101
|
Activity of ponatinib against clinically-relevant AC220-resistant kinase domain mutants of FLT3-ITD. Blood 2013; 121:3165-71. [PMID: 23430109 DOI: 10.1182/blood-2012-07-442871] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Secondary point mutations in the Fms-like tyrosine kinase 3 (FLT3) tyrosine kinase domain (KD) are common causes of acquired clinical resistance to the FLT3 inhibitors AC220 (quizartinib) and sorafenib. Ponatinib (AP24534) is a multikinase inhibitor with in vitro and clinical activity in tyrosine kinase inhibitor (TKI)-resistant chronic myeloid leukemia, irrespective of BCR-ABL KD mutation. Ponatinib has demonstrated early clinical efficacy in chemotherapy-resistant acute myeloid leukemia (AML) patients with internal tandem duplication (ITD) mutations in FLT3. We assessed the in vitro activity of ponatinib against clinically relevant FLT3-ITD mutant isoforms that confer resistance to AC220 or sorafenib. Substitution of the FLT3 "gatekeeper" phenylalanine with leucine (F691L) conferred mild resistance to ponatinib, but substitutions at the FLT3 activation loop (AL) residue D835 conferred a high degree of resistance. Saturation mutagenesis of FLT3-ITD exclusively identified FLT3 AL mutations at positions D835, D839, and Y842. The switch control inhibitor DCC-2036 was similarly inactive against FLT3 AL mutations. On the basis of its in vitro activity against FLT3 TKI-resistant F691 substitutions, further clinical evaluation of ponatinib in TKI-naïve and select TKI-resistant FLT3-ITD+ AML patients is warranted. Alternative strategies will be required for patients with TKI-resistant FLT3-ITD D835 mutations.
Collapse
|
102
|
Gunawardane RN, Nepomuceno RR, Rooks AM, Hunt JP, Ricono JM, Belli B, Armstrong RC. Transient exposure to quizartinib mediates sustained inhibition of FLT3 signaling while specifically inducing apoptosis in FLT3-activated leukemia cells. Mol Cancer Ther 2013; 12:438-47. [PMID: 23412931 DOI: 10.1158/1535-7163.mct-12-0305] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Fms-like tyrosine kinase 3 (FLT3) is implicated in the pathogenesis of acute myeloid leukemia (AML). FLT3-activating internal tandem duplication (ITD) mutations are found in approximately 30% of patients with AML and are associated with poor outcome in this patient population. Quizartinib (AC220) has previously been shown to be a potent and selective FLT3 inhibitor. In the current study, we expand on previous observations by showing that quizartinib potently inhibits the phosphorylation of FLT3 and downstream signaling molecules independent of FLT3 genotype, yet induces loss of viability only in cells expressing constitutively activated FLT3. We further show that transient exposure to quizartinib, whether in vitro or in vivo, leads to prolonged inhibition of FLT3 signaling, induction of apoptosis, and drastic reductions in tumor volume and pharmacodynamic endpoints. In vitro experiments suggest that these prolonged effects are mediated by slow binding kinetics that provide for durable inhibition of the kinase following drug removal/clearance. Together these data suggest quizartinib, with its unique combination of selectivity and potent/sustained inhibition of FLT3, may provide a safe and effective treatment against FLT3-driven leukemia.
Collapse
|
103
|
Proteomic investigations of lysine acetylation identify diverse substrates of mitochondrial deacetylase sirt3. PLoS One 2012; 7:e50545. [PMID: 23236377 PMCID: PMC3517600 DOI: 10.1371/journal.pone.0050545] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 10/26/2012] [Indexed: 11/19/2022] Open
Abstract
Lysine acetylation is a posttranslational modification that is dynamically regulated by the activity of acetyltransferases and deacetylases. The human and mouse genomes encode 18 different lysine deacetylases (KDACs) which are key regulators of many cellular processes. Identifying substrates of KDACs and pinpointing the regulated acetylation sites on target proteins may provide important information about the molecular basis of their functions. Here we apply quantitative proteomics to identify endogenous substrates of the mitochondrial deacetylase Sirtuin 3 (Sirt3) by comparing site-specific acetylation in wild-type murine embryonic fibroblasts to Sirt3 knockout cells. We confirm Sirt3-regulated acetylation of several mitochondrial proteins in human cells by comparing acetylation in U2OS cells overexpressing Sirt3 to U2OS cells in which Sirt3 expression was reduced by shRNA. Our data demonstrate that ablation of Sirt3 significantly increases acetylation at dozens of sites on mitochondrial proteins. Substrates of Sirt3 are implicated in various metabolic pathways, including fatty acid metabolism and the tricarboxylic acid cycle. These results imply broader regulatory roles of Sirt3 in the mitochondria by modulating acetylation on diverse substrates. The experimental strategy described here is generic and can be applied to identify endogenous substrates of other lysine deacetylases.
Collapse
|
104
|
Bourrié B, Brassard DL, Cosnier-Pucheu S, Zilberstein A, Yu K, Levit M, Morrison JG, Perreaut P, Jegham S, Hilairet S, Bouaboula M, Penarier G, Guiot C, Larroze-Chicot P, Laurent G, Demur C, Casellas P. SAR103168: a tyrosine kinase inhibitor with therapeutic potential in myeloid leukemias. Leuk Lymphoma 2012; 54:1488-99. [DOI: 10.3109/10428194.2012.745071] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
| | | | | | | | - Kin Yu
- Sanofi Oncology,
Cambridge, MA, USA
| | | | | | | | | | | | | | | | | | | | - Guy Laurent
- Service d’Hématologie Clinique, CHU Purpan, Toulouse, France, Laboratoire d’Hématologie et de Génétique, Centre Regional de Transfusion Sanguine, University Medical Center, France
| | - Cécile Demur
- Laboratoire d’Hématologie, CHU Purpan, University Medical Center of Toulouse, France
| | | |
Collapse
|
105
|
The protein tyrosine phosphatase, Shp2, positively contributes to FLT3-ITD-induced hematopoietic progenitor hyperproliferation and malignant disease in vivo. Leukemia 2012; 27:398-408. [PMID: 23103841 PMCID: PMC3916934 DOI: 10.1038/leu.2012.308] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Internal tandem duplications (ITDs) in the fms-like tyrosine kinase receptor (FLT3-ITDs) confer a poor prognosis in acute myeloid leukemia (AML). We hypothesized that increased recruitment of the protein tyrosine phosphatase, Shp2, to FLT3-ITDs contributes to FLT3 ligand (FL)-independent hyperproliferation and STAT5 activation. Co-immunoprecipitation demonstrated constitutive association of Shp2 with the FLT3-ITD, N51-FLT3, as well as with STAT5. Knockdown of Shp2 in Baf3/N51-FLT3 cells significantly reduced proliferation while having little effect on WT-FLT3-expressing cells. Consistently, mutation of N51-FLT3 tyrosine 599 to phenylalanine or genetic disruption of Shp2 in N51-FLT3-expressing bone marrow low-density mononuclear cells reduced proliferation and STAT5 activation. In transplants, genetic disruption of Shp2 in vivo yielded increased latency to and reduced severity of FLT3-ITD-induced malignancy. Mechanistically, Shp2 co-localizes with nuclear phospho-STAT5, is present at functional interferon-γ activation sites (GAS) within the BCL2L1 promoter, and positively activates the human BCL2L1 promoter, suggesting that Shp2 works with STAT5 to promote pro-leukemogenic gene expression. Further, using a small molecule Shp2 inhibitor, the proliferation of N51-FLT3-expressing bone marrow progenitors and primary AML samples was reduced in a dose-dependent manner. These findings demonstrate that Shp2 positively contributes to FLT3-ITD-induced leukemia and suggest that Shp2 inhibition may provide a novel therapeutic approach to AML.
Collapse
|
106
|
Bavetsias V, Crumpler S, Sun C, Avery S, Atrash B, Faisal A, Moore AS, Kosmopoulou M, Brown N, Sheldrake PW, Bush K, Henley A, Box G, Valenti M, de Haven Brandon A, Raynaud FI, Workman P, Eccles SA, Bayliss R, Linardopoulos S, Blagg J. Optimization of imidazo[4,5-b]pyridine-based kinase inhibitors: identification of a dual FLT3/Aurora kinase inhibitor as an orally bioavailable preclinical development candidate for the treatment of acute myeloid leukemia. J Med Chem 2012; 55:8721-34. [PMID: 23043539 PMCID: PMC3483018 DOI: 10.1021/jm300952s] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
![]()
Optimization of the imidazo[4,5-b]pyridine-based
series of Aurora kinase inhibitors led to the identification of 6-chloro-7-(4-(4-chlorobenzyl)piperazin-1-yl)-2-(1,3-dimethyl-1H-pyrazol-4-yl)-3H-imidazo[4,5-b]pyridine (27e), a potent inhibitor of Aurora
kinases (Aurora-A Kd = 7.5 nM, Aurora-B Kd = 48 nM), FLT3 kinase (Kd = 6.2 nM), and FLT3 mutants including FLT3-ITD (Kd = 38 nM) and FLT3(D835Y) (Kd = 14 nM). FLT3-ITD causes constitutive FLT3 kinase
activation and is detected in 20–35% of adults and 15% of children
with acute myeloid leukemia (AML), conferring a poor prognosis in
both age groups. In an in vivo setting, 27e strongly
inhibited the growth of a FLT3-ITD-positive AML human
tumor xenograft (MV4–11) following oral administration, with
in vivo biomarker modulation and plasma free drug exposures consistent
with dual FLT3 and Aurora kinase inhibition. Compound 27e, an orally bioavailable dual FLT3 and Aurora kinase inhibitor, was
selected as a preclinical development candidate for the treatment
of human malignancies, in particular AML, in adults and children.
