101
|
Yan D, Pan X, Yao J, Wang D, Wu X, Chen X, Shi N, Yan H. MAPKs and NF-κB-mediated acrylamide-induced neuropathy in rat striatum and human neuroblastoma cells SY5Y. J Cell Biochem 2018; 120:3898-3910. [PMID: 30368882 DOI: 10.1002/jcb.27671] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 08/20/2018] [Indexed: 01/05/2023]
Abstract
Acrylamide (ACR) is a potent neurotoxin that can be produced during high-temperature food processing, but the underlying toxicological mechanism remains unclear. In this study, the detrimental effects of ACR on the striatal dopaminergic neurons and the roles of mitogen-activated protein kinases (MAPKs) and nuclear factor κB (NF-κB) in ACR-induced neuronal apoptosis were investigated. Acute ACR exposure caused dopaminergic neurons loss and apoptosis as revealed by decreased tyrosine hydroxylase (TH)-positive cells and TH protein level and increased terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL)-positive cells in the striatum. ACR-decreased glutathione content, increased levels of malondialdehyde, proinflammatory cytokines tumor necrosis factor α, and interleukin 6. In addition, nuclear NF-κB and MAPKs signaling pathway with c-Jun N-terminal kinase (JNK) and p38 were activated by ACR. Specific inhibitors were used to explore the roles of MAPKs and NF-κB pathways in ACR-induced apoptosis in SH-SY5Y cells. Pretreatment with JNK-specific inhibitors SP600125 markedly upregulated the reduced B-cell lymphoma 2 (Bcl-2) content and downregulated the increased Bcl-2-associated X protein (Bax) level and thereby eventually reduced the proportions of early and late apoptotic cells induced by ACR, while p38 suppression by SB202190 only reversed the decrease in Bcl-2 expression. Inhibition of NF-κB by BAY 11-7082 markedly upregulated Bax level and decreased Bcl-2 expression, and eventually increasing the proportions of neuronal apoptosis compared with that in ACR alone. These results suggested that JNK contributed to ACR-induced apoptosis, while NF-κB acted as a protective regulator in response to ACR-induced neuropathy. This study helps to offer a deeper insight into the mechanism of ACR-induced neuropathy.
Collapse
Affiliation(s)
- Dandan Yan
- Department of Health Toxicology, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoqi Pan
- Department of Preventive Medicine, School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jianling Yao
- Department of Health Toxicology, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dun Wang
- Department of Community Health Service Management Center, The Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Xu Wu
- Department of Health Toxicology, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyi Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Nian Shi
- Department of Health Toxicology, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Yan
- Department of Health Toxicology, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
102
|
Palus K, Bulc M, Całka J. Changes in VIP-, SP- and CGRP- like immunoreactivity in intramural neurons within the pig stomach following supplementation with low and high doses of acrylamide. Neurotoxicology 2018; 69:47-59. [PMID: 30222996 DOI: 10.1016/j.neuro.2018.09.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 09/07/2018] [Accepted: 09/12/2018] [Indexed: 12/20/2022]
Abstract
Acrylamide is one of the food toxins to which the human body is exposed. Although researchers' interest in acrylamide has been growing in recent years, the knowledge of its effect on the gastrointestinal tract, especially on intramural neurons which form the enteric nervous system is scarce. The aim of this experiment was to determine the influence of acrylamide, administered at doses equivalent to the human tolerable daily intake (TDI, 0.5 μg/kg b.w./day) and ten times higher than the TDI (5 μg/kg b.w./day), on the distribution of vasoactive intestinal peptide (VIP), substance P (SP), and calcitonin gene related peptide (CGRP) in intramural neurons of the domestic pig stomach. Using double immunofluorescent labelling we revealed that the ENS neurons underwent adaptive changes in response to the supplementation of acrylamide, which manifested themselves as increased expression of VIP, SP and CGRP, both in intramural neurons and by an increase in the nerve density in submucous and muscular layers in the porcine stomach. These substances take part in defensive reactions of neurons and transmission of sensory reactions may play an important role in protecting the stomach against the harmful effect of acrylamide. Moreover, it has been shown that acrylamide induces a significant response of ENS neurons even in TDI dose, which suggests that it is not neutral to the body. These findings may be the basis for further toxicological studies addressing the question if currently permitted minimal content of acrylamide in the food does jeopardize the health of human consumers?
Collapse
Affiliation(s)
- Katarzyna Palus
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego Str. 13, 10-718 Olsztyn, Poland.
| | - Michał Bulc
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego Str. 13, 10-718 Olsztyn, Poland
| | - Jarosław Całka
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego Str. 13, 10-718 Olsztyn, Poland
| |
Collapse
|
103
|
Chen X, Wang X, Yang Y, Li Z, Zhang Y, Gao W, Xiao J, Li B. Schwann cells protect against CaMKII- and PKA-dependent Acrylamide-induced Synapsin I phosphorylation. Brain Res 2018; 1701:18-27. [PMID: 30028969 DOI: 10.1016/j.brainres.2018.07.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 07/11/2018] [Accepted: 07/13/2018] [Indexed: 11/26/2022]
Abstract
OBJECTIVES To explore the effects of Acrylamide (ACR), as well as the influence of Schwann cells (SCs), on the signal transduction pathway and phosphorylation of Synapsin I in a Human neuroblastoma cell line (NB-1). METHODS NB-1s, NB-1s co-cultured with SCs, and a negative control group (NB-1 cells without ACR) were exposed to gradient concentrations of ACR for 48 h. Cell proliferation and viability were determined by MTT. Protein and mRNA expression levels of typical kinases (i.e., cAMP-dependent protein kinase [PKA], calcium/calmodulin-dependent protein kinase II [CaMKII], and mitogen-activated protein kinase-extracellular signal-regulated kinases [MAPK-Erk]), their phosphorylation status, as well as Synapsin I and its phosphorylation status, were tested by western blotting and polymerase chain reaction, respectively. Further, the effect of SCs on ACR-induced NB-1 cell toxicity was evaluated. RESULTS (1) The MTT assay showed a sustained, dose- and time-dependent inhibition of NB-1s exposed to ACR. (2) ACR exposure increased the phosphorylation of CaMKII and PKA, which subsequently increased the phosphorylation of Synapsin I (at Serine603 [a substrate site of CaMKII] and Serine9 [a substrate site of PKA]). Pretreatment with CaMKII and PKA inhibitors blocked the ACR-mediated increase in phosphorylation. The above-described results were all significantly different when compared to the control group (p < 0.05). (3) When co-cultured with SCs, ACR-induced NB-1 inhibition was obviously decreased, and the trend of change of phosphorylated CaMKII, PKA, and Synapsin I were changed (first slightly increased and then decreased), which was inconsistent with what we observed in NB-1s cultured alone. CONCLUSIONS The toxic effects of ACR on neurons may be mediated by CaMKII and PKA-dependent signaling pathways in which Synapsin I may act as a downstream effector. Furthermore, glial cells (SCs) may be able to prevent a certain degree of ACR-induced neuronal damage.
