101
|
Mutations of GATA1, FLT3, MLL-partial tandem duplication, NRAS, and RUNX1 genes are not found in a 7-year-old Down syndrome patient with acute myeloid leukemia (FAB-M2) having a good prognosis. ACTA ACUST UNITED AC 2008; 180:74-8. [DOI: 10.1016/j.cancergencyto.2007.09.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2007] [Accepted: 09/25/2007] [Indexed: 02/02/2023]
|
102
|
Ge Y, LaFiura KM, Dombkowski AA, Chen Q, Payton SG, Buck SA, Salagrama S, Diakiw AE, Matherly LH, Taub JW. The role of the proto-oncogene ETS2 in acute megakaryocytic leukemia biology and therapy. Leukemia 2007; 22:521-9. [PMID: 18094719 DOI: 10.1038/sj.leu.2405066] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Acute myeloid leukemia (AML) in Down syndrome (DS) children has several unique features including a predominance of the acute megakaryocytic leukemia (AMkL) phenotype, higher event-free survivals compared to non-DS children using cytosine arabinoside (ara-C)/anthracycline-based protocols and a uniform presence of somatic mutations in the X-linked transcription factor gene, GATA1. Several chromosome 21-localized transcription factor oncogenes including ETS2 may contribute to the unique features of DS AMkL. ETS2 transcripts measured by real-time RT-PCR were 1.8- and 4.1-fold, respectively, higher in DS and non-DS megakaryoblasts than those in non-DS myeloblasts. In a doxycycline-inducible erythroleukemia cell line, K562pTet-on/ETS2, induction of ETS2 resulted in an erythroid to megakaryocytic phenotypic switch independent of GATA1 levels. Microarray analysis of doxycycline-induced and doxycycline-uninduced cells revealed an upregulation by ETS2 of cytokines (for example, interleukin 1 and CSF2) and transcription factors (for example, TAL1), which are key regulators of megakaryocytic differentiation. In the K562pTet-on/ETS2 cells, ETS2 induction conferred differences in sensitivities to ara-C and daunorubicin, depending on GATA1 levels. These results suggest that ETS2 expression is linked to the biology of AMkL in both DS and non-DS children, and that ETS2 acts by regulating expression of hematopoietic lineage and transcription factor genes involved in erythropoiesis and megakaryopoiesis, and in chemotherapy sensitivities.
Collapse
Affiliation(s)
- Y Ge
- Developmental Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, MI, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
103
|
Abstract
Children with Down syndrome (DS) have a 10- to 20-fold increased risk of developing acute leukemia. An estimated 10% of newborns with DS develop Transient Myeloproliferative Disease (TMD) or Transient Leukemia (TL), a clonal accumulation of megakaryoblasts that resolves spontaneously within months. Acute megakaryoblastic leukemia (AMKL) develops in approximately 20% of cases of TMD/TL by 4 years of age. Both the blasts of AMKL and TMD/TL in DS harbor somatic mutations of GATA1, an essential transcriptional regulator of megakaryocytic differentiation. The distinct phenotypes of megakaryoblastic leukemia in DS are a unique biological model of the incremental process of leukemic transformation.
Collapse
Affiliation(s)
- Johann K Hitzler
- Division of Hematology/Oncology, The Hospital for Sick Children, Toronto, Ont., Canada M5G 1X8.
| |
Collapse
|
104
|
Kanegane H, Watanabe S, Nomura K, Xu G, Ito E, Miyawaki T. Distinct clones are associated with the development of transient myeloproliferative disorder and acute megakaryocytic leukemia in a patient with Down syndrome. Int J Hematol 2007; 86:250-2. [PMID: 17988992 DOI: 10.1532/ijh97.07058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Children with Down syndrome (DS) have an approximately 20-fold higher incidence of leukemia than unaffected children, and most leukemia cases with DS present as acute megakaryocytic leukemia (AMKL). At least 10% of neonates with DS develop transient myeloproliferative disorder (TMD), and 20% to 30% of patients with TMD develop AMKL. Mutations in the GATA1 gene are identified not only in AMKL patients but also in TMD patients; however, sequential analysis of GATA1 is not often performed in the same patients. We describe a child with DS who developed TMD followed by AMKL and have identified different mutations in the GATA1 gene during the course of TMD and AMKL. Distinct clones were associated with the development of TMD and AMKL in this patient.
Collapse
Affiliation(s)
- Hirokazu Kanegane
- Department of Pediatrics, Graduate School of Medicine, University of Toyama, Toyama, Japan.
| | | | | | | | | | | |
Collapse
|
105
|
Abstract
Down syndrome is a common congenital disorder affecting approximately 1/1000 live births. Newborns and children with Down syndrome may present with many haematological problems. In addition, benign abnormalities of the blood count and blood film, which may manifest at any age, population-based and cancer-based registries and clinical trials suggest there is a approximately 12-fold increased risk of acute lymphoblastic leukaemia in the age group of 5-30 years that rises to approximately 40-fold in children younger than 5 years, and that there is a approximately 150-fold increased risk of acute myeloid leukaemia in children younger than 5 years. There is also a virtually unique predisposition to a transient neonatal leukaemia, known as transient abnormal myelopoiesis. Deaths from leukaemia, in part, account for the excess mortality associated with Down syndrome. This article reviews the clinical presentation and the progress made in the management of these disorders over the past decade. It also briefly considers the recent exciting scientific advances that have potential to transform management of leukaemia in children with Down syndrome and also have implications for management of childhood leukaemia more generally.
Collapse
Affiliation(s)
- David Webb
- Department of Haematology and MRC Molecular Haematology Unit, John Radcliffe Hospital and Weatherall Institute of Molecular Medicine, Oxford OX3 9DU, England
| | | | | |
Collapse
|
106
|
Gosiengfiao Y, Horvat R, Thompson A. Transcription factors GATA-1 and Fli-1 regulate human HOXA10 expression in megakaryocytic cells. DNA Cell Biol 2007; 26:577-87. [PMID: 17688409 DOI: 10.1089/dna.2007.0575] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
HOXA10 is a member of the HOX family of regulatory genes that are involved in hematopoiesis. Its role in megakaryopoiesis has been suggested by its expression in immature megakaryocytes and by the proliferation of megakaryocyte-primitive blast colonies upon HOXA10 overexpression. We sought to understand the role of HOXA10 in megakaryopoiesis better, by investigating its transcriptional regulation. Analysis of the 5' untranslated region and transfection of promoter/plasmids into human tissue culture cell lines identified transcriptionally active sequences that contain GATA-1 and Ets-1 sites and a putative binding site for its neighboring gene, HOXA11. Gel shift assays confirmed protein-DNA interactions at these sites. Mutation of the GATA-1 and the Ets-1 motifs amplified the expression of HOXA10 in HEL and K562 cells, confirming the importance of these cis-acting elements in regulating HOXA10 expression in megakaryocytic cells. Chromatin immunoprecipitation (ChIP) and chloramphenicol acetyl transferase (CAT) assays confirm that HOXA11 binds to the putative binding site, resulting in repression of HOXA10 expression. These data taken together give insight into the regulation of HOXA10 expression in megakaryocytic differentiation.