Collapse
Affiliation(s)
- Vassilios Bavetsias
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey SM2 5NG, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
107
|
Jin L, Tabe Y, Lu H, Borthakur G, Miida T, Kantarjian H, Andreeff M, Konopleva M. Mechanisms of apoptosis induction by simultaneous inhibition of PI3K and FLT3-ITD in AML cells in the hypoxic bone marrow microenvironment. Cancer Lett 2012; 329:45-58. [PMID: 23036488 DOI: 10.1016/j.canlet.2012.09.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 09/18/2012] [Accepted: 09/25/2012] [Indexed: 12/28/2022]
Abstract
We investigated the antileukemia effects and molecular mechanisms of apoptosis induction by simultaneous blockade of PI3K and mutant FLT3 in AML cells grown under hypoxia in co-cultures with bone marrow stromal cells. Combined treatment with selective class I PI3K inhibitor GDC-0941 and sorafenib reversed the protective effects of bone marrow stromal cells on FLT3-mutant AML cells in hypoxia, which was associated with downregulation of Pim-1 and Mcl-1 expression levels. These findings suggest that combined inhibition of PI3K and FLT3-ITD may constitute a targeted approach to eradicating chemoresistant AML cells sequestered in hypoxic bone marrow niches.
Collapse
Affiliation(s)
- Linhua Jin
- Department of Clinical Laboratory Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
108
|
Kim KT, Carroll AP, Mashkani B, Cairns MJ, Small D, Scott RJ. MicroRNA-16 is down-regulated in mutated FLT3 expressing murine myeloid FDC-P1 cells and interacts with Pim-1. PLoS One 2012; 7:e44546. [PMID: 22970245 PMCID: PMC3435263 DOI: 10.1371/journal.pone.0044546] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 08/07/2012] [Indexed: 12/14/2022] Open
Abstract
Activating mutations in the receptor tyrosine kinase FLT3 are one of the most frequent somatic mutations in acute myeloid leukemia (AML). Internal tandem duplications of the juxtamembrane region of FLT3 (FLT3/ITD) constitutively activate survival and proliferation pathways, and are associated with a poor prognosis in AML. We suspected that alteration of small non-coding microRNA (miRNA) expression in these leukemia cells is involved in the transformation process and used miRNA microarrays to determine the miRNA signature from total RNA harvested from FLT3/ITD expressing FDC-P1 cells (FD-FLT3/ITD). This revealed that a limited set of miRNAs appeared to be affected by expression of FLT3/ITD compared to the control group consisting of FDC-P1 parental cells transfected with an empty vector (FD-EV). Among differentially expressed miRNAs, we selected miR-16, miR-21 and miR-223 to validate the microarray data by quantitative real-time RT-PCR showing a high degree of correlation. We further analyzed miR-16 expression with FLT3 inhibitors in FLT3/ITD expressing cells. MiR-16 was found to be one of most significantly down-regulated miRNAs in FLT3/ITD expressing cells and was up-regulated upon FLT3 inhibition. The data suggests that miR-16 is acting as a tumour suppressor gene in FLT3/ITD-mediated leukemic transformation. Whilst miR-16 has been reported to target multiple mRNAs, computer models from public bioinformatic resources predicted a potential regulatory mechanism between miR-16 and Pim-1 mRNA. In support of this interaction, miR-16 was shown to suppress Pim-1 reporter gene expression. Further, our data demonstrated that over-expression of miR-16 mimics suppressed Pim-1 expression in FD-FLT3/ITD cells suggesting that increased miR-16 expression contributes to depletion of Pim-1 after FLT3 inhibition and that miR-16 repression may be associated with up-regulated Pim-1 in FLT3/ITD expressing cells.
Collapse
Affiliation(s)
- Kyu-Tae Kim
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia.
| | | | | | | | | | | |
Collapse
|
109
|
Pietschmann K, Bolck HA, Buchwald M, Spielberg S, Polzer H, Spiekermann K, Bug G, Heinzel T, Böhmer FD, Krämer OH. Breakdown of the FLT3-ITD/STAT5 axis and synergistic apoptosis induction by the histone deacetylase inhibitor panobinostat and FLT3-specific inhibitors. Mol Cancer Ther 2012; 11:2373-83. [PMID: 22942377 DOI: 10.1158/1535-7163.mct-12-0129] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Activating mutations of the class III receptor tyrosine kinase FLT3 are the most frequent molecular aberration in acute myeloid leukemia (AML). Mutant FLT3 accelerates proliferation, suppresses apoptosis, and correlates with poor prognosis. Therefore, it is a promising therapeutic target. Here, we show that RNA interference against FLT3 with an internal tandem duplication (FLT3-ITD) potentiates the efficacy of the histone deacetylase inhibitor (HDACi) panobinostat (LBH589) against AML cells expressing FLT3-ITD. Similar to RNA interference, tyrosine kinase inhibitors (TKI; AC220/cpd.102/PKC412) in combination with LBH589 exhibit superior activity against AML cells. Median dose-effect analyses of drug-induced apoptosis rates of AML cells (MV4-11 and MOLM-13) revealed combination index (CI) values indicating strong synergism. AC220, the most potent and FLT3-specific TKI, shows highest synergism with LBH589 in the low nanomolar range. A 4-hour exposure to LBH589 + AC220 already generates more than 50% apoptosis after 24 hours. Different cell lines lacking FLT3-ITD as well as normal peripheral blood mononuclear cells are not significantly affected by LBH589 + TKI, showing the specificity of this treatment regimen. Immunoblot analyses show that LBH589 + TKI induce apoptosis via degradation of FLT3-ITD and its prosurvival target STAT5. Previously, we showed the LBH589-induced proteasomal degradation of FLT3-ITD. Here, we show that activated caspase-3 also contributes to the degradation of FLT3-ITD and that STAT5 is a direct target of this protease. Our data strongly emphasize HDACi/TKI drug combinations as promising modality for the treatment of FLT3-ITD-positive AMLs.
Collapse
Affiliation(s)
- Kristin Pietschmann
- Institute of Biochemistry and Biophysics, Center for Molecular Biomedicine, Friedrich-Schiller University, Hans-Knöll-Str. 2, Jena 07745, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
110
|
SOCS1 cooperates with FLT3-ITD in the development of myeloproliferative disease by promoting the escape from external cytokine control. Blood 2012; 120:1691-702. [DOI: 10.1182/blood-2010-08-301416] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Abstract
Activating mutations in the receptor tyrosine kinase FLT3 are frequently found in acute myelogenous leukemia patients and confer poor clinical prognosis. It is unclear how leukemic blasts escape cytokine control that regulates normal hematopoiesis. We have recently demonstrated that FLT3-internal tandem duplication (ITD), when localized to the biosynthetic compartment, aberrantly activates STAT5. Here, we show that one of the target genes induced by STAT5 is suppressor of cytokine signaling (SOCS)1—a surprising finding for a known tumor suppressor. Although SOCS1 expression in murine bone marrow severely impaired cytokine-induced colony growth, it failed to inhibit FLT3-ITD–supported colony growth, indicating resistance of FLT3-ITD to SOCS1. In addition, SOCS1 coexpression did not affect FLT3-ITD–mediated signaling or proliferation. Importantly, SOCS1 coexpression inhibited interferon-α and interferon-γ signaling and protected FLT3-ITD hematopoietic cells from interferon-mediated growth inhibitory effects. In a murine bone marrow transplantation model, the coexpression of SOCS1 and FLT3-ITD significantly shortened the latency of a myeloproliferative disease compared with FLT3-ITD alone (P < .01). Mechanistically, SOCS proteins shield FLT3-ITD from external cytokine control, thereby promoting leukemogenesis. The data demonstrate that SOCS1 acts as a conditional oncogene, providing novel molecular insights into cytokine resistance in oncogenic transformation. Restoring cytokine control may provide a new way of therapeutic intervention.
Collapse
|
111
|
The oral HDAC inhibitor pracinostat (SB939) is efficacious and synergistic with the JAK2 inhibitor pacritinib (SB1518) in preclinical models of AML. Blood Cancer J 2012; 2:e69. [PMID: 22829971 PMCID: PMC3366067 DOI: 10.1038/bcj.2012.14] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 03/22/2012] [Accepted: 03/28/2012] [Indexed: 12/22/2022] Open
Abstract
Acute myeloid leukemia (AML) is currently treated with aggressive chemotherapy that is not well tolerated in many elderly patients, hence the unmet medical need for effective therapies with less toxicity and better tolerability. Inhibitors of FMS-like tyrosine kinase 3 (FLT3), JAK2 and histone deacetylase inhibitors (HDACi) have been tested in clinical studies, but showed only moderate single-agent activity. High efficacy of the HDACi pracinostat treating AML and synergy with the JAK2/FLT3 inhibitor pacritinib is demonstrated. Both compounds inhibit JAK-signal transducer and activator of transcription (STAT) signaling in AML cells with JAK2V617F mutations, but also diminish FLT3 signaling, particularly in FLT3-ITD (internal tandem duplication) cell lines. In vitro, this combination led to decreased cell proliferation and increased apoptosis. The synergy translated in vivo in two different AML models, the SET-2 megakaryoblastic AML mouse model carrying a JAK2V617F mutation, and the MOLM-13 model of FLT3-ITD-driven AML. Pracinostat and pacritinib in combination showed synergy on tumor growth, reduction of metastases and synergistically decreased JAK2 or FLT signaling, depending on the cellular context. In addition, several plasma cytokines/growth factors/chemokines triggered by the tumor growth were normalized, providing a rationale for combination therapy with an HDACi and a JAK2/FLT3 inhibitor for the treatment of AML patients, particularly those with FLT3 or JAK2 mutations.