Collapse
Affiliation(s)
- Xiao Chen
- Department of Toxicology, Key Lab of Chemical Safety and Health, National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Xiuhui Wang
- Department of Toxicology, Key Lab of Chemical Safety and Health, National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Yiguang Yang
- Department of Toxicology, Key Lab of Chemical Safety and Health, National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Zhongsheng Li
- Department of Toxicology, Key Lab of Chemical Safety and Health, National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Yi Zhang
- Department of Toxicology, Key Lab of Chemical Safety and Health, National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Weimin Gao
- Department of Occupational and Environmental Health Sciences, School of Public Health, West Virginia University, West Virginia, USA
| | - Jingwei Xiao
- Department of Toxicology, Key Lab of Chemical Safety and Health, National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China.
| | - Bin Li
- Department of Toxicology, Key Lab of Chemical Safety and Health, National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China.
| |
Collapse
|
104
|
Huang M, Jiao J, Wang J, Chen X, Zhang Y. Associations of hemoglobin biomarker levels of acrylamide and all-cause and cardiovascular disease mortality among U.S. adults: National Health and Nutrition Examination Survey 2003-2006. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 238:852-858. [PMID: 29627755 DOI: 10.1016/j.envpol.2018.03.109] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 02/10/2018] [Accepted: 03/29/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND The potential hazards of acrylamide (AA) have been proposed due to its lifelong exposure. However, the association between AA exposure and mortality remains unclear. OBJECTIVES We evaluated the prospective association of AA hemoglobin adducts (HbAA and HbGA) with all-cause and cardiovascular disease (CVD) mortality in U.S. population from National Health and Nutrition Examination Survey (NHANES) 2003-2006. METHODS We followed 5504 participants who were ≥25 years of age for an average of 6.7 years at the baseline examination with annual linkage to the NHANES statistics database. Using AA hemoglobin biomarkers [HbAA, HbGA, sum of HbAA and HbGA (HbAA + HbGA), and ratio of HbGA to HbAA (HbGA/HbAA)], we determined mortality from all-causes and CVD through Cox proportional hazard regression analysis with multivariable adjustments both in non-smoker group and smoker group. In addition, subgroup analyses and sensitivity analyses were further conducted. RESULTS After adjusting for sociodemographic, life behavioral and cardiovascular risk factors in non-smoker group, HbAA was positively associated with all-cause mortality (p for trend = 0.0197) and non-CVD mortality (p for trend = 0.0124). HbGA and HbGA/HbAA were inversely associated with all-cause mortality (p for trend = 0.0117 and 0.0098, respectively) and CVD mortality (p for trend=0.0009 and 0.0036, respectively). The multivariable adjusted hazard ratios (HRs) [95% confidence intervals (CIs)] of the upper three quartiles were 0.472 (95% CI: 0.283-0.786), 0.517 (95% CI: 0.299-0.894) and 0.470 (95% CI: 0.288-0.766) between HbGA/HbAA and all-cause mortality comparing with the lowest quartile, respectively. No significant associations were found between HbAA + HbGA and mortality in non-smoker group, and between all AA hemoglobin biomarkers and mortality in smoker group. CONCLUSIONS Hemoglobin biomarker levels of AA were strongly associated with mortality in general U.S. non-smoker adults. These findings proposed a continuous public health concern in relation to environmental and dietary exposure to AA.
Collapse
Affiliation(s)
- Mengmeng Huang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jingjing Jiao
- Department of Nutrition and Food Hygiene, School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jun Wang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xinyu Chen
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yu Zhang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
105
|
Wang J, Zhang MY, Xu SQ, Cheng J, Yu ZJ, Hu XM. Down-regulation of telomerase reverse transcriptase-related anti-apoptotic function in a rat model of acrylamide induced neurobehavioral deficits. Biotech Histochem 2018; 93:512-518. [PMID: 29926741 DOI: 10.1080/10520295.2018.1471523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Although the precise mechanism is unknown, neuron apoptosis is believed to participate in neuropathy caused by acrylamide (ACR). Telomerase reverse transcriptase (TERT) exhibits an anti-apoptotic function, but its contribution to the pathogenesis of ACR neurotoxicity is unclear. We investigated adult male rats that were given 30, 40 and 50 mg/kg ACR three times/week for 4 weeks. We found that ACR treatment caused significant deficits in sensory/motor function as measured by gait score, landing foot spread distance, movement initiation test and tail immersion test. Histological examination showed that the cerebral cortex in all ACR treated animals exhibited fewer neurons and more condensed nuclei than normal cortex. A significant increase in apoptosis was found in the cerebral cortex of rat brains subjected to ACR treatment in a dose-dependent manner. The expression of TERT in the brain was significantly reduced by ACR treatment. The pro-apoptotic cleaved caspase-3 protein level was increased, while the anti-apoptotic Bcl-2 protein level was decreased by 30 - 50 mg/kg ACR. Our findings indicate that TERT and its downstream regulators of neuron apoptosis, including Bcl-2 and cleaved caspase-3, were involved in ACR neurotoxicity.
Collapse
Affiliation(s)
- J Wang
- a Department of Pharmacy , College of Medicine, Wuhan University of Science and Technology , Wuhan.,b Hubei Province Key Laboratory of Occupational Hazard Identification and Control , Wuhan University of Science and Technology , Wuhan
| | - M Y Zhang
- a Department of Pharmacy , College of Medicine, Wuhan University of Science and Technology , Wuhan.,b Hubei Province Key Laboratory of Occupational Hazard Identification and Control , Wuhan University of Science and Technology , Wuhan
| | - S Q Xu
- a Department of Pharmacy , College of Medicine, Wuhan University of Science and Technology , Wuhan.,b Hubei Province Key Laboratory of Occupational Hazard Identification and Control , Wuhan University of Science and Technology , Wuhan
| | - J Cheng
- a Department of Pharmacy , College of Medicine, Wuhan University of Science and Technology , Wuhan.,b Hubei Province Key Laboratory of Occupational Hazard Identification and Control , Wuhan University of Science and Technology , Wuhan
| | - Z J Yu
- a Department of Pharmacy , College of Medicine, Wuhan University of Science and Technology , Wuhan.,b Hubei Province Key Laboratory of Occupational Hazard Identification and Control , Wuhan University of Science and Technology , Wuhan
| | - X M Hu
- a Department of Pharmacy , College of Medicine, Wuhan University of Science and Technology , Wuhan.,b Hubei Province Key Laboratory of Occupational Hazard Identification and Control , Wuhan University of Science and Technology , Wuhan.,c College of Pharmacy , Shanghai University of Medicine & Health Sciences , Shanghai , China
| |
Collapse
|
106
|
Lecart B, Jacquet N, Anseeuw L, Renier M, Njeumen P, Bodson B, Vanderschuren H, Richel A. Nonconventional enzymatic method to determine free asparagine level in whole-grain wheat. Food Chem 2018; 251:64-68. [PMID: 29426425 DOI: 10.1016/j.foodchem.2018.01.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 08/02/2017] [Accepted: 01/02/2018] [Indexed: 11/30/2022]
Abstract
A new enzymatic methodology is herein proposed to measure free asparagine content in wheat grains and to predict their potential for Maillard reaction products. Our model estimates the acrylamide levels generated during the industrial heat treatment of whole-grain wheat based on free asparagine and glucose measurements. We selected fifteen wheat varieties currently grown in Belgium as benchmark for the present study. While conventional chromatographic methods require a long and tedious multi-step sample preparation, the proposed method takes advantage of being simple and quick. Statistical analysis of free asparagine content indicates that selected wheat varieties can be classified into seven content levels from 0.0149% to 0.0216% of the dry matter. Based on our analysis, the varieties KWS Ozon, Benchmark and Pionier appears to be the most suitable for thermal processing (i.e. cooking applications).