Collapse
Affiliation(s)
- Yasmin Gosiengfiao
- Division of Hematology-Oncology-Stem Cell Transplantation, Department of Pediatrics, Children's Memorial Hospital, Feinberg School of Medicine of Northwestern University, Chicago, Illinois 60614, USA
| | | | | |
Collapse
|
107
|
Maratheftis CI, Bolaraki PE, Voulgarelis M. GATA-1 transcription factor is up-regulated in bone marrow hematopoietic progenitor CD34(+) and erythroid CD71(+) cells in myelodysplastic syndromes. Am J Hematol 2007; 82:887-92. [PMID: 17570514 DOI: 10.1002/ajh.20993] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
GATA-1 is a transcription factor governing the production of erythroid and megakaryocytic cells. Unobstructed GATA-1 expression in early progenitor cells commits them to the myeloid lineage, channeling its differentiation towards erythrocytes and megakaryocytes. Myelodysplastic Syndromes (MDS) are clonal disorders of the hematopoietic stem cell frequently presenting dysplasia in erythroid and/or megakaryocytic lineage. We reasoned that measurement of GATA-1 expression levels in hematopoietic progenitor CD34(+) and the committed erythroid CD71(+) cells, from various MDS subcategories, could demonstrate GATA-1 involvement in the pathogenesis of the syndrome. In this study, MDS patients displayed significantly elevated GATA-1 mRNA expression, in bone marrow mononuclear cells (BMMCs), progenitor CD34(+) and erythroid CD71(+) cells in contrast to the control population (P < 0.001). Additionally, GATA-1 mRNA expression in MDS CD71(+) cells was positively correlated with their apoptotic levels (rho = 0.58, P = 0.03). Furthermore, GATA-1 expression levels were found to correlate with the disease progression. MDS patients in high/INT-2 IPSS risk group expressed significantly higher GATA-1 mRNA levels, in both CD34(+) and CD71(+) cells, as opposed to low/INT-1 patients (P < 0.001). Moreover, the former displayed increased apoptosis in the CD71(+) cells and significantly reduced neutrophil and platelet numbers and hemoglobin levels compared with the latter. We conclude that MDS patients display an increase of GATA-1 mRNA expression in BM cells, with high/INT-2 patients showing significantly higher levels. The higher level of GATA-1 mRNA in erythroid cells was positively correlated with their degree of apoptosis. These findings suggest that the up-regulation of GATA-1 may be responsible for the peripheral cytopenias in MDS.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Anemia, Iron-Deficiency/metabolism
- Anemia, Iron-Deficiency/pathology
- Antigens, CD/analysis
- Antigens, CD34/analysis
- Apoptosis
- Blood Cell Count
- Bone Marrow/pathology
- Disease Progression
- Erythroid Precursor Cells/metabolism
- Erythroid Precursor Cells/pathology
- Female
- GATA1 Transcription Factor/biosynthesis
- GATA1 Transcription Factor/genetics
- Hematopoietic Stem Cells/metabolism
- Hemoglobins/analysis
- Humans
- Lupus Erythematosus, Systemic/metabolism
- Lupus Erythematosus, Systemic/pathology
- Male
- Middle Aged
- Monocytes/metabolism
- Myelodysplastic Syndromes/etiology
- Myelodysplastic Syndromes/metabolism
- Myelodysplastic Syndromes/pathology
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Receptors, Transferrin/analysis
- Risk
- Up-Regulation
Collapse
|
108
|
Distinct clones are associated with the development of transient myeloproliferative disorder and acute megakaryocytic leukemia in a patient with down syndrome. Int J Hematol 2007. [DOI: 10.1007/bf03006929] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
109
|
Tsuzuki S, Hong D, Gupta R, Matsuo K, Seto M, Enver T. Isoform-specific potentiation of stem and progenitor cell engraftment by AML1/RUNX1. PLoS Med 2007; 4:e172. [PMID: 17503961 PMCID: PMC1868041 DOI: 10.1371/journal.pmed.0040172] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2006] [Accepted: 03/19/2007] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND AML1/RUNX1 is the most frequently mutated gene in leukaemia and is central to the normal biology of hematopoietic stem and progenitor cells. However, the role of different AML1 isoforms within these primitive compartments is unclear. Here we investigate whether altering relative expression of AML1 isoforms impacts the balance between cell self-renewal and differentiation in vitro and in vivo. METHODS AND FINDINGS The human AML1a isoform encodes a truncated molecule with DNA-binding but no transactivation capacity. We used a retrovirus-based approach to transduce AML1a into primitive haematopoietic cells isolated from the mouse. We observed that enforced AML1a expression increased the competitive engraftment potential of murine long-term reconstituting stem cells with the proportion of AML1a-expressing cells increasing over time in both primary and secondary recipients. Furthermore, AML1a expression dramatically increased primitive and committed progenitor activity in engrafted animals as assessed by long-term culture, cobblestone formation, and colony assays. In contrast, expression of the full-length isoform AML1b abrogated engraftment potential. In vitro, AML1b promoted differentiation while AML1a promoted proliferation of progenitors capable of short-term lymphomyeloid engraftment. Consistent with these findings, the relative abundance of AML1a was highest in the primitive stem/progenitor compartment of human cord blood, and forced expression of AML1a in these cells enhanced maintenance of primitive potential both in vitro and in vivo. CONCLUSIONS These data demonstrate that the "a" isoform of AML1 has the capacity to potentiate stem and progenitor cell engraftment, both of which are required for successful clinical transplantation. This activity is consistent with its expression pattern in both normal and leukaemic cells. Manipulating the balance of AML1 isoform expression may offer novel therapeutic strategies, exploitable in the contexts of leukaemia and also in cord blood transplantation in adults, in whom stem and progenitor cell numbers are often limiting.
Collapse
Affiliation(s)
- Shinobu Tsuzuki
- Division of Molecular Medicine, Aichi Cancer Center Research Institute, Nagoya, Japan.
| | | | | | | | | | | |
Collapse
|
110
|
Nagano M, Yamashita T, Hamada H, Ohneda K, Kimura KI, Nakagawa T, Shibuya M, Yoshikawa H, Ohneda O. Identification of functional endothelial progenitor cells suitable for the treatment of ischemic tissue using human umbilical cord blood. Blood 2007; 110:151-60. [PMID: 17379743 DOI: 10.1182/blood-2006-10-047092] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Umbilical cord blood (UCB) has been used as a potential source of various kinds of stem cells, including hematopoietic stem cells, mesenchymal stem cells, and endothelial progenitor cells (EPCs), for a variety of cell therapies. Recently, EPCs were introduced for restoring vascularization in ischemic tissues. An appropriate procedure for isolating EPCs from UCB is a key issue for improving therapeutic efficacy and eliminating the unexpected expansion of nonessential cells. Here we report a novel method for isolating EPCs from UCB by a combination of negative immunoselection and cell culture techniques. In addition, we divided EPCs into 2 subpopulations according to the aldehyde dehydrogenase (ALDH) activity. We found that EPCs with low ALDH activity (Alde-Low) possess a greater ability to proliferate and migrate compared to those with high ALDH activity (Alde-High). Moreover, hypoxia-inducible factor proteins are up-regulated and VEGF, CXCR4, and GLUT-1 mRNAs are increased in Alde-Low EPCs under hypoxic conditions, while the response was not significant in Alde-High EPCs. In fact, the introduction of Alde-Low EPCs significantly reduced tissue damage in ischemia in a mouse flap model. Thus, the introduction of Alde-Low EPCs may be a potential strategy for inducing rapid neovascularization and subsequent regeneration of ischemic tissues.
Collapse
Affiliation(s)
- Masumi Nagano
- Graduate School of Comprehensive Human Sciences, Department of Regenerative Medicine, University of Tsukuba, Tsukuba, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
111
|
Abstract
Transient myeloproliferative disorder (TMD) is a spontaneously resolving condition affecting infants born with trisomy 21 syndrome. Although TMD is rather rare among infants with trisomy 21, its ramifications can become severe enough that neonatal nurses should be aware of the condition, its manifestations, and its management. The spectrum of TMD presentation ranges from subtle blastemia in an otherwise healthy infant to severe, life-threatening expression of the disease. TMD may be a precursor to congenital leukemia—thus, the importance of nurses’ becoming aware of this condition. This article addresses the pathology of TMD, case reports in the literature, potential complications of the disorder, and nursing implications. A case study of an infant with dermatologic manifestations of TMD is presented, including history, differential diagnoses, treatment, and follow-up.
Collapse
Affiliation(s)
- Branda Kruger
- University Medical Center, NICU, Lubbock, Texas 79415, USA.
| |
Collapse
|
112
|
Abstract
PURPOSE OF REVIEW Four years ago it was discovered that nearly all cases of transient myeloproliferative disorder and acute megakaryocytic leukemia in children with Down syndrome acquire mutations in the hematopoietic transcription factor gene GATA1. Studies within the past year, described within this review, have provided tremendous insights into the role of GATA1 mutations in these malignancies. RECENT FINDINGS In the past year, our understanding of the molecular and cellular consequences of GATA1 mutations has been greatly enhanced. Most importantly, we have learned that these mutations, which result in the exclusive production of the short GATA1 isoform named GATA1s, have a distinct effect on fetal liver progenitors. In addition, multiple studies have shown that GATA1s can substitute for GATA1 in many aspects of megakaryocytic maturation. Finally, an important clinical study has revealed that GATA1 mutations alone are insufficient for leukemia. SUMMARY Leukemia in children with Down syndrome requires at least three cooperating events--trisomy 21, a GATA1 mutation, and a third, as yet undefined, genetic alteration. Recent studies have provided tremendous insights into the GATA1 side of the story. Future experiments with human patient samples and mouse models will likely increase our awareness of the role of trisomy 21 in transient myeloproliferative disorder and acute megakaryocytic leukemia.
Collapse
Affiliation(s)
- Paresh Vyas
- Department of Haematology, MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | | |
Collapse
|
113
|
Roberts IA, Murray NA. Thrombocytopenia in the Newborn. Platelets 2007. [DOI: 10.1016/b978-012369367-9/50814-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
114
|
Johnson KD, Kim SI, Bresnick EH. Differential sensitivities of transcription factor target genes underlie cell type-specific gene expression profiles. Proc Natl Acad Sci U S A 2006; 103:15939-15944. [PMID: 17043224 PMCID: PMC1635106 DOI: 10.1073/pnas.0604041103] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Indexed: 02/05/2023] Open
Abstract
Changes in transcription factor levels and activities dictate developmental fate. Such a change might affect the full ensemble of target genes for a factor or only uniquely sensitive targets. We investigated the relationship among activity of the hematopoietic transcription factor GATA-1, chromatin occupancy, and target gene sensitivity. Graded activation of GATA-1 in GATA-1-null cells revealed high-, intermediate-, and low-sensitivity targets. GATA-1 activity requirements for occupancy and transcription often correlated. A GATA-1 amino-terminal deletion mutant severely deregulated the low-sensitivity gene Tac-2. Thus, cells expressing different levels of a cell type-specific activator can have qualitatively distinct target gene expression patterns, and factor mutations preferentially deregulate low-sensitivity genes. Unlike other target genes, GATA-1-mediated Tac-2 regulation was bimodal, with activation followed by repression, and the coregulator Friend of GATA-1 (FOG-1) selectively mediated repression. A GATA-1 mutant defective in FOG-1 binding occupied a Tac-2 regulatory region at levels higher than wild-type GATA-1, whereas FOG-1 facilitated chromatin occupancy at a distinct target site. These results indicate that FOG-1 is a determinant of GATA factor target gene sensitivity by either facilitating or opposing chromatin occupancy.
