101
|
Off-Label Use of Sirolimus and Everolimus in a Pediatric Center: A Case Series and Review of the Literature. Paediatr Drugs 2019; 21:185-193. [PMID: 31124053 DOI: 10.1007/s40272-019-00337-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND It has been 15 years since sirolimus, an mTOR inhibitor, received Food and Drug Administration approval to prevent acute rejection in kidney transplantation, and 8 years since its analog everolimus acquired the same status. Since then, these drugs have become more and more utilized and their immunosuppressive and antiproliferative properties have been tested in a great variety of clinical conditions, often achieving excellent results. Despite such positive evidence, the on-label indications for these rapalogs are still very restrictive, especially in children. AIMS The aims of this study were to describe our center's experience with sirolimus and everolimus in managing rare pediatric conditions for which mTOR inhibitors have been reported as a therapeutic option, although without conclusive approval from regulatory agencies, and to evaluate safety and tolerability of the treatment at the prescribed doses. METHODS All the subjects who received off-label sirolimus or everolimus at the Pediatric Department of the IRCCS Burlo Garofolo in the last 13 years were included. For each disease found in our case series, we reviewed the current scientific literature. RESULTS Off-label treatment with rapalogs was prescribed in 16 children (11 males, 5 females, median age of 9.5 years, range 1-16 years). Seven had immunologic disorders: four autoimmune lymphoproliferative syndrome (ALPS), one multicentric Castleman disease (mCD), one activated PI3K delta kinase syndrome (APDS), and one immunodysregulation with polyendocrinopathy enteropathy X-linked (IPEX). Eight had proliferative disorders or vascular anomalies: one cystic lymphangioma, two Bannayan-Riley-Ruvalcaba syndrome (BRRS), one blue rubber bleb nevus syndrome (BRBNS), two tuberous sclerosis complex (TSC), and one low-flow mixed arterial and venous malformation. One case had congenital hyperinsulinism (CHI). The average dosage administered was 1 mg/m2 for sirolimus and 7 mg/m2 for everolimus. We experienced a good measurable clinical improvement in 14 patients. Nobody experienced serious adverse events (SAEs). The therapy was interrupted in two cases, for lack of efficacy and poor tolerance in one case and for occurrence of bacterial pneumonia in the other one. A review of the literature identified 101 published reports that met our inclusion criteria. CONCLUSIONS Although use of mTOR inhibitors has been considered to be complicated, our experience shows that, using low dosages, it is possible to obtain relevant clinical improvements, with a good profile of safety and tolerability.
Collapse
|
102
|
Can Metabolic Pathways Be Therapeutic Targets in Rheumatoid Arthritis? J Clin Med 2019; 8:jcm8050753. [PMID: 31137815 PMCID: PMC6572063 DOI: 10.3390/jcm8050753] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/05/2019] [Accepted: 05/20/2019] [Indexed: 12/18/2022] Open
Abstract
The metabolic rewiring of tumor cells and immune cells has been viewed as a promising source of novel drug targets. Many of the molecular pathways implicated in rheumatoid arthritis (RA) directly modify synovium metabolism and transform the resident cells, such as the fibroblast-like synoviocytes (FLS), and the synovial tissue macrophages (STM), toward an overproduction of enzymes, which degrade cartilage and bone, and cytokines, which promote immune cell infiltration. Recent studies have shown metabolic changes in stromal and immune cells from RA patients. Metabolic disruption in the synovium provide the opportunity to use in vivo metabolism-based imaging techniques for patient stratification and to monitor treatment response. In addition, these metabolic changes may be therapeutically targetable. Thus, resetting metabolism of the synovial membrane offers additional opportunities for disease modulation and restoration of homeostasis in RA. In fact, rheumatologists already use the antimetabolite methotrexate, a chemotherapy agent, for the treatment of patients with inflammatory arthritis. Metabolic targets that do not compromise systemic homeostasis or corresponding metabolic functions in normal cells could increase the drug armamentarium in rheumatic diseases for combination therapy independent of systemic immunosuppression. This article summarizes what is known about metabolism in synovial tissue cells and highlights chemotherapies that target metabolism as potential future therapeutic strategies for RA.
Collapse
|
103
|
Chandrakasan S, Chandra S, Davila Saldana BJ, Torgerson TR, Buchbinder D. Primary immune regulatory disorders for the pediatric hematologist and oncologist: A case-based review. Pediatr Blood Cancer 2019; 66:e27619. [PMID: 30697957 DOI: 10.1002/pbc.27619] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 01/04/2019] [Accepted: 01/08/2019] [Indexed: 12/20/2022]
Abstract
An array of monogenic immune defects marked by autoimmunity, lymphoproliferation, and hyperinflammation rather than infections have been described. Primary immune regulatory disorders pose a challenge to pediatric hematologists and oncologists. This paper focuses on primary immune regulatory disorders including autoimmune lymphoproliferative syndrome (ALPS) and ALPS-like syndromes, immunodysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) and IPEX-like disorders, common variable immunodeficiency (CVID), CVID-like, and late-onset combined immunodeficiency (CID) disorders. Hyperinflammatory disorders and those associated with increased susceptibility to lymphoid malignancies are also discussed. Using a case-based approach, a review of clinical pearls germane to the clinical and laboratory evaluation as well as the treatment of these disorders is provided.
Collapse
Affiliation(s)
- Shanmuganathan Chandrakasan
- Division of Bone Marrow Transplant, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, Georgia
| | - Sharat Chandra
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Blachy J Davila Saldana
- Division of Blood and Marrow Transplantation, Children's National Medical Center, Washington, District of Columbia.,Department of Pediatrics, The George Washington University, Washington, District of Columbia
| | - Troy R Torgerson
- Department of Pediatrics, Divisions of Immunology/Rheumatology University of Washington and Seattle Children's Hospital, Seattle, Washington
| | - David Buchbinder
- Department of Hematology, Children's Hospital of Orange County, Orange, California.,Department of Pediatrics, University of California at Irvine, Orange, California
| |
Collapse
|
104
|
Neunert CE, Despotovic JM. Autoimmune hemolytic anemia and immune thrombocytopenia following hematopoietic stem cell transplant: A critical review of the literature. Pediatr Blood Cancer 2019; 66:e27569. [PMID: 30537439 DOI: 10.1002/pbc.27569] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/29/2018] [Accepted: 11/02/2018] [Indexed: 01/19/2023]
Abstract
Autoimmune cytopenias (AIC) post-hematopoietic stem cell transplant (HSCT) are rare but exceptionally challenging complication. We conducted a comprehensive literature review and identified a pooled incidence of post-HSCT autoimmune hemolytic anemia and/or immune thrombocytopenia of 2.66% (SE = 0.27) in pediatric patients. Nonmalignant disease, unrelated donor transplant, peripheral or cord blood stem cell source, conditioning regimen without total body irradiation, and presence of chronic graft-versus-host disease were prominent risk factors. Treatment was highly variable, and cytopenias were commonly refractory. AIC represent a significant post-HSCT complication. We report here the incidence, risk factors, and possible biology behind the development of AIC in pediatric post-HSCT patients.
Collapse
Affiliation(s)
- C E Neunert
- Department of Pediatrics, Hematology/Oncology/Bone Marrow Transplant, Columbia University School of Medicine, New York, New York
| | - J M Despotovic
- Department of Pediatrics, Hematology/Oncology Section, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
105
|
Primary and Secondary Immune Cytopenias: Evaluation and Treatment Approach in Children. Hematol Oncol Clin North Am 2019; 33:489-506. [PMID: 31030815 DOI: 10.1016/j.hoc.2019.01.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
This review summarizes the evaluation and management of the autoimmune cytopenias, a heterogeneous group of conditions including, but not limited to, autoimmune hemolytic anemia, immune thrombocytopenia, and multilineage disorders in Evans syndrome. These diseases can be challenging to treat and there are limited data comparing second-line therapeutics. The understanding of the molecular cause of these conditions is improving with the goal of advancing therapies and making them more targeted.