Collapse
|
112
|
Abstract
DCs have a vital role in the immune system by recognizing exogenous or self-antigens and eliciting appropriate stimulatory or tolerogenic adaptive immune responses. DCs also contribute to human autoimmune disease and, when depleted, to immunodeficiency. Moreover, DCs are being explored for potential use in clinical therapies including cancer treatment. Thus, understanding the molecular mechanisms that regulate DCs is crucial to improving treatments for human immune disease and cancer. DCs constitute a heterogeneous population including plasmacytoid (pDC) and classic (cDC) subsets; however, the majority of DCs residing in lymphoid organs and peripheral tissues in steady state share common progenitor populations, originating with hematopoietic stem cells. Like other hematopoietic lineages, DCs require extracellular factors including cytokines, as well as intrinsic transcription factors, to control lineage specification, commitment, and maturation. Here, we review recent findings on the roles for cytokines and cytokine-activated STAT transcription factors in DC subset development. We also discuss how cytokines and STATs intersect with lineage-regulatory transcription factors and how insight into the molecular basis of human disease has revealed transcriptional regulators of DCs. Whereas this is an emerging area with much work remaining, we anticipate that knowledge gained by delineating cytokine and transcription factor mechanisms will enable a better understanding of DC subset diversity, and the potential to manipulate these important immune cells for human benefit.
Collapse
Affiliation(s)
- Haiyan S Li
- Department of Immunology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | | |
Collapse
|
113
|
Abstract
Abstract
Mutations of Fms-like tyrosine kinase 3 (FLT3) are among the most frequently detected molecular abnormalities in AML patients. Internal tandem duplications (ITDs) are found in approximately 25% and point mutations within the second tyrosine kinase domain (TKD) in approximately 7% of AML patients. Patients carrying the FLT3-ITD but not the FLT3-TKD mutation have a significantly worse prognosis. Therefore, both FLT3 mutations seem to exert different biologic functions. FLT3-ITD but not FLT3-TKD has been shown to induce robust activation of the STAT5 signaling pathway. In the present study, we investigated the mechanisms leading to differential STAT5 activation and show that FLT3-ITD but not FLT3-TKD uses SRC to activate STAT5. Coimmunoprecipitation and pull-down experiments revealed an exclusive interaction between SRC but not other Src family kinases and FLT3-ITD, which is mediated by the SRC SH2 domain. We identified tyrosines 589 and 591 of FLT3-ITD to be essential for SRC binding and subsequent STAT5 activation. Using site-specific Abs, we found that both residues were significantly more strongly phosphorylated in FLT3-ITD compared with FLT3-TKD. SRC inhibition and knock-down blocked STAT5 activation and proliferation induced by FLT3-ITD but not by FLT3-TKD. We conclude that SRC might be a therapeutic target in FLT3-ITD+ AML.
Collapse
|
114
|
Smith CC, Wang Q, Chin CS, Salerno S, Damon LE, Levis MJ, Perl AE, Travers KJ, Wang S, Hunt JP, Zarrinkar PP, Schadt EE, Kasarskis A, Kuriyan J, Shah NP. Validation of ITD mutations in FLT3 as a therapeutic target in human acute myeloid leukaemia. Nature 2012; 485:260-3. [PMID: 22504184 DOI: 10.1038/nature11016] [Citation(s) in RCA: 592] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 03/05/2012] [Indexed: 12/11/2022]
Abstract
Effective targeted cancer therapeutic development depends upon distinguishing disease-associated 'driver' mutations, which have causative roles in malignancy pathogenesis, from 'passenger' mutations, which are dispensable for cancer initiation and maintenance. Translational studies of clinically active targeted therapeutics can definitively discriminate driver from passenger lesions and provide valuable insights into human cancer biology. Activating internal tandem duplication (ITD) mutations in FLT3 (FLT3-ITD) are detected in approximately 20% of acute myeloid leukaemia (AML) patients and are associated with a poor prognosis. Abundant scientific and clinical evidence, including the lack of convincing clinical activity of early FLT3 inhibitors, suggests that FLT3-ITD probably represents a passenger lesion. Here we report point mutations at three residues within the kinase domain of FLT3-ITD that confer substantial in vitro resistance to AC220 (quizartinib), an active investigational inhibitor of FLT3, KIT, PDGFRA, PDGFRB and RET; evolution of AC220-resistant substitutions at two of these amino acid positions was observed in eight of eight FLT3-ITD-positive AML patients with acquired resistance to AC220. Our findings demonstrate that FLT3-ITD can represent a driver lesion and valid therapeutic target in human AML. AC220-resistant FLT3 kinase domain mutants represent high-value targets for future FLT3 inhibitor development efforts.
Collapse
Affiliation(s)
- Catherine C Smith
- Division of Hematology/Oncology, University of California, San Francisco, California 94143, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
115
|
Reckzeh K, Bereshchenko O, Mead A, Rehn M, Kharazi S, Jacobsen SE, Nerlov C, Cammenga J. Molecular and cellular effects of oncogene cooperation in a genetically accurate AML mouse model. Leukemia 2012; 26:1527-36. [PMID: 22318449 DOI: 10.1038/leu.2012.37] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Biallelic CEBPA mutations and FMS-like tyrosine kinase receptor 3 (FLT3) length mutations are frequently identified in human acute myeloid leukemia (AML) with normal cytogenetics. However, the molecular and cellular mechanisms of oncogene cooperation remain unclear because of a lack of disease models. We have generated an AML mouse model using knockin mouse strains to study cooperation of an internal tandem duplication (ITD) mutation in the Flt3 gene with commonly observed CCAAT/enhancer binding protein alpha (C/EBPα) mutations. This study provides evidence that FLT3 ITD cooperates in leukemogenesis by enhancing the generation of leukemia-initiating granulocyte-monocyte progenitors (GMPs) otherwise prevented by a block in differentiation and skewed lineage priming induced by biallelic C/EBPα mutations. These cellular changes are accompanied by an upregulation of hematopoietic stem cell and STAT5 target genes. By gene expression analysis in premalignant populations, we further show a role of FLT3 ITD in activating genes involved in survival/transformation and chemoresistance. Both multipotent progenitors and GMP cells contain the potential to induce AML similar to corresponding cells in human AML samples showing that this model resembles human disease.
Collapse
Affiliation(s)
- K Reckzeh
- Department of Molecular Medicine and Gene Therapy, Lund University, Lund, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
116
|
Abstract
Myelodysplastic syndromes (MDS), clonal hematopoietic stem-cell disorders mainly affecting older adult patients, show ineffective hematopoiesis in one or more of the lineages of the bone marrow. A number of MDS progresses to acute myeloid leukemia (AML) with the involvement of genetic and epigenetic mechanisms affecting PI-PLC β1. The molecular mechanisms underlying the MDS evolution to AML are still unclear, even though it is now clear that the nuclear signaling elicited by PI-PLC β1, Cyclin D3, and Akt plays an important role in the control of the balance between cell cycle progression and apoptosis in both normal and pathologic conditions. Moreover, a correlation between other PI-PLCs, such as PI-PLC β3, kinases and phosphatases has been postulated in MDS pathogenesis. Here, we review the findings hinting at the role of nuclear lipid signaling pathways in MDS, which could become promising therapeutic targets.
Collapse
|
117
|
Brobeil A, Bobrich M, Graf M, Kruchten A, Blau W, Rummel M, Oeschger S, Steger K, Wimmer M. PTPIP51 is phosphorylated by Lyn and c-Src kinases lacking dephosphorylation by PTP1B in acute myeloid leukemia. Leuk Res 2011; 35:1367-75. [DOI: 10.1016/j.leukres.2011.03.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 03/18/2011] [Accepted: 03/20/2011] [Indexed: 01/11/2023]
|
118
|
Wang C, Lu J, Wang Y, Bai S, Wang Y, Wang L, Sheng G. Combined effects of FLT3 and NF-κB selective inhibitors on acute myeloid leukemia in vivo. J Biochem Mol Toxicol 2011; 26:35-43. [DOI: 10.1002/jbt.20411] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Revised: 07/14/2011] [Accepted: 07/31/2011] [Indexed: 01/30/2023]
|
119
|
p53 activation of mesenchymal stromal cells partially abrogates microenvironment-mediated resistance to FLT3 inhibition in AML through HIF-1α-mediated down-regulation of CXCL12. Blood 2011; 118:4431-9. [PMID: 21868571 DOI: 10.1182/blood-2011-02-334136] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Fms-like tyrosine kinase-3 (FLT3) inhibitors have been used to overcome the dismal prognosis of acute myeloid leukemia (AML) with FLT3 mutations. Clinical results with FLT3 inhibitor monotherapy have shown that bone marrow responses are commonly less pronounced than peripheral blood responses. We investigated the role of p53 in bone marrow stromal cells in stromal cell-mediated resistance to FLT3 inhibition in FLT3 mutant AML. While the FLT3 inhibitor FI-700 induced apoptosis in FLT3 mutant AML cells, apoptosis induction was diminished under stromal coculture conditions. Protection appeared to be mediated, in part, by CXCL12 (SDF-1)/CXCR4 signaling. The protective effect of stromal cells was significantly reduced by pre-exposure to the HDM2 inhibitor Nutlin-3a. p53 activation by Nutlin-3a was not cytotoxic to stromal cells, but reduced CXCL12 mRNA levels and secretion of CXCL12 partially through p53-mediated HIF-1α down-regulation. Results show that p53 activation in stroma cells blunts stroma cell-mediated resistance to FLT3 inhibition, in part through down-regulation of CXCL12. This is the first report of Nutlin effect on the bone marrow environment. We suggest that combinations of HDM2 antagonists and FLT3 inhibitors may be effective in clinical trials targeting mutant FLT3 leukemias.