Collapse
Affiliation(s)
- Kirby D. Johnson
- Molecular and Cellular Pharmacology Program, Department of Pharmacology, University of Wisconsin School of Medicine, 383 Medical Sciences Center, 1300 University Avenue, Madison, WI 53706
| | - Shin-Il Kim
- Molecular and Cellular Pharmacology Program, Department of Pharmacology, University of Wisconsin School of Medicine, 383 Medical Sciences Center, 1300 University Avenue, Madison, WI 53706
| | - Emery H. Bresnick
- Molecular and Cellular Pharmacology Program, Department of Pharmacology, University of Wisconsin School of Medicine, 383 Medical Sciences Center, 1300 University Avenue, Madison, WI 53706
| |
Collapse
|
115
|
Ghinassi B, Sanchez M, Martelli F, Amabile G, Vannucchi AM, Migliaccio G, Orkin SH, Migliaccio AR. The hypomorphic Gata1low mutation alters the proliferation/differentiation potential of the common megakaryocytic-erythroid progenitor. Blood 2006; 109:1460-71. [PMID: 17038527 PMCID: PMC1794062 DOI: 10.1182/blood-2006-07-030726] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Recent evidence suggests that mutations in the Gata1 gene may alter the proliferation/differentiation potential of hemopoietic progenitors. By single-cell cloning and sequential replating experiments of prospectively isolated progenitor cells, we demonstrate here that the hypomorphic Gata1low mutation increases the proliferation potential of a unique class of progenitor cells, similar in phenotype to adult common erythroid/megakaryocytic progenitors (MEPs), but with the "unique" capacity to generate erythroblasts, megakaryocytes, and mast cells in vitro. Conversely, progenitor cells phenotypically similar to mast cell progenitors (MCPs) are not detectable in the marrow from these mutants. At the single-cell level, about 11% of Gata1low progenitor cells, including MEPs, generate cells that will continue to proliferate in cultures for up to 4 months. In agreement with these results, trilineage (erythroid, megakaryocytic, and mastocytic) cell lines are consistently isolated from bone marrow and spleen cells of Gata1low mice. These results confirm the crucial role played by Gata1 in hematopoietic commitment and identify, as a new target for the Gata1 action, the restriction point at which common myeloid progenitors become either MEPs or MCPs.
Collapse
Affiliation(s)
- Barbara Ghinassi
- Department of Hematology, Oncology, and Molecular Medicine, Istituto Superiore Sanità, Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
116
|
Xu G, Kato K, Toki T, Takahashi Y, Terui K, Ito E. Development of acute megakaryoblastic leukemia from a minor clone in a Down syndrome patient with clinically overt transient myeloproliferative disorder. J Pediatr Hematol Oncol 2006; 28:696-8. [PMID: 17023834 DOI: 10.1097/01.mph.0000212997.02554.f6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A Down syndrome male showed leukocytosis from birth and was diagnosed as transient myeloproliferative disorder (TMD). Eight months later, his condition had progressed to myelodysplastic syndrome after spontaneous resolution, and it then evolved to acute megakaryoblastic leukemia (AMKL) at the age of 20 months. Sequencing analysis showed that the predominant TMD and AMKL clones had different GATA1 mutations, although a minor TMD clone identical to the AMKL clone was present at birth. These observations suggest that a minor clone rather than the predominant clone at the time of TMD may give rise to AMKL later on.
Collapse
Affiliation(s)
- Gang Xu
- Department of Pediatrics, Hirosaki University School of Medicine, Hirosaki, Aomori, Japan
| | | | | | | | | | | |
Collapse
|
117
|
Majewski IJ, Metcalf D, Mielke LA, Krebs DL, Ellis S, Carpinelli MR, Mifsud S, Di Rago L, Corbin J, Nicola NA, Hilton DJ, Alexander WS. A mutation in the translation initiation codon of Gata-1 disrupts megakaryocyte maturation and causes thrombocytopenia. Proc Natl Acad Sci U S A 2006; 103:14146-51. [PMID: 16966598 PMCID: PMC1599926 DOI: 10.1073/pnas.0606439103] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have generated mice from a N-ethyl-N-nitrosourea mutagenesis screen that carry a mutation in the translation initiation codon of Gata-1, termed Plt13, which is equivalent to mutations found in patients with acute megakaryoblastic leukemia and Down syndrome. The Gata-1 locus is present on the X chromosome in humans and in mice. Male mice hemizygous for the mutation (Gata-1Plt13/Y) failed to produce red blood cells and died during embryogenesis at a similar stage to Gata-1-null animals. Female mice that carry the Plt13 mutation are mosaic because of random inactivation of the X chromosome. Adult Gata-1Plt13/+ females were not anemic, but they were thrombocytopenic and accumulated abnormal megakaryocytes without a concomitant increase in megakaryocyte progenitor cells. Gata-1Plt13/+ mice contained large numbers of blast-like colony-forming cells, particularly in the fetal liver, but also in adult spleen and bone marrow, from which continuous mast cells lines were readily derived. Although the equivalent mutation to Gata-1Plt13 in humans results in production of GATA-1s, a short protein isoform initiated from a start codon downstream of the mutated initiation codon, Gata-1s was not detected in Gata-1Plt13/+ mice.
Collapse
Affiliation(s)
- Ian J. Majewski
- *The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia; and
| | - Donald Metcalf
- *The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia
| | - Lisa A. Mielke
- *The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia
| | - Danielle L. Krebs
- *The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia
| | - Sarah Ellis
- Peter MacCallum Cancer Centre, Trescowthick Research Laboratories, St. Andrew's Place, East Melbourne, Victoria 3002, Australia
| | - Marina R. Carpinelli
- *The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia
| | - Sandra Mifsud
- *The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia
| | - Ladina Di Rago
- *The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia
| | - Jason Corbin
- *The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia
| | - Nicos A. Nicola
- *The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia
| | - Douglas J. Hilton
- *The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia
| | - Warren S. Alexander
- *The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia
| |
Collapse
|
118
|
|
119
|
Hollanda LM, Lima CSP, Cunha AF, Albuquerque DM, Vassallo J, Ozelo MC, Joazeiro PP, Saad STO, Costa FF. An inherited mutation leading to production of only the short isoform of GATA-1 is associated with impaired erythropoiesis. Nat Genet 2006; 38:807-12. [PMID: 16783379 DOI: 10.1038/ng1825] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2006] [Accepted: 05/16/2006] [Indexed: 11/10/2022]
Abstract
Acquired somatic mutations in exon 2 of the hematopoietic transcription factor GATA-1 have been found in individuals with Down syndrome with both transient myeloproliferative disorder and acute megakaryoblastic leukemia. These mutations prevent the synthesis of the full-length protein but allow the synthesis of its short isoform, GATA-1s. Experiments in mice suggest that GATA-1s supports normal adult megakaryopoiesis, platelet formation and erythropoiesis. Here we report a mutation, 332G --> C, in exon 2 of GATA1, leading to the synthesis of only the short isoform in seven affected males from two generations of a family. Hematological profiles of affected males demonstrate macrocytic anemia, normal platelet counts and neutropenia in most cases. Altogether, data suggest that GATA-1s alone, produced in low or normal levels, is not sufficient to support normal erythropoiesis. Moreover, this is the first study to indicate that a germline splicing mutation does not lead to leukemia in the absence of other cooperating events, such as Down syndrome.
Collapse
Affiliation(s)
- Luciana M Hollanda
- Department of Internal Medicine, Hemocentro, School of Medical Science, Universidade Estadual de Campinas, Campinas, São Paulo 13083-970, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Muntean AG, Ge Y, Taub JW, Crispino JD. Transcription factor GATA-1 and Down syndrome leukemogenesis. Leuk Lymphoma 2006; 47:986-97. [PMID: 16840187 DOI: 10.1080/10428190500485810] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Mutations in transcription factors constitute one means by which normal hematopoietic progenitors are converted to leukemic stem cells. Recently, acquired mutations in the megakaryocytic regulator GATA1 have been found in essentially all cases of acute megakaryoblastic leukemia (AMkL) in children with Down syndrome and in the closely related malignancy transient myeloproliferative disorder. In all cases, mutations in GATA1 lead to the expression of a shorter isoform of GATA-1, named GATA-1s. Because GATA-1s retains both DNA binding zinc fingers, but is missing the N-terminal transactivation domain, it has been predicted that the inability of GATA-1s to regulate its normal class of megakaryocytic target genes is the mechanism by which mutations in GATA1 contribute to the disease. Indeed, several recent reports have confirmed that GATA-1s fails to properly regulate the growth of megakaryocytic precursors, likely through aberrant transcriptional regulation. Although the specific target genes of GATA-1 mis-regulated by GATA-1s that drive this abnormal growth remain undefined, multiple candidate genes have been identified via gene array studies. Finally, the inability of GATA-1s to promote expression of important metabolic genes, such as cytadine deaminase, likely contributes to the remarkable hypersensitivity of AMkL blasts to cytosine arabinoside. Future studies to define the entire class of genes dysregulated by mutations in GATA1 will provide important insights into the etiology of these malignancies.
