101
|
Atrophy and primary somatosensory cortical reorganization after unilateral thoracic spinal cord injury: a longitudinal functional magnetic resonance imaging study. BIOMED RESEARCH INTERNATIONAL 2013; 2013:753061. [PMID: 24490171 PMCID: PMC3891744 DOI: 10.1155/2013/753061] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 10/03/2013] [Indexed: 11/26/2022]
Abstract
The effects of traumatic spinal cord injury (SCI) on the changes in the central nervous system (CNS) over time may depend on the dynamic interaction between the structural integrity of the spinal cord and the capacity of the brain plasticity. Functional magnetic resonance imaging (fMRI) was used in a longitudinal study on five rhesus monkeys to observe cerebral activation during upper limb somatosensory tasks in healthy animals and after unilateral thoracic SCI. The changes in the spinal cord diameters were measured, and the correlations among time after the lesion, structural changes in the spinal cord, and primary somatosensory cortex (S1) reorganization were also determined. After SCI, activation of the upper limb in S1 shifted to the region which generally dominates the lower limb, and the rostral spinal cord transverse diameter adjacent to the lesion exhibited obvious atrophy, which reflects the SCI-induced changes in the CNS. A significant correlation was found among the time after the lesion, the spinal cord atrophy, and the degree of contralateral S1 reorganization. The results indicate the structural changes in the spinal cord and the dynamic reorganization of the cerebral activation following early SCI stage, which may help to further understand the neural plasticity in the CNS.
Collapse
|
102
|
Abstract
The purpose of this review is to discuss the achievements and perspectives regarding rehabilitation of sensorimotor functions after spinal cord injury. In the first part we discuss clinical approaches based on neuroplasticity, a term referring to all adaptive and maladaptive changes within the sensorimotor systems triggered by a spinal cord injury. Neuroplasticity can be facilitated through the training of movements with assistance as needed, and/or by electrical stimulation techniques. The success of such training in individuals with incomplete spinal cord injury critically depends on the presence of physiological proprioceptive input to the spinal cord leading to meaningful muscle activations during movement performances. The addition of rehabilitation technology, such as robotic devices allows for longer training times and provision of feedback information regarding changes in movement performance. Nevertheless, the improvement of function by such approaches for rehabilitation is limited. In the second part, we discuss preclinical approaches to restore function by compensating for the loss of descending input to spinal networks following complete spinal cord injury. This can be achieved with stimulation of spinal networks or approaches to restore their descending input. Electrical and pharmacological stimulation of spinal neural networks is still in an experimental stage; and despite promising repair studies in animal models, translations to humans up to now have not been convincing. It is likely that combinations of techniques targeting the promotion of axonal regeneration and meaningful plasticity are necessary to advance the restoration of function. In the future, refinement of animal studies may contribute to greater translational success.
Collapse
Affiliation(s)
- Volker Dietz
- 1 Spinal Cord Injury Centre, University Hospital Balgrist, Zürich, Switzerland
| | | |
Collapse
|
103
|
Choe AS, Belegu V, Yoshida S, Joel S, Sadowsky CL, Smith SA, van Zijl PCM, Pekar JJ, McDonald JW. Extensive neurological recovery from a complete spinal cord injury: a case report and hypothesis on the role of cortical plasticity. Front Hum Neurosci 2013; 7:290. [PMID: 23805087 PMCID: PMC3691521 DOI: 10.3389/fnhum.2013.00290] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 06/03/2013] [Indexed: 12/14/2022] Open
Abstract
Neurological recovery in patients with severe spinal cord injury (SCI) is extremely rare. We have identified a patient with chronic cervical traumatic SCI, who suffered a complete loss of motor and sensory function below the injury for 6 weeks after the injury, but experienced a progressive neurological recovery that continued for 17 years. The extent of the patient's recovery from the severe trauma-induced paralysis is rare and remarkable. A detailed study of this patient using diffusion tensor imaging (DTI), magnetization transfer imaging (MTI), and resting state fMRI (rs-fMRI) revealed structural and functional changes in the central nervous system that may be associated with the neurological recovery. Sixty-two percent cervical cord white matter atrophy was observed. DTI-derived quantities, more sensitive to axons, demonstrated focal changes, while MTI-derived quantity, more sensitive to myelin, showed a diffuse change. No significant cortical structural changes were observed, while rs-fMRI revealed increased brain functional connectivity between sensorimotor and visual networks. The study provides comprehensive description of the structural and functional changes in the patient using advanced MR imaging technique. This multimodal MR imaging study also shows the potential of rs-fMRI to measure the extent of cortical plasticity.
Collapse
Affiliation(s)
- Ann S Choe
- Department of Neurology, Johns Hopkins University School of Medicine Baltimore, MD, USA ; International Center for Spinal Cord Injury, Hugo W. Moser Research Institute at Kennedy Krieger, Inc. Baltimore, MD, USA ; F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute Baltimore, MD, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Frost SB, Iliakova M, Dunham C, Barbay S, Arnold P, Nudo RJ. Reliability in the location of hindlimb motor representations in Fischer-344 rats: laboratory investigation. J Neurosurg Spine 2013; 19:248-55. [PMID: 23725395 DOI: 10.3171/2013.4.spine12961] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT The purpose of the present study was to determine the feasibility of using a common laboratory rat strain for reliably locating cortical motor representations of the hindlimb. METHODS Intracortical microstimulation techniques were used to derive detailed maps of the hindlimb motor representations in 6 adult Fischer-344 rats. RESULTS The organization of the hindlimb movement representation, while variable across individual rats in topographic detail, displayed several commonalities. The hindlimb representation was positioned posterior to the forelimb motor representation and posterolateral to the motor trunk representation. The areal extent of the hindlimb representation across the cortical surface averaged 2.00 ± 0.50 mm(2). Superimposing individual maps revealed an overlapping area measuring 0.35 mm(2), indicating that the location of the hindlimb representation can be predicted reliably based on stereotactic coordinates. Across the sample of rats, the hindlimb representation was found 1.25-3.75 mm posterior to the bregma, with an average center location approximately 2.6 mm posterior to the bregma. Likewise, the hindlimb representation was found 1-3.25 mm lateral to the midline, with an average center location approximately 2 mm lateral to the midline. CONCLUSIONS The location of the cortical hindlimb motor representation in Fischer-344 rats can be reliably located based on its stereotactic position posterior to the bregma and lateral to the longitudinal skull suture at midline. The ability to accurately predict the cortical localization of functional hindlimb territories in a rodent model is important, as such animal models are being increasingly used in the development of brain-computer interfaces for restoration of function after spinal cord injury.