Collapse
|
106
|
Yang C, Chen FF, Long ZB, Du YL, Li HM, Chen M, Han B. [Effect of sirolimus on erythropoiesis of K562 cell line and patients with pure red cell aplasia in vitro]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2019; 39:310-313. [PMID: 29779328 PMCID: PMC7342129 DOI: 10.3760/cma.j.issn.0253-2727.2018.04.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Objective: To understand the effect of sirolimus on the erythropoiesis of K562 cell line and bone marrow cells from pure red cell aplasia (PRCA) patients and normal controls. Methods: Different concentrations (10, 100, 1 000 nmol/L) of sirolimus were added to the K562 cell line or bone marrow cells from PRCA patients or normal controls and cultured 14 days for BFU-E formation. Meanwhile, sirolimus was also added to the serum treated PRCA bone marrow cells to cultivate for the same priod of time. Results: Neither K562 cells, bone marrow cells from PRCA patients or normal controls showed any difference when sirolimus was added to the culture system for BFU-E. However, BFU-E formation decreased after serum was added in PRCA patients (76.40±22.48 vs 136.33±12.58, t=-4.329, P=0.001) and this suppression of BFU-E was partly corrected by 1 000 nmol/L sirolimus treatment (97.14±15.83 vs 76.40±22.48, P=0.038). Conclusions: Sirolimus may modulate the suppression of erythropoiesis by serum instead of directly stimulate the growth of red blood cells in PRCA patients.
Collapse
Affiliation(s)
- C Yang
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | | | | | | | | | | | | |
Collapse
|
107
|
Eriksson P, Wallin P, Sjöwall C. Clinical Experience of Sirolimus Regarding Efficacy and Safety in Systemic Lupus Erythematosus. Front Pharmacol 2019; 10:82. [PMID: 30787878 PMCID: PMC6372521 DOI: 10.3389/fphar.2019.00082] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 01/21/2019] [Indexed: 12/28/2022] Open
Abstract
New treatment options constitute unmet needs for patients diagnosed with systemic lupus erythematosus (SLE). Inhibition of the mammalian target of rapamycin (mTOR) pathway by sirolimus, a drug approved and in clinical use to prevent transplant rejection, has shown promising effects in lupus animal models as well as in patients with both antiphospholipid syndrome and SLE. Sirolimus inhibits antigen-induced T cell proliferation and increases the number of circulating regulatory T cells. Recently, sirolimus was tested in an open label phase 1/2 trial, including 43 patients with active SLE, resistant or intolerant to conventional medications. The results were encouraging showing a progressive improvement, including mucocutaneous and musculoskeletal manifestations. At our university unit, we have more than 16 years' experience of sirolimus as treatment for non-renal manifestations of SLE. Herein, we retrospectively evaluated data on tolerance, dosage, affected organ systems, disease activity measures, corticosteroid reduction, concomitant immunosuppressive therapies, and patient-reported outcome measures (PROMs) such as pain intensity, fatigue, well-being and quality-of-life (QoL) in 27 Caucasian patients with mildly active SLE. Musculoskeletal manifestation was the main reason for sirolimus treatment followed by skin involvement and leukocytopenia. Mean time on sirolimus was 47.1 (range 2-140) months. Decreasing global disease activity was observed, as measured by the clinical SLE disease activity index-2000, with a mean reduction of 2.5 points (range -10 to 0) and a corresponding mean reduction of the physician's global assessment (0-4) of 0.64 (range -2 to 0). The mean daily dose of corticosteroids (prednisolone) was reduced by 3.3 mg (-12.5 to 0). Non-significant trends toward improvements of QoL and pain intensity were found. Serious side-effects were not seen during sirolimus treatment, but early withdrawal due to nausea (n = 4) and non-serious infections (n = 2) appeared. This observational study, including longtime real-life use of sirolimus in SLE, is the largest to date and it essentially confirms the results of the recent phase 1/2 trial. Our data indicate that sirolimus is efficient in patients with musculoskeletal SLE manifestations, particularly arthritis and tendinitis. Further randomized controlled trials evaluating the potential benefits of sirolimus in SLE are warranted, but should aim to enroll patients with shorter disease duration, less accrued damage, and more diverse ethnicities.
Collapse
Affiliation(s)
- Per Eriksson
- Rheumatology/Division of Neuro and Inflammation Sciences, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Philip Wallin
- Rheumatology/Division of Neuro and Inflammation Sciences, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Christopher Sjöwall
- Rheumatology/Division of Neuro and Inflammation Sciences, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| |
Collapse
|
108
|
Neurological Involvement in Childhood Evans Syndrome. J Clin Immunol 2019; 39:171-181. [PMID: 30671780 DOI: 10.1007/s10875-019-0594-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 01/14/2019] [Indexed: 12/19/2022]
Abstract
PURPOSE Immune thrombocytopenic purpura (ITP) and autoimmune hemolytic anemia (AIHA) are associated in the definition of Evans syndrome (ES). The occurrence of neurological involvement in this population is poorly described and suggests an underlying primary immunodeficiency (PID). We aimed to describe the clinical manifestations, evolution, and PID profiles of these patients. METHODS OBS'CEREVANCE is a French, nationwide prospective cohort that includes children with chronic ITP, AIHA, and ES. Patients with a neurological involvement were described. Centralized radiological and pathological reviews and genetic analyses were performed. RESULTS On October 2016, eight patients (7/181 ES, 1/371 AIHA, and 0/615 ITP) were identified, all male, with a median age (range) at cytopenia onset of 11.5 years (1.6-15.8). Neurological symptoms appeared with a median delay of 6 years (2.5-18) after cytopenia and were polymorphic: seizures (n = 4), cranial nerve palsy (n = 2), Brown-Sequard syndrome (n = 2), intracranial pressure (n = 2), vertigo (n = 1), and/or sensory neuropathy (n = 1). Magnetic resonance imaging (MRI) showed inflammatory lesions, confirmed by pathology for five patients with macrophagic or lymphoplasmocytic infiltrates. All patients had other relevant immunopathological manifestations: pulmonary nodules (n = 6), lymphoproliferation (n = 4), abnormal immunophenotype (n = 8), and hypogammaglobulinemia (n = 7). Treatment consisted of steroids that improved symptomatology and MRI. Five patients relapsed and three had an asymptomatic radiological progression. A PID was identified in 3/8 patients: 22q11.2 microdeletion (n = 1) and CTLA deficiency (n = 2). CONCLUSION Neurological involvement is a rare and severe late event in the course of childhood ES, which can reveal an underlying PID. Imaging and pathology examination highlight a causative immune dysregulation that may guide targeted therapeutic strategies.
Collapse
|
109
|
Barzaghi F, Minniti F, Mauro M, Bortoli MD, Balter R, Bonetti E, Zaccaron A, Vitale V, Omrani M, Zoccolillo M, Brigida I, Cicalese MP, Degano M, Hershfield MS, Aiuti A, Bondarenko AV, Chinello M, Cesaro S. ALPS-Like Phenotype Caused by ADA2 Deficiency Rescued by Allogeneic Hematopoietic Stem Cell Transplantation. Front Immunol 2019; 9:2767. [PMID: 30692987 PMCID: PMC6339927 DOI: 10.3389/fimmu.2018.02767] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 11/12/2018] [Indexed: 11/13/2022] Open
Abstract
Adenosine deaminase 2 (ADA2) deficiency is an auto-inflammatory disease due to mutations in cat eye syndrome chromosome region candidate 1 (CECR1) gene, currently named ADA2. The disease has a wide clinical spectrum encompassing early-onset vasculopathy (targeting skin, gut and central nervous system), recurrent fever, immunodeficiency and bone marrow dysfunction. Different therapeutic options have been proposed in literature, but only steroids and anti-cytokine monoclonal antibodies (such as tumor necrosis factor inhibitor) proved to be effective. If a suitable donor is available, hematopoietic stem cell transplantation (HSCT) could be curative. Here we describe a case of ADA2 deficiency in a 4-year-old Caucasian girl. The patient was initially classified as autoimmune neutropenia and then she evolved toward an autoimmune lymphoproliferative syndrome (ALPS)-like phenotype. The diagnosis of ALPS became uncertain due to atypical clinical features and normal FAS-induced apoptosis test. She was treated with G-CSF first and subsequently with immunosuppressive drugs without improvement. Only HSCT from a 9/10 HLA-matched unrelated donor, following myeloablative conditioning, completely solved the clinical signs related to ADA2 deficiency. Early diagnosis in cases presenting with hematological manifestations, rather than classical vasculopathy, allows the patients to promptly undergo HSCT and avoid more severe evolution. Finally, in similar cases highly suspicious for genetic disease, it is desirable to obtain molecular diagnosis before performing HSCT, since it can influence the transplant procedure. However, if HSCT has to be performed without delay for clinical indication, related donors should be excluded to avoid the risk of relapse or partial benefit due to a hereditary genetic defect.