Collapse
Affiliation(s)
- Brieuc Lecart
- University of Liège, Gembloux Agro-Bio Tech, Passage des Déportés 2, 5030 Gembloux, Belgium.
| | - Nicolas Jacquet
- University of Liège, Gembloux Agro-Bio Tech, Passage des Déportés 2, 5030 Gembloux, Belgium.
| | - Laurent Anseeuw
- University of Liège, Gembloux Agro-Bio Tech, Passage des Déportés 2, 5030 Gembloux, Belgium.
| | - Margot Renier
- University of Liège, Gembloux Agro-Bio Tech, Passage des Déportés 2, 5030 Gembloux, Belgium.
| | - Patrick Njeumen
- University of Liège, Gembloux Agro-Bio Tech, Passage des Déportés 2, 5030 Gembloux, Belgium.
| | - Bernard Bodson
- University of Liège, Gembloux Agro-Bio Tech, Passage des Déportés 2, 5030 Gembloux, Belgium.
| | - Hervé Vanderschuren
- University of Liège, Gembloux Agro-Bio Tech, Passage des Déportés 2, 5030 Gembloux, Belgium.
| | - Aurore Richel
- University of Liège, Gembloux Agro-Bio Tech, Passage des Déportés 2, 5030 Gembloux, Belgium.
| |
Collapse
|
107
|
Huang M, Jiao J, Wang J, Xia Z, Zhang Y. Characterization of acrylamide-induced oxidative stress and cardiovascular toxicity in zebrafish embryos. JOURNAL OF HAZARDOUS MATERIALS 2018; 347:451-460. [PMID: 29353190 DOI: 10.1016/j.jhazmat.2018.01.016] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 01/05/2018] [Accepted: 01/06/2018] [Indexed: 06/07/2023]
Abstract
Acrylamide (AA) is a high production volume chemical in industrial applications and widely found in baked or fried carbohydrate-rich foods. In this study, we unravelled that AA induced developmental toxicity associated with oxidative stress status and disordered lipid distribution in heart region of developing zebrafish. Treatment with AA caused a deficient cardiovascular system with significant heart malformation and dysfunction. We also found that AA could reduce the number of cardiomyocytes through the reduced capacity of cardiomyocyte proliferation rather than cell apoptosis. The cardiac looping and ballooning appeared abnormal though cardiac chamber-specific identity in the differentiated myocardium was maintained well after AA treatment through MF20/S46 immunofluorescence assay. Furthermore, treatment with AA disturbed the differentiation of atrioventricular canal, which was demonstrated by the disordered expressions of the atrioventricular boundary markers bmp4, tbx2b and notch1b and further confirmed by the ectopic expressions of the cardiac valve precursor markers has2, klf2a and nfatc1 through whole-mount in situ hybridization. Thus, our studies provide the evidence of cardiac developmental toxicity of AA in the cardiovascular system, and also raised health concern about the harm of trans-placental exposure to high level of AA for foetuses and the risk of high exposure to AA for the pregnant women.
Collapse
Affiliation(s)
- Mengmeng Huang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, 310058, Zhejiang, China; Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Jingjing Jiao
- Department of Nutrition and Food Hygiene, School of Public Health, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Jun Wang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, 310058, Zhejiang, China; Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Zhidan Xia
- Department of Nutrition and Food Hygiene, School of Public Health, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Yu Zhang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, 310058, Zhejiang, China; Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| |
Collapse
|
108
|
Kumar J, Das S, Teoh SL. Dietary Acrylamide and the Risks of Developing Cancer: Facts to Ponder. Front Nutr 2018; 5:14. [PMID: 29541638 PMCID: PMC5835509 DOI: 10.3389/fnut.2018.00014] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 02/12/2018] [Indexed: 12/18/2022] Open
Abstract
Acrylamide (AA) is a water soluble white crystalline solid commonly used in industries. It was listed as an industrial chemical with potential carcinogenic properties. However to date, AA was used to produce polyacrylamide polymer, which was widely used as a coagulant in water treatment; additives during papermaking; grouting material for dams, tunnels, and other underground building constructions. AA in food could be formed during high-temperature cooking via several mechanisms, i.e., formation via acrylic acid which may be derived from the degradation of lipid, carbohydrates, or free amino acids; formation via the dehydration/decarboxylation of organic acids (malic acid, lactic acid, and citric acid); and direct formation from amino acids. The big debate is whether this compound is toxic to human beings or not. In the present review, we discuss the formation of AA in food products, its consumption, and possible link to the development of any cancers. We discuss the body enzymatic influence on AA and mechanism of action of AA on hormone, calcium signaling pathways, and cytoskeletal filaments. We also highlight the deleterious effects of AA on nervous system, reproductive system, immune system, and the liver. The present and future mitigation strategies are also discussed. The present review on AA may be beneficial for researchers, food industry, and also medical personnel.