Collapse
Affiliation(s)
- Shawn B Frost
- Department of Molecular & Integrative Physiology, University of Kansas Medical Center, 3901 Rainbow Blvd., MS 4016, Kansas City, Kansas 66160, USA.
| | | | | | | | | | | |
Collapse
|
105
|
Sabre L, Tomberg T, Kõrv J, Kepler J, Kepler K, Linnamägi Ü, Asser T. Brain activation in the acute phase of traumatic spinal cord injury. Spinal Cord 2013; 51:623-9. [DOI: 10.1038/sc.2013.41] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 03/18/2013] [Accepted: 03/22/2013] [Indexed: 11/09/2022]
|
106
|
Nardone R, Höller Y, Brigo F, Seidl M, Christova M, Bergmann J, Golaszewski S, Trinka E. Functional brain reorganization after spinal cord injury: Systematic review of animal and human studies. Brain Res 2013; 1504:58-73. [DOI: 10.1016/j.brainres.2012.12.034] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Revised: 11/26/2012] [Accepted: 12/24/2012] [Indexed: 12/18/2022]
|
107
|
Hubli M, Dietz V. The physiological basis of neurorehabilitation--locomotor training after spinal cord injury. J Neuroeng Rehabil 2013; 10:5. [PMID: 23336934 PMCID: PMC3584845 DOI: 10.1186/1743-0003-10-5] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 01/07/2013] [Indexed: 01/03/2023] Open
Abstract
Advances in our understanding of the physiological basis of locomotion enable us to optimize the neurorehabilitation of patients with lesions to the central nervous system, such as stroke or spinal cord injury (SCI). It is generally accepted, based on work in animal models, that spinal neuronal machinery can produce a stepping-like output. In both incomplete and complete SCI subjects spinal locomotor circuitries can be activated by functional training which provides appropriate afferent feedback. In motor complete SCI subjects, however, motor functions caudal to the spinal cord lesion are no longer used resulting in neuronal dysfunction. In contrast, in subjects with an incomplete SCI such training paradigms can lead to improved locomotor ability. Appropriate functional training involves the facilitation and assistance of stepping-like movements with the subjects’ legs and body weight support as far as is required. In severely affected subjects standardized assisted locomotor training is provided by body weight supported treadmill training with leg movements either manually assisted or moved by a driven gait orthosis. Load- and hip-joint related afferent input is of crucial importance during locomotor training as it leads to appropriate leg muscle activation and thus increases the efficacy of the rehabilitative training. Successful recovery of locomotion after SCI relies on the ability of spinal locomotor circuitries to utilize specific multisensory information to generate a locomotor pattern. It seems that a critical combination of sensory cues is required to generate and improve locomotor patterns after SCI. In addition to functional locomotor training there are numbers of other promising experimental approaches, such as tonic epidural electrical or magnetic stimulation of the spinal cord, which both promote locomotor permissive states that lead to a coordinated locomotor output. Therefore, a combination of functional training and activation of spinal locomotor circuitries, for example by epidural/flexor reflex electrical stimulation or drug application (e.g. noradrenergic agonists), might constitute an effective strategy to promote neuroplasticity after SCI in the future.
Collapse
Affiliation(s)
- Michèle Hubli
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Forchstrasse 340, 8008, Zurich, Switzerland.
| | | |
Collapse
|
108
|
Neurorehabilitation in Chronic Paraplegic Patients with the HAL® Exoskeleton – Preliminary Electrophysiological and fMRI Data of a Pilot Study. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/978-3-642-34546-3_99] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
109
|
Cadotte DW, Bosma R, Mikulis D, Nugaeva N, Smith K, Pokrupa R, Islam O, Stroman PW, Fehlings MG. Plasticity of the injured human spinal cord: insights revealed by spinal cord functional MRI. PLoS One 2012; 7:e45560. [PMID: 23029097 PMCID: PMC3446947 DOI: 10.1371/journal.pone.0045560] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 08/20/2012] [Indexed: 12/14/2022] Open
Abstract
Introduction While numerous studies have documented evidence for plasticity of the human brain there is little evidence that the human spinal cord can change after injury. Here, we employ a novel spinal fMRI design where we stimulate normal and abnormal sensory dermatomes in persons with traumatic spinal cord injury and perform a connectivity analysis to understand how spinal networks process information. Methods Spinal fMRI data was collected at 3 Tesla at two institutions from 38 individuals using the standard SEEP functional MR imaging techniques. Thermal stimulation was applied to four dermatomes in an interleaved timing pattern during each fMRI acquisition. SCI patients were stimulated in dermatomes both above (normal sensation) and below the level of their injury. Sub-group analysis was performed on healthy controls (n = 20), complete SCI (n = 3), incomplete SCI (n = 9) and SCI patients who recovered full function (n = 6). Results Patients with chronic incomplete SCI, when stimulated in a dermatome of normal sensation, showed an increased number of active voxels relative to controls (p = 0.025). There was an inverse relationship between the degree of sensory impairment and the number of active voxels in the region of the spinal cord corresponding to that dermatome of abnormal sensation (R2 = 0.93, p<0.001). Lastly, a connectivity analysis demonstrated a significantly increased number of intraspinal connections in incomplete SCI patients relative to controls suggesting altered processing of afferent sensory signals. Conclusions In this work we demonstrate the use of spinal fMRI to investigate changes in spinal processing of somatosensory information in the human spinal cord. We provide evidence for plasticity of the human spinal cord after traumatic injury based on an increase in the average number of active voxels in dermatomes of normal sensation in chronic SCI patients and an increased number of intraspinal connections in incomplete SCI patients relative to healthy controls.
Collapse
Affiliation(s)
- David W. Cadotte
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Department of Surgery, Division of Neurosurgery, Toronto Western Hospital, Toronto, Ontario, Canada
- Krembil Neuroscience Centre, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Rachael Bosma
- Centre for Neuroscience Studies, Queen’s University, Kingston, Ontario, Canada
| | - David Mikulis
- Department of Radiology, Division of Neuroradiology, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Natalia Nugaeva
- Krembil Neuroscience Centre, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Karen Smith
- Providence Health Care, Spinal Rehabilitation Unit, Kingston, Ontario, Canada
| | - Ronald Pokrupa
- Division of Neurosurgery, Kingston General Hospital, Queen’s University, Kingston, Ontario, Canada
| | - Omar Islam
- Department of Radiology, Division of Neuroradiology and Head & Neck Imaging, Kingston General and Hotel Dieu Hospitals, Queen’s University, Kingston, Ontario, Canada
| | - Patrick W. Stroman
- Centre for Neuroscience Studies, Queen’s University, Kingston, Ontario, Canada
- Departments of Diagnostic Radiology and Physics, Queen’s University, Kingston, Ontario, Canada
| | - Michael G. Fehlings
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Department of Surgery, Division of Neurosurgery, Toronto Western Hospital, Toronto, Ontario, Canada
- Krembil Neuroscience Centre, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
- Division of Genetics and Development, Toronto Western Research Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
110
|
Complex motor representations may not be preserved after complete spinal cord injury. Exp Neurol 2012; 236:46-9. [DOI: 10.1016/j.expneurol.2012.03.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 03/21/2012] [Accepted: 03/29/2012] [Indexed: 11/17/2022]
|
111
|
Freund P, Curt A, Friston K, Thompson A. Tracking changes following spinal cord injury: insights from neuroimaging. Neuroscientist 2012; 19:116-28. [PMID: 22730072 PMCID: PMC4107798 DOI: 10.1177/1073858412449192] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Traumatic spinal cord injury is often disabling and recovery of function is limited. As a
consequence of damage, both spinal cord and brain undergo anatomical and functional
changes. Besides clinical measures of recovery, biomarkers that can detect early
anatomical and functional changes might be useful in determining clinical outcome—during
the course of rehabilitation and recovery—as well as furnishing a tool to evaluate novel
treatment interventions and their mechanisms of action. Recent evidence suggests an
interesting three-way relationship between neurological deficit and changes in the spinal
cord and of the brain and that, importantly, noninvasive magnetic resonance imaging
techniques, both structural and functional, provide a sensitive tool to lay out these
interactions. This review describes recent findings from multimodal imaging studies of
remote anatomical changes (i.e., beyond the lesion site), cortical reorganization, and
their relationship to clinical disability. These developments in this field may improve
our understanding of effects on the nervous system that are attributable to the injury
itself and will allow their distinction from changes that result from rehabilitation
(i.e., functional retraining) and from interventions affecting the nervous system directly
(i.e., neuroprotection or regeneration).