Collapse
|
120
|
TG02, a novel oral multi-kinase inhibitor of CDKs, JAK2 and FLT3 with potent anti-leukemic properties. Leukemia 2011; 26:236-43. [PMID: 21860433 DOI: 10.1038/leu.2011.218] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
TG02 is a novel pyrimidine-based multi-kinase inhibitor that inhibits CDKs 1, 2, 7 and 9 together with JAK2 and FLT3. It dose-dependently inhibits signaling pathways downstream of CDKs, JAK2 and FLT3 in cancer cells with the main targets being CDKs. TG02 is anti-proliferative in a broad range of tumor cell lines, inducing G1 cell cycle arrest and apoptosis. Primary cultures of progenitor cells derived from acute myeloid leukemia (AML) and polycythemia vera patients are very sensitive to TG02. Comparison with reference inhibitors that block only one of the main targets of TG02 demonstrate the benefit of combined CDK and JAK2/FLT3 inhibition in cell lines as well as primary cells. In vivo, TG02 exhibits favorable pharmacokinetics after oral dosing in xenograft models and accumulates in tumor tissues, inducing an effective blockade of both CDK and STAT signaling. TG02 induces tumor regression after oral dosing on both daily and intermittent schedules in a murine model of mutant-FLT3 leukemia (MV4-11) and prolongs survival in a disseminated AML model with wild-type FLT3 and JAK2 (HL-60). These data demonstrate that TG02 is active in various models of leukemia and provide a rationale for the ongoing clinical evaluation of TG02 in patients with advanced leukemias.
Collapse
|
121
|
A potential therapeutic target for FLT3-ITD AML: PIM1 kinase. Leuk Res 2011; 36:224-31. [PMID: 21802138 DOI: 10.1016/j.leukres.2011.07.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 06/24/2011] [Accepted: 07/03/2011] [Indexed: 12/18/2022]
Abstract
Patients with acute myeloid leukemia (AML) and a FLT3 internal tandem duplication (ITD) mutation have a poor prognosis, and FLT3 inhibitors are now under clinical investigation. PIM1, a serine/threonine kinase, is up-regulated in FLT3-ITD AML and may be involved in FLT3-mediated leukemogenesis. We employed a PIM1 inhibitor, AR00459339 (Array Biopharma Inc.), to investigate the effect of PIM1 inhibition in FLT3-mutant AML. Like FLT3 inhibitors, AR00459339 was preferentially cytotoxic to FLT3-ITD cells, as demonstrated in the MV4-11, Molm-14, and TF/ITD cell lines, as well as 12 FLT3-ITD primary samples. Unlike FLT3 inhibitors, AR00459339 did not suppress phosphorylation of FLT3, but did promote the de-phosphorylation of downstream FLT3 targets, STAT5, AKT, and BAD. Combining AR00459339 with a FLT3 inhibitor resulted in additive to mildly synergistic cytotoxic effects. AR00459339 was cytotoxic to FLT3-ITD samples from patients with secondary resistance to FLT3 inhibitors, suggesting a novel benefit to combining these agents. We conclude that PIM1 appears to be closely associated with FLT3 signaling, and that inhibition of PIM1 may hold therapeutic promise, either as monotherapy, or by overcoming resistance to FLT3 inhibitors.
Collapse
|
122
|
Parmar A, Marz S, Rushton S, Holzwarth C, Lind K, Kayser S, Döhner K, Peschel C, Oostendorp RA, Götze KS. Stromal Niche Cells Protect Early Leukemic FLT3-ITD+ Progenitor Cells against First-Generation FLT3 Tyrosine Kinase Inhibitors. Cancer Res 2011; 71:4696-706. [DOI: 10.1158/0008-5472.can-10-4136] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
123
|
Abstract
p90 ribosomal S6 kinase 2 (p90RSK2) is important in diverse cellular processes including gene expression, cell proliferation, and survival. We found that p90RSK2 is commonly activated in diverse leukemia cell lines expressing different leukemogenic tyrosine kinases, including BCR-ABL and FMS-like tyrosine kinase 3-internal tandem duplication (FLT3-ITD). Interestingly, in a murine BM transplantation (BMT) model, genetic deficiency of RSK2 did not affect the pathogenesis or disease progression of BCR-ABL-induced myeloproliferative neoplasm (PN). In contrast, FLT3-ITD induced a T-cell acute lymphoblastic leukemia in BMT mice receiving RSK2 knockout (KO) BM cells, phenotypically distinct from the myeloproliferative neoplasm induced by FLT3-ITD using wild-type BM cells. In consonance with these results, inhibition of RSK2 by an RSK inhibitor, fmk, did not effectively induce apoptosis in BCR-ABL-expressing murine Ba/F3 cells, human K562 cells or primary tissue samples from CML patients, whereas fmk treatment induced significant apoptotic cell death not only in FLT3-ITD-positive Ba/F3 cells, human Molm14 and Mv(4;11) leukemia cells, but also in primary tissue samples from AML patients. These results suggest that RSK2 is dispensable for BCR-ABL-induced myeloid leukemia, but may be required for pathogenesis and lineage determination in FLT3-ITD-induced hematopoietic transformation. RSK2 may thus represent an alternative therapeutic target in the treatment of FLT3-ITD-positive leukemia.
Collapse
|
124
|
Proia DA, Foley KP, Korbut T, Sang J, Smith D, Bates RC, Liu Y, Rosenberg AF, Zhou D, Koya K, Barsoum J, Blackman RK. Multifaceted intervention by the Hsp90 inhibitor ganetespib (STA-9090) in cancer cells with activated JAK/STAT signaling. PLoS One 2011; 6:e18552. [PMID: 21533169 PMCID: PMC3077378 DOI: 10.1371/journal.pone.0018552] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Accepted: 03/04/2011] [Indexed: 12/22/2022] Open
Abstract
There is accumulating evidence that dysregulated JAK signaling occurs in a wide variety of cancer types. In particular, mutations in JAK2 can result in the constitutive activation of STAT transcription factors and lead to oncogenic growth. JAK kinases are established Hsp90 client proteins and here we show that the novel small molecule Hsp90 inhibitor ganetespib (formerly STA-9090) exhibits potent in vitro and in vivo activity in a range of solid and hematological tumor cells that are dependent on JAK2 activity for growth and survival. Of note, ganetespib treatment results in sustained depletion of JAK2, including the constitutively active JAK2V617F mutant, with subsequent loss of STAT activity and reduced STAT-target gene expression. In contrast, treatment with the pan-JAK inhibitor P6 results in only transient effects on these processes. Further differentiating these modes of intervention, RNA and protein expression studies show that ganetespib additionally modulates cell cycle regulatory proteins, while P6 does not. The concomitant impact of ganetespib on both cell growth and cell division signaling translates to potent antitumor efficacy in mouse models of xenografts and disseminated JAK/STAT-driven leukemia. Overall, our findings support Hsp90 inhibition as a novel therapeutic approach for combating diseases dependent on JAK/STAT signaling, with the multimodal action of ganetespib demonstrating advantages over JAK-specific inhibitors.
Collapse
Affiliation(s)
- David A Proia
- Synta Pharmaceuticals Corp., Lexington, Massachusetts, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
125
|
Marvin J, Swaminathan S, Kraker G, Chadburn A, Jacobberger J, Goolsby C. Normal bone marrow signal-transduction profiles: a requisite for enhanced detection of signaling dysregulations in AML. Blood 2011; 117:e120-30. [PMID: 21233314 PMCID: PMC3087538 DOI: 10.1182/blood-2010-10-316026] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Accepted: 12/24/2010] [Indexed: 11/20/2022] Open
Abstract
Molecular and cytogenetic alterations are involved in virtually every facet of acute myeloid leukemia (AML), including dysregulation of major signal-transduction pathways. The present study examines 5 phosphoproteins (pErk, pAkt, pS6, pStat3, and pStat5) in response to 5 cytokine/growth factors (stem cell factor [SCF], Flt-3/Flk-2 ligand [FL], granulocyte/macrophage-colony stimulating factor [GM-CSF], interleukin-3 [IL-3], and granulocyte-CSF [G-CSF]) within 7 immunophenotypically defined populations, spanning progenitor to mature myeloid/myelomonocytic cells in normal bone marrows with further comparison to AML samples. The normal cohort showed pathway-specific responses related to lineage, maturation, and stimulus. Heterogeneous-signaling responses were seen in homogeneous immunophenotypic subsets emphasizing the additive information of signaling. These profiles provided a critical baseline for detection of dysregulated signaling in AML falling into 4 broad categories, viz lack of response, increased activation, altered constitutive expression, and dysregulated response kinetics, easily identified in 10 of 12 AMLs. These studies clearly show robust and reproducible flow cytometry phosphoprotein analyses capable of detecting abnormal signal-transduction responses in AML potentially contributing to definitive reliable identification of abnormal cells. As functional correlates of underlying genetic abnormalities, signal-transduction abnormalities may provide more stable indicators of abnormal cells than immunophenotyping which frequently changes after therapy and disease recurrence.