Collapse
Affiliation(s)
- Jaya Kumar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Srijit Das
- Department of Anatomy, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Seong Lin Teoh
- Department of Anatomy, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| |
Collapse
|
109
|
Pan X, Wu X, Yan D, Peng C, Rao C, Yan H. Acrylamide-induced oxidative stress and inflammatory response are alleviated by N-acetylcysteine in PC12 cells: Involvement of the crosstalk between Nrf2 and NF-κB pathways regulated by MAPKs. Toxicol Lett 2018; 288:55-64. [PMID: 29426002 DOI: 10.1016/j.toxlet.2018.02.002] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 01/30/2018] [Accepted: 02/01/2018] [Indexed: 01/04/2023]
Abstract
Acrylamide (ACR) is a classic neurotoxin in animals and humans. However, the mechanism underlying ACR neurotoxicity remains controversial, and effective prevention and treatment measures against this condition are scarce. This study focused on clarifying the crosstalk between the involved signaling pathways in ACR-induced oxidative stress and inflammatory response and investigating the protective effect of antioxidant N-acetylcysteine (NAC) against ACR in PC12 cells. Results revealed that ACR exposure led to oxidative stress characterized by significant increase in reactive oxygen species (ROS) and malondialdehyde (MDA) levels and glutathione (GSH) consumption. Inflammatory response was observed based on the dose-dependently increased levels of pro-inflammatory cytokines tumor necrosis factor-α (TNF-α) and interleukin 6 (IL-6). NAC attenuated ACR-induced enhancement of MDA and ROS levels and TNF-α generation. In addition, ACR activated nuclear transcription factor E2-related factor 2 (Nrf2) and nuclear factor-κB (NF-κB) signaling pathways. Knockdown of Nrf2 by siRNA significantly blocked the increased NF-κB p65 protein expression in ACR-treated PC12 cells. Down-regulation of NF-κB by specific inhibitor BAY11-7082 similarly reduced ACR-induced increase in Nrf2 protein expression. NAC treatment increased Nrf2 expression and suppressed NF-κB p65 expression to ameliorate oxidative stress and inflammatory response caused by ACR. Further results showed that mitogen-activated protein kinases (MAPKs) pathway was activated prior to the activation of Nrf2 and NF-κB pathways. Inhibition of MAPKs blocked Nrf2 and NF-κB pathways. Collectively, ACR activated Nrf2 and NF-κB pathways which were regulated by MAPKs. A crosstalk between Nrf2 and NF-κB pathways existed in ACR-induced cell damage. NAC protected against oxidative damage and inflammatory response induced by ACR by activating Nrf2 and inhibiting NF-κB pathways in PC12 cells.
Collapse
Affiliation(s)
- Xiaoqi Pan
- Department of Health Toxicology, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, China; School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Xu Wu
- Department of Health Toxicology, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, China
| | - Dandan Yan
- Department of Health Toxicology, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, China
| | - Cheng Peng
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Chaolong Rao
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Hong Yan
- Department of Health Toxicology, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, China.
| |
Collapse
|
110
|
Mansour SZ, Moawed FSM, Elmarkaby SM. Protective effect of 5, 7-dihydroxyflavone on brain of rats exposed to acrylamide or γ-radiation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 175:149-155. [PMID: 28888167 DOI: 10.1016/j.jphotobiol.2017.08.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 05/18/2017] [Accepted: 08/26/2017] [Indexed: 12/27/2022]
Abstract
5, 7-Dihydroxyflavone (DHF), a natural plant flavonoid, have shown a variety of beneficial effects. Neurotoxic effects of acrylamide (ACR) or gamma irradiation (IR) have been established in humans and animals. The current study was designed to evaluate whether DHF could restrain ACR or IR induced neurotoxicity in rats and to explore the underlying mechanisms. The study was carried out by investigating some biochemical and biophysical parameters as well as histopathological examination. The daily oral administration of ACR (25mg/kg b.wt.) for 21days or exposure to single dose of IR (5Gy) induced brain damage throughout the significant decrease in catecholamine contents and brain derived neurotrophic factor (BDNF) in brain tissue with a concomitant significant decrease in serum activity of creatinine kinase-BB. Moreover, the brain levels of MDA and β-amyloid and activities of acetylcholinesterase and caspase-3 were remarkably augmented in ACR-induced rats. Additionally, the electrical properties of erythrocytes membrane were significantly disturbed. The administration of DHF (50mg/kg b.wt. daily for 21day) to rats exposed to either ACR or IR significantly reversed the alteration in all studied parameters. Histopathological investigation of brain tissues supported the neuroprotective effect of DHF on brain. From the obtained data, it can be concluded that the DHF has neuroprotective effect against ACR or IR induced-neurotoxicity.
Collapse
Affiliation(s)
- Somaya Z Mansour
- Radiation Biology Department, National Center for Radiation Research and Technology, Atomic Energy Authority, B. O. Box: 29, Nasr City, Egypt
| | - Fatma S M Moawed
- Health Radiation Research Department, National Center for Radiation Research and Technology, Atomic Energy Authority, B. O. Box: 29, Nasr City, Egypt.
| | - Seham M Elmarkaby
- Radiation Physics Department, National Center for Radiation Research and Technology, Atomic Energy Authority, B. O. Box: 29, Nasr City, Egypt
| |
Collapse
|
111
|
Dietary acrylamide exposure was associated with mild cognition decline among non-smoking Chinese elderly men. Sci Rep 2017; 7:6395. [PMID: 28743904 PMCID: PMC5527102 DOI: 10.1038/s41598-017-06813-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 06/19/2017] [Indexed: 12/18/2022] Open
Abstract
The aim of the study is to explore the longitudinal association of dietary acrylamide exposure with cognitive performance in Chinese elderly. The analysis was conducted among 2534 non-smoking elderly men and women based on a prospective study, Mr. and Ms. OS Hong Kong. Dietary acrylamide intake was assessed by food frequency questionnaires with data on local food contamination, derived from the first Hong Kong Total Diet Study. Global cognitive function was assessed by Cantonese version of Mini-Mental State Exam (MMSE) at the baseline and the 4th year of follow-up. Multivariable-adjusted linear and logistic regression models were used to assess the associations of dietary acrylamide with MMSE score changes or risk of poor cognition. The results indicated that among men with MMSE ≥ 18, each one SD increase of acrylamide decreased MMSE score by 7.698% (95%CI: -14.943%, -0.452%; p = 0.037). Logistic regression revealed an increased risk of poor cognition (MMSE ≤ 26) in men with HR of 3.356 (1.064~10.591, p = 0.039). The association became non-significance after further adjustment for telomere length. No significant association was observed in women. Dietary acrylamide exposure was associated with a mild cognitive decline or increased risk of poor cognition over a 4-year period in non-smoking Chinese elderly men.
Collapse
|
112
|
Wierzejska R. Can coffee consumption lower the risk of Alzheimer's disease and Parkinson's disease? A literature review. Arch Med Sci 2017; 13:507-514. [PMID: 28507563 PMCID: PMC5420628 DOI: 10.5114/aoms.2016.63599] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 08/09/2016] [Indexed: 01/17/2023] Open
Abstract
In light of the fact that the number of elderly citizens in society is steadily increasing, the search for dietary factors which might prolong mental agility is growing in significance. Coffee, together with its main ingredient, caffeine, has been the focus of much attention from various researchers, as data on its beneficial effects on human health continue to accumulate. Most reports indicate that moderate coffee consumption may in fact lower the risk for common neurodegenerative conditions, i.e. Alzheimer's and Parkinson's diseases. Regardless, due to their complex pathogenesis as well as methodology of scientific research, the exact impact of coffee consumption remains to be fully elucidated. At present, it seems safe to inform the general public that coffee drinkers need not fear for their health. Possibly, in the future experts will recommend drinking coffee not only to satisfy individual taste preferences but also to decrease age-related mental deterioration.
