101
|
Sipos PI, Crocker IP, Hubel CA, Baker PN. Endothelial progenitor cells: their potential in the placental vasculature and related complications. Placenta 2009; 31:1-10. [PMID: 19917514 DOI: 10.1016/j.placenta.2009.10.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 09/23/2009] [Accepted: 10/12/2009] [Indexed: 02/04/2023]
Abstract
Endothelial progenitor cells (EPCs) have received significant attention in recent times. A role for EPCs has been suggested in a range of pathologies and some recent studies of EPCs in pregnancy have been published. This review provides a guide to the confusing field of EPCs. Attention is paid to their phenotyping, as although elementary this remains a highly debated topic. The current understanding of different subtypes and physiological role of EPCs in the placenta, fetus and adult are also considered. An overview is given as to role of EPC's in the pathophysiology of different disease states and the possible therapeutic and diagnostic applications expected from EPC-related research in obstetrics.
Collapse
Affiliation(s)
- P I Sipos
- Maternal and Fetal Health Research Group, The University of Manchester, Research Floor, St Mary's Hospital, Oxford Road, Manchester, M13 9WL, UK.
| | | | | | | |
Collapse
|
102
|
Notch-RBP-J signaling regulates the mobilization and function of endothelial progenitor cells by dynamic modulation of CXCR4 expression in mice. PLoS One 2009; 4:e7572. [PMID: 19859544 PMCID: PMC2762521 DOI: 10.1371/journal.pone.0007572] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2009] [Accepted: 10/04/2009] [Indexed: 12/22/2022] Open
Abstract
Bone marrow (BM)-derived endothelial progenitor cells (EPC) have therapeutic potentials in promoting tissue regeneration, but how these cells are modulated in vivo has been elusive. Here, we report that RBP-J, the critical transcription factor mediating Notch signaling, modulates EPC through CXCR4. In a mouse partial hepatectomy (PHx) model, RBP-J deficient EPC showed attenuated capacities of homing and facilitating liver regeneration. In resting mice, the conditional deletion of RBP-J led to a decrease of BM EPC, with a concomitant increase of EPC in the peripheral blood. This was accompanied by a down-regulation of CXCR4 on EPC in BM, although CXCR4 expression on EPC in the circulation was up-regulated in the absence of RBP-J. PHx in RBP-J deficient mice induced stronger EPC mobilization. In vitro, RBP-J deficient EPC showed lowered capacities of adhering, migrating, and forming vessel-like structures in three-dimensional cultures. Over-expression of CXCR4 could at least rescue the defects in vessel formation by the RBP-J deficient EPC. These data suggested that the RBP-J-mediated Notch signaling regulated EPC mobilization and function, at least partially through dynamic modulation of CXCR4 expression. Our findings not only provide new insights into the regulation of EPC, but also have implications for clinical therapies using EPC in diseases.
Collapse
|
103
|
Francavilla C, Maddaluno L, Cavallaro U. The functional role of cell adhesion molecules in tumor angiogenesis. Semin Cancer Biol 2009; 19:298-309. [DOI: 10.1016/j.semcancer.2009.05.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Accepted: 05/20/2009] [Indexed: 12/18/2022]
|
104
|
Miljkovic-Licina M, Hammel P, Garrido-Urbani S, Bradfield PF, Szepetowski P, Imhof BA. Sushi repeat protein X-linked 2, a novel mediator of angiogenesis. FASEB J 2009; 23:4105-16. [PMID: 19667118 DOI: 10.1096/fj.09-135202] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
On appropriate stimuli, quiescent endothelial cells start to proliferate and form de novo blood vessels through angiogenesis. To further define molecular mechanisms accompanying the activation of endothelial cells during angiogenesis, we identified genes that were differentially regulated during this process using microarray analyses. In this work, we established a regulatory role for Sushi repeat protein X-linked 2 (Srpx2) in endothelial cell remodeling during angiogenesis. In particular, silencing of Srpx2 using small interfering RNAs (siRNAs) specifically attenuated endothelial cell migration and delayed angiogenic sprout formation. In vivo, Srpx2 expression was detected in de novo formation of blood vessels in angiogenic tissues by in situ mRNA hybridization and immunostaining. Pulldown experiments identified Srpx2 as a ligand for vascular uPAR, a key molecule involved in invasive migration of angiogenic endothelium. Immunostaining revealed coexpression of the Srpx2 and uPAR on vascular endothelium. These findings suggest that Srpx2 regulates endothelial cell migration and tube formation and provides a new target for modulating angiogenesis.