Collapse
Affiliation(s)
- James Marvin
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| | | | | | | | | | | |
Collapse
|
126
|
Gozgit JM, Wong MJ, Wardwell S, Tyner JW, Loriaux MM, Mohemmad QK, Narasimhan NI, Shakespeare WC, Wang F, Druker BJ, Clackson T, Rivera VM. Potent activity of ponatinib (AP24534) in models of FLT3-driven acute myeloid leukemia and other hematologic malignancies. Mol Cancer Ther 2011; 10:1028-35. [PMID: 21482694 DOI: 10.1158/1535-7163.mct-10-1044] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Ponatinib (AP24534) is a novel multitargeted kinase inhibitor that potently inhibits native and mutant BCR-ABL at clinically achievable drug levels. Ponatinib also has in vitro inhibitory activity against a discrete set of kinases implicated in the pathogenesis of other hematologic malignancies, including FLT3, KIT, fibroblast growth factor receptor 1 (FGFR1), and platelet derived growth factor receptor α (PDGFRα). Here, using leukemic cell lines containing activated forms of each of these receptors, we show that ponatinib potently inhibits receptor phosphorylation and cellular proliferation with IC50 values comparable to those required for inhibition of BCR-ABL (0.3 to 20 nmol/L). The activity of ponatinib against the FLT3-ITD mutant, found in up to 30% of acute myeloid leukemia (AML) patients, was particularly notable. In MV4-11 (FLT3-ITD(+/+)) but not RS4;11 (FLT3-ITD(-/-)) AML cells, ponatinib inhibited FLT3 signaling and induced apoptosis at concentrations of less than 10 nmol/L. In an MV4-11 mouse xenograft model, once daily oral dosing of ponatinib led to a dose-dependent inhibition of signaling and tumor regression. Ponatinib inhibited viability of primary leukemic blasts from a FLT3-ITD positive AML patient (IC50 4 nmol/L) but not those isolated from 3 patients with AML expressing native FLT3. Overall, these results support the investigation of ponatinib in patients with FLT3-ITD-driven AML and other hematologic malignancies driven by KIT, FGFR1, or PDGFRα.
Collapse
Affiliation(s)
- Joseph M Gozgit
- ARIAD Pharmaceuticals, Inc., 26 Landsdowne Street, Cambridge, MA 02139, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
127
|
Amrein PC. The potential for dasatinib in treating chronic lymphocytic leukemia, acute myeloid leukemia, and myeloproliferative neoplasms. Leuk Lymphoma 2011; 52:754-63. [PMID: 21463117 DOI: 10.3109/10428194.2011.555890] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Dasatinib is a kinase inhibitor that inhibits BCR-ABL, Src family kinases, c-Kit, and platelet-derived growth factor receptor kinase. It is licensed for the first- and second-line treatment of chronic myeloid leukemia and second-line treatment of Philadelphia chromosome-positive acute lymphoblastic leukemia on the basis of BCR-ABL inhibition, but the activity of dasatinib against additional molecular targets may enable treatment of other hematologic disorders. Potential targets for dasatinib in chronic lymphocytic leukemia (CLL) include Lyn (a Src family kinase), ABL, and the associated CD40 pathway. Although dasatinib monotherapy has modest clinical activity in CLL, ongoing studies are evaluating combination treatment. In acute myeloid leukemia (AML), FLT3, Lyn, c-Kit, and BCR-ABL are expressed in a subpopulation of patients. To date, clinical responses to dasatinib in patients with unselected AML have been mixed and larger studies are needed, particularly correlating clinical response to molecular markers. Imatinib has been used successfully to treat patients with chronic eosinophilic disorders with the FIP1L1-PDGFRA fusion kinase; limited clinical data indicate that dasatinib could be active in imatinib-resistant disease. Ongoing clinical studies should further define the value of dasatinib in these disorders.
Collapse
Affiliation(s)
- Philip C Amrein
- Hematology-Oncology, Massachusetts General Hospital, Boston, MA 02114, USA.
| |
Collapse
|
128
|
Noor SM, Bell R, Ward AC. Shooting the messenger: Targeting signal transduction pathways in leukemia and related disorders. Crit Rev Oncol Hematol 2011; 78:33-44. [DOI: 10.1016/j.critrevonc.2010.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2009] [Revised: 04/04/2010] [Accepted: 05/05/2010] [Indexed: 01/12/2023] Open
|
129
|
Chan PM. Differential signaling of Flt3 activating mutations in acute myeloid leukemia: a working model. Protein Cell 2011; 2:108-15. [PMID: 21359601 DOI: 10.1007/s13238-011-1020-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 02/07/2011] [Indexed: 12/13/2022] Open
Abstract
Receptor tyrosine kinases couple a wide variety of extracellular cues to cellular responses. The class III subfamily comprises the platelet-derived growth factor receptor, c-Kit, Flt3 and c-Fms, all of which relay cell proliferation signals upon ligand binding. Accordingly, mutations in these proteins that confer ligand-independent activation are found in a subset of cancers. These mutations cluster in the juxtamembrane (JM) and catalytic tyrosine kinase domain (TKD) regions. In the case of acute myeloid leukemia (AML), the juxtamembrane (named ITD for internal tandem duplication) and TKD Flt3 mutants differ in their spectra of clinical outcomes. Although the mechanism of aberrant activation has been largely elucidated by biochemical and structural analyses of mutant kinases, the differences in disease presentation cannot be attributed to a change in substrate specificity or signaling strength of the catalytic domain. This review discusses the latest literature and presents a working model of differential Flt3 signaling based on mis-localized juxtamembrane autophosphorylation, to account for the disease variation. This will have bearing on therapeutic approaches in a complex disease such as AML, for which no efficacious drug yet exists.
Collapse
Affiliation(s)
- Perry M Chan
- Neuroscience Research Partnership, Biomedical Sciences Institute, affiliated with Institute of Molecular and Cell Biology, ASTAR, Singapore 138673, Singapore.
| |
Collapse
|
130
|
Chaix A, Lopez S, Voisset E, Gros L, Dubreuil P, De Sepulveda P. Mechanisms of STAT protein activation by oncogenic KIT mutants in neoplastic mast cells. J Biol Chem 2010; 286:5956-66. [PMID: 21135090 DOI: 10.1074/jbc.m110.182642] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mutations in the c-kit gene occur in the vast majority of mastocytosis. In adult patients as well as in the cell line derived from mast cell neoplasms, the mutations occur almost exclusively at amino acid 816 within the kinase domain of KIT. Among the downstream effectors of KIT signaling, STAT3 and STAT5 have been shown to be critical for cell proliferation elicited by the KIT-Asp(816) mutant protein. However, little is known about the mechanisms of activation of STAT proteins. In this study, we identify and clarify the contribution of various STAT kinases in two widely used neoplastic mast cell lines, P815 and HMC-1. We show that STAT1, -3, and -5 proteins are activated downstream of the KIT-Asp(816) mutant. All three STAT proteins are located in the nucleus and are phosphorylated on serine residues. KIT-Asp(816) mutant can directly phosphorylate STATs on the activation-specific tyrosine residues in vitro. However, within cells, SRC family kinases and JAKs diversely contribute to tyrosine phosphorylation of STAT proteins downstream of the KIT mutant. Using a panel of inhibitors, we provide evidence for the implication or exclusion of serine/threonine kinases as responsible for serine phosphorylation of STAT1, -3, and -5 in the two cell lines. Finally, we show that only STAT5 is transcriptionally active in these cells. This suggests that the contribution of STAT1 and STAT3 downstream of KIT mutant is independent of their transcription factor function.
Collapse
Affiliation(s)
- Amandine Chaix
- INSERM, U891, Centre de Recherche en Cancérologie de Marseille, France
| | | | | | | | | | | |
Collapse
|
131
|
Rosen DB, Minden MD, Kornblau SM, Cohen A, Gayko U, Putta S, Woronicz J, Evensen E, Fantl WJ, Cesano A. Functional characterization of FLT3 receptor signaling deregulation in acute myeloid leukemia by single cell network profiling (SCNP). PLoS One 2010; 5:e13543. [PMID: 21048955 PMCID: PMC2965086 DOI: 10.1371/journal.pone.0013543] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Accepted: 09/19/2010] [Indexed: 01/08/2023] Open
Abstract
Background Molecular characterization of the FMS-like tyrosine kinase 3 receptor (FLT3) in cytogenetically normal acute myeloid leukemia (AML) has recently been incorporated into clinical guidelines based on correlations between FLT3 internal tandem duplications (FLT3-ITD) and decreased disease-free and overall survival. These mutations result in constitutive activation of FLT3, and FLT3 inhibitors are currently undergoing trials in AML patients selected on FLT3 molecular status. However, the transient and partial responses observed suggest that FLT3 mutational status alone does not provide complete information on FLT3 biological activity at the individual patient level. Examination of variation in cellular responsiveness to signaling modulation may be more informative. Methodology/Principal Findings Using single cell network profiling (SCNP), cells were treated with extracellular modulators and their functional responses were quantified by multiparametric flow cytometry. Intracellular signaling responses were compared between healthy bone marrow myeloblasts (BMMb) and AML leukemic blasts characterized as FLT3 wild type (FLT3-WT) or FLT3-ITD. Compared to healthy BMMb, FLT3-WT leukemic blasts demonstrated a wide range of signaling responses to FLT3 ligand (FLT3L), including elevated and sustained PI3K and Ras/Raf/Erk signaling. Distinct signaling and apoptosis profiles were observed in FLT3-WT and FLT3-ITD AML samples, with more uniform signaling observed in FLT3-ITD AML samples. Specifically, increased basal p-Stat5 levels, decreased FLT3L induced activation of the PI3K and Ras/Raf/Erk pathways, decreased IL-27 induced activation of the Jak/Stat pathway, and heightened apoptotic responses to agents inducing DNA damage were observed in FLT3-ITD AML samples. Preliminary analysis correlating these findings with clinical outcomes suggests that classification of patient samples based on signaling profiles may more accurately reflect FLT3 signaling deregulation and provide additional information for disease characterization and management. Conclusions/Significance These studies show the feasibility of SCNP to assess modulated intracellular signaling pathways and characterize the biology of individual AML samples in the context of genetic alterations.