Collapse
|
113
|
Wang SY, Yu CP, Pan YL, Zhou XR, Xin R, Wang Y, Ma WW, Gao R, Wang C, Wu YH. Metabolomics analysis of serum from subjects after occupational exposure to acrylamide using UPLC-MS. Mol Cell Endocrinol 2017; 444:67-75. [PMID: 28163100 DOI: 10.1016/j.mce.2017.02.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 12/21/2016] [Accepted: 02/01/2017] [Indexed: 12/28/2022]
Abstract
Since occupational exposure to acrylamide (ACR) may cause nerve damage, sensitive biomarkers to evaluate the early effects of ACR on human health are needed. In the present study, we have compared a group of individuals with occupational exposure to ACR (contact group, n = 65) with a group of individuals with no exposure (non-contact group, n = 60). Serum metabolomics analysis of the contact and non-contact groups was carried out using ultra performance liquid chromatograph/time of flight mass spectrometry, combined with multivariate analysis, to identify potential metabolites. Serum biochemical indexes of the contact and non-contact groups were also determined using an automatic biochemistry analyzer. There was a clear separation between the contact group and the non-contact group; receiver operator characteristic curve analysis suggested that phytosphingosine, 4E,15Z-bilirubin IXa and tryptophan were the best metabolites to use as biomarkers. Liver function was also found to be abnormal in the contact group. Important, ACR-related, metabolic changes were seen in the contact group and new biomarkers for assessing the toxicity of ACR on the central nervous system have been proposed. This study will provide a sound basis for exploring the toxic mechanisms and metabolic pathways of ACR.
Collapse
Affiliation(s)
- Sheng-Yuan Wang
- Department of Occupational Health, Public Health College, Harbin Medical University, Harbin, People's Republic of China
| | - Cui-Ping Yu
- Department of Occupational Health, Public Health College, Harbin Medical University, Harbin, People's Republic of China
| | - Yu-Lin Pan
- Department of Occupational Health, Public Health College, Harbin Medical University, Harbin, People's Republic of China
| | - Xiao-Rong Zhou
- Department of Occupational Health, Public Health College, Harbin Medical University, Harbin, People's Republic of China
| | - Rui Xin
- Department of Occupational Health, Public Health College, Harbin Medical University, Harbin, People's Republic of China
| | - Yue Wang
- Department of Occupational Health, Public Health College, Harbin Medical University, Harbin, People's Republic of China
| | - Wei-Wei Ma
- Harbin Railway Center for Disease Control and Prevention, Harbin, People's Republic of China
| | - Ran Gao
- Department of Occupational Health, Public Health College, Harbin Medical University, Harbin, People's Republic of China
| | - Chao Wang
- Heilongjiang Province Safety Production Supervision and Administration Bureau, People's Republic of China
| | - Yong-Hui Wu
- Department of Occupational Health, Public Health College, Harbin Medical University, Harbin, People's Republic of China.
| |
Collapse
|
114
|
He Y, Tan D, Mi Y, Bai B, Jiang D, Zhou X, Ji S. Effect of epigallocatechin-3-gallate on acrylamide-induced oxidative stress and apoptosis in PC12 cells. Hum Exp Toxicol 2017; 36:1087-1099. [PMID: 27920337 DOI: 10.1177/0960327116681648] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Acrylamide (ACR) is a chemical intermediate utilized in industry. ACR is also formed during heating of foods containing carbohydrates and amino acids. Therefore, humans are widely exposed to ACR, and ACR neurotoxicity in humans is a significant public health issue attracting wide attention. In this study, we investigated the potential neuroprotective effects of epigallocatechin-3-gallate (EGCG), the most abundant polyphenolic compound in green tea, in PC12 cells treated with ACR. ACR-treated PC12 cells pretreated with various concentrations of EGCG (2.5, 5 and 10 μM) for 24 h had increased viability and acetylcholinesterase activity and reduced apoptosis and necrosis compared to cells exposed to ACR alone. EGCG reduced the expression of bax mRNA, decreased cytochrome c release, reduced intracellular calcium levels, inactivated caspase 3 and increased mitochondrial membrane potential, suggesting that EGCG prevents ACR-induced apoptosis through a mitochondrial-mediated pathway. In addition, EGCG inhibited the formation of reactive oxygen species and lipid peroxidation while enhancing superoxide dismutase activity and glutathione levels, thereby reducing oxidative stress. Our results indicate that pretreatment of PC12 cells with EGCG attenuates ACR-induced apoptosis by reducing oxidative stress. Therefore, drinking green tea may reduce nerve injury induced by ACR.
Collapse
Affiliation(s)
- Y He
- College of Food, Shenyang Agricultural University, Shenhe District, Shenyang, People's Republic of China
| | - D Tan
- College of Food, Shenyang Agricultural University, Shenhe District, Shenyang, People's Republic of China
| | - Y Mi
- College of Food, Shenyang Agricultural University, Shenhe District, Shenyang, People's Republic of China
| | - B Bai
- College of Food, Shenyang Agricultural University, Shenhe District, Shenyang, People's Republic of China
| | - D Jiang
- College of Food, Shenyang Agricultural University, Shenhe District, Shenyang, People's Republic of China
| | - X Zhou
- College of Food, Shenyang Agricultural University, Shenhe District, Shenyang, People's Republic of China
| | - S Ji
- College of Food, Shenyang Agricultural University, Shenhe District, Shenyang, People's Republic of China
| |
Collapse
|
115
|
Huang WL, Ma YX, Fan YB, Lai SM, Liu HQ, Liu J, Luo L, Li GY, Tian SM. Extract of Ginkgo biloba promotes neuronal regeneration in the hippocampus after exposure to acrylamide. Neural Regen Res 2017; 12:1287-1293. [PMID: 28966643 PMCID: PMC5607823 DOI: 10.4103/1673-5374.213548] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Previous studies have demonstrated a neuroprotective effect of extract of Ginkgo biloba against neuronal damage, but have mainly focused on antioxidation of extract of Ginkgo biloba. To date, limited studies have determined whether extrasct of Ginkgo biloba has a protective effect on neuronal damage. In the present study, acrylamide and 30, 60, and 120 mg/kg extract of Ginkgo biloba were administered for 4 weeks by gavage to establish mouse models. Our results showed that 30, 60, and 120 mg/kg extract of Ginkgo biloba effectively alleviated the abnormal gait of poisoned mice, and up-regulated protein expression levels of doublecortin (DCX), brain-derived neurotrophic factor, and growth associated protein-43 (GAP-43) in the hippocampus. Simultaneously, DCX- and GAP-43-immunoreactive cells increased. These findings suggest that extract of Ginkgo biloba can mitigate neurotoxicity induced by acrylamide, and thereby promote neuronal regeneration in the hippocampus of acrylamide-treated mice.