Collapse
Affiliation(s)
- Patrick Freund
- Department of Brain Repair & Rehabilitation, UCL Institute of Neurology, UCL, London, UK.
| | | | | | | |
Collapse
|
112
|
Bazley FA, All AH, Thakor NV, Maybhate A. Plasticity associated changes in cortical somatosensory evoked potentials following spinal cord injury in rats. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2012; 2011:2005-8. [PMID: 22254728 DOI: 10.1109/iembs.2011.6090564] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Spinal cord injury (SCI) causes a number of physiological and neurological changes resulting in loss of sensorimotor function. Recent work has shown that the central nervous system is capable of plastic behaviors post-injury, including axonal regrowth and cortical remapping. Functional integrity of afferent sensory pathways can be quantified using cortical somatosensory evoked potentials (SSEPs) recorded upon peripheral limb stimulation. We implanted 15 rats with transcranial screw electrodes and recorded SSEPs from cortical regions corresponding to each limb before and after a mild or moderate contusion injury. We report a post-injury increase in the mean amplitude of cortical SSEPs upon forelimb stimulation. SSEP amplitudes for mild and moderate SCI groups increased by 183% ± 95% and 107% ± 38% over baseline, respectively, while hindlimb SSEPs decreased by 58% ± 14% and 79% ± 4%. In addition, we report increased SSEP amplitude measured from the anatomically adjacent hindlimb region upon forelimb stimulation (increase of 90% ± 19%). Our results show that previously allocated hindlimb cortical regions are now activated by forelimb stimulation, suggesting an expansion in the area of cortical forelimb representation into hindlimb regions after an injury. This result is indicative of adaptive plasticity in undamaged areas of the CNS following SCI.
Collapse
Affiliation(s)
- Faith A Bazley
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | |
Collapse
|
113
|
Fawcett JW, Schwab ME, Montani L, Brazda N, Müller HW. Defeating inhibition of regeneration by scar and myelin components. HANDBOOK OF CLINICAL NEUROLOGY 2012; 109:503-22. [PMID: 23098733 DOI: 10.1016/b978-0-444-52137-8.00031-0] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Axon regeneration and the sprouting processes that underlie plasticity are blocked by inhibitory factors in the central nervous system (CNS) environment, several of which are upregulated after injury. The major inhibitory molecules are those associated with myelin and those associated with the glial scar. In myelin, NogoA, MAG, and OMgp are present on normal oligodendrocytes and on myelin debris. They act partly via the Nogo receptor, partly via an unidentified amino-Nogo receptor. In the glial scar, chondroitin sulphate proteoglycans, semaphorins, and the formation of a collagen-based membrane are all inhibitory. Methods to counteract these forms of inhibition have been identified, and these treatments promote axon regeneration in the damaged spinal cord, and in some cases recovery of function through enhanced plasticity.
Collapse
Affiliation(s)
- James W Fawcett
- Cambridge University Centre for Brain Repair, Cambridge, UK.
| | | | | | | | | |
Collapse
|
114
|
Kowalczyk I, Duggal N, Bartha R. Proton magnetic resonance spectroscopy of the motor cortex in cervical myelopathy. Brain 2011; 135:461-8. [DOI: 10.1093/brain/awr328] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
115
|
Ferguson AR, Stück ED, Nielson JL. Syndromics: a bioinformatics approach for neurotrauma research. Transl Stroke Res 2011; 2:438-54. [PMID: 22207883 PMCID: PMC3236294 DOI: 10.1007/s12975-011-0121-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 10/14/2011] [Accepted: 10/18/2011] [Indexed: 12/25/2022]
Abstract
Substantial scientific progress has been made in the past 50 years in delineating many of the biological mechanisms involved in the primary and secondary injuries following trauma to the spinal cord and brain. These advances have highlighted numerous potential therapeutic approaches that may help restore function after injury. Despite these advances, bench-to-bedside translation has remained elusive. Translational testing of novel therapies requires standardized measures of function for comparison across different laboratories, paradigms, and species. Although numerous functional assessments have been developed in animal models, it remains unclear how to best integrate this information to describe the complete translational "syndrome" produced by neurotrauma. The present paper describes a multivariate statistical framework for integrating diverse neurotrauma data and reviews the few papers to date that have taken an information-intensive approach for basic neurotrauma research. We argue that these papers can be described as the seminal works of a new field that we call "syndromics", which aim to apply informatics tools to disease models to characterize the full set of mechanistic inter-relationships from multi-scale data. In the future, centralized databases of raw neurotrauma data will enable better syndromic approaches and aid future translational research, leading to more efficient testing regimens and more clinically relevant findings.
Collapse
Affiliation(s)
- Adam R. Ferguson
- Brain and Spinal Injury Center (BASIC), Department of Neurological Surgery, University of California, 1001 Potrero Avenue, Building 1, Room 101, San Francisco, CA 94110 USA
| | - Ellen D. Stück
- Brain and Spinal Injury Center (BASIC), Department of Neurological Surgery, University of California, 1001 Potrero Avenue, Building 1, Room 101, San Francisco, CA 94110 USA
| | - Jessica L. Nielson
- Brain and Spinal Injury Center (BASIC), Department of Neurological Surgery, University of California, 1001 Potrero Avenue, Building 1, Room 101, San Francisco, CA 94110 USA
| |
Collapse
|
116
|
Kalsi-Ryan S, Verrier MC. A synthesis of best evidence for the restoration of upper-extremity function in people with tetraplegia. Physiother Can 2011; 63:474-89. [PMID: 22942526 PMCID: PMC3207988 DOI: 10.3138/ptc.2009-46] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
PURPOSE Because upper-limb function represents overall function for individuals with tetraplegia, the restoration of upper-extremity function is exceedingly important for this population. The purpose of this review was to identify interventions that optimize upper-limb function after tetraplegia based on best available evidence. METHODS A search of MEDLINE, AMED, and PubMed with the search terms "hand function AND tetraplegia" and "upper limb function AND tetraplegia" found 384 articles. After elimination of duplicates and review of titles and abstracts, 43 studies were found to be applicable. Study quality of all applicable studies was assessed with a modified version of the Scottish Intercollegiate Guidelines Network for Cohort Studies methodology. RESULTS The applicable studies were organized into three categories: conventional therapies (CT), electrical stimulation therapies (ES), and surgical interventions (SI). The proportion of papers in each category that presented with sufficient methodological quality to contribute to best evidence was as follows: CT: 0/2; ES: 10/21; SI: 6/20. CONCLUSIONS ES therapies are beneficial as assistive technologies and as therapeutic intervention in the subacute phase of recovery. SIs are suitable for individuals who meet very specific criteria for tendon-transfer surgery. Further clinical trials are warranted for ES and SI therapies to substantiate prescription of therapeutics.