Collapse
Affiliation(s)
- Federica Barzaghi
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Department of Systems Medicine, Tor Vergata University, >Rome, Italy
| | - Federica Minniti
- Paediatric Hematology-Oncology, Ospedale della Donna e del Bambino, Verona, Italy
| | - Margherita Mauro
- Paediatric Hematology-Oncology, Ospedale della Donna e del Bambino, Verona, Italy
| | | | - Rita Balter
- Paediatric Hematology-Oncology, Ospedale della Donna e del Bambino, Verona, Italy
| | - Elisa Bonetti
- Paediatric Hematology-Oncology, Ospedale della Donna e del Bambino, Verona, Italy
| | - Ada Zaccaron
- Paediatric Hematology-Oncology, Ospedale della Donna e del Bambino, Verona, Italy
| | - Virginia Vitale
- Paediatric Hematology-Oncology, Ospedale della Donna e del Bambino, Verona, Italy
| | - Maryam Omrani
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Matteo Zoccolillo
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Department of Systems Medicine, Tor Vergata University, >Rome, Italy
| | - Immacolata Brigida
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria Pia Cicalese
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Degano
- Biocrystallography Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Michael S Hershfield
- Department of Medicine and Biochemistry, Duke University School of Medicine, Durham, NC, United States
| | - Alessandro Aiuti
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Anastasiia V Bondarenko
- Department of Pediatric Infectious Diseases and Immunology, Medical Academy of Postgraduate Education, Kiev, Ukraine
| | - Matteo Chinello
- Paediatric Hematology-Oncology, Ospedale della Donna e del Bambino, Verona, Italy
| | - Simone Cesaro
- Paediatric Hematology-Oncology, Ospedale della Donna e del Bambino, Verona, Italy
| |
Collapse
|
110
|
Neely JA, Dvorak CC, Pantell MS, Melton A, Huang JN, Shimano KA. Autoimmune Cytopenias in Pediatric Hematopoietic Cell Transplant Patients. Front Pediatr 2019; 7:171. [PMID: 31131266 PMCID: PMC6509944 DOI: 10.3389/fped.2019.00171] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 04/12/2019] [Indexed: 11/13/2022] Open
Abstract
Background: Autoimmune cytopenias (AICs) are potentially life-threatening complications following hematopoietic cell transplantation (HCT), yet little is understood about the mechanism by which they develop. We hypothesized that discordant B cell and T cell recovery is associated with AICs in transplant patients, and that this might differ based on transplant indication. Methods: In this case control study of children who underwent HCT at our institution, we evaluated the clinical and transplant characteristics of subjects who developed AICs compared to a control group matched by transplant indication and donor type. In cases, we analyzed the state of immune reconstitution, including B cell recovery, T cell recovery, and chimerism, immediately prior to AIC onset. Subjects were stratified by primary indication for transplant as malignancy (n = 7), primary immune deficiency (PID, n = 9) or other non-malignant disease (n = 4). We then described the treatment and outcomes for 20 subjects who developed AICs. Results: In our cohort, cases were older than controls, were more likely to receive a myeloablative conditioning regimen and had a significantly lower prevalence of chronic GVHD. There were distinct differences in the state of immune recovery based on transplant indication. None of the patients (0/7) transplanted for primary malignancy had T cell recovery at AIC onset compared to 71% (5/7) of patients with PID and 33% (1/3) of patients with non-malignant disease. The subset of patients with PID and non-malignant disease who achieved T cell reconstitution (6/6) prior to AIC onset, all demonstrated mixed or split chimerism. Subjects with AIHA or multi-lineage cytopenias had particularly refractory courses with poor treatment response to IVIG, steroids, and rituximab. Conclusions: These results highlight the heterogeneity of AICs in this population and suggest that multiple mechanisms may contribute to the development of post-transplant AICs. Patients with full donor chimerism may have early B cell recovery without proper T cell regulation, while patients with mixed or split donor chimerism may have residual host B or plasma cells making antibodies against donor blood cells. A prospective, multi-center trial is needed to develop personalized treatment approaches that target the immune dysregulation present and improve outcomes in patients with post-transplant AICs.
Collapse
Affiliation(s)
- Jessica A Neely
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, United States
| | - Christopher C Dvorak
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, United States
| | - Matthew S Pantell
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, United States
| | - Alexis Melton
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, United States
| | - James N Huang
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, United States
| | - Kristin Ammon Shimano
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
111
|
Qi YY, Zhou XJ, Cheng FJ, Hou P, Ren YL, Wang SX, Zhao MH, Yang L, Martinez J, Zhang H. Increased autophagy is cytoprotective against podocyte injury induced by antibody and interferon-α in lupus nephritis. Ann Rheum Dis 2018; 77:1799-1809. [PMID: 30209031 PMCID: PMC6800572 DOI: 10.1136/annrheumdis-2018-213028] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 07/25/2018] [Accepted: 08/19/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVE More recent studies suggested that defects in autophagy contribute to the pathogenesis of SLE, especially in adaptive immunity. Occurrence and progression of lupus nephritis (LN) is the end result of complex interactions between regulation of immune responses and pathological process by renal resident cells, but there is still a lot of missing information for an establishment on the role of autophagy in pathogenesis of LN and as a therapy target. METHODS Systemic and organ-specific aetiologies of autophagy were first evaluated by autophagy protein quantification in tissue homogenates in MRL lpr/lpr lupus prone and female C57BL mice. Analysis of gene expression was also adopted in human blood and urine sediments. Then, some key mediators of the disease, including complement inactivated serum, IgG from patients with LN (IgG-LN) and interferon (IFN)-α were chosen to induce podocyte autophagy. Podocyte injuries including apoptosis, podocin derangement, albumin filtration and wound healing were monitored simultaneously with autophagy steady-state and flux. RESULTS Elevated LC3B in kidney homogenates and increased autophagosomes in podocyte from MRL lpr/lpr were observed. In humans, mRNA levels of some key autophagy genes were increased in blood and urinary sediments, and podocyte autophagosomes were observed in renal biopsies from patients with LN. Complement inactivated serum, IgG-LN and IFN-α could induce podocyte autophagy in a time-dependent and dosage-dependent manner, and by reactive oxygen species production and mTORC1 inhibition, respectively. Autophagy inhibition aggravated podocyte damage whereas its inducer relieved the injury. CONCLUSION Podocyte autophagy is activated in lupus-prone mice and patients with lupus nephritis. Increased autophagy is cytoprotective against antibody and interferon-α induced podocyte injury.
Collapse
Affiliation(s)
- Yuan-Yuan Qi
- Renal Division, Peking University First Hospital; Peking University Institute of Nephrology; Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Xu-Jie Zhou
- Renal Division, Peking University First Hospital; Peking University Institute of Nephrology; Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Fa-Juan Cheng
- Renal Division, Peking University First Hospital; Peking University Institute of Nephrology; Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Ping Hou
- Renal Division, Peking University First Hospital; Peking University Institute of Nephrology; Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Ya-Li Ren
- Laboratory of Electron Microscopy, Ultrastructural Pathology Center, Peking University First Hospital, Beijing, China
| | - Su-Xia Wang
- Laboratory of Electron Microscopy, Ultrastructural Pathology Center, Peking University First Hospital, Beijing, China
| | - Ming-Hui Zhao
- Renal Division, Peking University First Hospital; Peking University Institute of Nephrology; Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Li Yang
- Renal Division, Peking University First Hospital; Peking University Institute of Nephrology; Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Jennifer Martinez
- Immunity, Inflammation, and Disease Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, Carolina, USA
| | - Hong Zhang
- Renal Division, Peking University First Hospital; Peking University Institute of Nephrology; Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| |
Collapse
|
112
|
Despotovic JM, Grimes AB. Pediatric ITP: is it different from adult ITP? HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2018; 2018:405-411. [PMID: 30504339 PMCID: PMC6246008 DOI: 10.1182/asheducation-2018.1.405] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Immune thrombocytopenia (ITP) has historically been thought to occur in 2 distinct forms: childhood ITP and adult ITP. This division is based largely on the presumption that childhood ITP is often benign and self-limited, whereas ITP in adults tends to be more chronic and difficult to treat. Although data exist to justify a different approach to the diagnosis and treatment in young children and the elderly, ITP in older children, adolescents, and younger adults is likely to share more similar pathology. This article will highlight the most recent data describing the natural history, diagnostic approach, management strategies, and disease-related outcomes in children and adults with ITP. These data reveal many unexpected similarities between the 2 groups, while confirming some of the more well-described differences. Discussion of these findings aims to highlight similarities and differences between ITP in children and adults, which will underscore important areas of future research and/or changes in management guidelines.