Collapse
Affiliation(s)
- Wei-Ling Huang
- Department of Anatomy, School of Basic Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China
| | - Yu-Xin Ma
- Department of Anatomy, School of Basic Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China
| | - Yu-Bao Fan
- Department of Anatomy, School of Basic Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China
| | - Sheng-Min Lai
- Department of Anatomy, School of Basic Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China
| | - Hong-Qing Liu
- Department of Anatomy, School of Basic Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China
| | - Jing Liu
- Department of Anatomy, School of Basic Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China
| | - Li Luo
- Department of Anatomy, School of Basic Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China
| | - Guo-Ying Li
- Department of Anatomy, School of Basic Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China
| | - Su-Min Tian
- Department of Physiology, School of Basic Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China
| |
Collapse
|
116
|
Bedade DK, Singhal RS. Isolation and Characterization of Acrylamidase from Arthrobacter sp. DBV1 and Its Ability to Biodegrade Acrylamide. Appl Biochem Biotechnol 2016; 182:570-585. [PMID: 27924498 DOI: 10.1007/s12010-016-2345-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 11/24/2016] [Indexed: 10/20/2022]
Abstract
Although acrylamide finds diverse industrial applications, its presence in the environment is hazardous due to its carcinogenic, neurotoxic, and teratogenic properties. In spite of the general toxicity of acrylamide in the monomer form, some microorganisms are able to use it as a source of energy by catabolizing it to ammonia and acrylic acid by means of acrylamidase (EC 3.5.1.4). The present work reports on a novel soil isolate as an acrylamide-degrading bacteria. Based on biochemical characterization and 16S ribosomal RNA (rRNA) gene sequence, the bacterial strain was identified as Gram-positive Arthrobacter sp. DBV1. The optimum growth conditions were found to be temperature (30 °C) and pH 6.0 to 7.0. Evaluation of the effect of concentration of acrylamide (10-50 mM) incorporated into minimal medium showed maximum growth of Arthrobacter sp. DBV1 at 30 mM acrylamide. The biodegradation of acrylamide was confirmed by HPLC analysis. Acrylamidase was isolated and characterized for temperature and pH optima, substrate specificity by using different amides, and the effect of different activators/inhibitors such as metal ions and amino acids. These finding suggests that the strain could be attractive for biodegradation of acrylamide from the environment and also possibly from foods containing preformed acrylamide.
Collapse
Affiliation(s)
- Dattatray K Bedade
- Department of Food Engineering and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai, 400019, India
| | - Rekha S Singhal
- Department of Food Engineering and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai, 400019, India.
| |
Collapse
|
117
|
Schmuck MR, Temme T, Dach K, de Boer D, Barenys M, Bendt F, Mosig A, Fritsche E. Omnisphero: a high-content image analysis (HCA) approach for phenotypic developmental neurotoxicity (DNT) screenings of organoid neurosphere cultures in vitro. Arch Toxicol 2016; 91:2017-2028. [DOI: 10.1007/s00204-016-1852-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 09/15/2016] [Indexed: 01/21/2023]
|
118
|
Mitochondrion-Mediated Apoptosis Induced by Acrylamide is Regulated by a Balance Between Nrf2 Antioxidant and MAPK Signaling Pathways in PC12 Cells. Mol Neurobiol 2016; 54:4781-4794. [DOI: 10.1007/s12035-016-0021-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 08/01/2016] [Indexed: 12/14/2022]
|
119
|
Pei Y, Peng J, Behl M, Sipes NS, Shockley KR, Rao MS, Tice RR, Zeng X. Comparative neurotoxicity screening in human iPSC-derived neural stem cells, neurons and astrocytes. Brain Res 2016; 1638:57-73. [PMID: 26254731 PMCID: PMC5032144 DOI: 10.1016/j.brainres.2015.07.048] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 07/24/2015] [Accepted: 07/28/2015] [Indexed: 12/14/2022]
Abstract
Induced pluripotent stem cells (iPSC) and their differentiated derivatives offer a unique source of human primary cells for toxicity screens. Here, we report on the comparative cytotoxicity of 80 compounds (neurotoxicants, developmental neurotoxicants, and environmental compounds) in iPSC as well as isogenic iPSC-derived neural stem cells (NSC), neurons, and astrocytes. All compounds were tested over a 24-h period at 10 and 100 μM, in duplicate, with cytotoxicity measured using the MTT assay. Of the 80 compounds tested, 50 induced significant cytotoxicity in at least one cell type; per cell type, 32, 38, 46, and 41 induced significant cytotoxicity in iPSC, NSC, neurons, and astrocytes, respectively. Four compounds (valinomycin, 3,3',5,5'-tetrabromobisphenol, deltamethrin, and triphenyl phosphate) were cytotoxic in all four cell types. Retesting these compounds at 1, 10, and 100 μM using the same exposure protocol yielded consistent results as compared with the primary screen. Using rotenone, we extended the testing to seven additional iPSC lines of both genders; no substantial difference in the extent of cytotoxicity was detected among the cell lines. Finally, the cytotoxicity assay was simplified by measuring luciferase activity using lineage-specific luciferase reporter iPSC lines which were generated from the parental iPSC line. This article is part of a Special Issue entitled SI: PSC and the brain.
Collapse
Affiliation(s)
- Ying Pei
- XCell Science Inc., Novato, CA, USA
| | - Jun Peng
- Buck Institute for Research on Aging, Novato, CA, USA
| | - Mamta Behl
- National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27713, USA
| | - Nisha S Sipes
- National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27713, USA
| | - Keith R Shockley
- National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27713, USA
| | | | - Raymond R Tice
- National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27713, USA
| | - Xianmin Zeng
- XCell Science Inc., Novato, CA, USA; Buck Institute for Research on Aging, Novato, CA, USA.
| |
Collapse
|
120
|
Zou Y, Huang C, Pei K, Cai Y, Zhang G, Hu C, Ou S. Cysteine alone or in combination with glycine simultaneously reduced the contents of acrylamide and hydroxymethylfurfural. Lebensm Wiss Technol 2015. [DOI: 10.1016/j.lwt.2015.03.104] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
121
|
Adewale OO, Brimson JM, Odunola OA, Gbadegesin MA, Owumi SE, Isidoro C, Tencomnao T. The Potential for Plant Derivatives against Acrylamide Neurotoxicity. Phytother Res 2015; 29:978-85. [PMID: 25886076 DOI: 10.1002/ptr.5353] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 03/12/2015] [Accepted: 03/18/2015] [Indexed: 12/16/2023]
Abstract
Certain industrial chemicals and food contaminants have been demonstrated to possess neurotoxic activity and have been suspected to cause brain-related disorders in humans. Acrylamide (ACR), a confirmed neurotoxicant, can be found in trace amount in commonly consumed human aliments as a result of food processing or cooking. This discovery aroused a great concern in the public, and increasing efforts are continuously geared towards the resolution of this serious threat. The broad chemical diversity of plants may offer the resources for novel antidotes against neurotoxicants. With the goal of attenuating neurotoxicity of ACR, several plants extracts or derivatives have been employed. This review presents the plants and their derivatives that have been shown most active against ACR-induced neurotoxicity, with a focus on their origin, pharmacological activity, and antidote effects.