Collapse
Affiliation(s)
- Marijana Miljkovic-Licina
- Department of Pathology and Immunology, Centre Médical Universitaire, Rue Michel-Servet 1, CH-1211 Geneva 4, Switzerland
| | | | | | | | | | | |
Collapse
|
105
|
Yu JX, Huang XF, Lv WM, Ye CS, Peng XZ, Zhang H, Xiao LB, Wang SM. Combination of stromal-derived factor-1alpha and vascular endothelial growth factor gene-modified endothelial progenitor cells is more effective for ischemic neovascularization. J Vasc Surg 2009; 50:608-16. [PMID: 19595531 DOI: 10.1016/j.jvs.2009.05.049] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Revised: 05/13/2009] [Accepted: 05/13/2009] [Indexed: 10/20/2022]
Abstract
BACKGROUND Recruitment and entrapment of bone marrow-derived endothelial progenitor cells (EPCs) is important in vascular endothelial growth factor (VEGF)-induced angiogenesis. EPC mobilization and differentiation are modulated by stromal-derived factor-1alpha (SDF-1alpha/CXCL12), another important chemokine. In this study, we investigated the hypothesis that SDF-1alpha and VEGF might act synergistically on EPC-mediated vasculogenesis. METHODS EPCs were isolated and cultured from human peripheral blood, then transduced with retroviral vectors pBabe containing human VEGF(165) complimentary DNA (Td/V-EPCs) and pBabe wild-type (Td/p-EPCs). EPC migration activity was investigated with a modified Boyden chamber assay. EPC apoptosis induced by serum starvation was studied by annexin V assays. The combined effect of local administration of SDF-1alpha and Td/V-EPC transplantation on neovascularization was investigated in a murine model of hind limb ischemia. RESULTS Over-expression of hVEGF(165) increased SDF-1alpha-mediated EPC migration. SDF-1alpha-mediated migration was significantly increased when EPCs were modified with VEGF (Td/V-EPCs) vs when VEGF was not present (Td/p-EPCs) or when VEGF alone was present (Td/V-EPCs; 196.8 +/- 15.2, 81.2 +/- 9.8, and 67.4 +/- 7.4/mm(2), respectively P < .001). SDF-1alpha combined with VEGF reduced serum starvation-induced apoptosis of EPCs more than SDF-1alpha or VEGF alone (P < .001). To determine the effect of this combination in vivo, SDF-1alpha was locally injected alone into the ischemic hind limb muscle of nude mice or combined with systemically injected Td/V-EPCs. The SDF-1alpha plus VEGF group showed significantly increased local accumulation of EPCs, blood-flow recovery, and capillary density compared with the other groups. The ratio of ischemic/normal blood flow in Td/V-EPCs plus SDF-1alpha group was significantly higher (P < .01), as was capillary density (capillaries/mm(2)), an index of neovascularization (Td/V-EPCs plus SDF-1alpha group, 863 +/- 31; no treatment, 395 +/-13; SDF-1alpha, 520 +/- 29; Td/p-EPCs, 448 +/- 28; Td/p-EPCs plus SDF-1alpha, 620 +/- 29; Td/V-EPCs, 570 +/- 30; P < .01). To investigate a possible mechanistic basis, we showed that VEGF up-regulated the receptor for SDF-1alpha, CXCR4, on EPCs in vitro. CONCLUSION The combination of SDF-1alpha and VEGF greatly increases EPC-mediated angiogenesis. The use VEGF and SDF-1alpha together, rather than alone, will be a novel and efficient angiogenesis strategy to provide therapeutic neovascularization.