Collapse
Affiliation(s)
- Jenny M Despotovic
- Department of Pediatrics, Hematology/Oncology Section, Baylor College of Medicine, Houston, TX
| | - Amanda B Grimes
- Department of Pediatrics, Hematology/Oncology Section, Baylor College of Medicine, Houston, TX
| |
Collapse
|
113
|
Jaime-Pérez JC, Aguilar-Calderón PE, Salazar-Cavazos L, Gómez-Almaguer D. Evans syndrome: clinical perspectives, biological insights and treatment modalities. J Blood Med 2018; 9:171-184. [PMID: 30349415 PMCID: PMC6190623 DOI: 10.2147/jbm.s176144] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Evans syndrome (ES) is a rare and chronic autoimmune disease characterized by autoimmune hemolytic anemia and immune thrombocytopenic purpura with a positive direct anti-human globulin test. It is classified as primary and secondary, with the frequency in patients with autoimmune hemolytic anemia being 37%–73%. It predominates in children, mainly due to primary immunodeficiencies or autoimmune lymphoproliferative syndrome. ES during pregnancy is associated with high fetal morbidity, including severe hemolysis and intracranial bleeding with neurological sequelae and death. The clinical presentation can include fatigue, pallor, jaundice and mucosal bleeding, with remissions and exacerbations during the person’s lifetime, and acute manifestations as catastrophic bleeding and massive hemolysis. Recent molecular theories explaining the physiopathology of ES include deficiencies of CTLA-4, LRBA, TPP2 and a decreased CD4/CD8 ratio. As in other autoimmune cytopenias, there is no established evidence-based treatment and steroids are the first-line therapy, with intravenous immunoglobulin administered as a life-saving resource in cases of severe immune thrombocytopenic purpura manifestations. Second-line treatment for refractory ES includes rituximab, mofetil mycophenolate, cyclosporine, vincristine, azathioprine, sirolimus and thrombopoietin receptor agonists. In cases unresponsive to immunosuppressive agents, hematopoietic stem cell transplantation has been successful, although it is necessary to consider its potential serious adverse effects. In conclusion, ES is a disease with a heterogeneous course that remains challenging to patients and physicians, with prospective clinical trials needed to explore potential targeted therapy to achieve an improved long-term response or even a cure.
Collapse
Affiliation(s)
- José Carlos Jaime-Pérez
- Department of Hematology, Internal Medicine Division, Dr José E González University Hospital, School of Medicine of the Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México,
| | - Patrizia Elva Aguilar-Calderón
- Department of Hematology, Internal Medicine Division, Dr José E González University Hospital, School of Medicine of the Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México,
| | - Lorena Salazar-Cavazos
- Department of Hematology, Internal Medicine Division, Dr José E González University Hospital, School of Medicine of the Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México,
| | - David Gómez-Almaguer
- Department of Hematology, Internal Medicine Division, Dr José E González University Hospital, School of Medicine of the Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México,
| |
Collapse
|
114
|
Sin SH, Eason AB, Bigi R, Kim Y, Kang S, Tan K, Seltzer TA, Venkataramanan R, An H, Dittmer DP. Kaposi's Sarcoma-Associated Herpesvirus Latency Locus Renders B Cells Hyperresponsive to Secondary Infections. J Virol 2018; 92:e01138-18. [PMID: 30021906 PMCID: PMC6146794 DOI: 10.1128/jvi.01138-18] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 07/06/2018] [Indexed: 12/28/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) induces B cell hyperplasia and neoplasia, such as multicentric Castleman's disease (MCD) and primary effusion lymphoma (PEL). To explore KSHV-induced B cell reprogramming in vivo, we expressed the KSHV latency locus, inclusive of all viral microRNAs (miRNAs), in B cells of transgenic mice in the absence of the inhibitory FcγRIIB receptor. The BALB/c strain was chosen as this is the preferred model to study B cell differentiation. The mice developed hyperglobulinemia, plasmacytosis, and B lymphoid hyperplasia. This phenotype was ameliorated by everolimus, which is a rapamycin derivative used for the treatment of mantle cell lymphoma. KSHV latency mice exhibited hyperresponsiveness to the T-dependent (TD) antigen mimic anti-CD40 and increased incidence of pristane-induced inflammation. Lastly, the adaptive immunity against a secondary infection with Zika virus (ZIKV) was markedly enhanced. These phenotypes are consistent with KSHV lowering the activation threshold of latently infected B cells, which may be beneficial in areas of endemicity, where KSHV is acquired in childhood and infections are common.IMPORTANCE Kaposi's sarcoma-associated herpesvirus (KSHV) establishes latency in B cells and is stringently linked to primary effusion lymphoma (PEL) and the premalignant B cell hyperplasia multicentric Castleman's disease (MCD). To investigate potential genetic background effects, we expressed the KSHV miRNAs in BALB/c transgenic mice. BALB/c mice are the preferred strain for B cell hybridoma development because of their propensity to develop predictable B cell responses to antigen. The BALB/c latency mice exhibited a higher incidence of B cell hyperplasia as well as sustained hyperglobulinemia. The development of neutralizing antibodies against ZIKV was augmented in BALB/c latency mice. Hyperglobulinemia was dampened by everolimus, a derivative of rapamycin, suggesting a role for mTOR inhibitors in managing immune activation, which is hallmark of KSHV infection as well as HIV infection.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- B-Lymphocytes/drug effects
- B-Lymphocytes/immunology
- B-Lymphocytes/virology
- Cell Differentiation/drug effects
- Coinfection
- Disease Resistance/genetics
- Everolimus/pharmacology
- Herpesvirus 8, Human/drug effects
- Herpesvirus 8, Human/genetics
- Herpesvirus 8, Human/immunology
- Humans
- Hypergammaglobulinemia/genetics
- Hypergammaglobulinemia/immunology
- Hypergammaglobulinemia/virology
- Immunosuppressive Agents/pharmacology
- Mice, Inbred BALB C
- Mice, Knockout
- Mice, Nude
- MicroRNAs/genetics
- MicroRNAs/immunology
- Plasmacytoma/genetics
- Plasmacytoma/immunology
- Plasmacytoma/virology
- RNA, Viral/genetics
- RNA, Viral/immunology
- Receptors, IgG/deficiency
- Receptors, IgG/genetics
- Receptors, IgG/immunology
- Sarcoma, Kaposi/genetics
- Sarcoma, Kaposi/immunology
- Sarcoma, Kaposi/virology
- Terpenes/pharmacology
- Virus Latency
- Zika Virus/drug effects
- Zika Virus/genetics
- Zika Virus/immunology
- Zika Virus Infection/genetics
- Zika Virus Infection/immunology
- Zika Virus Infection/virology
Collapse
Affiliation(s)
- Sang-Hoon Sin
- Department of Microbiology and Immunology, Programs in Global Oncology and Virology, Lineberger Comprehensive Cancer Center and Center for AIDS Research, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Anthony B Eason
- Department of Microbiology and Immunology, Programs in Global Oncology and Virology, Lineberger Comprehensive Cancer Center and Center for AIDS Research, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Rachele Bigi
- Department of Microbiology and Immunology, Programs in Global Oncology and Virology, Lineberger Comprehensive Cancer Center and Center for AIDS Research, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Yongbaek Kim
- Laboratory of Veterinary Clinical Pathology, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - SunAh Kang
- Department of Microbiology and Immunology, Programs in Global Oncology and Virology, Lineberger Comprehensive Cancer Center and Center for AIDS Research, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Kelly Tan
- Department of Microbiology and Immunology, Programs in Global Oncology and Virology, Lineberger Comprehensive Cancer Center and Center for AIDS Research, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Tischan A Seltzer
- Department of Microbiology and Immunology, Programs in Global Oncology and Virology, Lineberger Comprehensive Cancer Center and Center for AIDS Research, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Raman Venkataramanan
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Hyowon An
- Department of Statistics & Operations Research, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Dirk P Dittmer
- Department of Microbiology and Immunology, Programs in Global Oncology and Virology, Lineberger Comprehensive Cancer Center and Center for AIDS Research, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
115
|
Rotz SJ, Ware RE, Kumar A. Diagnosis and management of chronic and refractory immune cytopenias in children, adolescents, and young adults. Pediatr Blood Cancer 2018; 65:e27260. [PMID: 29856527 DOI: 10.1002/pbc.27260] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 04/26/2018] [Accepted: 05/06/2018] [Indexed: 12/13/2022]
Abstract
Children, adolescents, and young adults with chronic refractory autoimmune cytopenias represent a rare but challenging group of patients, who are managed frequently by pediatric hematologists. Novel diagnostic tests and genomic discoveries are refining historical diagnoses of Evans syndrome and common variable immunodeficiency, while also elucidating the cellular and molecular basis for these disorders. Genetic characterization of chronic and refractory autoimmune cytopenias has led to targeted therapies with improved clinical outcomes and fewer off-target toxicities. In this review, we focus on the appropriate diagnostic workup, expanded genetic testing, and novel treatment opportunities that are available for these challenging patients.
