extracellular matrix (ECM) components. SPARC (secreted protein, acidic and rich in cysteine) regulates the deposition or assembly of ECM components. The aim of this study was to investigate the role of SPARC in SSc susceptibility by functional and genetic association studies. METHODS Complementary DNA (cDNA) microarrays were used to obtain gene expression data on cultured dermal fibroblasts from SSc patients. SPARC protein levels were assessed by Western blotting. Five polymorphic microsatellite markers within 5 cM of the SPARC gene (chromosome 5q31-32) were genotyped in Choctaw Indians, a population previously shown to have a high prevalence of SSc. Discovery of single-nucleotide polymorphisms (SNPs) was accomplished by sequencing the SPARC cDNA. These SNPs were then genotyped in a multi-ethnic cohort of SSc patients to determine potential associations with disease susceptibility in a broader population of SSc patients, as well as with various clinical and immunologic features of SSc. The functional relevance of these SNPs with regard to transcript stability of SPARC was also assessed. RESULTS Microarrays demonstrated increased expression of SPARC, along with other ECM genes, in SSc patients compared with normal controls. SSc fibroblasts also had increased SPARC protein levels. Three of 5 microsatellite markers near SPARC showed significant associations with SSc in the Choctaw SSc patients. Sequencing of SPARC cDNA revealed 3 novel SNPs in the 3'-untranslated region at +998 (C-->G), +1551 (C-->G), and +1922 (T-->G). Homozygosity for the C allele at SNP +998 was significantly increased in SSc patients across ethnic lines. SPARC SNPs +1551 and +1922 demonstrated correlations with Raynaud's phenomenon and pulmonary fibrosis, respectively. Functional studies of SPARC SNP +998 in normal fibroblast cultures suggested a correlation between the SNP +998 C allele polymorphism and an increased messenger RNA half-life. CONCLUSION This study is the first to show that polymorphisms of the SPARC gene are associated with susceptibility to, and clinical manifestations of, SSc and that they may also be functionally important in influencing SPARC expression in skin fibroblasts.
Collapse
Affiliation(s)
- Xiaodong Zhou
- Division of Rheumatology and Clinical Immunogenetics, University of Texas-Houston Medical School, 6431 Fannin, MSB 5.270, Houston, TX 77030, USA.
| | | | | | | | | | | | | | | |
Collapse
|
124
|
Vannahme C, Smyth N, Miosge N, Gösling S, Frie C, Paulsson M, Maurer P, Hartmann U. Characterization of SMOC-1, a novel modular calcium-binding protein in basement membranes. J Biol Chem 2002; 277:37977-86. [PMID: 12130637 DOI: 10.1074/jbc.m203830200] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have isolated the novel gene SMOC-1 that encodes a secreted modular protein containing an EF-hand calcium-binding domain homologous to that in BM-40. It further consists of two thyroglobulin-like domains, a follistatin-like domain and a novel domain. Recombinant expression in human cells showed that SMOC-1 is a glycoprotein with a calcium-dependent conformation. Results from Northern blots, reverse transcriptase-PCR, and immunoblots revealed a widespread expression in many tissues. Immunofluorescence studies with an antiserum directed against recombinant human SMOC-1 demonstrated a basement membrane localization of the protein and additionally its presence in other extracellular matrices. Immunogold electron microscopy confirmed the localization of SMOC-1 within basement membranes in kidney and skeletal muscle as well as its expression in the zona pellucida surrounding the oocyte.
Collapse
Affiliation(s)
- Christian Vannahme
- Institute for Biochemistry, Medical Faculty, University of Cologne, Joseph-Stelzmann Strasse 52, D-50931 Cologne, Germany
| | | | | | | | | | | | | | | |
Collapse
|
125
|
Abstract
The term 'matricellular' has been applied to a group of extracellular proteins that do not contribute directly to the formation of structural elements in vertebrates but serve to modulate cell-matrix interactions and cell function. Our understanding of the mode of action of matricellular proteins has been advanced considerably by the recent elucidation of the phenotypes of mice that are deficient in these proteins. In many cases, aspects of these phenotypes have illuminated previously unsuspected consequences of the lack of appropriate interactions of cells with their environment.
Collapse
Affiliation(s)
- Paul Bornstein
- Department of Biochemistry, Box 357350, University of Washington, Seattle, WA 98195, USA.
| | | |
Collapse
|
126
|
Bradshaw AD, Reed MJ, Carbon JG, Pinney E, Brekken RA, Sage EH. Increased fibrovascular invasion of subcutaneous polyvinyl alcohol sponges in SPARC-null mice. Wound Repair Regen 2001; 9:522-30. [PMID: 11896995 DOI: 10.1046/j.1524-475x.2001.00522.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The expression of SPARC (secreted protein acidic and rich in cysteine/osteonectin/BM-40) is elevated in endothelial cells participating in angiogenesis in vitro and in vivo. SPARC acts on endothelial cells to elicit changes in cell shape and to inhibit cell cycle progression. In addition, SPARC binds to and diminishes the mitotic activity of vascular endothelial growth factor. To determine the effect(s) of SPARC on angiogenic responses in vivo, we implanted polyvinyl alcohol sponges subcutaneously into wild-type and SPARC-null mice. On days 12 and 20 following implantation, SPARC-null mice showed increased cellular invasion of the sponges in comparison to wild-type mice. Areas of the sponge with the highest cell density exhibited the highest numbers of vascular profiles in both wild-type and SPARC-null animals. The endothelial component of the vessels was substantiated by immunoreactivity with three different markers specific for endothelial cells. Although sponges from SPARC-null relative to wild-type mice were populated by significantly more cells and blood vessels, an increase in the ratio of vascular to nonvascular cells was not apparent. No differences in the percentage of proliferating cells within the sponge were detected between wild-type and SPARC-null sections. However, elevated levels of vascular endothelial growth factor were associated with sponges from SPARC-null versus wild-type mice. An increase in vascular endothelial growth factor production was also observed in SPARC-null primary dermal fibroblasts relative to those of wild-type cells. In conclusion, we have shown that the fibrovascular invasion of polyvinyl alcohol sponges is enhanced in mice lacking SPARC, and we propose that increased levels of vascular endothelial growth factor account, at least in part, for this response.
Collapse
Affiliation(s)
- A D Bradshaw
- Department of Vascular Biology, The Hope Heart Institute, University of Washington, Seattle, Washington 98104, USA
| | | | | | | | | | | |
Collapse
|