Collapse
Affiliation(s)
- Jian-Xing Yu
- Department of Vascular Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
106
|
Abstract
The discovery, over a decade ago, of endothelial progenitor cells that are able to participate in neovascularization of adult tissue has been greeted enthusiastically because of the potential for new cell-based therapies for therapeutic angiogenesis. Since that time, an ever-growing list of candidate cells has been proposed for cardiovascular regeneration. However, to date, pre-clinical and clinical studies evaluating the therapeutic potential of various cell therapies have reported conflicting results, generating controversy. Key issues within the field of cell therapy research include a lack of uniform cellular definitions, as well as inadequate functional characterization of the role of putative stem/progenitor cells in angiogenesis. Given the mixed results of initial clinical studies, there is now a scientific imperative to understand better the vascular biology of candidate cells in order to better translate cell therapy to the bedside. This review will provide a translationally relevant overview of the biology of candidate stem/progenitor cells for therapeutic angiogenesis.
Collapse
Affiliation(s)
- Daniel P Sieveking
- Heart Research Institute and Department of Medicine, University of Sydney
| | | |
Collapse
|
107
|
Smadja DM, Gaussem P. [Characterization of endothelial progenitor cells and putative strategies to improve their expansion]. ACTA ACUST UNITED AC 2009; 203:197-207. [PMID: 19527634 DOI: 10.1051/jbio/2009024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Injection of endothelial progenitor cells (EPC) expanded ex vivo has been shown to increase neovascularization in preclinical models of ischemia and in adult patients, but the precise origin and identity of the cell population responsible for these clinical benefits are controversial. Given the potential usefulness of EPC as a cell therapy product, their thorough characterization is of major importance. This review describes the two cell populations currently called EPC and the means to find differential phenotypic markers. We have shown that BMP2/4 are specific markers of late EPC and play a key role in EPC commitment and outgrowth during neovascularization. Several authors have attempted to expand EPC ex vivo in order to obtain a homogeneous cell therapy product. One possible mean of expanding EPC ex vivo is to activate the thrombin receptor PAR-1 with the specific peptide SFLLRN. Indeed, PAR-1 activation increases angiogenic properties of EPC through activation of SDF-1, angiopoietin and IL-8 pathways. This review summarizes the characterization of EPC and different methods of ex vivo expansion.
Collapse
Affiliation(s)
- David M Smadja
- Université Paris Descartes Inserm Unité 765, Faculté de Pharmacie AP-HP, Hôpital Européen Georges Pompidou, Service d'Hématologie Biologique, 75000 Paris, France
| | | |
Collapse
|
108
|
Boscolo E, Bischoff J. Vasculogenesis in infantile hemangioma. Angiogenesis 2009; 12:197-207. [PMID: 19430954 DOI: 10.1007/s10456-009-9148-2] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Accepted: 04/24/2009] [Indexed: 02/07/2023]
Abstract
Infantile hemangioma is a vascular tumor that occurs in 5-10% of infants of European descent. A defining feature of infantile hemangioma is the dramatic growth and development into a disorganized mass of blood vessels. Subsequently, a slow spontaneous involution begins around 1 year of age and continues for 4-6 years. The growth and involution of infantile hemangioma is very different from other vascular tumors and vascular malformations, which do not regress and can occur at any time during childhood or adult life. Much has been learned from careful study of the tissue morphology and gene expression patterns during the life-cycle of hemangioma. Tissue explants and tumor-derived cell populations have provided further insight to unravel the cellular and molecular basis of infantile hemangioma. A multipotent progenitor cell capable of de novo blood vessel formation has been isolated from infantile hemangioma, which suggests that this common tumor of infancy, long considered to be a model for pathologic angiogenesis, may also represent pathologic vasculogenesis. Whether viewed as angiogenesis or vasculogenesis, infantile hemangioma represents a vascular perturbation during a critical period of post-natal growth, and as such provides a unique opportunity to decipher mechanisms of human vascular development.