Collapse
Affiliation(s)
- Andrew G Muntean
- Ben May Institute for Cancer Research, University of Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
121
|
Hasle H, Lund B, Nyvold CG, Hokland P, Østergaard M. WT1 gene expression in children with Down syndrome and transient myeloproliferative disorder. Leuk Res 2006; 30:543-6. [PMID: 16242775 DOI: 10.1016/j.leukres.2005.09.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2005] [Revised: 09/19/2005] [Accepted: 09/20/2005] [Indexed: 10/25/2022]
Abstract
Transient myeloproliferative disorder (TMD) is found in 10% of newborns with Down syndrome (DS). Myeloid leukemia develops in 25% within the following 3 years. Little is known about markers predicting leukemia occurrence. We studied expression levels of the Wilms tumor gene (WT1) by real-time quantitative PCR (RQ-PCR) in peripheral blood of five infants with TMD. WT1 levels were elevated similar to findings in AML. Longitudinal studies showed normalization of the WT1 level in all patients except one who developed GATA1 mutated myeloid leukemia at 11 months of age. The lack of normalization of WT1 level may be a predictor of leukemia development and WT1 expression may be an attractive marker for monitoring of minimal residual disease.
Collapse
Affiliation(s)
- Henrik Hasle
- Department of Pediatrics, Skejby Hospital, DK-8200 Aarhus N, Denmark
| | | | | | | | | |
Collapse
|
122
|
Xu G, Kanezaki R, Toki T, Watanabe S, Takahashi Y, Terui K, Kitabayashi I, Ito E. Physical association of the patient-specific GATA1 mutants with RUNX1 in acute megakaryoblastic leukemia accompanying Down syndrome. Leukemia 2006; 20:1002-8. [PMID: 16628190 DOI: 10.1038/sj.leu.2404223] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mutations of the GATA1 gene on chromosome X have been found in almost all cases of transient myeloproliferative disorder and acute megakaryoblastic leukemia (AMKL) accompanying Down syndrome (DS). Although most GATA1 mutations lead to the expression of GATA1s lacking the N-terminal activation domain, we recently found two novel GATA1 proteins with defects in another N-terminal region. It has been suggested that loss of the N-terminal portion of GATA1 might interfere with physiological interactions with the critical megakaryocytic transcription factor RUNX1, and this would imply that GATA1s is not able to interact properly with RUNX1. However, the interaction domain of GATA1 remains controversial. In this study, we show that GATA1 binds to RUNX1 through its zinc-finger domains, and that the C-finger is indispensable for synergy with RUNX1. All of the patient-specific GATA1 mutants interacted efficiently with RUNX1 and retained their ability to act synergistically with RUNX1 on the megakaryocytic GP1balpha promoter, whereas the levels of transcriptional activities were diverse among the mutants. Thus, our data indicate that physical interaction and synergy between GATA1 and RUNX1 are retained in DS-AMKL, although it is still possible that increased RUNX1 activity plays a role in the development of leukemia in DS.
Collapse
Affiliation(s)
- G Xu
- 1Department of Pediatrics, Hirosaki University School of Medicine, Hirosaki, Japan
| | | | | | | | | | | | | | | |
Collapse
|
123
|
Magalhães IQ, Splendore A, Emerenciano M, Figueiredo A, Ferrari I, Pombo-de-Oliveira MS. GATA1 mutations in acute leukemia in children with Down syndrome. ACTA ACUST UNITED AC 2006; 166:112-6. [PMID: 16631466 DOI: 10.1016/j.cancergencyto.2005.10.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2005] [Revised: 10/05/2005] [Accepted: 10/06/2005] [Indexed: 10/24/2022]
Abstract
It has been reported that somatic mutations in the X-linked GATA1 gene are present in hematological clonal disorders in children with Down syndrome (DS). We analyzed retrospective samples of DS children with acute myeloid leukemia, transient leukemia (TL), and myelodysplastic syndrome (MDS) to test whether the specificity of GATA1 mutations can be helpful in distinguishing these hematopoietic disorders. A total of 49 samples were subjected to GATA1 mutation screening by direct sequencing and denaturing polyacrylamide gel electrophoresis (PAGE). Mutations in exon 2 of GATA1 were detected in six of eight DS-AML M7 samples and in four of six DS-TL; no mutation was detected in 13 children with acute lymphoblastic leukemia (DS-ALL), 6 with DS-AML (M0, M2, and M5), 6 with DS-MDS and in 8 DS infants without hematological disorders and 2 children with AML M7 without DS. Blast cells proportion in the sample represented a critical aspect on the sensitivity of mutation detection in GATA1, and a combination of sequence analysis and PAGE is necessary to detect mutations when blast percentage is low. The absence of detected mutations in any of the DS-MDS cases raises the question whether MDS in DS children is an intermediate stage between TL and AML M7, as previously suggested.
Collapse
Affiliation(s)
- Isis Quezado Magalhães
- Departamento de Hematologia/Oncologia Pediátrica SES-DF, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | | | | | | | | | | |
Collapse
|
124
|
Diekamp S, Creutzig U, Reinhardt D, Baumann-Köhler M. Transitorisch myeloproliferatives Syndrom bei Neugeborenen mit Down-Syndrom. Monatsschr Kinderheilkd 2006. [DOI: 10.1007/s00112-004-1016-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
125
|
Stachura DL, Chou ST, Weiss MJ. Early block to erythromegakaryocytic development conferred by loss of transcription factor GATA-1. Blood 2006; 107:87-97. [PMID: 16144799 PMCID: PMC1895362 DOI: 10.1182/blood-2005-07-2740] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2005] [Accepted: 08/24/2005] [Indexed: 12/31/2022] Open
Abstract
Transcription factor GATA-1 is essential at multiple stages of hematopoiesis. Murine gene targeting and analysis of naturally occurring human mutations demonstrate that GATA-1 drives the maturation of committed erythroid precursors and megakaryocytes. Prior studies also suggest additional, poorly defined, roles for GATA-1 at earlier stages of erythromegakaryocytic differentiation. To investigate these functions further, we stimulated Gata1- murine embryonic stem-cell-derived hematopoietic cultures with thrombopoietin, a multistage cytokine. Initially, the cultures generated a wave of mutant megakaryocytes. However, these were rapidly overgrown by a unique population of thrombopoietin-dependent blasts that express immature markers and proliferate indefinitely. Importantly, on restoration of GATA-1 function, these cells differentiated into both erythroid and megakaryocytic lineages, suggesting that they represent bipotential progenitors. Identical cells are also present in vivo, as indicated by flow cytometry and culture analysis of fetal livers from Gata1- chimeric mice. Our findings indicate that loss of GATA-1 impairs the maturation of megakaryocyte-erythroid progenitors. This defines a new role for GATA-1 at a relatively early stage of hematopoiesis and provides potential insight into recent discoveries that human GATA1 mutations promote acute megakaryoblastic leukemia, a clonal malignancy with features of both erythroid and megakaryocyte maturation.
Collapse
Affiliation(s)
- David L Stachura
- Cell and Molecular Biology Graduate Program, The University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | | | | |
Collapse
|
126
|
Abstract
The development of mature blood cells from hematopoietic stem cells is regulated by transcription factors that control and coordinate the expression of lineage-specific genes. The GATA family consists of six transcription factors that function in hematopoietic and endodermal development. Among them, GATA-1 is expressed in erythroid, megakaryocytic, eosinophil and mast cell lineages, and GATA-2 is expressed in stem and progenitor cells, at more immature stage compared with GATA-1. Based on the characteristic phenotypes of GATA-1 and GATA-2 mutant mice, it has been suggested that mutations of these GATA genes in humans may result in the onset of certain clinical diseases. To date, mutations of GATA-1 gene have been found in inherited anemia and thrombocytopenia, and Down syndrome-related acute leukemia, which exhibits megakaryocytic phenotypes and frequently occurs in patients with Down syndrome. In contrast, no mutation of GATA-2 gene has been identified in hematological diseases; however, we found the expression level of GATA-2 is significantly decreased in CD34 positive cells in patients with aplastic anemia. Since GATA-2 functions in the proliferation of hematopoietic stem cells, the reduction of GATA-2 expression in CD34 positive cells may result in the decreased number of hematopoietic stem cells, which is the characteristic feature of aplastic anemia. Based on these lines of evidence, some types of hematological diseases may be defined as transcription factor diseases.