Collapse
Affiliation(s)
- O O Adewale
- Cancer Research and Molecular Biology Unit, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
- Department of Chemical Sciences, Faculty of Basic and Applied Sciences, Osun State University, Osogbo, Nigeria
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - J M Brimson
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - O A Odunola
- Cancer Research and Molecular Biology Unit, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - M A Gbadegesin
- Cancer Research and Molecular Biology Unit, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - S E Owumi
- Cancer Research and Molecular Biology Unit, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - C Isidoro
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale 'A. Avogadro', Novara, Italy
| | - T Tencomnao
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
122
|
Pan X, Zhu L, Lu H, Wang D, Lu Q, Yan H. Melatonin Attenuates Oxidative Damage Induced by Acrylamide In Vitro and In Vivo. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:703709. [PMID: 26185593 PMCID: PMC4491391 DOI: 10.1155/2015/703709] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 05/30/2015] [Accepted: 06/04/2015] [Indexed: 02/07/2023]
Abstract
Acrylamide (ACR) has been classified as a neurotoxic agent in animals and humans. Melatonin (MT) has been shown to be potentially effective in preventing oxidative stress related neurodegenerative disorders. In this study, whether MT exerted a protective effect against ACR-induced oxidative damage was investigated. Results in cells showed that reactive oxygen species (ROS) and malondialdehyde (MDA) significantly increased after ACR treatment for 24 h. MT preconditioning or cotreatment with ACR reduced ROS and MDA products, whereas the inhibitory effect of MT on oxidant generation was attenuated by blocking the MT receptor. Increased DNA fragmentation caused by ACR was significantly decreased by MT coadministration. In vivo, rats at 40 mg/kg/day ACR by gavage for 12 days showed weight loss and gait abnormality, Purkinje cell nuclear condensation, and DNA damage in rat cerebellum. MT (i.p) cotreatment with ACR not only recovered weight and gait of rats, but also decreased nuclear condensation and DNA damage in rat cerebellum. Using MDA generation, glutathione (GSH) level, superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) activities in rat cerebellum as indicators, MT alleviated ACR-induced lipid peroxidation and depressed antioxidant capacity. Our results suggest that MT effectively prevents oxidative damage induced by ACR.
Collapse
Affiliation(s)
- Xiaoqi Pan
- Department of Health Toxicology, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Institute for Environmental Medicine, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lanlan Zhu
- Sanya Center for Disease Control and Prevention, Hainan 572000, China
| | - Huiping Lu
- Shanghai Songjiang District Center for Disease Control and Prevention, Shanghai 200000, China
| | - Dun Wang
- Department of Health Toxicology, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qing Lu
- Institute for Environmental Medicine, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hong Yan
- Department of Health Toxicology, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
123
|
Pan X, Guo X, Xiong F, Cheng G, Lu Q, Yan H. Acrylamide increases dopamine levels by affecting dopamine transport and metabolism related genes in the striatal dopaminergic system. Toxicol Lett 2015; 236:60-8. [PMID: 25943760 DOI: 10.1016/j.toxlet.2015.04.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 04/28/2015] [Accepted: 04/30/2015] [Indexed: 12/25/2022]
Abstract
Dopaminergic system dysfunction is proved to be a possible mechanism in acrylamide (ACR) -induced neurotoxicity. The neurotransmitter dopamine (DA) has an increasingly important role in the dopaminergic system. Thus, the goal of this study is to evaluate effects of ACR on dopamine and its metabolite levels, dopamine transport and metabolic gene expression in dopaminergic neurons. Male Sprague-Dawley (SD) rats were dosed orally with ACR at 0 (saline), 20, 30, and 40 mg/kg/day for 20 days. Splayed hind limbs, reduced tail flick time and abnormal gait which preceded other neurologic parameters were observed in the above rats. ACR significantly increased dopamine levels, decreased 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanilic acid (HVA) contents in an area dependent manner in rat striatum. Immunohistochemical staining of the striatum revealed that the number of tyrosine hydroxylase (TH) positive cells significantly increased, while monoamine oxidase (MAO) positive cells were drastically reduced, which was consistent with changes in their mRNA and protein expressions. In addition, dopamine transporter (DAT) and vesicular monoamine transporter 2 (VMAT2) expression levels were both down-regulated in the striatum. These results suggest that dopamine levels increase significantly in response to ACR, presumably due to changes in the dopamine transport and metabolism related genes expression in the striatal dopaminergic neurons.
Collapse
Affiliation(s)
- Xiaoqi Pan
- Department of Health Toxicology, MOE Key Lab of Environment Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Research institute for Environmental Medicine, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiongxiong Guo
- Shenzhen Luohu Institute of Health Inspection, Shenzhen 518000, China
| | - Fei Xiong
- Chongqing Jiulongpo Municipal Center for Disease and Prevention, Chongqing 400039, China
| | - Guihong Cheng
- Department of Health Toxicology, MOE Key Lab of Environment Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qing Lu
- Research institute for Environmental Medicine, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hong Yan
- Department of Health Toxicology, MOE Key Lab of Environment Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
124
|
Li J, Li D, Yang Y, Xu T, Li P, He D. Acrylamide induces locomotor defects and degeneration of dopamine neurons in Caenorhabditis elegans. J Appl Toxicol 2015; 36:60-7. [PMID: 25876170 DOI: 10.1002/jat.3144] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 01/19/2015] [Accepted: 02/04/2015] [Indexed: 01/30/2023]
Abstract
Acrylamide can form in foods during the cooking process and cause multiple adverse effects. However, the neurotoxicity and mechanisms of acrylamide have not been fully elucidated. In Caenorhabditis elegans, we showed that 48 h exposure to 10-625 mg l(-1) acrylamide resulted in a significant decline in locomotor frequency of body bending, head thrashing and pharynx pumping. In addition, acrylamide exposure reduced crawling speeds and changed angles of body bending. It indicates that acrylamide induces locomotor defects, along with parkinsonian-like movement impairment, including bradykinesia and hypokinesia. Acrylamide also affected chemotaxis plasticity and reduced learning ability. Using transgenic nematodes, we found that acrylamide induced downexpression of P(dat-1) and led to the degeneration of dopaminergic neurons. Moreover, the enhanced expression of unc-54, encoding a subunit of α-synuclein was found. It illustrates that acrylamide is efficient in inducing crucial parkinsonian pathology, including dopaminergic damage and α-synuclein aggregation. These findings suggest the acrylamide-induced locomotor defects and neurotoxicity are associated with Parkinson's disease.