Collapse
Affiliation(s)
- Elisa Boscolo
- Vascular Biology Program, Department of Surgery, Children's Hospital Boston, Harvard Medical School, 300 Longwood Ave, Boston, MA 02115, USA
| | | |
Collapse
|
109
|
Tanaka K, Arao T, Maegawa M, Matsumoto K, Kaneda H, Kudo K, Fujita Y, Yokote H, Yanagihara K, Yamada Y, Okamoto I, Nakagawa K, Nishio K. SRPX2 is overexpressed in gastric cancer and promotes cellular migration and adhesion. Int J Cancer 2009; 124:1072-80. [PMID: 19065654 DOI: 10.1002/ijc.24065] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
SRPX2 (Sushi repeat containing protein, X-linked 2) was first identified as a downstream molecule of the E2A-HLF fusion gene in t(17;19)-positive leukemia cells and the biological function of this gene remains unknown. We found that SRPX2 is overexpressed in gastric cancer and the expression and clinical features showed that high mRNA expression levels were observed in patients with unfavorable outcomes using real-time RT-PCR. The cellular distribution of SRPX2 protein showed the secretion of SRPX2 into extracellular regions and its localization in the cytoplasm. The introduction of the SRPX2 gene into HEK293 cells did not modulate the cellular proliferative activity but did enhance the cellular migration activity, as shown using migration and scratch assays. The conditioned-medium obtained from SRPX2-overexpressing cells increased the cellular migration activity of a gastric cancer cell line, SNU-16. In addition, SRPX2 protein remarkably enhanced the cellular adhesion of SNU-16 and HSC-39 and increased the phosphorylation levels of focal adhesion kinase (FAK), as shown using western blotting, suggesting that SRPX2 enhances cellular migration and adhesion through FAK signaling. In conclusion, the overexpression of SRPX2 enhances cellular migration and adhesion in gastric cancer cells. Here, we report that the biological functions of SRPX2 include cellular migration and adhesion to cancer cells.
Collapse
Affiliation(s)
- Kaoru Tanaka
- Department of Genome Biology, Kinki University School of Medicine, Osaka-Sayama, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Robb AO, Mills NL, Smith IBJ, Short A, Tura-Ceide O, Barclay GR, Blomberg A, Critchley HOD, Newby DE, Denison FC. Influence of menstrual cycle on circulating endothelial progenitor cells. Hum Reprod 2008; 24:619-25. [PMID: 19088108 DOI: 10.1093/humrep/den411] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Endothelial progenitor cells (EPCs) are circulating mononuclear cells that participate in angiogenesis. The aim of this study was to determine the influence of the menstrual cycle on the number and function of EPCs, and to investigate their relationship with circulating concentrations of sex steroids and inflammatory mediators. METHODS Ten healthy nulliparous, premenopausal, non-smoking women with regular menses were studied over a single menstrual cycle. Venepuncture was performed in the menstrual, follicular, peri-ovulatory and luteal phases. EPCs were quantified by flow cytometry (CD133(+)CD34(+)KDR(+) phenotype) and the colony-forming unit (CFU-EPC) functional assay. Circulating concentrations of estradiol, progesterone and inflammatory mediators (TNF-alpha, IL-6, sICAM-1 and VEGF) were measured by immunoassays. RESULTS The numbers of CD133(+)CD34(+)KDR(+) cells were higher in the follicular phase (0.99 +/- 0.3 x 10(6) cells/l) compared with the peri-ovulatory phase (0.29 +/- 0.1 x 10(6) cells/l; P < 0.05). In contrast, the numbers of CFU-EPCs did not vary over the menstrual cycle. There were no correlations between EPCs and concentrations of either circulating sex steroids or inflammatory mediators. CONCLUSIONS CD133(+)CD34(+)KDR(+) cells but not CFU-EPCs vary during the menstrual cycle. Our findings suggest a potential role for circulating EPCs in the normal cycle of physiological angiogenesis and repair of the uterine endometrium that is independent of circulating sex steroids or inflammatory mediators.