Collapse
Affiliation(s)
- Seth J Rotz
- Department of Pediatric Hematology, Oncology, and Blood and Marrow Transplantation, Cleveland Clinic Children's Hospital, Cleveland, Ohio
| | - Russell E Ware
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Division of Hematology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Ashish Kumar
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| |
Collapse
|
116
|
Bonam SR, Wang F, Muller S. Autophagy: A new concept in autoimmunity regulation and a novel therapeutic option. J Autoimmun 2018; 94:16-32. [PMID: 30219390 DOI: 10.1016/j.jaut.2018.08.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 08/27/2018] [Accepted: 08/28/2018] [Indexed: 02/07/2023]
Abstract
Nowadays, pharmacologic treatments of autoinflammatory diseases are largely palliative rather than curative. Most of them result in non-specific immunosuppression, which can be associated with broad disruption of natural and induced immunity with significant and sometimes serious unwanted injuries. Among the novel strategies that are under development, tools that modulate the immune system to restore normal tolerance mechanisms are central. In these approaches, peptide therapeutics constitute a class of agents that display many physicochemical advantages. Within this class of potent drugs, the phosphopeptide P140 is very promising for treating patients with lupus, and likely also patients with other chronic inflammatory diseases. We discovered that P140 targets autophagy, a finely orchestrated catabolic process, involved in the regulation of inflammation and in the biology of immune cells. In vitro, P140 acts directly on a particular form of autophagy called chaperone-mediated autophagy, which seems to be hyperactivated in certain subsets of lymphocytes in lupus and in other autoinflammatory settings. In lupus, the "correcting" effect of P140 on autophagy results in a weaker signaling of autoreactive T cells, leading to a significant improvement of pathophysiological status of treated mice. These findings also demonstrated ex vivo in human cells, open novel avenues of therapeutic intervention in pathological conditions, in which specific and not general targeting is highly pursued in the context of the new action plans for personalized medicines.
Collapse
Affiliation(s)
- Srinivasa Reddy Bonam
- CNRS-University of Strasbourg, Biotechnology and Cell Signaling, Illkirch, France; CNRS-University of Strasbourg, Laboratory of Excellence Medalis, France
| | - Fengjuan Wang
- CNRS-University of Strasbourg, Biotechnology and Cell Signaling, Illkirch, France; CNRS-University of Strasbourg, Laboratory of Excellence Medalis, France
| | - Sylviane Muller
- CNRS-University of Strasbourg, Biotechnology and Cell Signaling, Illkirch, France; CNRS-University of Strasbourg, Laboratory of Excellence Medalis, France; University of Strasbourg Institute for Advanced Study, Strasbourg, France.
| |
Collapse
|
117
|
Long Z, Yu F, Du Y, Li H, Chen M, Zhuang J, Han B. Successful treatment of refractory/relapsed acquired pure red cell aplasia with sirolimus. Ann Hematol 2018; 97:2047-2054. [DOI: 10.1007/s00277-018-3431-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 07/01/2018] [Indexed: 01/08/2023]
|
118
|
Miano M, Rotulo GA, Palmisani E, Giaimo M, Fioredda F, Pierri F, Pezzulla A, Licciardello M, Terranova P, Lanza T, Cappelli E, Maggiore R, Calvillo M, Micalizzi C, Russo G, Dufour C. Sirolimus as a rescue therapy in children with immune thrombocytopenia refractory to mycophenolate mofetil. Am J Hematol 2018; 93:E175-E177. [PMID: 29675829 DOI: 10.1002/ajh.25119] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 04/13/2018] [Accepted: 04/17/2018] [Indexed: 01/17/2023]
Affiliation(s)
- Maurizio Miano
- Hematology Unit, IRCCS Istituto Giannina Gaslini; Genoa Italy
| | | | - Elena Palmisani
- Hematology Unit, IRCCS Istituto Giannina Gaslini; Genoa Italy
| | | | | | - Filomena Pierri
- Hematology Unit, IRCCS Istituto Giannina Gaslini; Genoa Italy
| | - Agnese Pezzulla
- Haematology/Oncology Unit, Dept of Pediatrics; University of Catania- Catania; Italy
| | - Maria Licciardello
- Haematology/Oncology Unit, Dept of Pediatrics; University of Catania- Catania; Italy
| | - Paola Terranova
- Hematology Unit, IRCCS Istituto Giannina Gaslini; Genoa Italy
| | - Tiziana Lanza
- Hematology Unit, IRCCS Istituto Giannina Gaslini; Genoa Italy
| | - Enrico Cappelli
- Hematology Unit, IRCCS Istituto Giannina Gaslini; Genoa Italy
| | | | | | | | - Giovanna Russo
- Haematology/Oncology Unit, Dept of Pediatrics; University of Catania- Catania; Italy
| | - Carlo Dufour
- Hematology Unit, IRCCS Istituto Giannina Gaslini; Genoa Italy
| |
Collapse
|
119
|
Mutation-specific signaling profiles and kinase inhibitor sensitivities of juvenile myelomonocytic leukemia revealed by induced pluripotent stem cells. Leukemia 2018; 33:181-190. [PMID: 29884903 PMCID: PMC6286697 DOI: 10.1038/s41375-018-0169-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 05/07/2018] [Accepted: 05/17/2018] [Indexed: 01/08/2023]
Abstract
Juvenile myelomonocytic leukemia (JMML) is an uncommon myeloproliferative neoplasm driven by Ras pathway mutations and hyperactive Ras/MAPK signaling. Outcomes for many children with JMML remain dismal with current standard-of-care cytoreductive chemotherapy and hematopoietic stem cell transplantation. We used patient-derived induced pluripotent stem cells (iPSCs) to characterize the signaling profiles and potential therapeutic vulnerabilities of PTPN11-mutant and CBL-mutant JMML. We assessed whether MEK, JAK, and PI3K/mTOR kinase inhibitors (i) could inhibit myeloproliferation and aberrant signaling in iPSC-derived hematopoietic progenitors with PTPN11 E76K or CBL Y371H mutations. We detected constitutive Ras/MAPK and PI3K/mTOR signaling in PTPN11 and CBL iPSC-derived myeloid cells. Activated signaling and growth of PTPN11 iPSCs were preferentially inhibited in vitro by the MEKi PD0325901 and trametinib. Conversely, JAK/STAT signaling was selectively activated in CBL iPSCs and abrogated by the JAKi momelotinib and ruxolitinib. The PI3Kδi idelalisib and mTORi rapamycin inhibited signaling and myeloproliferation in both PTPN11 and CBL iPSCs. These findings demonstrate differential sensitivity of PTPN11 iPSCs to MEKi and of CBL iPSCs to JAKi, but similar sensitivity to PI3Ki and mTORi. Clinical investigation of mutation-specific kinase inhibitor therapies in children with JMML may be warranted.