Collapse
Affiliation(s)
- Sukhvinder Kalsi-Ryan
- Department of Physical Therapy and Graduate Department of Rehabilitation Science, University of Toronto
- Spinal Program, Krembil Neuroscience Centre, University Health Network
| | - Mary C. Verrier
- Department of Physical Therapy and Graduate Department of Rehabilitation Science, University of Toronto
- Toronto Rehabilitation Institute, Toronto
| |
Collapse
|
117
|
Nielson JL, Strong MK, Steward O. A reassessment of whether cortical motor neurons die following spinal cord injury. J Comp Neurol 2011; 519:2852-69. [PMID: 21618218 PMCID: PMC3916191 DOI: 10.1002/cne.22661] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Over the past century, the question of whether the cells of origin of the corticospinal tract (CST) die following spinal cord injury (SCI) has been debated. A recent study reported an approximately 20% loss of retrogradely labeled cortical motoneurons following damage to their axons resulting from SCI at T9 (Hains et al. [2003] J. Comp. Neurol. 462:328-341). In follow-up studies, however, we failed to find any evidence of loss of CST axons in the medullary pyramid, which must occur if CST neurons die. Here, we seek to resolve the discrepancy by re-evaluating possible loss of CST neurons using the same techniques as Hains et al. (quantitative analysis of retrograde labeling and staining for cell death markers including TUNEL and Hoechst labeling of the nuclei). Following either dorsal funiculus lesions at thoracic level 9 (T9) or lateral hemisection at cervical level 5 (C5), our results reveal no evidence for a loss of retrogradely labeled neurons and no evidence for TUNEL staining of axotomized cortical motoneurons. These results indicate that CST cell bodies do not undergo retrograde cell death following SCI, and therefore targeting such cell death is not a valid therapeutic target.
Collapse
Affiliation(s)
- Jessica L. Nielson
- Reeve-Irvine Research Center, University of California at Irvine, Irvine, California 92697
- Department of Anatomy & Neurobiology, University of California at Irvine, Irvine, California 92697
| | - Melissa K. Strong
- Reeve-Irvine Research Center, University of California at Irvine, Irvine, California 92697
- Department of Anatomy & Neurobiology, University of California at Irvine, Irvine, California 92697
| | - Oswald Steward
- Reeve-Irvine Research Center, University of California at Irvine, Irvine, California 92697
- Department of Anatomy & Neurobiology, University of California at Irvine, Irvine, California 92697
- Department of Neurobiology & Behavior, University of California at Irvine, Irvine, California 92697
- Department of Neurosurgery, University of California at Irvine, Irvine, California 92697
| |
Collapse
|
118
|
Hollis ER, Tuszynski MH. Neurotrophins: potential therapeutic tools for the treatment of spinal cord injury. Neurotherapeutics 2011; 8:694-703. [PMID: 21904786 PMCID: PMC3250295 DOI: 10.1007/s13311-011-0074-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Spinal cord injury permanently disrupts neuroanatomical circuitry and can result in severe functional deficits. These functional deficits, however, are not immutable and spontaneous recovery occurs in some patients. It is highly likely that this recovery is dependent upon spared tissue and the endogenous plasticity of the central nervous system. Neurotrophic factors are mediators of neuronal plasticity throughout development and into adulthood, affecting proliferation of neuronal precursors, neuronal survival, axonal growth, dendritic arborization and synapse formation. Neurotrophic factors are therefore excellent candidates for enhancing axonal plasticity and regeneration after spinal cord injury. Understanding growth factor effects on axonal growth and utilizing them to alter the intrinsic limitations on regenerative growth will provide potent tools for the development of translational therapeutic interventions for spinal cord injury.
Collapse
Affiliation(s)
- Edmund R. Hollis
- Neurobiology Section, Biological Sciences Division, University of California-San Diego, La Jolla, CA 92093-0366 USA
| | - Mark H. Tuszynski
- Department of Neurosciences, University of California-San Diego, La Jolla, CA 92093-0626 USA
- VA Medical Center, La Jolla, CA 92161 USA
| |
Collapse
|
119
|
Kao T, Shumsky JS, Knudsen EB, Murray M, Moxon KA. Functional role of exercise-induced cortical organization of sensorimotor cortex after spinal transection. J Neurophysiol 2011; 106:2662-74. [PMID: 21865438 DOI: 10.1152/jn.01017.2010] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Spinal cord transection silences neuronal activity in the deafferented cortex to cutaneous stimulation of the body and untreated animals show no improvement in functional outcome (weight-supported stepping) with time after lesion. However, adult rats spinalized since neonates that receive exercise therapy exhibit greater functional recovery and exhibit more cortical reorganization. This suggests that the change in the somatotopic organization of the cortex may be functionally relevant. To address this issue, we chronically implanted arrays of microwire electrodes into the infragranular layers of the hindlimb somatosensory cortex of adult rats neonatally transected at T8/T9 that received exercise training (spinalized rats) and of normal adult rats. Multiple, single neuron activity was recorded during passive sensory stimulation, when the animals were anesthetized, and during active sensorimotor stimulation during treadmill-induced locomotion when the animal was awake and free to move. Our results demonstrate that cortical neurons recorded from the spinalized rats that received exercise 1) had higher spontaneous firing rates, 2) were more likely to respond to both sensory and sensorimotor stimulations of the forelimbs, and also 3) responded with more spikes per stimulus than those recorded from normal rats, suggesting expansion of the forelimb map into the hindlimb map. During treadmill locomotion the activity of neurons recorded from neonatally spinalized rats was greater during weight-supported steps on the treadmill compared with the neuronal activity during nonweight supported steps. We hypothesize that this increased activity is related to the ability of the animal to take weight supported steps and that, therefore, these changes in cortical organization after spinal cord injury are relevant for functional recovery.
Collapse
Affiliation(s)
- T Kao
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | | | | | | | | |
Collapse
|
120
|
Dobkin B. Pilot Studies of Robotics Suggest Efficacy, but Randomized Clinical Trials Reveal Little: Why? Top Spinal Cord Inj Rehabil 2011. [DOI: 10.1310/sci1701-01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
121
|
Insights into the mechanisms underlying cortical plasticity following spinal cord injury. Clin Neurophysiol 2011; 122:1278-9. [DOI: 10.1016/j.clinph.2010.12.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Accepted: 12/10/2010] [Indexed: 11/20/2022]
|
122
|
Kuppuswamy A, Balasubramaniam AV, Maksimovic R, Mathias CJ, Gall A, Craggs MD, Ellaway PH. Action of 5 Hz repetitive transcranial magnetic stimulation on sensory, motor and autonomic function in human spinal cord injury. Clin Neurophysiol 2011; 122:2452-61. [PMID: 21600843 DOI: 10.1016/j.clinph.2011.04.022] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Revised: 04/21/2011] [Accepted: 04/26/2011] [Indexed: 10/18/2022]
Abstract
OBJECTIVE To assess the effectiveness of physiological outcome measures in detecting functional change in the degree of impairment of spinal cord injury (SCI) following repetitive transcranial magnetic stimulation (rTMS) of the sensorimotor cortex. METHODS Subjects with complete or incomplete cervical (or T1) SCI received real and sham rTMS in a randomised placebo-controlled single-blinded cross-over trial. rTMS at sub-threshold intensity for upper-limb muscles was applied (5 Hz, 900 stimuli) on 5 consecutive days. Assessments made before and for 2 weeks after treatment comprised the ASIA (American Spinal Injuries Association) impairment scale (AIS), the Action Research Arm Test (ARAT), a peg-board test, electrical perceptual test (EPT), motor evoked potentials, cortical silent period, cardiovascular and sympathetic skin responses. RESULTS There were no significant differences in AIS outcomes between real and sham rTMS. The ARAT was increased at 1h after real rTMS compared to baseline. Active motor threshold for the most caudally innervated hand muscle was increased at 72 and 120 h compared to baseline. Persistent reductions in EPT to rTMS occurred in two individuals. CONCLUSIONS Changes in cortical motor threshold measures may accompany functional gains to rTMS in SCI subjects. SIGNIFICANCE Electrophysiological measures may provide a useful adjunct to ASIA impairment scales.