Collapse
Affiliation(s)
- A O Robb
- Centre for Reproductive Biology, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
111
|
Endothelial progenitor cells in adolescents: impact of overweight, age, smoking, sport and cytokines in younger age. Clin Res Cardiol 2008; 98:179-88. [DOI: 10.1007/s00392-008-0739-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2008] [Accepted: 09/15/2008] [Indexed: 10/21/2022]
|
112
|
Caiado F, Real C, Carvalho T, Dias S. Notch pathway modulation on bone marrow-derived vascular precursor cells regulates their angiogenic and wound healing potential. PLoS One 2008; 3:e3752. [PMID: 19015735 PMCID: PMC2582964 DOI: 10.1371/journal.pone.0003752] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Accepted: 10/30/2008] [Indexed: 12/12/2022] Open
Abstract
Bone marrow (BM) derived vascular precursor cells (BM-PC, endothelial progenitors) are involved in normal and malignant angiogenesis, in ischemia and in wound healing. However, the mechanisms by which BM-PC stimulate the pre-existing endothelial cells at sites of vascular remodelling/recovery, and their contribution towards the formation of new blood vessels are still undisclosed. In the present report, we exploited the possibility that members of the Notch signalling pathway, expressed by BM-PC during endothelial differentiation, might regulate their pro-angiogenic or pro-wound healing properties. We demonstrate that Notch pathway modulates the adhesion of BM-PC to extracellular matrix (ECM) in vitro via regulation of integrin alpha3beta1; and that Notch pathway inhibition on BM-PC impairs their capacity to stimulate endothelial cell tube formation on matrigel and to promote endothelial monolayer recovery following wounding in vitro. Moreover, we show that activation of Notch pathway on BM-PC improved wound healing in vivo through angiogenesis induction. Conversely, inoculation of BM-PC pre-treated with a gamma secretase inhibitor (GSI) into wounded mice failed to induce angiogenesis at the wound site and did not promote wound healing, presumably due to a lower frequency of BM-PC at the wound area. Our data suggests that Notch pathway regulates BM-PC adhesion to ECM at sites of vascular repair and that it also regulates the capacity of BM-PC to stimulate angiogenesis and to promote wound healing. Drug targeting of the Notch pathway on BM-PC may thus represent a novel strategy to modulate neo-angiogenesis and vessel repair.
Collapse
Affiliation(s)
- Francisco Caiado
- Angiogenesis Laboratory, CIPM, Portuguese Institute of Oncology, Lisbon, Portugal
- Instituto Gulbenkian Ciencia, Oeiras, Portugal
| | - Carla Real
- Angiogenesis Laboratory, CIPM, Portuguese Institute of Oncology, Lisbon, Portugal
- Instituto Gulbenkian Ciencia, Oeiras, Portugal
| | - Tânia Carvalho
- Angiogenesis Laboratory, CIPM, Portuguese Institute of Oncology, Lisbon, Portugal
- Instituto Gulbenkian Ciencia, Oeiras, Portugal
| | - Sérgio Dias
- Angiogenesis Laboratory, CIPM, Portuguese Institute of Oncology, Lisbon, Portugal
- Instituto Gulbenkian Ciencia, Oeiras, Portugal
- Instituto de Medicina Molecular, Lisbon, Portugal
- * E-mail:
| |
Collapse
|
113
|
Kränkel N, Katare RG, Siragusa M, Barcelos LS, Campagnolo P, Mangialardi G, Fortunato O, Spinetti G, Tran N, Zacharowski K, Wojakowski W, Mroz I, Herman A, Manning Fox JE, MacDonald PE, Schanstra JP, Bascands JL, Ascione R, Angelini G, Emanueli C, Madeddu P. Role of kinin B2 receptor signaling in the recruitment of circulating progenitor cells with neovascularization potential. Circ Res 2008; 103:1335-43. [PMID: 18927465 DOI: 10.1161/circresaha.108.179952] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Reduced migratory function of circulating angiogenic progenitor cells (CPCs) has been associated with impaired neovascularization in patients with cardiovascular disease (CVD). Previous findings underline the role of the kallikrein-kinin system in angiogenesis. We now demonstrate the involvement of the kinin B2 receptor (B(2)R) in the recruitment of CPCs to sites of ischemia and in their proangiogenic action. In healthy subjects, B(2)R was abundantly present on CD133(+) and CD34(+) CPCs as well as cultured endothelial progenitor cells (EPCs) derived from