Collapse
Affiliation(s)
- Hideo Harigae
- Department of Rheumatology and Hematology, Tohoku University Graduate School of Medicine, Sendai, Japan.
| |
Collapse
|
127
|
Yamasaki C, Koyanagi KO, Fujii Y, Itoh T, Barrero R, Tamura T, Yamaguchi-Kabata Y, Tanino M, Takeda JI, Fukuchi S, Miyazaki S, Nomura N, Sugano S, Imanishi T, Gojobori T. Investigation of protein functions through data-mining on integrated human transcriptome database, H-Invitational database (H-InvDB). Gene 2005; 364:99-107. [PMID: 16185827 DOI: 10.1016/j.gene.2005.05.036] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2005] [Revised: 04/06/2005] [Accepted: 05/30/2005] [Indexed: 10/25/2022]
Abstract
H-Invitational Database (H-InvDB; ) is a human transcriptome database, containing integrative annotation of 41,118 full-length cDNA clones originated from 21,037 loci. H-InvDB is a product of the H-Invitational project, an international collaboration to systematically and functionally validate human genes by analysis of a unique set of high quality full-length cDNA clones using automatic annotation and human curation under unified criteria. Here, 19,574 proteins encoded by these cDNAs were classified into 11,709 function-known and 7865 function-unknown hypothetical proteins by similarity with protein databases and motif prediction (InterProScan). The proportion of "hypothetical proteins" in H-InvDB was as high as 40.4%. In this study, we thus conducted data-mining in H-InvDB with the aim of assigning advanced functional annotations to those hypothetical proteins. First, by data-mining in the H-InvDB version of GTOP, we identified 337 SCOP domains within 7865 H-Inv hypothetical proteins. Second, by data-mining of predicted subcellular localization by SOSUI and TMHMM in H-InvDB, we found 1032 transmembrane proteins within H-Inv hypothetical proteins. These results clearly demonstrate that structural prediction is effective for functional annotation of proteins with unknown functions. All the data in H-InvDB are shown in two main views, the cDNA view and the Locus view, and five auxiliary databases with web-based viewers; DiseaseInfo Viewer, H-ANGEL, Clustering Viewer, G-integra and TOPO Viewer; the data also are provided as flat files and XML files. The data consists of descriptions of their gene structures, novel alternative splicing isoforms, functional RNAs, functional domains, subcellular localizations, metabolic pathways, predictions of protein 3D structure, mapping of SNPs and microsatellite repeat motifs in relation with orphan diseases, gene expression profiling, and comparisons with mouse full-length cDNAs in the context of molecular evolution. This unique integrative platform for conducting in silico data-mining represents a substantial contribution to resources required for the exploration of human biology and pathology.
Collapse
Affiliation(s)
- Chisato Yamasaki
- Biological Information Research Center, National Institute of Advanced Industrial Science and Technology, AIST Waterfront Bio-IT Research Building, 2-42 Aomi, Koto-ku, Tokyo 135-0064, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
128
|
Rainis L, Toki T, Pimanda JE, Rosenthal E, Machol K, Strehl S, Göttgens B, Ito E, Izraeli S. The proto-oncogene ERG in megakaryoblastic leukemias. Cancer Res 2005; 65:7596-602. [PMID: 16140924 DOI: 10.1158/0008-5472.can-05-0147] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aneuploidy is one of the hallmarks of cancer. Acquired additions of chromosome 21 are a common finding in leukemias, suggesting a contributory role to leukemogenesis. About 10% of patients with a germ line trisomy 21 (Down syndrome) are born with transient megakaryoblastic leukemia. We and others have shown acquired mutations in the X chromosome gene GATA1 in all these cases. The gene or genes on chromosome 21 whose overexpression promote the megakaryoblastic phenotype are presently unknown. We propose that ERG, an Ets transcription factor situated on chromosome 21, is one such candidate. We show that ERG is expressed in hematopoietic stem cells, megakaryoblastic cell lines, and in primary leukemic cells from Down syndrome patients. ERG expression is induced upon megakaryocytic differentiation of the erythroleukemia cell lines K562 and UT-7, and forced expression of ERG in K562 cells induces erythroid to megakaryoblastic phenotypic switch. We also show that ERG activates the gpIb megakaryocytic promoter and binds the gpIIb promoter in vivo. Furthermore, both ERG and ETS2 bind in vivo the hematopoietic enhancer of SCL/TAL1, a key regulator of hematopoietic stem cell and megakaryocytic development. We propose that trisomy 21 facilitates the occurrence of megakaryoblastic leukemias through a shift toward the megakaryoblastic lineage caused by the excess expression of ERG, and possibly by other chromosome 21 genes, such as RUNX1 and ETS2, in hematopoietic progenitor cells, coupled with a differentiation arrest caused by the acquisition of mutations in GATA1.
Collapse
MESH Headings
- Base Sequence
- Basic Helix-Loop-Helix Transcription Factors
- Cell Lineage
- Chromosomes, Human, Pair 21/genetics
- DNA-Binding Proteins/biosynthesis
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Erythroid-Specific DNA-Binding Factors
- GATA1 Transcription Factor
- HeLa Cells
- Hematopoietic Stem Cells/metabolism
- Humans
- K562 Cells
- Leukemia, Erythroblastic, Acute/genetics
- Leukemia, Erythroblastic, Acute/pathology
- Leukemia, Megakaryoblastic, Acute/genetics
- Leukemia, Megakaryoblastic, Acute/metabolism
- Leukemia, Megakaryoblastic, Acute/pathology
- Molecular Sequence Data
- Oncogene Proteins/biosynthesis
- Oncogene Proteins/genetics
- Promoter Regions, Genetic
- Proto-Oncogene Mas
- Proto-Oncogene Proteins/metabolism
- T-Cell Acute Lymphocytic Leukemia Protein 1
- Trans-Activators/biosynthesis
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcriptional Regulator ERG
Collapse
Affiliation(s)
- Liat Rainis
- Department of Pediatric Hematology-Oncology, Safra Children's Hospital and Hematology Institute, Sheba Cancer Research Center, Sheba Medical Center, Tel-Hashomer, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
129
|
Stegmaier K, Corsello SM, Ross KN, Wong JS, Deangelo DJ, Golub TR. Gefitinib induces myeloid differentiation of acute myeloid leukemia. Blood 2005; 106:2841-8. [PMID: 15998836 PMCID: PMC1895296 DOI: 10.1182/blood-2005-02-0488] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2005] [Accepted: 06/12/2005] [Indexed: 11/20/2022] Open
Abstract
Cure rates for patients with acute myeloid leukemia (AML) remain low despite ever-increasing dose intensity of cytotoxic therapy. In an effort to identify novel approaches to AML therapy, we recently reported a new method of chemical screening based on the modulation of a gene expression signature of interest. We applied this approach to the discovery of AML-differentiation-promoting compounds. Among the compounds inducing neutrophilic differentiation was DAPH1 (4,5-dianilinophthalimide), previously reported to inhibit epidermal growth factor receptor (EGFR) kinase activity. Here we report that the Food and Drug Administration (FDA)-approved EGFR inhibitor gefitinib similarly promotes the differentiation of AML cell lines and primary patient-derived AML blasts in vitro. Gefitinib induced differentiation based on morphologic assessment, nitro-blue tetrazolium reduction, cell-surface markers, genome-wide patterns of gene expression, and inhibition of proliferation at clinically achievable doses. Importantly, EGFR expression was not detected in AML cells, indicating that gefitinib functions through a previously unrecognized EGFR-independent mechanism. These studies indicate that clinical trials testing the efficacy of gefitinib in patients with AML are warranted.
Collapse
|
130
|
Hao X, Shin MS, Zhou JX, Lee CH, Qi CF, Naghashfar Z, Hartley JW, Fredrickson TN, Ward JM, Morse HC. Histologic and molecular characterizations of megakaryocytic leukemia in mice. Leuk Res 2005; 30:397-406. [PMID: 16219351 DOI: 10.1016/j.leukres.2005.08.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2005] [Revised: 08/17/2005] [Accepted: 08/18/2005] [Indexed: 10/25/2022]
Abstract
Six cases of megakaryocytic leukemia (MKL) were identified and analyzed for morphology and molecular features. MKL were composed of megakaryocyte lineage cells ranging from immature to quite mature cells. VWF, GATA1 and RUNX1 were strongly expressed in megakaryocytes in both normal spleen and MKL as analyzed by immunohistochemistry (IHC). Altered expression of Meis1, Pbx1 and Psen2 and Lef1 in MKL detected with oligonucleotide microarrays was confirmed by qPCR and IHC. This is the first report of spontaneous MKL in mice, defining VWF as a biomarker for diagnosis and suggesting possible involvement of a series of genes in disease pathogenesis.
Collapse
Affiliation(s)
- Xingpei Hao
- Laboratory of Immunopathology, National Institute of Allergy and Infectious Diseases, National Institute of Health, Rockville, MD 20852, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
131
|
Splendore A, Magalhães IQ, Pombo-de-Oliveira MS. GATA1mutations in myeloproliferative disorders: nomenclature standardization and review of the literature. Hum Mutat 2005; 26:390-2. [PMID: 16134163 DOI: 10.1002/humu.20233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
132
|
Munugalavadla V, Dore LC, Tan BL, Hong L, Vishnu M, Weiss MJ, Kapur R. Repression of c-kit and its downstream substrates by GATA-1 inhibits cell proliferation during erythroid maturation. Mol Cell Biol 2005; 25:6747-59. [PMID: 16024808 PMCID: PMC1190349 DOI: 10.1128/mcb.25.15.6747-6759.2005] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Stem cell factor (SCF), erythropoietin (Epo), and GATA-1 play an essential role(s) in erythroid development. We examined how these proteins interact functionally in G1E cells, a GATA-1(-) erythroblast line that proliferates in an SCF-dependent fashion and, upon restoration of GATA-1 function, undergoes GATA-1 proliferation arrest and Epo-dependent terminal maturation. We show that SCF-induced cell cycle progression is mediated via activation of the Src kinase/c-Myc pathway. Restoration of GATA-1 activity induced G1 cell cycle arrest coincident with repression of c-Kit and its downstream effectors Vav1, Rac1, and Akt. Sustained expression of each of these individual signaling components inhibited GATA-1-induced cell cycle arrest to various degrees but had no effects on the expression of GATA-1-regulated erythroid maturation markers. Chromatin immunoprecipitation analysis revealed that GATA-1 occupies a defined Kit gene regulatory element in vivo, suggesting a direct mechanism for gene repression. Hence, in addition to its well-established function as an activator of erythroid genes, GATA-1 also participates in a distinct genetic program that inhibits cell proliferation by repressing the expression of multiple components of the c-Kit signaling axis. Our findings reveal a novel aspect of molecular cross talk between essential transcriptional and cytokine signaling components of hematopoietic development.