Collapse
Affiliation(s)
- A Kuppuswamy
- Division of Experimental Medicine, Imperial College London, London W6 8RP, UK
| | | | | | | | | | | | | |
Collapse
|
123
|
Freund P, Weiskopf N, Ward NS, Hutton C, Gall A, Ciccarelli O, Craggs M, Friston K, Thompson AJ. Disability, atrophy and cortical reorganization following spinal cord injury. ACTA ACUST UNITED AC 2011; 134:1610-22. [PMID: 21586596 PMCID: PMC3102242 DOI: 10.1093/brain/awr093] [Citation(s) in RCA: 214] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
The impact of traumatic spinal cord injury on structural integrity, cortical reorganization and ensuing disability is variable and may depend on a dynamic interaction between the severity of local damage and the capacity of the brain for plastic reorganization. We investigated trauma-induced anatomical changes in the spinal cord and brain, and explored their relationship to functional changes in sensorimotor cortex. Structural changes were assessed using cross-sectional cord area, voxel-based morphometry and voxel-based cortical thickness of T1-weighted images in 10 subjects with cervical spinal cord injury and 16 controls. Cortical activation in response to right-sided (i) handgrip; and (ii) median and tibial nerve stimulation were assessed using functional magnetic resonance imaging. Regression analyses explored associations between cord area, grey and white matter volume, cortical activations and thickness, and disability. Subjects with spinal cord injury had impaired upper and lower limb function bilaterally, a 30% reduced cord area, smaller white matter volume in the pyramids and left cerebellar peduncle, and smaller grey matter volume and cortical thinning in the leg area of the primary motor and sensory cortex compared with controls. Functional magnetic resonance imaging revealed increased activation in the left primary motor cortex leg area during handgrip and the left primary sensory cortex face area during median nerve stimulation in subjects with spinal cord injury compared with controls, but no increased activation following tibial nerve stimulation. A smaller cervical cord area was associated with impaired upper limb function and increased activations with handgrip and median nerve stimulation, but reduced activations with tibial nerve stimulation. Increased sensory deficits were associated with increased activations in the left primary sensory cortex face area due to median nerve stimulation. In conclusion, spinal cord injury leads to cord atrophy, cortical atrophy of primary motor and sensory cortex, and cortical reorganization of the sensorimotor system. The degree of cortical reorganization is predicted by spinal atrophy and is associated with significant disability.
Collapse
Affiliation(s)
- Patrick Freund
- Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, UCL, Queen Square, London WC1N 3BG, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
124
|
Tansey KE. Neural plasticity and locomotor recovery after spinal cord injury. PM R 2011; 2:S220-6. [PMID: 21172684 DOI: 10.1016/j.pmrj.2010.10.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Accepted: 10/08/2010] [Indexed: 11/15/2022]
Abstract
The discussion of neural plasticity and locomotor recovery after spinal cord injury (SCI) focuses on 2 main themes, the issues associated with detecting neural plasticity in human beings and the issue of how to translate information from animal models, in which neural plasticity can be more readily studied, to human clinical research and application. This article discusses the importance of studying neural plasticity to better understand the effects of current rehabilitation interventions and to devise the next generation of therapies. It reviews the current spectrum of clinical, functional, anatomical, and neurophysiological assessments of patients that can be made in neurorehabilitation and the relationship between those measures and the study of neural plasticity. Then the similarities and differences between animal models and human SCI are discussed in relation to the severity of injury, the effect of locomotor training on gait recovery, the localization of neural plasticity associated with that gait recovery, and the implications for interpreting the "translatability" of animal model data to human study and clinical practice. In summary, it is concluded that the study of neural plasticity and locomotor recovery after SCI is really in its infancy but that it is critical for the advancement of the science of neurorehabilitation and "restorative neurology."
Collapse
Affiliation(s)
- Keith E Tansey
- SCI Research, Crawford Research Institute, Shepherd Center, Atlanta, GA 30309, USA.
| |
Collapse
|
125
|
Cadotte DW, Wilson JR, Mikulis D, Stroman PW, Brady S, Fehlings MG. Conventional MRI as a diagnostic and prognostic tool in spinal cord injury: a systemic review of its application to date and an overview on emerging MRI methods. ACTA ACUST UNITED AC 2011; 5:121-33. [DOI: 10.1517/17530059.2011.556111] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
126
|
Casadio M, Pressman A, Fishbach A, Danziger Z, Acosta S, Chen D, Tseng HY, Mussa-Ivaldi FA. Functional reorganization of upper-body movement after spinal cord injury. Exp Brain Res 2010; 207:233-47. [PMID: 20972779 PMCID: PMC3534827 DOI: 10.1007/s00221-010-2427-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Accepted: 09/12/2010] [Indexed: 01/15/2023]
Abstract
Survivors of spinal cord injury need to reorganize their residual body movements for interacting with assistive devices and performing activities that used to be easy and natural. To investigate movement reorganization, we asked subjects with high-level spinal cord injury (SCI) and unimpaired subjects to control a cursor on a screen by performing upper-body motions. While this task would be normally accomplished by operating a computer mouse, here shoulder motions were mapped into the cursor position. Both the control and the SCI subjects were rapidly able to reorganize their movements and to successfully control the cursor. The majority of the subjects in both groups were successful in reducing the movements that were not effective at producing cursor motions. This is inconsistent with the hypothesis that the control system is merely concerned with the accurate acquisition of the targets and is unconcerned with motions that are not relevant to this goal. In contrast, our findings suggest that subjects can learn to reorganize coordination so as to increase the correspondence between the subspace of their upper-body motions with the plane in which the controlled cursor moves. This is effectively equivalent to constructing an inverse internal model of the map from body motions to cursor motions, established by the experiment. These results are relevant to the development of interfaces for assistive devices that optimize the use of residual voluntary control and enhance the learning process in disabled users, searching for an easily learnable map between their body motor space and control space of the device.
Collapse
Affiliation(s)
- Maura Casadio
- Sensory Motor Performance Program, Rehabilitation Institute of Chicago, 345 E. Superior Street, Suite 1406, Chicago, IL 60611, USA.
| | | | | | | | | | | | | | | |
Collapse
|
127
|
Lundell H, Christensen MS, Barthélemy D, Willerslev-Olsen M, Biering-Sørensen F, Nielsen JB. Cerebral activation is correlated to regional atrophy of the spinal cord and functional motor disability in spinal cord injured individuals. Neuroimage 2010; 54:1254-61. [PMID: 20851198 DOI: 10.1016/j.neuroimage.2010.09.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Revised: 09/02/2010] [Accepted: 09/03/2010] [Indexed: 11/17/2022] Open
Abstract
Recovery of function following lesions in the nervous system requires adaptive changes in surviving circuitries. Here we investigate whether changes in cerebral activation are correlated to spinal cord atrophy and recovery of functionality in individuals with incomplete spinal cord injury (SCI). 19 chronic SCI individuals and 7 age-comparable controls underwent functional magnetic resonance imaging (fMRI) while performing rhythmic dorsiflexion of the ankle. A significant negative correlation was found between the activation in the ipsilateral motor (M1) and bilateral premotor cortex (PMC) on one hand and the functional ability of the SCI participants measured by the clinical motor score on the other. There was no significant correlation between activation in any other cerebral area and the motor score. Activation in ipsilateral somatosensory cortex (S1), M1 and PMC was negatively correlated to the width of the spinal cord in the left-right direction, where the corticospinal tract is located, but not in the antero-posterior direction. There was a tendency for a negative correlation between cerebral activation in ipsilateral S1, M1 and PMC and the amplitude of motor evoked potentials in the tibialis anterior muscle elicited by transcranial magnetic stimulation, but this did not reach statistical significance. There was no correlation between motor score or spinal cord dimensions and the volume of the cortical motor areas. The observations show that lesion of descending tracts in the lateral part of the spinal cord results in increased activation in ipsilateral motor and sensory areas, which may help to compensate for the functional deficit following SCI.