Collapse
Affiliation(s)
- David B. Rosen
- Nodality, Inc., South San Francisco, California, United States of America
| | - Mark D. Minden
- Department of Medical Oncology/Hematology, The University of Toronto, Princess Margaret Hospital, Toronto, Ontario, Canada
| | - Steven M. Kornblau
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Aileen Cohen
- Nodality, Inc., South San Francisco, California, United States of America
| | - Urte Gayko
- Nodality, Inc., South San Francisco, California, United States of America
| | - Santosh Putta
- Nodality, Inc., South San Francisco, California, United States of America
| | - John Woronicz
- Nodality, Inc., South San Francisco, California, United States of America
| | - Erik Evensen
- Nodality, Inc., South San Francisco, California, United States of America
| | - Wendy J. Fantl
- Nodality, Inc., South San Francisco, California, United States of America
| | - Alessandra Cesano
- Nodality, Inc., South San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
132
|
Lyn- and PLC-beta3-dependent regulation of SHP-1 phosphorylation controls Stat5 activity and myelomonocytic leukemia-like disease. Blood 2010; 116:6003-13. [PMID: 20858858 DOI: 10.1182/blood-2010-05-283937] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hyperactivation of the transcription factor Stat5 leads to various leukemias. Stat5 activity is regulated by the protein phosphatase SHP-1 in a phospholipase C (PLC)-β3-dependent manner. Thus, PLC-β3-deficient mice develop myeloproliferative neoplasm, like Lyn (Src family kinase)- deficient mice. Here we show that Lyn/PLC-β3 doubly deficient lyn(-/-);PLC-β3(-/-) mice develop a Stat5-dependent, fatal myelodysplastic/myeloproliferative neoplasm, similar to human chronic myelomonocytic leukemia (CMML). In hematopoietic stem cells of lyn(-/-);PLC-β3(-/-) mice that cause the CMML-like disease, phosphorylation of SHP-1 at Tyr(536) and Tyr(564) is abrogated, resulting in reduced phosphatase activity and constitutive activation of Stat5. Furthermore, SHP-1 phosphorylation at Tyr(564) by Lyn is indispensable for maximal phosphatase activity and for suppression of the CMML-like disease in these mice. On the other hand, Tyr(536) in SHP-1 can be phosphorylated by Lyn and another kinase(s) and is necessary for efficient interaction with Stat5. Therefore, we identify a novel Lyn/PLC-β3-mediated regulatory mechanism of SHP-1 and Stat5 activities.
Collapse
|
133
|
Vignudelli T, Selmi T, Martello A, Parenti S, Grande A, Gemelli C, Zanocco-Marani T, Ferrari S. ZFP36L1 negatively regulates erythroid differentiation of CD34+ hematopoietic stem cells by interfering with the Stat5b pathway. Mol Biol Cell 2010; 21:3340-51. [PMID: 20702587 PMCID: PMC2947470 DOI: 10.1091/mbc.e10-01-0040] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
ZFP36L1 is a member of a family of CCCH tandem zinc finger proteins (TTP family) able to bind to AU-rich elements in the 3'-untranslated region of mRNAs, thereby triggering their degradation. The present study suggests that such mechanism is used during hematopoiesis to regulate differentiation by posttranscriptionally modulating the expression of specific target genes. In particular, it demonstrates that ZFP36L1 negatively regulates erythroid differentiation by directly binding the 3' untranslated region of Stat5b encoding mRNA. Stat5b down-regulation obtained by ZFP36L1 overexpression results, in human hematopoietic progenitors, in a drastic decrease of erythroid colonies formation. These observations have been confirmed by silencing experiments targeting Stat5b and by treating hematopoietic stem/progenitor cells with drugs able to induce ZFP36L1 expression. Moreover, this study shows that different members of ZFP36L1 family act redundantly, because cooverexpression of ZFP36L1 and family member ZFP36 determines a cumulative effect on Stat5b down-regulation. This work describes a mechanism underlying ZFP36L1 capability to regulate hematopoietic differentiation and suggests a new target for the therapy of hematopoietic diseases involving Stat5b/JAK2 pathway, such as chronic myeloproliferative disorders.
Collapse
Affiliation(s)
- Tatiana Vignudelli
- Università di Modena e Reggio Emilia, Dipartimento di Scienze Biomediche, Sezione di Chimica Biologica, 41100, Modena, Italy
| | | | | | | | | | | | | | | |
Collapse
|
134
|
Down-regulation of GATA1 uncouples STAT5-induced erythroid differentiation from stem/progenitor cell proliferation. Blood 2010; 115:4367-76. [DOI: 10.1182/blood-2009-10-250894] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Previously, we have shown that overexpression of an activated mutant of signal transducer and activator of transcription-5 (STAT5) induces erythropoiesis, impaired myelopoiesis, and an increase in long-term proliferation of human hematopoietic stem/progenitor cells. Because GATA1 is a key transcription factor involved in erythropoiesis, the involvement of GATA1 in STAT5-induced phenotypes was studied by shRNA-mediated knockdown of GATA1. CD34+ cord blood cells were double transduced with a conditionally active STAT5 mutant and a lentiviral vector expressing a short hairpin against GATA1. Erythropoiesis was completely abolished in the absence of GATA1, indicating that STAT5-induced erythropoiesis is GATA1-dependent. Furthermore, the impaired myelopoiesis in STAT5-transduced cells was restored by GATA1 knockdown. Interestingly, early cobblestone formation was only modestly affected, and long-term growth of STAT5-positive cells was increased in the absence of GATA1, whereby high progenitor numbers were maintained. Thus, GATA1 down-regulation allowed the dissection of STAT5-induced differentiation phenotypes from the effects on long-term expansion of stem/progenitor cells. Gene expression profiling allowed the identification of GATA1-dependent and GATA1-independent STAT5 target genes, and these studies revealed that several proliferation-related genes were up-regulated by STAT5 independent of GATA1, whereas several erythroid differentiation-related genes were found to be GATA1 as well as STAT5 dependent.
Collapse
|
135
|
CYT387, a novel JAK2 inhibitor, induces hematologic responses and normalizes inflammatory cytokines in murine myeloproliferative neoplasms. Blood 2010; 115:5232-40. [PMID: 20385788 DOI: 10.1182/blood-2009-05-223727] [Citation(s) in RCA: 189] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Activating alleles of Janus kinase 2 (JAK2) such as JAK2(V617F) are central to the pathogenesis of myeloproliferative neoplasms (MPN), suggesting that small molecule inhibitors targeting JAK2 may be therapeutically useful. We have identified an aminopyrimidine derivative (CYT387), which inhibits JAK1, JAK2, and tyrosine kinase 2 (TYK2) at low nanomolar concentrations, with few additional targets. Between 0.5 and 1.5muM CYT387 caused growth suppression and apoptosis in JAK2-dependent hematopoietic cell lines, while nonhematopoietic cell lines were unaffected. In a murine MPN model, CYT387 normalized white cell counts, hematocrit, spleen size, and restored physiologic levels of inflammatory cytokines. Despite the hematologic responses and reduction of the JAK2(V617F) allele burden, JAK2(V617F) cells persisted and MPN recurred upon cessation of treatment, suggesting that JAK2 inhibitors may be unable to eliminate JAK2(V617F) cells, consistent with preliminary results from clinical trials of JAK2 inhibitors in myelofibrosis. While the clinical benefit of JAK2 inhibitors may be substantial, not the least due to reduction of inflammatory cytokines and symptomatic improvement, our data add to increasing evidence that kinase inhibitor monotherapy of malignant disease is not curative, suggesting a need for drug combinations to optimally target the malignant cells.
Collapse
|
136
|
Barbarroja N, Torres LA, Rodriguez-Ariza A, Valverde-Estepa A, Lopez-Sanchez LM, Ruiz-Limon P, Perez-Sanchez C, Carretero RM, Velasco F, López-Pedrera C. AEE788 is a vascular endothelial growth factor receptor tyrosine kinase inhibitor with antiproliferative and proapoptotic effects in acute myeloid leukemia. Exp Hematol 2010; 38:641-52. [PMID: 20380868 DOI: 10.1016/j.exphem.2010.03.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 03/26/2010] [Accepted: 03/26/2010] [Indexed: 01/31/2023]
Abstract
OBJECTIVE Aberrant activation of tyrosine kinase receptors is frequently observed in acute myelogenous leukemia (AML). Moreover, activating mutations of the fms-like tyrosine kinase 3 (FLT3) receptor can be found in approximately 30% of patients, thereby representing one of the most frequent single genetic alterations in AML. AEE788, a novel dual receptor tyrosine kinase inhibitor of endothelial growth factor and vascular endothelial growth factor (VEGF), is being studied in several solid tumors with remarkable success. It is not known, however, about the efficacy of this inhibitor in the treatment of AML. Therefore, we investigated the effect of AEE788 in the treatment of three human AML cell lines and seven AML patient samples. MATERIALS AND METHODS Cell survival in THP-1, MOLM-13, and MV4-11 cell lines (the two last harboring the FLT3/internal tandem duplication mutation) and AML blasts incubated with 0.5 to 15 microM AEE788 were quantified. We also studied the activation of VEGF/VEGF receptors loop, FLT3, and their downstream effectors (Akt, extracellular signal-regulated kinase, signal transducers and activators of transcription 5, and nuclear factor-kappaB). RESULTS Our data showed that AEE788 was a tyrosine kinase inhibitor of FLT3 activity and had antiproliferative and proapoptotic activity in AML-derived cell lines and AML blasts that presented phosphorylation of the FLT3 receptor. Consistently, in these cells AEE788 abrogated VEGF/VEGF receptors activation and the survival signaling pathways studied. CONCLUSION Taken together, the activity of AEE788 might represent a promising new option of targeting FLT3 for the treatment of AML.