Collapse
Affiliation(s)
- Veerendra Munugalavadla
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Cancer Research Institute, 1044 W. Walnut Street, Room 425, Indianapolis, IN 46202, USA.
| | | | | | | | | | | | | |
Collapse
|
133
|
Nakano M, Ohneda K, Yamamoto-Mukai H, Shimizu R, Ohneda O, Ohmura S, Suzuki M, Tsukamoto S, Yanagawa T, Yoshida H, Takakuwa Y, Yamamoto M. Transgenic over-expression of GATA-1 mutant lacking N-finger domain causes hemolytic syndrome in mouse erythroid cells. Genes Cells 2005; 10:47-62. [PMID: 15670213 DOI: 10.1111/j.1365-2443.2005.00814.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Transcription factor GATA-1 is essential for erythroid cell differentiation. GATA-binding motifs have been found in the regulatory regions of various erythroid-specific genes, suggesting that GATA-1 contributes to gene regulation during the entire process of erythropoiesis. A GATA-1 germ-line mutation results in embryonic lethality due to defective primitive erythropoiesis and GATA-1-null embryonic stem cells fails to differentiate beyond the proerythroblast stage. Therefore, the precise roles of GATA-1 in the later stages of erythropoiesis could not be clarified. Under the control of a GATA-1 gene hematopoietic regulatory domain, a GATA-1 mutant lacking the N-finger domain (DeltaNF mutant) was over-expressed in mice. These mice exhibited abnormal morphology in peripheral red blood cells (RBCs), reticulocytosis, splenomegaly, and erythroid hyperplasia, indicating compensated hemolysis. These mice were extremely sensitive to phenylhydrazine (PHZ), an agent that induces hemolysis, and their RBCs were osmotically fragile. Importantly, the hemolytic response to PHZ was partially restored by the simultaneous expression of wild-type GATA-1 with the DeltaNF mutant, supporting our contention that DeltaNF protein competitively inhibits the function of endogenous GATA-1. These data provide the first in vivo evidence that the NF domain contributes to the gene regulation that is critical for differentiation and survival of mature RBCs in postnatal erythropoiesis.
Collapse
Affiliation(s)
- Mayu Nakano
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba 305-8577, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
134
|
Morceau F, Schnekenburger M, Dicato M, Diederich M. GATA-1: friends, brothers, and coworkers. Ann N Y Acad Sci 2005; 1030:537-54. [PMID: 15659837 DOI: 10.1196/annals.1329.064] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
GATA-1 is the founding member of the GATA family of transcription factors. GATA-1 and GATA family member GATA-2 are expressed in erythroid and megakaryocytic lineages, in which they play a crucial role in cell maturation and differentiation. GATA-1 regulates the transcription of many specific and nonspecific erythroid genes by binding to DNA at the consensus sequence WGATAR, which is recognized by all of the GATA family of transcription factors. However, it was identified in eosinophilic cells and also in Sertoli cells in testis. Its activity depends on close cooperation with a functional network of cofactors, among them Friend of GATA, PU.1, and CBP/p300. The GATA-1 protein structure has been well described and includes two zinc fingers that are directly involved in the interaction with DNA and other proteins in vivo. GATA-1 mutations in the zinc fingers can cause deregulation of required interactions and lead to severe dysfunction in the hematopoietic system.
Collapse
Affiliation(s)
- Franck Morceau
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, L-2540 Luxembourg, Luxembourg
| | | | | | | |
Collapse
|
135
|
Abstract
GATA family transcription factors play essential roles in broad developmental settings. GATA-1, one of the hematopoietically expressed members, is required for normal erythroid and megakaryocytic differentiation. Over the past few years, mutations in the gene encoding GATA-1 have been linked to several human hematologic disorders, including X-linked dyserythropoietic anemia and thrombocytopenia, X-linked thrombocytopenia and beta-thalassemia, and Down syndrome acute megakaryoblastic leukemia. This review summarizes the role of GATA-1 during normal hematopoiesis and discusses how disease-associated mutations may affect its function.
Collapse
Affiliation(s)
- Alan B Cantor
- Division of Pediatric Hematology/Oncology, Children's Hospital Boston, Boston, Massachusetts 02115, USA.
| |
Collapse
|
136
|
Li Z, Godinho FJ, Klusmann JH, Garriga-Canut M, Yu C, Orkin SH. Developmental stage-selective effect of somatically mutated leukemogenic transcription factor GATA1. Nat Genet 2005; 37:613-9. [PMID: 15895080 DOI: 10.1038/ng1566] [Citation(s) in RCA: 220] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2005] [Accepted: 04/01/2005] [Indexed: 11/09/2022]
Abstract
Acquired mutations in the hematopoietic transcription factor GATA binding protein-1 (GATA1) are found in megakaryoblasts from nearly all individuals with Down syndrome with transient myeloproliferative disorder (TMD, also called transient leukemia) and the related acute megakaryoblastic leukemia (DS-AMKL, also called DS-AML M7). These mutations lead to production of a variant GATA1 protein (GATA1s) that is truncated at its N terminus. To understand the biological properties of GATA1s and its relation to DS-AMKL and TMD, we used gene targeting to generate Gata1 alleles that express GATA1s in mice. We show that the dominant action of GATA1s leads to hyperproliferation of a unique, previously unrecognized yolk sac and fetal liver progenitor, which we propose accounts for the transient nature of TMD and the restriction of DS-AMKL to infants. Our observations raise the possibility that the target cells in other leukemias of infancy and early childhood are distinct from those in adult leukemias and underscore the interplay between specific oncoproteins and potential target cells.
Collapse
Affiliation(s)
- Zhe Li
- Division of Hematology/Oncology, Childrens Hospital, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
137
|
Pan X, Ohneda O, Ohneda K, Lindeboom F, Iwata F, Shimizu R, Nagano M, Suwabe N, Philipsen S, Lim KC, Engel JD, Yamamoto M. Graded levels of GATA-1 expression modulate survival, proliferation, and differentiation of erythroid progenitors. J Biol Chem 2005; 280:22385-94. [PMID: 15817467 DOI: 10.1074/jbc.m500081200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcription factor GATA-1 plays an important role in gene regulation during the development of erythroid cells. Several reports suggest that GATA-1 plays multiple roles in survival, proliferation, and differentiation of erythroid cells. However, little is known about the relationship between the level of GATA-1 expression and its nature of multifunction to affect erythroid cell fate. To address this issue, we developed in vitro embryonic stem (ES) culture system by using OP9 stromal cells (OP9/ES cell co-culture system), and cultured the mutant (GATA-1.05 and GATA-1-null) and wild type (WT)ES cells, respectively. By using this OP9/ES cell co-culture system, primitive and definitive erythroid cells were developed individually, and we examined how expression level of GATA-1 affects the development of erythroid cells. GATA-1.05 ES-derived definitive erythroid cells were immature with the appearance of proerythroblasts, and highly proliferated, compared with WT and GATA-1-null ES-derived erythroid cells. Extensive studies of cell cycle kinetics revealed that the GATA-1.05 proerythroblasts accumulated in S phase and expressed lower levels of p16(INK4A) than WT ES cell-derived proerythroblasts. We concluded that GATA-1 must achieve a critical threshold activity to achieve selective activation of specific target genes, thereby influencing the developmental decision of an erythroid progenitor cell to undergo apoptosis, proliferation, or terminal differentiation.
Collapse
Affiliation(s)
- Xiaoqing Pan
- Department of Molecular and Developmental Biology, Center for TARA, ERATO Environmental Response Project, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba 305-8577, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
138
|
Ge Y, Stout ML, Tatman DA, Jensen TL, Buck S, Thomas RL, Ravindranath Y, Matherly LH, Taub JW. GATA1, cytidine deaminase, and the high cure rate of Down syndrome children with acute megakaryocytic leukemia. J Natl Cancer Inst 2005; 97:226-31. [PMID: 15687366 DOI: 10.1093/jnci/dji026] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Down syndrome children with acute megakaryocytic leukemia (AMkL) have higher cure rates than non-Down syndrome acute myeloid leukemia (AML) patients treated with cytosine arabinoside (ara-C). Megakaryoblasts from Down syndrome AML patients are more sensitive in vitro to ara-C than cells from non-Down syndrome AML patients. Somatic mutations in the GATA1 transcription factor have been detected exclusively and almost uniformly in Down syndrome AMkL patients, suggesting a potential linkage to the chemotherapy sensitivity of Down syndrome megakaryoblasts. Stable transfection of wild-type GATA1 cDNA into the Down syndrome AMkL cell line CMK resulted in decreased (8- to 17-fold) ara-C sensitivity and a threefold-lower generation of the active ara-C metabolite ara-CTP compared with that for mock-transfected CMK cells. High intracellular levels of uridine arabinoside (ara-U) (an inactive ara-C catabolite generated by cytidine deaminase) and cytidine deaminase transcripts were detected in GATA1-transfected CMK sublines, whereas no ara-U was detected in mock-transfected cells. Cytidine deaminase transcripts were a median 5.1-fold (P = .002) lower in Down syndrome megakaryoblasts (n = 16) than in blast cells from non-Down syndrome patients (n = 56). These results suggest that GATA1 transcriptionally upregulates cytidine deaminase and that the presence or absence of GATA1 mutations in AML blasts likely confers differences in ara-C sensitivities due to effects on cytidine deaminase gene expression, which, in turn, contributes to the high cure rate of Down syndrome AMkL patients.