Collapse
Affiliation(s)
- H Lundell
- Department of Exercise and Sport Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
128
|
Roy FD, Yang JF, Gorassini MA. Afferent Regulation of Leg Motor Cortex Excitability After Incomplete Spinal Cord Injury. J Neurophysiol 2010; 103:2222-33. [DOI: 10.1152/jn.00903.2009] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
An incomplete spinal cord injury (SCI) impairs neural conduction along spared ascending sensory pathways to disrupt the control of residual motor movements. To characterize how SCI affects the activation of the motor cortex by spared ascending sensory pathways, we examined how stimulation of leg afferents facilitates the excitability of the motor cortex in subjects with incomplete SCI. Homo- and heteronymous afferents to the tibialis anterior (TA) representation in the motor cortex were electrically stimulated, and the responses were compared with uninjured controls. In addition, we examined if cortical excitability could be transiently increased by repetitively pairing stimulation of spared ascending sensory pathways with transcranial magnetic stimulation (TMS), an intervention termed paired associative stimulation (PAS). In uninjured subjects, activating the tibial nerve at the ankle 45–50 ms before a TMS pulse in a conditioning-test paradigm facilitated the motor-evoked potential (MEP) in the heteronymous TA muscle by twofold on average. In contrast, prior tibial nerve stimulation did not facilitate the TA MEP in individuals with incomplete SCI ( n = 8 SCI subjects), even in subjects with less severe injuries. However, we provide evidence that ascending sensory inputs from the homonymous common peroneal nerve (CPN) can, unlike the heteronymous pathways, facilitate the motor cortex to modulate the TA MEP ( n = 16 SCI subjects) but only in subjects with less severe injuries. Finally, by repetitively coupling CPN stimulation with coincident TA motor cortex activation during PAS, we show that 7 of 13 SCI subjects produced appreciable (>20%) facilitation of the MEP following the intervention. The increase in corticospinal tract excitability by PAS was transient (<20 min) and tended to be more prevalent in SCI subjects with stronger functional ascending sensory pathways.
Collapse
Affiliation(s)
| | - Jaynie F. Yang
- Physical Therapy, Centre for Neuroscience, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
129
|
Eldawlatly S, Zhou Y, Jin R, Oweiss KG. On the use of dynamic Bayesian networks in reconstructing functional neuronal networks from spike train ensembles. Neural Comput 2010; 22:158-89. [PMID: 19852619 DOI: 10.1162/neco.2009.11-08-900] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Coordination among cortical neurons is believed to be a key element in mediating many high-level cortical processes such as perception, attention, learning, and memory formation. Inferring the structure of the neural circuitry underlying this coordination is important to characterize the highly nonlinear, time-varying interactions between cortical neurons in the presence of complex stimuli. In this work, we investigate the applicability of dynamic Bayesian networks (DBNs) in inferring the effective connectivity between spiking cortical neurons from their observed spike trains. We demonstrate that DBNs can infer the underlying nonlinear and time-varying causal interactions between these neurons and can discriminate between mono- and polysynaptic links between them under certain constraints governing their putative connectivity. We analyzed conditionally Poisson spike train data mimicking spiking activity of cortical networks of small and moderately large size. The performance was assessed and compared to other methods under systematic variations of the network structure to mimic a wide range of responses typically observed in the cortex. Results demonstrate the utility of DBN in inferring the effective connectivity in cortical networks.
Collapse
Affiliation(s)
- Seif Eldawlatly
- Electric and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA.
| | | | | | | |
Collapse
|
130
|
Wang W, Collinger JL, Perez MA, Tyler-Kabara EC, Cohen LG, Birbaumer N, Brose SW, Schwartz AB, Boninger ML, Weber DJ. Neural interface technology for rehabilitation: exploiting and promoting neuroplasticity. Phys Med Rehabil Clin N Am 2010; 21:157-78. [PMID: 19951784 DOI: 10.1016/j.pmr.2009.07.003] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
This article reviews neural interface technology and its relationship with neuroplasticity. Two types of neural interface technology are reviewed, highlighting specific technologies that the authors directly work with: (1) neural interface technology for neural recording, such as the micro-ECoG BCI system for hand prosthesis control, and the comprehensive rehabilitation paradigm combining MEG-BCI, action observation, and motor imagery training; (2) neural interface technology for functional neural stimulation, such as somatosensory neural stimulation for restoring somatosensation, and non-invasive cortical stimulation using rTMS and tDCS for modulating cortical excitability and stroke rehabilitation. The close interaction between neural interface devices and neuroplasticity leads to increased efficacy of neural interface devices and improved functional recovery of the nervous system. This symbiotic relationship between neural interface technology and the nervous system is expected to maximize functional gain for individuals with various sensory, motor, and cognitive impairments, eventually leading to better quality of life.
Collapse
Affiliation(s)
- Wei Wang
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, 3471 Fifth Ave., Suite 202, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
131
|
Dobkin BH. Motor rehabilitation after stroke, traumatic brain, and spinal cord injury: common denominators within recent clinical trials. Curr Opin Neurol 2009; 22:563-9. [PMID: 19724226 PMCID: PMC4077333 DOI: 10.1097/wco.0b013e3283314b11] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Experimental studies and clinical trials that aim to improve motor function for use of the upper extremity and walking are traditionally separated by the category of neurological disease. This boundary may deter investigators from finding common denominators in the conceptual basis and deployment of rehabilitation interventions, especially across nonprogressive diseases in adults, such as stroke, brain trauma, and spinal cord injury. RECENT FINDINGS The results of recent randomized clinical trials for walking by treadmill training and robotic devices and for the upper extremity by constraint-induced therapy, robotics, and brain stimulation suggest that more efficient strategies are needed to devise and prove the value of new therapies. SUMMARY Investigators should consider working across disease platforms to develop and test the most optimal methods for training patients, the most practical trial designs, the best dose-response characteristics of interventions, the most meaningful outcome measures, and the likelihood of transfer of trained performance to real-world settings. Clinicians in the community may be more likely to adopt evidence-based practices drawn from positive trial results if these treatment strategies focus on key motor impairments and related disabilities, rather than on diseases.