blood mononuclear cells (MNCs), whereas kinin B1 receptor expression was barely detectable. In transwell migration assays, bradykinin (BK) exerts a potent chemoattractant activity on CD133(+) and CD34(+) CPCs and EPCs via a B(2)R/phosphoinositide 3-kinase/eNOS-mediated mechanism. Migration toward BK was able to attract an MNC subpopulation enriched in CPCs with in vitro proangiogenic activity, as assessed by Matrigel assay. CPCs from cardiovascular disease patients showed low B(2)R levels and decreased migratory capacity toward BK. When injected systemically into wild-type mice with unilateral limb ischemia, bone marrow MNCs from syngenic B(2)R-deficient mice resulted in reduced homing of sca-1(+) and cKit(+)flk1(+) progenitors to ischemic muscles, impaired reparative neovascularization, and delayed perfusion recovery as compared with wild-type MNCs. Similarly, blockade of the B(2)R by systemic administration of icatibant prevented the beneficial effect of bone marrow MNC transplantation. BK-induced migration represents a novel mechanism mediating homing of circulating angiogenic progenitors. Reduction of BK sensitivity in progenitor cells from cardiovascular disease patients might contribute to impaired neovascularization after ischemic complications.
Collapse
Affiliation(s)
- Nicolle Kränkel
- Experimental Cardiovascular Medicine, Bristol Heart Institute, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
114
|
Tabatabai G, Herrmann C, von Kürthy G, Mittelbronn M, Grau S, Frank B, Möhle R, Weller M, Wick W. VEGF-dependent induction of CD62E on endothelial cells mediates glioma tropism of adult haematopoietic progenitor cells. Brain 2008; 131:2579-95. [DOI: 10.1093/brain/awn182] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Ghazaleh Tabatabai
- Department of General Neurology, Laboratory of Molecular Neurooncology, Hertie Institute for Clinical Brain Research
| | - Caroline Herrmann
- Department of General Neurology, Laboratory of Molecular Neurooncology, Hertie Institute for Clinical Brain Research
| | - Gabriele von Kürthy
- Department of General Neurology, Laboratory of Molecular Neurooncology, Hertie Institute for Clinical Brain Research
| | - Michel Mittelbronn
- Institute of Brain Research, University of T übingen, T übingen, Germany
- Institute of Neuropathology, University of Zurich, Switzerland
| | - Stefan Grau
- Department of Neurosurgery, Klinikum Großhadern, Ludwig-Maximilians University of Munich, Munich
| | - Brigitte Frank
- Department of General Neurology, Laboratory of Molecular Neurooncology, Hertie Institute for Clinical Brain Research
| | - Robert Möhle
- Department of Internal Medicine II (Hematology), University of T übingen, T übingen, Germany
| | - Michael Weller
- Department of General Neurology, Laboratory of Molecular Neurooncology, Hertie Institute for Clinical Brain Research
- Department of Neurology, University of Zurich, Switzerland
| | - Wolfgang Wick
- Department of General Neurology, Laboratory of Molecular Neurooncology, Hertie Institute for Clinical Brain Research
- Clinical Cooperation Unit Neurooncology, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
115
|
Di Santo S, Diehm N, Ortmann J, Völzmann J, Yang Z, Keo HH, Baumgartner I, Kalka C. Oxidized low density lipoprotein impairs endothelial progenitor cell function by downregulation of E-selectin and integrin alpha(v)beta5. Biochem Biophys Res Commun 2008; 373:528-32. [PMID: 18590706 DOI: 10.1016/j.bbrc.2008.06.066] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Accepted: 06/16/2008] [Indexed: 11/30/2022]
Abstract
BACKGROUND Oxidized low density lipoprotein (oxLDL) has been shown to induce apoptosis and senescence of endothelial progenitor cells (EPC). In the present study, we hypothesized that even sub-apoptotic concentrations of oxLDL impair the angiogenic potential of EPC and investigated if this effect is mediated by affecting adhesion and incorporation. METHODS A co-culture system of human microvascular endothelial cells and EPC was used to study the effect of sub-apoptotic concentrations of native (nLDL) and oxLDL on cell-cell interaction. The expression and the functional role of angiogenic adhesion molecules and integrins was monitored by FACS