Collapse
|
120
|
Jiang H, Zhang H, Wang Y, Qi W, Cao Q, Xing L, Fu R, Shao Z, Wang H. Sirolimus for the treatment of multi-resistant pure red cell aplasia. Br J Haematol 2018; 184:1055-1058. [PMID: 29741762 DOI: 10.1111/bjh.15245] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Huijuan Jiang
- Department of Haematology; General Hospital; Tianjin Medical University; Tianjin China
| | - Huiqin Zhang
- Department of Haematology; General Hospital; Tianjin Medical University; Tianjin China
| | - Yihao Wang
- Department of Haematology; General Hospital; Tianjin Medical University; Tianjin China
| | - Weiwei Qi
- Department of Haematology; General Hospital; Tianjin Medical University; Tianjin China
| | - Qiuying Cao
- Department of Haematology; General Hospital; Tianjin Medical University; Tianjin China
| | - Limin Xing
- Department of Haematology; General Hospital; Tianjin Medical University; Tianjin China
| | - Rong Fu
- Department of Haematology; General Hospital; Tianjin Medical University; Tianjin China
| | - Zonghong Shao
- Department of Haematology; General Hospital; Tianjin Medical University; Tianjin China
| | - Huaquan Wang
- Department of Haematology; General Hospital; Tianjin Medical University; Tianjin China
| |
Collapse
|
121
|
Tranfaglia MR, Thibodeaux C, Mason DJ, Brown D, Roberts I, Smith R, Guilliams T, Cogram P. Repurposing available drugs for neurodevelopmental disorders: The fragile X experience. Neuropharmacology 2018; 147:74-86. [PMID: 29792283 DOI: 10.1016/j.neuropharm.2018.05.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 04/30/2018] [Accepted: 05/02/2018] [Indexed: 10/17/2022]
Abstract
Many available drugs have been repurposed as treatments for neurodevelopmental disorders. In the specific case of fragile X syndrome, many clinical trials of available drugs have been conducted with the goal of disease modification. In some cases, detailed understanding of basic disease mechanisms has guided the choice of drugs for clinical trials, and several notable successes in fragile X clinical trials have led to common use of drugs such as minocycline in routine medical practice. Newer technologies like Disease-Gene Expression Matching (DGEM) may allow for more rapid identification of promising repurposing candidates. A DGEM study predicted that sulindac could be therapeutic for fragile X, and subsequent preclinical validation studies have shown promising results. The use of combinations of available drugs and nutraceuticals has the potential to greatly expand the options for repurposing, and may even be a viable business strategy. This article is part of the Special Issue entitled 'Drug Repurposing: old molecules, new ways to fast track drug discovery and development for CNS disorders'.
Collapse
Affiliation(s)
| | - Clare Thibodeaux
- Cures Within Reach, 125 S. Clark Street, 17th Floor, Chicago, IL 60603, USA.
| | - Daniel J Mason
- Healx Ltd., Park House, Castle Park, Cambridge, CB3 0DU, United Kingdom.
| | - David Brown
- Healx Ltd., Park House, Castle Park, Cambridge, CB3 0DU, United Kingdom
| | - Ian Roberts
- Healx Ltd., Park House, Castle Park, Cambridge, CB3 0DU, United Kingdom
| | - Richard Smith
- Healx Ltd., Park House, Castle Park, Cambridge, CB3 0DU, United Kingdom
| | - Tim Guilliams
- Healx Ltd., Park House, Castle Park, Cambridge, CB3 0DU, United Kingdom
| | - Patricia Cogram
- FRAXA-DVI, IEB, Las Encinas 3370, Ñuñoa, Santiago, Chile; Laboratory of Molecular Neuropsychiatry, Institute of Cognitive and Translational Neuroscience (INCyT), INECO Foundation, Favaloro University, National Scientific and Technical Research Council (CONICET), Pacheco de Melo 1854, CP 1126, Ciudad de Buenos Aires, Argentina; Institute of Ecology and Biodiversity, Faculty of Science, University of Chile, Las Palmeras 3425, Ñuñoa, Santiago, Chile.
| |
Collapse
|
122
|
Ying H, Qiao C, Yang X, Lin X. A Case Report of 2 Sirolimus-Related Deaths Among Infants With Kaposiform Hemangioendotheliomas. Pediatrics 2018; 141:S425-S429. [PMID: 29610165 DOI: 10.1542/peds.2016-2919] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/22/2017] [Indexed: 11/24/2022] Open
Abstract
Kaposiform hemangioendothelioma (KHE) is a rare infiltrative vascular tumor that is potentially life-threatening when presenting with Kasabach-Merritt phenomenon (KMP). KMP is clinically characterized as severe thrombocytopenia and hypofibrinogenemia and therefore is associated with a high mortality rate. There is no standard of cure for KHE currently. Potential medications, including corticosteroids, propranolol, and chemotherapy drugs such as sirolimus, are often used for alleviating KHE symptoms. Although some case reports of sirolimus treatment have shown promising results with recovered coagulant parameters, the off-target effects may cause severe problems. Here we describe 2 cases of infant patients with KHE and KMP who were scheduled to receive sirolimus on a long-term basis. However, both patients developed paroxysmal cough and tachypnea shortly after the onset of sirolimus treatment and succumbed to infection thereafter. This report reveals a potential risk of infection in sirolimus-treated infant patients. The fatal complication highlights the importance of antibiotic prophylaxis and serum sirolimus level monitoring to ensure the safe use of sirolimus in the treatment of infant patients with KHE.
Collapse
Affiliation(s)
- Hanru Ying
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital and School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Congzhen Qiao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital and School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xi Yang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital and School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoxi Lin
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital and School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
123
|
Kruizinga MD, van Tol MJ, Bekker V, Netelenbos T, Smiers FJ, Bresters D, Jansen-Hoogendijk AM, van Ostaijen-ten Dam MM, Kollen WJ, Zwaginga JJ, Lankester AC, Bredius RG. Risk Factors, Treatment, and Immune Dysregulation in Autoimmune Cytopenia after Allogeneic Hematopoietic Stem Cell Transplantation in Pediatric Patients. Biol Blood Marrow Transplant 2018; 24:772-778. [DOI: 10.1016/j.bbmt.2017.12.782] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 12/09/2017] [Indexed: 10/18/2022]
|
124
|
Palmisani E, Miano M, Micalizzi C, Calvillo M, Pierri F, Terranova P, Lanza T, Lanciotti M, Riccardi F, Todiere A, Zanardi S, Caviglia I, Dufour C, Fioredda F. Clinical features and therapeutic challenges of cytopenias belonging to alps and alps-related (ARS) phenotype. Br J Haematol 2018. [PMID: 29527658 DOI: 10.1111/bjh.15178] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Elena Palmisani
- Haematology Unit, IRCCS-Istituto Giannina Gaslini, Genoa, Italy
| | - Maurizio Miano
- Haematology Unit, IRCCS-Istituto Giannina Gaslini, Genoa, Italy
| | | | | | - Filomena Pierri
- Haematology Unit, IRCCS-Istituto Giannina Gaslini, Genoa, Italy
| | - Paola Terranova
- Haematology Unit, IRCCS-Istituto Giannina Gaslini, Genoa, Italy
| | - Tiziana Lanza
- Haematology Unit, IRCCS-Istituto Giannina Gaslini, Genoa, Italy
| | | | | | - Andrea Todiere
- Haematology Unit, IRCCS-Istituto Giannina Gaslini, Genoa, Italy
| | - Sabrina Zanardi
- Epidemiology and Biostatistics Unit, IRCCS-Istituto Giannina Gaslini, Genoa, Italy
| | - Ilaria Caviglia
- Infectious Disease Unit, IRCCS-Istituto Giannina Gaslini, Genoa, Italy
| | - Carlo Dufour
- Haematology Unit, IRCCS-Istituto Giannina Gaslini, Genoa, Italy
| | | |
Collapse
|
125
|
Nocerino A, Valencic E, Loganes C, Pelos G, Tommasini A. Low-dose sirolimus in two cousins with autoimmune lymphoproliferative syndrome-associated infection. Pediatr Int 2018; 60:315-317. [PMID: 29480551 DOI: 10.1111/ped.13494] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 10/08/2017] [Accepted: 12/20/2017] [Indexed: 11/28/2022]
Affiliation(s)
- Agostino Nocerino
- Department of Pediatrics, ASIUD Udine University Hospital, Udine, Italy
| | - Erica Valencic
- Department of Pediatrics, IRCCS Burlo Garofolo, Trieste, Italy
| | - Claudia Loganes
- Department of Pediatrics, IRCCS Burlo Garofolo, Trieste, Italy
| | | | | |
Collapse
|
126
|
Schmidt RE, Grimbacher B, Witte T. Autoimmunity and primary immunodeficiency: two sides of the same coin? Nat Rev Rheumatol 2017; 14:7-18. [PMID: 29255211 DOI: 10.1038/nrrheum.2017.198] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Autoimmunity and immunodeficiency were previously considered to be mutually exclusive conditions; however, increased understanding of the complex immune regulatory and signalling mechanisms involved, coupled with the application of genetic analysis, is revealing the complex relationships between primary immunodeficiency syndromes and autoimmune diseases. Single-gene defects can cause rare diseases that predominantly present with autoimmune symptoms. Such genetic defects also predispose individuals to recurrent infections (a hallmark of immunodeficiency) and can cause primary immunodeficiencies, which can also lead to immune dysregulation and autoimmunity. Moreover, risk factors for polygenic rheumatic diseases often exist in the same genes as the mutations that give rise to primary immunodeficiency syndromes. In this Review, various primary immunodeficiency syndromes are presented, along with their pathogenetic mechanisms and relationship to autoimmune diseases, in an effort to increase awareness of immunodeficiencies that occur concurrently with autoimmune diseases and to highlight the need to initiate appropriate genetic tests. The growing knowledge of various genetically determined pathologic mechanisms in patients with immunodeficiencies who have autoimmune symptoms opens up new avenues for personalized molecular therapies that could potentially treat immunodeficiency and autoimmunity at the same time, and that could be further explored in the context of autoimmune rheumatic diseases.