Collapse
Affiliation(s)
- Bruce H Dobkin
- Department of Neurology, Geffen/UCLA School of Medicine, University of California, Los Angeles, Los Angeles, California 90095, USA.
| |
Collapse
|
132
|
Kokotilo KJ, Eng JJ, Curt A. Reorganization and preservation of motor control of the brain in spinal cord injury: a systematic review. J Neurotrauma 2009; 26:2113-26. [PMID: 19604097 PMCID: PMC3167869 DOI: 10.1089/neu.2008.0688] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Reorganization of brain function in people with CNS damage has been identified as one of the fundamental mechanisms involved in the recovery of sensorimotor function. Spinal cord injury (SCI) brain mapping studies during motor tasks aim for assessing the reorganization and preservation of brain networks involved in motor control. Revealing the activation of cortical and subcortical brain areas in people with SCI can indicate principal patterns of brain reorganization when the neurotrauma is distal to the brain. This review assessed brain activation after SCI in terms of intensity, volume, and somatotopic localization, as well as preservation of activation during attempted and/or imagined movements. Twenty-five studies meeting the inclusion criteria could be identified in Medline (1980 to January 2008). Relevant characteristics of studies (level of lesion, time after injury, motor task) and mapping techniques varied widely. Changes in brain activation were found in both cortical and subcortical areas of individuals with SCI. In addition, several studies described a shift in the region of brain activation. These patterns appeared to be dynamic and influenced by the level, completeness, and time after injury, as well as extent of clinical recovery. In addition, several aspects of reorganization of brain function following SCI resembled those reported in stroke. This review demonstrates that brain networks involved in different demands of motor control remain responsive even in chronic paralysis. These findings imply that therapeutic strategies aimed at restoring spinal cord function, even in people with chronic SCI, can build on preserved competent brain control.
Collapse
Affiliation(s)
- Kristen J Kokotilo
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, Canada
- Rehabilitation Research Lab, GF Strong Rehab Centre, Vancouver, Canada
| | - Janice J Eng
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, Canada
- Rehabilitation Research Lab, GF Strong Rehab Centre, Vancouver, Canada
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, Canada
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, Canada
| | - Armin Curt
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, Canada
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, Canada
- Division of Neurology/Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
133
|
Jurkiewicz MT, Mikulis DJ, Fehlings MG, Verrier MC. Sensorimotor Cortical Activation in Patients With Cervical Spinal Cord Injury With Persisting Paralysis. Neurorehabil Neural Repair 2009; 24:136-40. [DOI: 10.1177/1545968309347680] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background. It is well documented that cortical sensorimotor representations are altered following nervous system pathology. However, little is known about these representations over time and, more specifically, in paralyzed individuals. Objective . To investigate the temporal changes in sensorimotor cortical activation in paralyzed individuals following spinal cord injury (SCI). Methods. Functional MRI (fMRI) was used to study 4 tetraplegic individuals repeatedly over the first year following traumatic SCI as well as 7 healthy individuals, 3 repeatedly. During fMRI, controls performed ankle movements, and patients attempted them. Standard clinical measures of SCI were used to assess movement ability. Results. Shortly after SCI, activation within the primary motor cortex (M1) was present at levels similar to those in controls. Extensive associated cortical sensorimotor activation, not seen in controls, was present. Over time, as paralysis persisted, activation in M1 was significantly reduced and progressively decreased in associated cortical sensorimotor areas. No session-specific dependence in M1 or associated sensorimotor cortical activation was found in healthy individuals. Conclusions. These findings provide the first report of the temporal evolution of cortical sensorimotor fMRI activation following traumatic SCI in humans who do not recover movement. Coupled with findings in patients who recover post-SCI, our results suggest an association between motor task—related fMRI activation and degree of motor function postinjury. Understanding the time course of plasticity and the relationship between cortical sensorimotor activation and motor ability following SCI could allow assessment of rehabilitation potential, monitoring of therapeutic efficacy, and improvement in therapeutic intervention along the course of recovery.
Collapse
Affiliation(s)
- Michael T. Jurkiewicz
- Toronto Rehabilitation Institute, Toronto, Canada, Toronto Western Hospital, University Health Network, Toronto, Canada
| | - David J. Mikulis
- Toronto Western Hospital, University Health Network, Toronto, Canada
| | | | - Mary C. Verrier
- Toronto Rehabilitation Institute, Toronto, Canada, , University of Toronto, Toronto, Canada
| |
Collapse
|
134
|
Gagnon D, Verrier M, Masani K, Nadeau S, Aissaoui R, Popovic M. Effects of Trunk Impairments on Manual Wheelchair Propulsion Among Individuals with a Spinal Cord Injury: A Brief Overview and Future Challenges. Top Spinal Cord Inj Rehabil 2009. [DOI: 10.1310/sci1502-59] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
135
|
Rudhe C, van Hedel HJA. Upper Extremity Function in Persons with Tetraplegia: Relationships Between Strength, Capacity, and the Spinal Cord Independence Measure. Neurorehabil Neural Repair 2009; 23:413-21. [DOI: 10.1177/1545968308331143] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective. To quantify the relationship between the Spinal Cord Independence Measure III (SCIM III), arm and hand muscle strength, and hand function tests in persons with tetraplegia. Methods. A total of 29 individuals with tetraplegia (motor level between cervical 4 and thoracic 1; sensory-motor complete and incomplete) participated. The total score, category scores, and separate items of the SCIM III were compared to the upper extremity motor score (UEMS), an extended manual muscle test (MMT) for 11 upper extremity muscles, and 6 functional capacity tests of the hand. Spearman's correlation coefficients ( rs) and regression analyses were performed. Results. The SCIM III sum score correlated well with the sum scores of the 3 tests ( rs ≥ .76). The SCIM III self-care category correlated better with the tests ( rs ≥ .80) compared to the other categories ( r s ≤ .72). The SCIM III self-care item “grooming” highly correlated with muscle strength and hand capacity items ( rs ≥ .80). A combination of hand muscle tests and the key grasping task explained over 90% of the variability in the self-care category scores. Conclusions. The SCIM III self-care category reflects upper extremity performance as it contains especially useful and valid items that relate to upper extremity function and capacity tests.
Collapse
Affiliation(s)
- Claudia Rudhe
- The GRASSP Study Group (Graded Redefined Assessment of Strength, Sensibility, and Prehension), EM-SCI Study Group (European Multicenter Study on Human Spinal Cord Injury), Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland
| | - Hubertus J. A. van Hedel
- Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland, , EM-SCI Study Group (European Multicenter Study on Human Spinal Cord Injury)
| |
Collapse
|
136
|
Dong Y, Holly LT, Albistegui-Dubois R, Yan X, Marehbian J, Newton JM, Dobkin BH. Compensatory cerebral adaptations before and evolving changes after surgical decompression in cervical spondylotic myelopathy. J Neurosurg Spine 2009; 9:538-51. [PMID: 19035745 DOI: 10.3171/spi.2008.10.0831] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT The goal of this study was to compare cortical sensorimotor adaptations associated with neurological deterioration and then recovery following surgical decompression for cervical spondylotic myelopathy (CSM). METHODS Eight patients with CSM underwent functional MR (fMR) imaging during wrist extension and the 3-finger pinch task, along with behavioral assessments before and 3 and 6 months after surgery. Six healthy control volunteers were scanned twice. RESULTS Cervical spine MR imaging demonstrated successful cord decompression. The patients improved after surgery on the modified Japanese Orthopaedic Association score for the upper extremity, which correlated with the changes in task-associated activation in specific sensorimotor regions of interest. Pinch-related activation in sensorimotor cortex contralateral to the movement paradigm was reduced before surgery then increased toward the extent of healthy controls after surgery. Before surgery, patients showed broader activation in ipsilateral sensorimotor cortex during wrist extension than during pinch, but activations became similar to those of healthy controls after surgery. Pinch-related activation volume in the ipsilateral sensorimotor cortex and the magnitude of activation in the contralateral dorsal premotor cortex evolved linearly across time after surgery, along with wrist extension-related activation magnitude in the contralateral supplementary motor area. CONCLUSIONS Serial fMR imaging studies in CSM can capture the adaptations in specific sensorimotor cortices that accompany clinical deterioration and postsurgical improvement in sensorimotor function associated with damage and partial recovery of conduction in corticospinal pathways. These adaptive regions can be monitored by serial fMR imaging to detect a critical loss of supraspinal reserve in compensatory plasticity, which might augment clinical information about the need for surgical decompression.