Collapse
Affiliation(s)
- Jia Li
- Laboratory of Toxicology, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, People's Republic of China.,Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, Shanghai, People's Republic of China
| | - Dan Li
- Laboratory of Toxicology, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, People's Republic of China.,Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, Shanghai, People's Republic of China
| | - Yongsheng Yang
- Laboratory of Toxicology, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, People's Republic of China
| | - Tiantian Xu
- Laboratory of Toxicology, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, People's Republic of China.,Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, Shanghai, People's Republic of China
| | - Ping Li
- Laboratory of Toxicology, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, People's Republic of China.,Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, Shanghai, People's Republic of China
| | - Defu He
- Laboratory of Toxicology, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, People's Republic of China.,Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, Shanghai, People's Republic of China
| |
Collapse
|
125
|
Krishna G. Inulin supplementation during gestation mitigates acrylamide-induced maternal and fetal brain oxidative dysfunctions and neurotoxicity in rats. Neurotoxicol Teratol 2015; 49:49-58. [PMID: 25801384 DOI: 10.1016/j.ntt.2015.03.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 03/05/2015] [Accepted: 03/11/2015] [Indexed: 12/11/2022]
Abstract
Accumulating evidence suggests that the developing brain is more susceptible to a variety of chemicals. Recent studies have shown a link between the enteric microbiota and brain function. While supplementation of non-digestible oligosaccharides during pregnancy has been demonstrated to positively influence human health mediated through stimulation of beneficial microbiota, our understanding on their neuromodulatory propensity is limited. In the present study, our primary focus was to examine whether supplementation of inulin (a well known fructan) during gestation can abrogate acrylamide (ACR)-induced oxidative impairments and neurotoxicity in maternal and fetal brain of rats. Initially, in a dose-determinative study, we recapitulated the impact of ACR exposure during gestation days (GD 6-19) on gestational parameters, extent of oxidative impairments in brain (maternal/fetal), cholinergic function and neurotoxicity. Subsequently, pregnant rats orally (gavage) administered with inulin (IN, 2 g/kg/day in two equal installments) supplements during gestation days (GD 0-19) were exposed to ACR (200 ppm) in drinking water. IN supplements significantly attenuated ACR-induced changes in exploratory activity (reduced open field exploration) measured on GD 14. Further, IN restored the placental weights among ACR exposed dams. Analysis of biochemical markers revealed that IN supplements effectively offset ACR associated oxidative stress not only in the maternal brain, but in the fetal brain as well. Elevated levels of protein carbonyls in maternal brain regions were completely normalized with IN supplements. More importantly, IN supplements significantly augmented the number of Bifidobacteria in the cecum of ACR rats which correlated well with the neurorestorative effect as evidenced by restored dopamine levels in the maternal cortex and fetal brain acetylcholinesterase activity among ACR-exposed dams. Further, IN supplements also conferred significant protection against mitochondrial dysfunction induced by ACR in both milieus. Although the precise mechanism/s by which IN supplements during pregnancy attenuate ACR induced neurotoxic impact merits further investigations, we hypothesize that it may mediate through enhanced enteric microbiota and abrogation of oxidative stress. Further, our study provides an experimental approach to explore the neuroprotective role of prebiotic oligosaccharides during pregnancy in reducing the adverse impact of developmental neurotoxicants.
Collapse
Affiliation(s)
- Gokul Krishna
- Department of Biochemistry and Nutrition, CSIR-Central Food Technological Research Institute (CFTRI), Mysore 570020, Karnataka, India
| |
Collapse
|
126
|
Pugajeva I, Jaunbergs J, Bartkevics V. Development of a sensitive method for the determination of acrylamide in coffee using high-performance liquid chromatography coupled to a hybrid quadrupole Orbitrap mass spectrometer. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2015; 32:170-9. [PMID: 25530195 DOI: 10.1080/19440049.2014.1000979] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The emerging trend towards high-resolution mass spectrometry (MS) alternatives was evaluated by the application of Orbitrap MS for the determination of acrylamide in coffee samples. The high resolving power of the Orbitrap MS provided the high selectivity and sensitivity that enabled quantitative analysis of acrylamide in complex matrices, such as coffee. Several sample preparation methods and scanning modes of the MS (full MS, t-SIM, t-MS2) were assessed in order to optimise parameters of the analytical method. The final procedure involved the extraction of acrylamide with acetonitrile, solid-phase extraction with dispersive primary secondary amine (PSA) and amino columns, and the detection by ultra-performance liquid chromatography coupled to a hybrid quadrupole-Orbitrap MS (HPLC-Q-Orbitrap) operated in targeted MS2 scanning mode. The repeatability of the method at the lowest calibration level (10 μg kg(-1)), expressed as relative standard deviation, was 7.8% and the average recovery of acrylamide was 111%. The proposed method was applied to the determination of acrylamide in 22 samples of roasted coffee obtained from the Latvian retail market. Acrylamide concentration in coffee samples was in the range of 166-503 μg kg(-1).
Collapse
Affiliation(s)
- Iveta Pugajeva
- a Institute of Food Safety , Animal Health and Environment 'BIOR' , Riga , Latvia
| | | | | |
Collapse
|
127
|
Barbosa DJ, Capela JP, de Lourdes Bastos M, Carvalho F. In vitro models for neurotoxicology research. Toxicol Res (Camb) 2015; 4:801-842. [DOI: 10.1039/c4tx00043a] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
The nervous system has a highly complex organization, including many cell types with multiple functions, with an intricate anatomy and unique structural and functional characteristics; the study of its (dys)functionality following exposure to xenobiotics, neurotoxicology, constitutes an important issue in neurosciences.
Collapse
Affiliation(s)
- Daniel José Barbosa
- REQUIMTE (Rede de Química e Tecnologia)
- Laboratório de Toxicologia
- Departamento de Ciências Biológicas
- Faculdade de Farmácia
- Universidade do Porto
| | - João Paulo Capela
- REQUIMTE (Rede de Química e Tecnologia)
- Laboratório de Toxicologia
- Departamento de Ciências Biológicas
- Faculdade de Farmácia
- Universidade do Porto
| | - Maria de Lourdes Bastos
- REQUIMTE (Rede de Química e Tecnologia)
- Laboratório de Toxicologia
- Departamento de Ciências Biológicas
- Faculdade de Farmácia
- Universidade do Porto
| | - Félix Carvalho
- REQUIMTE (Rede de Química e Tecnologia)
- Laboratório de Toxicologia
- Departamento de Ciências Biológicas
- Faculdade de Farmácia
- Universidade do Porto
| |
Collapse
|