Collapse
Affiliation(s)
- Nuria Barbarroja
- Fundación IMABIS, Hospital Universitario Virgen de la Victoria, Málaga, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
137
|
Tsuruyama T, Imai Y, Takeuchi H, Hiratsuka T, Maruyama Y, Kanaya K, Kaszynski R, Jin G, Okuno T, Ozeki M, Nakamura T, Takakuwa T, Manabe T, Tamaki K, Hiai H. Dual retrovirus integration tagging: identification of new signaling moleculesFiz1andHipk2that are involved in the IL-7 signaling pathway in B lymphoblastic lymphomas. J Leukoc Biol 2010; 88:107-16. [DOI: 10.1189/jlb.1109748] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
138
|
Grundy M, Seedhouse C, Shang S, Richardson J, Russell N, Pallis M. The FLT3 Internal Tandem Duplication Mutation Is a Secondary Target of the Aurora B Kinase Inhibitor AZD1152-HQPA in Acute Myelogenous Leukemia Cells. Mol Cancer Ther 2010; 9:661-72. [PMID: 20159992 DOI: 10.1158/1535-7163.mct-09-1144] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
MESH Headings
- Antineoplastic Agents/administration & dosage
- Antineoplastic Agents/pharmacology
- Apoptosis/drug effects
- Aurora Kinase B
- Aurora Kinases
- Cell Survival/drug effects
- Drug Delivery Systems
- Drug Evaluation, Preclinical
- Gene Expression Regulation, Leukemic/drug effects
- Histones/genetics
- Histones/metabolism
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Mutagenesis, Insertional/physiology
- Phosphorylation/drug effects
- Protein Kinase Inhibitors/administration & dosage
- Protein Kinase Inhibitors/pharmacology
- Protein Serine-Threonine Kinases/antagonists & inhibitors
- Quinazolines/administration & dosage
- Quinazolines/pharmacology
- Tandem Repeat Sequences/genetics
- Tumor Cells, Cultured
- U937 Cells
- fms-Like Tyrosine Kinase 3/genetics
- fms-Like Tyrosine Kinase 3/metabolism
Collapse
Affiliation(s)
- Martin Grundy
- Department of Academic Haematology, University of Nottingham, Nottingham, United Kingdom.
| | | | | | | | | | | |
Collapse
|
139
|
Selective FLT3 inhibitor FI-700 neutralizes Mcl-1 and enhances p53-mediated apoptosis in AML cells with activating mutations of FLT3 through Mcl-1/Noxa axis. Leukemia 2010; 24:33-43. [PMID: 19946262 DOI: 10.1038/leu.2009.212] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Treatment using Fms-like tyrosine kinase-3 (FLT3) inhibitors is a promising approach to overcome the dismal prognosis of acute myeloid leukemia (AML) with activating FLT3 mutations. Current trials are combining FLT3 inhibitors with p53-activating conventional chemotherapy. The mechanisms of cytotoxicity of FLT3 inhibitors are poorly understood. We investigated the interaction of FLT3 and p53 pathways after their simultaneous blockade using the selective FLT3 inhibitor FI-700 and the MDM2 inhibitor Nutlin-3 in AML. We found that FI-700 immediately reduced antiapoptotic Mcl-1 levels and enhanced Nutlin-induced p53-mediated mitochondrial apoptosis in FLT3/internal tandem duplication cells through the Mcl-1/Noxa axis. FI-700 induced proteasome-mediated degradation of Mcl-1, resulting in the reduced ability of Mcl-1 to sequester proapoptotic Bim. Nutlin-3 induced Noxa, which displaced Bim from Mcl-1. The FI-700/Nutlin-3 combination profoundly activated Bax and induced apoptosis. Our findings suggest that FI-700 actively enhances p53 signaling toward mitochondrial apoptosis and that a combination strategy aimed at inhibiting FLT3 and activating p53 signaling could potentially be effective in AML.
Collapse
|
140
|
JAK2-V617F mutation in patients with myeloproliferative neoplasms: Association with FLT3-ITD mutation. SRP ARK CELOK LEK 2010; 138:614-8. [DOI: 10.2298/sarh1010614s] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Introduction. An acquired somatic mutation V617F in Janus kinase 2 gene
(JAK2) is the cause of uncontrolled proliferation in patients with
myeloproliferative neoplasms. It is known that uncontrolled myeloid cell
proliferation is also provoked by alteration in other genes, e.g. mutations
in receptor tyrosine kinase FLT3 gene. FLT3 represents the most frequently
mutated gene in acute myeloid leukaemia. Interestingly, mutated FLT3- ITD
(internal tandem duplication) protein is a member of the same signalling
pathway as JAK2 protein, the STAT5 signalling pathway. STAT5 activation is
recognized as important for selfrenewal of haematopoetic stem cells.
Objective. The aim of this study was the detection of JAK2- V617F mutation in
patients with myeloproliferative neoplasms. Additionally, we investigated the
presence of FLT3-ITD mutation in JAK2-V617F-positive patients in order to
shed the light on the hypothesis of a similar role of these two molecular
markers in haematological malignancies. Methods. Using allele-specific PCR,
61 patients with known or suspected diagnosis of myeloproliferative neoplasms
were tested for the presence of JAK2-V617F mutation. Samples that were
positive for JAK2 mutation were subsequently tested for the presence of
FLT3-ITD mutation by PCR. Results. Eighteen of 61 analysed patients were
positive for JAK2-V617F mutation. Among them, 8/18 samples were diagnosed as
polycythaemia vera, and 10/18 as essential thrombocythaemia. None of
JAK2-V617F-positive patient was positive for FLT3-ITD mutation. Conclusion.
This study suggests that one activating mutation is sufficient for aberrant
cell proliferation leading to malignant transformation of haematopoetic stem
cell.
Collapse
|
141
|
Impact of CXCR4 inhibition on FLT3-ITD-positive human AML blasts. Exp Hematol 2009; 38:180-90. [PMID: 20035824 DOI: 10.1016/j.exphem.2009.12.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Revised: 12/13/2009] [Accepted: 12/14/2009] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Internal tandem duplication (ITD) mutations of the FLT3 receptor are associated with a high incidence of relapse in acute myeloid leukemia (AML). Expression of the CXCR4 receptor in FLT3-ITD-positive AML is correlated with poor outcome, and inhibition of CXCR4 was shown to sensitize AML blasts toward chemotherapy. The aim of this study was to evaluate the impact of FLT3-ITD on cell proliferation and CXCR4-dependent migration in human hematopoietic progenitor cells and to investigate their response to CXCR4 inhibition. MATERIALS AND METHODS We used primary blasts from patients with FLT3-ITD or FLT3 wild-type AML. In addition, human CD34(+) hematopoietic progenitor cells were transduced to >70% with retroviral vectors containing human FLT3-ITD. RESULTS We found that FLT3-ITD transgene overexpressing human hematopoietic progenitor cells show strongly reduced migration toward stromal-derived factor-1 in vitro and display significantly reduced bone marrow homing in nonobese diabetic severe combined immunodeficient mice. Cocultivation of FLT3-ITD-positive AML blasts or hematopoietic progenitor cells on bone marrow stromal cells resulted in a strong proliferation advantage and increased early cobblestone area-forming cells compared to FLT3-wild-type AML blasts. Addition of the CXCR4 inhibitor AMD3100 to the coculture significantly reduced both cobblestone area-forming cells and proliferation of FLT3-ITD-positive cells, but did not affect FLT3-wild-type cells-highlighting the critical interaction between CXCR4 and FLT3-ITD. CONCLUSION CXCR4 inhibition to decrease cell proliferation and to control the leukemic burden may provide a novel therapeutic strategy in patients with advanced FLT3-ITD-positive AML.
Collapse
|
142
|
Ustun C, DeRemer DL, Jillella AP, Bhalla KN. Investigational drugs targeting FLT3 for leukemia. Expert Opin Investig Drugs 2009; 18:1445-56. [PMID: 19671038 DOI: 10.1517/13543780903179278] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
FMS-like tyrosine kinase-3 (FLT3) is a member of the class III membrane receptor tyrosine kinase family and is important in survival, proliferation and differentiation of hematopoietic cells. FLT3 is mutated in approximately 30% of acute myelogenous leukemia patients. These mutations involve internal tandem duplications in the juxtamembrane domain of the receptor and tyrosine kinase point mutations in the activation loop. Over the past decade, due to the incidence and poor prognosis associated with FLT3, numerous agents have been developed to directly inhibit the activity of wild type and mutated FLT3. In this review, we focus on the preclinical data demonstrating in vitro activity, inhibition of downstream signaling pathways and potential synergy with traditional chemotherapeutic agents. Also, early clinical trial data specifically focusing on drug toxicity, clinical efficacy and future directions of FLT3-directed anticancer therapy are discussed.