Collapse
Affiliation(s)
- Yun Dong
- Department of Neurology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California 90095-1769, USA
| | | | | | | | | | | | | |
Collapse
|
137
|
Kumru H, Vidal J, Perez M, Schestatsky P, Valls-Solé J. Sympathetic Skin Responses Evoked by Different Stimuli Modalities in Spinal Cord Injury Patients. Neurorehabil Neural Repair 2009; 23:553-8. [DOI: 10.1177/1545968308328721] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective. By using a combination of physiological and electrical peripheral nerve stimuli, the authors aimed to characterize the expected dysfunction of the circuits responsible for sympathetic skin response (SSR) in persons with spinal cord injury (SCI). Methods. The authors examined SSR induced in the hand and foot in 50 SCI patients and 15 age-matched and gender-matched healthy volunteers. SSR was induced by deep inhalation, unexpected acoustic stimuli, brisk hand muscle contraction, and median and peroneal nerve electrical stimulation (PNS). Results. SSRs to any stimulus modality were absent in hand and foot in patients with complete SCI above the T4 level. They were present in the hand and absent in the foot in complete SCI patients at levels between T4 and T11 for all stimuli modalities except PNS. The elicitability of SSR was lower with peroneal nerve stimulation than the other stimuli in hand and foot. The mean latency difference between SSRs of the hand and foot was significantly longer in patients than in controls, regardless of stimulus modality. The amplitude of SSR was larger in volunteers than in patients. Conclusion . SSR to various stimuli confirms the importance of supraspinal centers and the integrity of sympathetic descending pathways. Simultaneous recording of the SSR in the hands and feet provides information about the degree of sympathetic impairment possibly in the efferent pathway. To monitor spontaneous recovery or the efficacy of a drug or biological therapeutic intervention, changes in the latency delay between the hand and foot may be valuable.
Collapse
Affiliation(s)
- Hatice Kumru
- Department of Neurology and Neurorehabilitation, Instituto Guttmann, Badalona, Barcelona, Spain,
| | - Joan Vidal
- Department of Neurology and Neurorehabilitation, Instituto Guttmann, Badalona, Barcelona, Spain
| | - Maria Perez
- Department of Neurology and Neurorehabilitation, Instituto Guttmann, Badalona, Barcelona, Spain
| | - Pedro Schestatsky
- Service of Neurology, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil, Unitat d'EMG, Servei de Neurologia, Hospital Clinic, Barcelona, Spain
| | - Josep Valls-Solé
- Unitat d'EMG, Servei de Neurologia, Hospital Clinic, Barcelona, Spain
| |
Collapse
|
138
|
Neuromodulation and Neuronal Plasticity. Neuromodulation 2009. [DOI: 10.1016/b978-0-12-374248-3.00013-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
139
|
Implications of neuroplasticity for neurosurgeons. ACTA ACUST UNITED AC 2009; 71:5-10. [DOI: 10.1016/j.surneu.2008.09.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Accepted: 09/10/2008] [Indexed: 10/21/2022]
|
140
|
Dunlop SA. Activity-dependent plasticity: implications for recovery after spinal cord injury. Trends Neurosci 2008; 31:410-8. [DOI: 10.1016/j.tins.2008.05.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Revised: 05/27/2008] [Accepted: 05/27/2008] [Indexed: 12/29/2022]
|
141
|
Wirth B, Van Hedel HJA, Curt A. Changes in corticospinal function and ankle motor control during recovery from incomplete spinal cord injury. J Neurotrauma 2008; 25:467-78. [PMID: 18419251 DOI: 10.1089/neu.2007.0472] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Little is known about the mechanisms that underlie motor recovery after incomplete spinal cord injury (iSCI) in humans. This study assessed changes in corticospinal tract (CST) function by measuring motor-evoked potentials (MEPs) and ankle motor control at 1, 3, and 6 months after acute iSCI. In 12 iSCI patients and matched controls, MEPs (evoked at 20% of maximal voluntary contraction [MVC]) were combined with a comprehensive ankle motor assessment protocol that measured ankle dorsiflexor strength (MVC, manual muscle testing, maximal movement velocity [MMV]), dexterity (the ability to accurately time ankle dorsiflexion movements) and gait (speed, walking aids). In the first 6 months after iSCI, all measures of muscle strength, gait and the MEP amplitudes significantly increased. The level of background electromyography (EMG) at 20% MVC remained stable, although absolute MVC increased. The MEP latencies were significantly delayed and remained unchanged during the first 6 months after iSCI. In addition, dexterity was preserved throughout rehabilitation. The percentage increase in MEP amplitude was significantly related only to the percentage improvement in MMV. The finding of unchanged CST conductivity, as assessed by MEP latencies in acute iSCI patients recovering motor function, is in accordance with previous studies in human SCI on this issue. The increased MEP facilitation at stable background EMG might indicate improved synchronization of the descending volley and/or responsiveness of motoneurons to supra-spinal input. The absence of a relationship between MEP amplitudes and recovery of ambulation and muscle strength implies that plastic changes in spinal neural circuits and preserved motor units might have contributed to the functional improvement.
Collapse
Affiliation(s)
- Brigitte Wirth
- Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland.
| | | | | |
Collapse
|
142
|
Ramu J, Herrera J, Grill R, Bockhorst T, Narayana P. Brain fiber tract plasticity in experimental spinal cord injury: diffusion tensor imaging. Exp Neurol 2008; 212:100-7. [PMID: 18482724 PMCID: PMC2453245 DOI: 10.1016/j.expneurol.2008.03.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2008] [Revised: 03/10/2008] [Accepted: 03/12/2008] [Indexed: 11/16/2022]
Abstract
Diffusion tensor imaging (DTI) and immunohistochemistry were performed in spinal cord injured rats to understand the basis for activation of multiple regions in the brain observed in functional magnetic resonance imaging (fMRI) studies. The measured fractional anisotropy (FA), a scalar measure of diffusion anisotropy, along the region encompassing corticospinal tracts (CST) indicates significant differences between control and injured groups in the 3 to 4 mm area posterior to bregma that correspond to internal capsule and cerebral peduncle. Additionally, DTI-based tractography in injured animals showed increased number of fibers that extend towards the cortex terminating in the regions that were activated in fMRI. Both the internal capsule and cerebral peduncle demonstrated an increase in GFAP-immunoreactivity compared to control animals. GAP-43 expression also indicates plasticity in the internal capsule. These studies suggest that the previously observed multiple regions of activation in spinal cord injury are, at least in part, due to the formation of new fibers.
Collapse
Affiliation(s)
- Jaivijay Ramu
- Department of Diagnostic and Interventional Imaging, University of Texas Medical School at Houston, 6431 Fannin Street, Houston, Texas 77030
| | - Juan Herrera
- Department of Diagnostic and Interventional Imaging, University of Texas Medical School at Houston, 6431 Fannin Street, Houston, Texas 77030
| | - Raymond Grill
- Department of Neurosurgery, University of Texas Medical School at Houston, 6431 Fannin Street, Houston, Texas 77030
| | - Tobias Bockhorst
- Department of Diagnostic and Interventional Imaging, University of Texas Medical School at Houston, 6431 Fannin Street, Houston, Texas 77030
| | - Ponnada Narayana
- Department of Diagnostic and Interventional Imaging, University of Texas Medical School at Houston, 6431 Fannin Street, Houston, Texas 77030
| |
Collapse
|