and neutralizing assay, respectively. RESULTS We observed an inhibition of tube formation and impairment of EPC integration into the vascular network of mature endothelial cells by oxLDL. In contrast, nLDL did not affect angiogenic properties of EPC. Incubation of EPC with sub-apoptotic oxLDL concentrations significantly decreased E-selectin and integrin alpha(v)beta(5) expression (37.6% positive events vs. 71.5% and 24.3% vs. 49.9% compared to control culture media without oxLDL). Interestingly, expression of alpha(v)beta(3), VE-cadherin and CD31 remained unchanged. Blocking of E-selectin and integrin alpha(v)beta(5) by neutralizing antibody effectively inhibited adhesion of EPC to differentiated endothelial cells (56.5% and 41.9% of control; p<0.001). CONCLUSION In conclusion, oxidative alteration of LDL impairs angiogenic properties of EPC at sub-apoptotic levels by downregulation of E-selectin and integrin alpha(v)beta(5), both substantial mediators of EPC-endothelial cell interaction.
Collapse
Affiliation(s)
- Stefano Di Santo
- Department of Vascular Medicine, Swiss Cardiovascular Center, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse, CH-3010 Bern, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
116
|
Abstract
Cell therapy is a promising option for treating ischemic diseases and heart failure. Adult stem and progenitor cells from various sources have experimentally been shown to augment the functional recovery after ischemia, and clinical trials have confirmed that autologous cell therapy using bone marrow-derived or circulating blood-derived progenitor cells is safe and provides beneficial effects. However, aging and risk factors for coronary artery disease affect the functional activity of the endogenous stem/progenitor cell pools, thereby at least partially limiting the therapeutic potential of the applied cells. In addition, age and disease affect the tissue environment, in which the cells are infused or injected. The present review article will summarize current evidence for cell impairment during aging and disease but also discuss novel approaches how to reverse the dysfunction of cells or to refresh the target tissue. Pretreatment of cells or the target tissue by small molecules, polymers, growth factors, or a combination thereof may provide useful approaches for enhancement of cell therapy for cardiovascular diseases.
Collapse
Affiliation(s)
- Stefanie Dimmeler
- Molecular Cardiology, Department of Internal Medicine III, University of Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany.
| | | |
Collapse
|
117
|
Chavakis E, Urbich C, Dimmeler S. Homing and engraftment of progenitor cells: a prerequisite for cell therapy. J Mol Cell Cardiol 2008; 45:514-22. [PMID: 18304573 DOI: 10.1016/j.yjmcc.2008.01.004] [Citation(s) in RCA: 251] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2007] [Revised: 12/17/2007] [Accepted: 01/01/2008] [Indexed: 12/13/2022]
Abstract
Cell therapy is a promising therapeutic option for treating patients with ischemic diseases. The efficiency of cell therapy to augment recovery after ischemia depends on the sufficient recruitment of applied cells to the target tissue. Using in vivo imaging techniques the extent of homing was shown to be rather low in most experimental and clinical studies. The elucidation of the molecular mechanisms of homing of different progenitor cell subpopulation to sites of injury is essential for the development of new specific therapeutic strategies, in order to improve the efficacy of cell-based therapies. Homing to sites of active neovascularization is a complex process depending on a timely and spatially orchestrated interplay between chemokines (e.g. SDF-1), chemokine receptors, intracellular signaling, adhesion molecules (selectins and integrins) and proteases. The review will focus on the mechanisms underlying homing of adult bone marrow-derived hematopoietic cells, mesenchymal stem cells, and vasculogenic circulating cells and discuss strategies how to optimize cell engraftment.
Collapse
Affiliation(s)
- Emmanouil Chavakis
- Molecular Cardiology, Department of Internal Medicine III, University of Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | | | | |
Collapse
|