Collapse
|
143
|
Zhang Y, Askenazi M, Jiang J, Luckey CJ, Griffin JD, Marto JA. A robust error model for iTRAQ quantification reveals divergent signaling between oncogenic FLT3 mutants in acute myeloid leukemia. Mol Cell Proteomics 2009; 9:780-90. [PMID: 20019052 DOI: 10.1074/mcp.m900452-mcp200] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The FLT3 receptor tyrosine kinase plays an important role in normal hematopoietic development and leukemogenesis. Point mutations within the activation loop and in-frame tandem duplications of the juxtamembrane domain represent the most frequent molecular abnormalities observed in acute myeloid leukemia. Interestingly these gain-of-function mutations correlate with different clinical outcomes, suggesting that signals from constitutive FLT3 mutants activate different downstream targets. In principle, mass spectrometry offers a powerful means to quantify protein phosphorylation and identify signaling events associated with constitutively active kinases or other oncogenic events. However, regulation of individual phosphorylation sites presents a challenging case for proteomics studies whereby quantification is based on individual peptides rather than an average across different peptides derived from the same protein. Here we describe a robust experimental framework and associated error model for iTRAQ-based quantification on an Orbitrap mass spectrometer that relates variance of peptide ratios to mass spectral peak height and provides for assignment of p value, q value, and confidence interval to every peptide identification, all based on routine measurements, obviating the need for detailed characterization of individual ion peaks. Moreover, we demonstrate that our model is stable over time and can be applied in a manner directly analogous to ubiquitously used external mass calibration routines. Application of our error model to quantitative proteomics data for FLT3 signaling provides evidence that phosphorylation of tyrosine phosphatase SHP1 abrogates the transformative potential, but not overall kinase activity, of FLT3-D835Y in acute myeloid leukemia.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
144
|
Single-cell STAT5 signal transduction profiling in normal and leukemic stem and progenitor cell populations reveals highly distinct cytokine responses. PLoS One 2009; 4:e7989. [PMID: 19956772 PMCID: PMC2776352 DOI: 10.1371/journal.pone.0007989] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Accepted: 10/30/2009] [Indexed: 01/17/2023] Open
Abstract
Background Signal Transducer and Activator of Transcription 5 (STAT5) plays critical roles in normal and leukemic hematopoiesis. However, the manner in which STAT5 responds to early-acting and lineage-restricted cytokines, particularly in leukemic stem/progenitor cells, is largely unknown. Methodology/Principal Findings We optimized a multiparametric flow cytometry protocol to analyze STAT5 phosphorylation upon cytokine stimulation in stem and progenitor cell compartments at a single-cell level. In normal cord blood (CB) cells, STAT5 phosphorylation was efficiently induced by TPO, IL-3 and GM-CSF within CD34+CD38− hematopoietic stem cells (HSCs). EPO- and SCF-induced STAT5 phosphorylation was largely restricted to the megakaryocyte-erythroid progenitor (MEP) compartment, while G-CSF as well IL-3 and GM-CSF were most efficient in inducing STAT5 phosphorylation in the myeloid progenitor compartments. Strikingly, mobilized adult peripheral blood (PB) CD34+ cells responded much less efficiently to cytokine-induced STAT5 activation, with the exception of TPO. In leukemic stem and progenitor cells, highly distinct cytokine responses were observed, differing significantly from their normal counterparts. These responses could not be predicted by the expression level of cytokine receptors. Also, heterogeneity existed in cytokine requirements for long-term expansion of AML CD34+ cells on stroma. Conclusions/Significance In conclusion, our optimized multiparametric flow cytometry protocols allow the analysis of signal transduction at the single cell level in normal and leukemic stem and progenitor cells. Our study demonstrates highly distinctive cytokine responses in STAT5 phosphorylation in both normal and leukemic stem/progenitor cells.
Collapse
|
145
|
Choudhary C, Olsen JV, Brandts C, Cox J, Reddy PN, Böhmer FD, Gerke V, Schmidt-Arras DE, Berdel WE, Müller-Tidow C, Mann M, Serve H. Mislocalized Activation of Oncogenic RTKs Switches Downstream Signaling Outcomes. Mol Cell 2009; 36:326-39. [DOI: 10.1016/j.molcel.2009.09.019] [Citation(s) in RCA: 224] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Revised: 06/19/2009] [Accepted: 09/10/2009] [Indexed: 10/20/2022]
|
146
|
E3 ligase-defective Cbl mutants lead to a generalized mastocytosis and myeloproliferative disease. Blood 2009; 114:4197-208. [PMID: 19734451 DOI: 10.1182/blood-2008-12-190934] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Somatic mutations of Kit have been found in leukemias and gastrointestinal stromal tumors. The proto-oncogene c-Cbl negatively regulates Kit and Flt3 by its E3 ligase activity and acts as a scaffold. We recently identified the first c-Cbl mutation in human disease in an acute myeloid leukemia patient, called Cbl-R420Q. Here we analyzed the role of Cbl mutants on Kit-mediated transformation. Coexpression of Cbl-R420Q or Cbl-70Z with Kit induced cytokine-independent proliferation, survival, and clonogenic growth. Primary murine bone marrow retrovirally transduced with c-Cbl mutants and transplanted into mice led to a generalized mastocytosis, a myeloproliferative disease, and myeloid leukemia. Overexpression of these Cbl mutants inhibited stem cell factor (SCF)-induced ubiquitination and internalization of Kit. Both Cbl mutants enhanced the basal activation of Akt and prolonged the ligand-dependent activation. Importantly, transformation was observed also with kinase-dead forms of Kit and Flt3 in the presence of Cbl-70Z, but not in the absence of Kit or Flt3, suggesting a mechanism dependent on receptor tyrosine kinases, but independent of their kinase activity. Instead, transformation depends on the Src family kinase Fyn, as c-Cbl coimmunoprecipitated with Fyn and inhibition abolished transformation. These findings may explain primary resistance to tyrosine kinase inhibitors targeted at receptor tyrosine kinases.
Collapse
|
147
|
Benekli M, Baumann H, Wetzler M. Targeting signal transducer and activator of transcription signaling pathway in leukemias. J Clin Oncol 2009; 27:4422-32. [PMID: 19667270 DOI: 10.1200/jco.2008.21.3264] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Signal transducer and activator of transcription (STAT) proteins comprise a seven-member family of latent cytoplasmic transcription factors that are activated through tyrosine phosphorylation by a variety of cytokines and growth factors. Aberrant activation of STATs accompanies malignant cellular transformation with resultant leukemogenesis. Constitutive activation of STATs has been demonstrated in various leukemias. A better understanding of the mechanisms of dysregulation of the STAT pathway and understanding of the cause and effect relationship in leukemogenesis may serve as a basis for designing novel therapeutic strategies directed against STATs. Mechanisms of STAT activation, the potential role of STAT signaling in leukemogenesis, and recent advances in drug discovery targeting the STAT pathway are the focus of this review.
Collapse
Affiliation(s)
- Mustafa Benekli
- Department of Medical Oncology, Gazi University Faculty of Medicine, Ankara, Turkey
| | | | | |
Collapse
|
148
|
Xiao W, Hong H, Kawakami Y, Kato Y, Wu D, Yasudo H, Kimura A, Kubagawa H, Bertoli LF, Davis RS, Chau LA, Madrenas J, Hsia CC, Xenocostas A, Kipps TJ, Hennighausen L, Iwama A, Nakauchi H, Kawakami T. Tumor suppression by phospholipase C-beta3 via SHP-1-mediated dephosphorylation of Stat5. Cancer Cell 2009; 16:161-71. [PMID: 19647226 PMCID: PMC2744338 DOI: 10.1016/j.ccr.2009.05.018] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2008] [Revised: 03/20/2009] [Accepted: 05/28/2009] [Indexed: 01/22/2023]
Abstract
Given its catalytic activity to generate diacylglycerol and inositol 1,4,5-trisphosphate, phospholipase C (PLC) is implicated in promoting cell growth. However, we found that PLC-beta3-deficient mice develop myeloproliferative disease, lymphoma, and other tumors. The mutant mice have increased numbers of hematopoietic stem cells with increased proliferative, survival, and myeloid-differentiative abilities. These properties are dependent on Stat5 and can be antagonized by the protein phosphatase SHP-1. Stat5-dependent cooperative transformation by active c-Myc and PLC-beta3 deficiency was suggested in mouse lymphomas in PLC-beta3(-/-) and in Emicro-myc;PLC-beta3(+/-) mice and human Burkitt's lymphoma cells. The same mechanism for malignant transformation seems to be operative in other human lymphoid and myeloid malignancies. Thus, PLC-beta3 is likely a tumor suppressor.
Collapse
Affiliation(s)
- Wenbin Xiao
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, 92037, USA
| | - Hong Hong
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, 92037, USA
| | - Yuko Kawakami
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, 92037, USA
| | - Yuko Kato
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Dianqing Wu
- Program for Vascular Biology and Therapeutics and Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Hiroki Yasudo
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, 92037, USA
| | - Akiko Kimura
- Laboratory of Genetics and Physiology, National Institutes of Health/NIDDK, Bethesda, MD 20892, USA
| | - Hiromi Kubagawa
- Department of Pathology, University of Alabama, Birmingham, AL, 35294, USA
| | - Luigi F. Bertoli
- Department of Medicine, University of Alabama, Birmingham, AL, 35294, USA
| | | | - Luan A. Chau
- Department of Microbiology and Immunology, University of Western Ontario, London, ON, N6A 5K8, Canada
| | - Joaquin Madrenas
- Department of Microbiology and Immunology, University of Western Ontario, London, ON, N6A 5K8, Canada
| | - Cyrus C. Hsia
- Department of Medicine, University of Western Ontario, London, ON, N6A4G5, Canada
| | - Anargyros Xenocostas
- Department of Medicine, University of Western Ontario, London, ON, N6A4G5, Canada
| | - Thomas J. Kipps
- Department of Internal Medicine, University of California at San Diego, La Jolla, CA, 92093, USA
| | - Lothar Hennighausen
- Laboratory of Genetics and Physiology, National Institutes of Health/NIDDK, Bethesda, MD 20892, USA
| | - Atsushi Iwama
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Hiromitsu Nakauchi
- Laboratory of Stem Cell Therapy, Center of Experimental Medicine, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Toshiaki Kawakami
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, 92037, USA
- Correspondence: Toshiaki Kawakami, M.D., Ph.D., Division of Cell Biology, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, California 92037, USA Tel: (858) 752-6814; Fax: (858) 752-6986;
| |
Collapse
|
149
|
Masson K, Liu T, Khan R, Sun J, Rönnstrand L. A role of Gab2 association in Flt3 ITD mediated Stat5 phosphorylation and cell survival. Br J Haematol 2009; 146:193-202. [DOI: 10.1111/j.1365-2141.2009.07725.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
150
|
Torres LA, Barbarroja N, Dorado G, Velasco F, López-Pedrera C. VEGF/KDR loop is a target of AG1296 in acute myeloid leukaemia showing FLT3-internal tandem duplications. Br J Haematol 2009; 145:836-8. [DOI: 10.1111/j.1365-2141.2009.07673.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|