Collapse
Affiliation(s)
- Reinhold E Schmidt
- Klinik für Immunologie und Rheumatologie, Medizinische Hochschule Hannover (MHH), Carl-Neuberg Straße 1, D-30625 Hannover, Germany
| | - Bodo Grimbacher
- Centre for Chronic Immunodeficiency, University Medical Centre, University of Freiburg, Faculty of Medicine, Breisacher Straße 115, D-79106 Freiburg, Germany
| | - Torsten Witte
- Klinik für Immunologie und Rheumatologie, Medizinische Hochschule Hannover (MHH), Carl-Neuberg Straße 1, D-30625 Hannover, Germany
| |
Collapse
|
127
|
Li W, Sivakumar R, Titov AA, Choi SC, Morel L. Metabolic Factors that Contribute to Lupus Pathogenesis. Crit Rev Immunol 2017; 36:75-98. [PMID: 27480903 DOI: 10.1615/critrevimmunol.2016017164] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease in which organ damage is mediated by pathogenic autoantibodies directed against nucleic acids and protein complexes. Studies in SLE patients and in mouse models of lupus have implicated virtually every cell type in the immune system in the induction or amplification of the autoimmune response as well as the promotion of an inflammatory environment that aggravates tissue injury. Here, we review the contribution of CD4+ T cells, B cells, and myeloid cells to lupus pathogenesis and then discuss alterations in the metabolism of these cells that may contribute to disease, given the recent advances in the field of immunometabolism.
Collapse
Affiliation(s)
- Wei Li
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610; Department of Biochemistry and Molecular Biology, Gene Engineering and Biotechnology, Beijing Key Laboratory, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Ramya Sivakumar
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610
| | - Anton A Titov
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610
| | - Seung-Chul Choi
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610
| | - Laurence Morel
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610
| |
Collapse
|
128
|
Müller-Calleja N, Hollerbach A, Häuser F, Canisius A, Orning C, Lackner KJ. Antiphospholipid antibody-induced cellular responses depend on epitope specificity : implications for treatment of antiphospholipid syndrome. J Thromb Haemost 2017; 15:2367-2376. [PMID: 29024318 DOI: 10.1111/jth.13865] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Indexed: 01/18/2023]
Abstract
Essentials Antiphospholipid antibodies (aPL) are heterogeneous and induce different cellular responses. We analyzed signaling events induced by different monoclonal and patient aPL in monocytes. Two major signaling pathways involving either NADPH-oxidase or LRP8 were identified. Our data suggest that these two pathways mediate the majority of aPL effects on monocytes. SUMMARY Background Antiphospholipid antibodies (aPLs) contribute to the pathogenesis of the antiphospholipid syndrome (APS) by induction of an inflammatory and procoagulant state in different cell types, and several signaling pathways have been described. Objectives To investigate whether signaling depends on the epitope specificity of aPLs. Methods Cellular effects of three human monoclonal aPLs with distinctly different epitope specificities were analyzed in vitro. Expression of tumor necrosis factor-α mRNA by mouse and human monocytes was the major readout. Analysis included cells from genetically modified mice, and the use of specific inhibitors in human monocytes. Data were validated with IgG isolated from 20 APS patients. Results Cofactor-independent anticardiolipin aPLs activated monocytes by induction of endosomal NADPH oxidase. Activation could be blocked by hydroxychloroquine (HCQ). Anti-β2 -glycoprotein I aPL activated monocytes by interacting with LDL receptor-related protein 8 (LRP8). This could be blocked by rapamycin. Analysis of 20 APS patients' IgG showed that all IgG fractions activated the same two pathways as the monoclonal aPL, depending on their epitope patterns as determined by ELISA. Monocyte activation by APS IgG could be blocked completely by HCQ and/or rapamycin, suggesting that in most, if not all, APS patients there is no other relevant signaling pathway. Conclusions aPLs activate two major proinflammatory signal transduction pathways, depending on their epitope specificity. HCQ and rapamycin, either alone or in combination, completely suppress signaling by APS IgG. These observations may provide a rationale for specific treatment of APS patients according to their aPL profile.
Collapse
Affiliation(s)
- N Müller-Calleja
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Mainz, Mainz, Germany
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| | - A Hollerbach
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Mainz, Mainz, Germany
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| | - F Häuser
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Mainz, Mainz, Germany
| | - A Canisius
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Mainz, Mainz, Germany
| | - C Orning
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Mainz, Mainz, Germany
| | - K J Lackner
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Mainz, Mainz, Germany
| |
Collapse
|
129
|
Haeri A, Osouli M, Bayat F, Alavi S, Dadashzadeh S. Nanomedicine approaches for sirolimus delivery: a review of pharmaceutical properties and preclinical studies. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:1-14. [DOI: 10.1080/21691401.2017.1408123] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Azadeh Haeri
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahraz Osouli
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fereshteh Bayat
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sonia Alavi
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Simin Dadashzadeh
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
130
|
Abbruzzese C, Matteoni S, Signore M, Cardone L, Nath K, Glickson JD, Paggi MG. Drug repurposing for the treatment of glioblastoma multiforme. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:169. [PMID: 29179732 PMCID: PMC5704391 DOI: 10.1186/s13046-017-0642-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 11/17/2017] [Indexed: 01/07/2023]
Abstract
Background Glioblastoma Multiforme is the deadliest type of brain tumor and is characterized by very poor prognosis with a limited overall survival. Current optimal therapeutic approach has essentially remained unchanged for more than a decade, consisting in maximal surgical resection followed by radiotherapy plus temozolomide. Main body Such a dismal patient outcome represents a compelling need for innovative and effective therapeutic approaches. Given the development of new drugs is a process presently characterized by an immense increase in costs and development time, drug repositioning, finding new uses for existing approved drugs or drug repurposing, re-use of old drugs when novel molecular findings make them attractive again, are gaining significance in clinical pharmacology, since it allows faster and less expensive delivery of potentially useful drugs from the bench to the bedside. This is quite evident in glioblastoma, where a number of old drugs is now considered for clinical use, often in association with the first-line therapeutic intervention. Interestingly, most of these medications are, or have been, widely employed for decades in non-neoplastic pathologies without relevant side effects. Now, the refinement of their molecular mechanism(s) of action through up-to-date technologies is paving the way for their use in the therapeutic approach of glioblastoma as well as other cancer types. Short conclusion The spiraling costs of new antineoplastic drugs and the long time required for them to reach the market demands a profoundly different approach to keep lifesaving therapies affordable for cancer patients. In this context, repurposing can represent a relatively inexpensive, safe and fast approach to glioblastoma treatment. To this end, pros and cons must be accurately considered.