Collapse
MESH Headings
- Antimetabolites, Antineoplastic/metabolism
- Arabinofuranosylcytosine Triphosphate/metabolism
- Arabinofuranosyluracil/metabolism
- Blotting, Western
- Child
- Cytarabine/metabolism
- Cytidine Deaminase/genetics
- Cytidine Deaminase/metabolism
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Down Syndrome/complications
- Down Syndrome/genetics
- Down Syndrome/metabolism
- Erythroid-Specific DNA-Binding Factors
- GATA1 Transcription Factor
- Humans
- Leukemia, Megakaryoblastic, Acute/complications
- Leukemia, Megakaryoblastic, Acute/enzymology
- Leukemia, Megakaryoblastic, Acute/genetics
- Leukemia, Megakaryoblastic, Acute/metabolism
- Polymerase Chain Reaction
- Time Factors
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcription, Genetic
- Transcriptional Activation
- Up-Regulation
Collapse
Affiliation(s)
- Yubin Ge
- Experimental and Clinical Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, MI, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
139
|
Carpenter E, Valverde-Garduno V, Sternberg A, Mitchell C, Roberts I, Vyas P, Vora A. GATA1 mutation and trisomy 21 are required only in haematopoietic cells for development of transient myeloproliferative disorder. Br J Haematol 2005; 128:548-51. [PMID: 15686466 DOI: 10.1111/j.1365-2141.2004.05342.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Trisomy 21 [Down's syndrome (DS)] and mutations in transcription factor GATA1 predispose neonates to a transient myeloproliferative disorder (TMD) and/or acute megakaryocytic leukaemia (AMKL). The role of trisomy 21 in their pathogenesis is unclear. We previously reported two rare neonates without DS who had TMD, one of whom progressed to AMKL. Trisomy 21 was detected only in blood cells at presentation with TMD/AMKL and disappeared with disease resolution. We now show that the blood cells at presentation of TMD harboured GATA1 genomic DNA mutations, suggesting a requirement for trisomy 21 in haematopoietic cells, rather than other cell types, for development of TMD/AMKL.
Collapse
Affiliation(s)
- Emily Carpenter
- Department of Haematology and MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Oxford Radcliffe Hospital, Oxford OX3 9DU, UK
| | | | | | | | | | | | | |
Collapse
|
140
|
Sandoval C, Pine SR, Guo Q, Sastry S, Stewart J, Kronn D, Jayabose S. Tetrasomy 21 transient leukemia with a GATA1 mutation in a phenotypically normal trisomy 21 mosaic infant: case report and review of the literature. Pediatr Blood Cancer 2005; 44:85-91. [PMID: 15390279 DOI: 10.1002/pbc.20161] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Infants with constitutional trisomy 21 are at increased risk of developing transient and acute megakaryoblastic leukemia (AMKL). Mutations in GATA1 have been identified in trisomy 21 patients with AMKL, and this lesion is thought to be an initial event by virtue of its presence during transient leukemia. Transient leukemia is also observed in phenotypically normal infants albeit much less commonly so. Almost all these infants are mosaic for trisomy 21, and the clinical course of transient leukemia recapitulates that observed in constitutional trisomy 21. We report a phenotypically normal infant with tetrasomy 21 transient leukemia, GATA1 mutation within exon 2, and trisomy 21 mosaicism restricted to the hematopoietic tissue. Two years after diagnosis, low levels of trisomy 21 persisted in the peripheral blood, which resolved 2.5 years after diagnosis. The GATA1 mutation was not detected at last follow-up. The literature review identified 32 phenotypically normal infants with transient leukemia. Ninety-one percent (29 of 32) were observed and three received chemotherapy at diagnosis of transient leukemia. Nineteen percent (6 of 32) developed acute leukemia, and four continued in remission (two died). Transient leukemia in trisomy 21 mosaicism recapitulates the condition observed in constitutional trisomy 21 at the biological and clinical levels. Infants should be followed for the development of acute leukemia.
Collapse
Affiliation(s)
- Claudio Sandoval
- Department of Pediatrics, New York Medical College, Valhalla, New York 10595, USA.
| | | | | | | | | | | | | |
Collapse
|
141
|
Crispino JD. GATA1 mutations in Down syndrome: implications for biology and diagnosis of children with transient myeloproliferative disorder and acute megakaryoblastic leukemia. Pediatr Blood Cancer 2005; 44:40-4. [PMID: 15390312 DOI: 10.1002/pbc.20066] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Although physicians have known for many decades that children with Down syndrome are predisposed to developing transient myeloproliferative disorder (TMD) and acute megakaryoblastic leukemia (AMKL), many questions regarding these disorders remain unresolved. First, what is the relationship between TMD and AMKL? Second, what specific genetic alterations contribute to the leukemic process? Finally, what factors lead to the increased predisposition to these myeloid disorders? In this review I will summarize important new insights into the biology of TMD and AMKL gained from the recent discovery that GATA1, a gene that encodes an essential hematopoietic transcription factor, is mutated in the leukemic blasts from nearly all patients with these malignancies. In addition, I will discuss whether assaying for the presence of a GATA1 mutation can aid in the diagnosis of these and related megakaryoblastic leukemias. Future research aimed at defining the activity of mutant GATA-1 protein and identifying interacting factors encoded by chromosome 21 will likely lead to an even greater understanding of this intriguing leukemia.
Collapse
Affiliation(s)
- John D Crispino
- Ben May Institute for Cancer Research, University of Chicago, Chicago, Illinois 60637, USA.
| |
Collapse
|
142
|
Abstract
Transient megakaryoblastic leukaemia is found in 10% of newborns with Down syndrome, characterized by constitutional trisomy 21. Although in most cases the leukaemic cells disappear spontaneously after the first months of life, irreversible acute megakaryoblastic leukaemia develops in 20% of these individuals within 4 years. The leukaemic cells typically harbour somatic mutations of the gene encoding GATA1, an essential transcriptional regulator of normal megakaryocytic differentiation. Leukaemia that specifically arises in the context of constitutional trisomy 21 and somatic GATA1 mutations is a unique biological model of the incremental process of leukaemic transformation.
Collapse
Affiliation(s)
- Johann K Hitzler
- Department of Pediatrics, Division of Hematology/Oncology, The Hospital for Sick Children, University of Toronto, Ontario, Canada.
| | | |
Collapse
|
143
|
Ravindranath Y. Down syndrome and leukemia: new insights into the epidemiology, pathogenesis, and treatment. Pediatr Blood Cancer 2005; 44:1-7. [PMID: 15486953 DOI: 10.1002/pbc.20242] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Yaddanapudi Ravindranath
- Wayne State University School of Medicine, Children's Hospital of Michigan, Detroit, Michigan 48201, USA.
| |
Collapse
|
144
|
Shimizu R, Kuroha T, Ohneda O, Pan X, Ohneda K, Takahashi S, Philipsen S, Yamamoto M. Leukemogenesis caused by incapacitated GATA-1 function. Mol Cell Biol 2004; 24:10814-25. [PMID: 15572684 PMCID: PMC533998 DOI: 10.1128/mcb.24.24.10814-10825.2004] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
GATA-1 is essential for the development of erythroid and megakaryocytic lineages. We found that GATA-1 gene knockdown female (GATA-1.05/X) mice frequently develop a hematopoietic disorder resembling myelodysplastic syndrome that is characterized by the accumulation of progenitors expressing low levels of GATA-1. In this study, we demonstrate that GATA-1.05/X mice suffer from two distinct types of acute leukemia, an early-onset c-Kit-positive nonlymphoid leukemia and a late-onset B-lymphocytic leukemia. Since GATA-1 is an X chromosome gene, two types of hematopoietic cells reside within heterozygous GATA-1 knockdown mice, bearing either an active wild-type GATA-1 allele or an active mutant GATA-1.05 allele. In the hematopoietic progenitors with the latter allele, low-level GATA-1 expression is sufficient to support survival and proliferation but not differentiation, leading to the accumulation of progenitors that are easily targeted by oncogenic stimuli. Since such leukemia has not been observed in GATA-1-null/X mutant mice, we conclude that the residual GATA-1 activity in the knockdown mice contributes to the development of the malignancy. This de novo model recapitulates the acute crisis found in preleukemic conditions in humans.
Collapse
Affiliation(s)
- Ritsuko Shimizu
- Center for TARA, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba 305-8577, Japan
| | | | | | | | | | | | | | | |
Collapse
|
145
|
Abstract
In the late 1980s, several research groups independently discovered the founding member of the GATA family of transcription factors, GATA-1. Each group had evidence that GATA-1 played an important role in erythroid gene expression, but little did they know that it would turn out to be a key regulator of development of not only red blood cells, but of several other hematopoietic cell types as well. Furthermore, few would have guessed that missense mutations in GATA1 would cause inherited blood disorders, while acquired mutations would be found associated with essentially all cases of acute megakaryoblastic leukemia (AMKL) in children with Down syndrome (DS). With respect to the latter disorder, the presence of a GATA1 mutation is now arguably the defining feature of this leukemia. In this review, I will summarize our current knowledge of the role of GATA-1 in normal development, and discuss how mutations in GATA1 lead to abnormal and malignant hematopoiesis.
Collapse
Affiliation(s)
- John D Crispino
- Ben May Institute for Cancer Research, University of Chicago, 924 E. 57th Street, Chicago, IL 60637, USA.
| |
Collapse
|
146
|
Lightfoot J, Hitzler JK, Zipursky A, Albert M, Macgregor PF. Distinct gene signatures of transient and acute megakaryoblastic leukemia in Down syndrome. Leukemia 2004; 18:1617-23. [PMID: 15343346 DOI: 10.1038/sj.leu.2403466] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Approximately 10% of newborns with Down syndrome develop Transient Leukemia (TL), a disorder that is unique to infants with constitutional trisomy 21 (or trisomy 21 mosaicism). TL blasts disappear spontaneously within the first 3 months of life in the majority of cases. Despite the resolution of TL, 20-30% of these newborns will go on to develop acute megakaryoblastic leukemia (AMKL) later in life. In this study, samples from both TL and AMKL patients were examined using cDNA microarrays to study the pathogenic progression from TL to AMKL. TL and AMKL samples partition separately by cluster analysis, and AMKL samples had substantial increases in apolipoprotein C-I, transporter 1, myosin alkali light chain 4, and spermidine/spermine N-acetyltransferase, compared to TL samples. Although these findings will require validation in an independent series of TL and AMKL samples, they indicate that TL and AMKL have distinct gene signatures, and provide a basis for studies of the different mechanisms underlying either the resolution of TL or its progression to AMKL.
Collapse
Affiliation(s)
- J Lightfoot
- Microarray Centre, Clinical Genomics Centre, University Health Network, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
147
|
Harigae H, Xu G, Sugawara T, Ishikawa I, Toki T, Ito E. The GATA1 mutation in an adult patient with acute megakaryoblastic leukemia not accompanying Down syndrome. Blood 2004; 103:3242-3. [PMID: 15070711 DOI: 10.1182/blood-2004-01-0016] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
148
|
Mott BH, Bassman J, Pikaart MJ. A molecular dissection of the interaction between the transcription factor Gata-1 zinc finger and DNA. Biochem Biophys Res Commun 2004; 316:910-7. [PMID: 15033488 DOI: 10.1016/j.bbrc.2004.02.142] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2004] [Indexed: 11/16/2022]
Abstract
The production of circulating blood cells from bone marrow stem cells during hematopoiesis is accompanied by overall changes in gene expression which cause production of required functional proteins, such as hemoglobin in erythroid cells, as well as control of cell growth, preventing apoptosis of differentiating cells. Hematopoietic gene regulation is controlled by several specific transcription factors, including the factor Gata-1, which is required for erythrocyte maturation. Based on contacts observed in the NMR structure of the cGata-1 binding domain in complex with DNA, the protein's key DNA interface is interesting in being quite hydrophobic in nature, due to the presence of three leucine side chains protruding toward the DNA. Given the T-rich composition of the GATA DNA binding site, it is possible that thymine's unique 5-methyl group may mediate some of these hydrophobic contacts to increase the stability of binding. The hypothesis that thymine methyl groups are important to the free energy of binding between Gata and DNA is tested by measuring binding of an oligonucleotide substrate in which individual thymine bases are substituted with uracil. To test for any important base-pair specific interactions which may be hydrogen-bonded in character, we have also assayed Gata binding to oligonucleotides with base analogs which cannot make hydrogen bonds. We report that out of the binding site's five thymine methyl groups, only one appeared to make a notable contribution to binding affinity, with removal causing a loss of less than 1kcal/mol of binding free energy. On the other hand, perturbing the potential hydrogen-bonding surface of the DNAs major groove was found to cause a larger decrease in binding affinity than removal of any of the thymine methyl groups, with a loss of 2-3kcal/mol of binding free energy.
Collapse
Affiliation(s)
- Brian H Mott
- Department of Chemistry, Hope College, Holland, MI 49423, USA
| | | | | |
Collapse
|
149
|
McElwaine S, Mulligan C, Groet J, Spinelli M, Rinaldi A, Denyer G, Mensah A, Cavani S, Baldo C, Dagna-Bricarelli F, Hann I, Basso G, Cotter FE, Nizetic D. Microarray transcript profiling distinguishes the transient from the acute type of megakaryoblastic leukaemia (M7) in Down's syndrome, revealing PRAME
as a specific discriminating marker. Br J Haematol 2004; 125:729-42. [PMID: 15180862 DOI: 10.1111/j.1365-2141.2004.04982.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Transient myeloproliferative disorder (TMD) is a unique, spontaneously regressing neoplasia specific to Down's syndrome (DS), affecting up to 10% of DS neonates. In 20-30% of cases, it reoccurs as progressive acute megakaryoblastic leukaemia (AMKL) at 2-4 years of age. The TMD and AMKL blasts are morphologically and immuno-phenotypically identical, and have the same acquired mutations in GATA1. We performed transcript profiling of nine TMD patients comparing them with seven AMKL patients using Affymetrix HG-U133A microarrays. Similar overall transcript profiles were observed between the two conditions, which were only separable by supervised clustering. Taqman analysis on 10 TMD and 10 AMKL RNA samples verified the expression of selected differing genes, with statistical significance (P < 0.05) by Student's t-test. The Taqman differences were also reproduced on TMD and AMKL blasts sorted by a fluorescence-activated cell sorter. Among the significant differences, CDKN2C, the effector of GATA1-mediated cell cycle arrest, was increased in AMKL but not TMD, despite the similar level of GATA1. In contrast, MYCN (neuroblastoma-derived oncogene) was expressed in TMD at a significantly greater level than in AMKL. MYCN has not previously been described in leukaemogenesis. Finally, the tumour antigen PRAME was identified as a specific marker for AMKL blasts, with no expression in TMD. This study provides markers discriminating TMD from AMKL-M7 in DS. These markers have the potential as predictive, diagnostic and therapeutic targets. In addition, the study provides further clues into the pathomechanisms discerning self-regressive from the progressive phenotype.
Collapse
Affiliation(s)
- Suzanne McElwaine
- Centre for Haematology, Institute of Cell and Molecular Science, Barts and The London, Queen Mary's School of Medicine, University of London, Medical College Building, Turner Street, London, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
150
|
Ge Y, Jensen TL, Stout ML, Flatley RM, Grohar PJ, Ravindranath Y, Matherly LH, Taub JW. The role of cytidine deaminase and GATA1 mutations in the increased cytosine arabinoside sensitivity of Down syndrome myeloblasts and leukemia cell lines. Cancer Res 2004; 64:728-35. [PMID: 14744791 DOI: 10.1158/0008-5472.can-03-2456] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Myeloblasts from Down syndrome (DS) children with acute myeloid leukemia (AML) are significantly more sensitive in vitro to 1-beta-D-arabinofuranosylcytosine (ara-C) and generate higher 1-beta-D-arabinofuranosylcytosine 5'-triphosphate (ara-CTP) than non-DS AML myeloblasts. Semiquantitative reverse transcription-PCR analyses demonstrated that transcripts for cytidine deaminase (CDA) were 2.7-fold lower in DS than for non-DS myeloblasts. In contrast, transcripts of cystathionine-beta-synthase and deoxycytidine kinase were a median 12.5- and 2.6-fold higher in DS compared with non-DS myeloblasts. The ratio of deoxycytidine kinase/CDA transcripts significantly correlated with ara-C sensitivities and ara-CTP generation. In clinically relevant AML cell line models, high cystathionine-beta-synthase transcripts in DS CMK cells were accompanied by 10-fold greater ara-C sensitivity and 2.4-fold higher levels of ara-CTP compared with non-DS CMS cells. Overexpression of CDA in non-DS THP-1 cells was associated with a 100-fold decreased ara-C sensitivity and 40-fold decreased ara-CTP generation. THP-1 cells secreted CDA into the incubation media and converted extracellular ara-C completely to 1-beta-D-arabinofuranosyluracil within 30 min. Rapid amplification of 5'-cDNA ends (5'-RACE) and reverse transcription-PCR assays identified short- (sf) and long-form (lf) CDA transcripts in THP-1 cells with different 5' untranslated regions and translational start sites; however, only the latter resulted in the active CDA. Although 5' flanking sequences for both CDA transcripts exhibited promoter activity in reporter gene assays, activity for the CDAlf was low. The presence of several GATA1 binding sites in the CDAsf promoter and the uniform detection of GATA1 mutations in DS megakaryocytic leukemia suggested the potential role of GATA1 in regulating CDA transcription and the CDAsf promoter acting as an enhancer. Transfection of GATA1 into Drosophila Mel-2 cells stimulated the CDAlf promoter in a dose-dependent fashion. Additional identification of the mechanisms of differential expression of genes encoding enzymes involved in ara-C metabolism between DS and non-DS myeloblasts may lead to improvements in AML therapy.
Collapse
Affiliation(s)
- Yubin Ge
- Experimental and Clinical Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Division of Pediatric Hematology/Oncology, Children's Hospital of Michigan, Detroit, Michigan, USA
| | | | | | | | | | | | | | | |
Collapse
|