Collapse
Affiliation(s)
- Claudia Abbruzzese
- Department of Research, Advanced Diagnostics and Technological Innovation, Unit of Cellular Networks and Therapeutic Targets, Proteomics Area, Regina Elena National Cancer Institute, IRCCS, Via Elio Chianesi, 53, Rome, Italy
| | - Silvia Matteoni
- Department of Research, Advanced Diagnostics and Technological Innovation, Unit of Cellular Networks and Therapeutic Targets, Proteomics Area, Regina Elena National Cancer Institute, IRCCS, Via Elio Chianesi, 53, Rome, Italy
| | - Michele Signore
- RPPA Unit, Proteomics Area, Core Facilities, Istituto Superiore di Sanità, Rome, Italy
| | - Luca Cardone
- Department of Research, Advanced Diagnostics and Technological Innovation, Unit of Cellular Networks and Therapeutic Targets, Regina Elena National Cancer Institute, IRCCS, Rome, Italy
| | - Kavindra Nath
- Laboratory of Molecular Imaging, Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Jerry D Glickson
- Laboratory of Molecular Imaging, Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Marco G Paggi
- Department of Research, Advanced Diagnostics and Technological Innovation, Unit of Cellular Networks and Therapeutic Targets, Proteomics Area, Regina Elena National Cancer Institute, IRCCS, Via Elio Chianesi, 53, Rome, Italy.
| |
Collapse
|
131
|
Abstract
Autoimmune lymphoproliferative syndrome (ALPS) is an inherited syndrome characterized by abnormal lymphocyte survival caused by failure of apoptotic mechanisms to maintain lymphocyte homeostasis. This failure leads to the clinical manifestations of non-infectious and non-malignant lymphadenopathy, splenomegaly, and autoimmune pathology, most commonly, autoimmune cytopenias. Since ALPS was first characterized in the early 1990s, insights in disease biology have improved both diagnosis and management of this syndrome. Sirolimus is the best-studied and most effective corticosteroid-sparing therapy for ALPS and should be considered first-line for patients in need of chronic treatment. This review highlights practical clinical considerations for the diagnosis and management of ALPS. Further studies could reveal new proteins and regulatory pathways that are critical for lymphocyte activation and apoptosis.
Collapse
Affiliation(s)
- Karen Bride
- Division of Oncology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - David Teachey
- Division of Oncology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
132
|
Walter JE, Farmer JR, Foldvari Z, Torgerson TR, Cooper MA. Mechanism-Based Strategies for the Management of Autoimmunity and Immune Dysregulation in Primary Immunodeficiencies. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2017; 4:1089-1100. [PMID: 27836058 DOI: 10.1016/j.jaip.2016.08.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 08/01/2016] [Accepted: 08/19/2016] [Indexed: 01/27/2023]
Abstract
A broad spectrum of autoimmunity is now well described in patients with primary immunodeficiencies (PIDs). Management of autoimmune disease in the background of PID is particularly challenging given the seemingly discordant goals of immune support and immune suppression. Our growing ability to define the molecular underpinnings of immune dysregulation has facilitated novel targeted therapeutics. This review focuses on mechanism-based treatment strategies for the most common autoimmune and inflammatory complications of PID including autoimmune cytopenias, rheumatologic disease, and gastrointestinal disease. We aim to provide guidance regarding the rational use of these agents in the complex PID patient population.
Collapse
Affiliation(s)
- Jolan E Walter
- Department of Pediatrics & Medicine, University of South Florida at Johns Hopkins All Children's Hospital, St Petersburg, Fla; Division of Pediatric Allergy & Immunology, Massachusetts General Hospital for Children, Boston, Mass; Division of Immunology, Boston Children's Hospital, Boston, Mass.
| | - Jocelyn R Farmer
- Department of Allergy & Immunology, Massachusetts General Hospital, Boston, Mass
| | - Zsofia Foldvari
- Department of Cancer Immunology, Oslo University Hospital Radiumhospitalet, Oslo, Norway; K. G. Jebsen Centers for Cancer Immunotherapy and for Inflammation Research, Institute for Clinical Medicine, University of Oslo, Oslo, Norway
| | - Troy R Torgerson
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Wash
| | - Megan A Cooper
- Department of Pediatrics, Division of Rheumatology, Washington University School of Medicine, St Louis, Mo
| |
Collapse
|
133
|
Rae W, Ward D, Mattocks CJ, Gao Y, Pengelly RJ, Patel SV, Ennis S, Faust SN, Williams AP. Autoimmunity/inflammation in a monogenic primary immunodeficiency cohort. Clin Transl Immunology 2017; 6:e155. [PMID: 28983403 PMCID: PMC5628267 DOI: 10.1038/cti.2017.38] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 06/09/2017] [Accepted: 07/21/2017] [Indexed: 12/13/2022] Open
Abstract
Primary immunodeficiencies (PIDs) are rare inborn errors of immunity that have a heterogeneous phenotype that can include severe susceptibility to life-threatening infections from multiple pathogens, unique sensitivity to a single pathogen, autoimmune/inflammatory (AI/I) disease, allergies and/or malignancy. We present a diverse cohort of monogenic PID patients with and without AI/I diseases who underwent clinical, genetic and immunological phenotyping. Novel pathogenic variants were identified in IKBKG, CTLA4, NFKB1, GATA2, CD40LG and TAZ as well as previously reported pathogenic variants in STAT3, PIK3CD, STAT1, NFKB2 and STXBP2. AI/I manifestations were frequently encountered in PIDs, including at presentation. Autoimmunity/inflammation was multisystem in those effected, and regulatory T cell (Treg) percentages were significantly decreased compared with those without AI/I manifestations. Prednisolone was used as the first-line immunosuppressive agent in all cases, however steroid monotherapy failed long-term control of autoimmunity/inflammation in the majority of cases and additional immunosuppression was required. Patients with multisystem autoimmunity/inflammation should be investigated for an underlying PID, and in those with PID early assessment of Tregs may help to assess the risk of autoimmunity/inflammation.
Collapse
Affiliation(s)
- William Rae
- Department of Immunology, University Hospital Southampton NHS Foundation Trust, Southampton, UK.,Southampton NIHR Wellcome Trust Clinical Research Facility, University of Southampton, University Hospital Southampton, Southampton, UK
| | - Daniel Ward
- Wessex Regional Genetics Laboratory, Salisbury District Hospital, Salisbury, UK.,Wessex Investigational Sciences Hub Laboratory, University of Southampton, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Christopher J Mattocks
- Wessex Regional Genetics Laboratory, Salisbury District Hospital, Salisbury, UK.,Wessex Investigational Sciences Hub Laboratory, University of Southampton, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Yifang Gao
- Wessex Investigational Sciences Hub Laboratory, University of Southampton, University Hospital Southampton NHS Foundation Trust, Southampton, UK.,NIHR Cancer Research UK Experimental Cancer Medicine Centre, Southampton, UK
| | - Reuben J Pengelly
- Human Genetics and Genomic Medicine, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Sanjay V Patel
- Department of Paediatric Immunology and Infectious Diseases, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Sarah Ennis
- Human Genetics and Genomic Medicine, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Saul N Faust
- Southampton NIHR Wellcome Trust Clinical Research Facility, University of Southampton, University Hospital Southampton, Southampton, UK.,Department of Paediatric Immunology and Infectious Diseases, University Hospital Southampton NHS Foundation Trust, Southampton, UK.,Faculty of Medicine, University of Southampton, Southampton, UK.,Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Anthony P Williams
- Department of Immunology, University Hospital Southampton NHS Foundation Trust, Southampton, UK.,Wessex Investigational Sciences Hub Laboratory, University of Southampton, University Hospital Southampton NHS Foundation Trust, Southampton, UK.,NIHR Cancer Research UK Experimental Cancer Medicine Centre, Southampton, UK
| |
Collapse
|
134
|
Neutropenia in Patients with Common Variable Immunodeficiency: a Rare Event Associated with Severe Outcome. J Clin Immunol 2017; 37:715-726. [PMID: 28842786 DOI: 10.1007/s10875-017-0434-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 08/15/2017] [Indexed: 10/19/2022]
Abstract
BACKGROUND Common variable immunodeficiency (CVID) is characterized by infections and hypogammaglobulinemia. Neutropenia is rare during CVID. METHODS The French DEFI study enrolled patients with primary hypogammaglobulinemia. Patients with CVID and neutropenia were retrospectively analyzed. RESULTS Among 473 patients with CVID, 16 patients displayed neutropenia (lowest count [0-1400]*106/L). Sex ratio (M/F) was 10/6. Five patients died during the follow-up (11 years) with an increased percentage of deaths compared to the whole DEFI group (31.3 vs 3.4%, P < 0.05). Neutropenia was diagnosed for 10 patients before 22 years old. The most frequent symptoms, except infections, were autoimmune cytopenia, i.e., thrombopenia or anemia (11/16). Ten patients were affected with lymphoproliferative diseases. Two patients were in the infection only group and the others belonged to one or several other CVID groups. The median level of IgG was 2.6 g/L [0.35-4.4]. Most patients presented increased numbers of CD21low CD38low B cell, as already described in CVID autoimmune cytopenia group. Neutropenia was considered autoimmune in 11 cases. NGS for 52 genes of interest was performed on 8 patients. No deleterious mutations were found in LRBA, CTLA4, and PIK3. More than one potentially damaging variant in other genes associated with CVID were present in most patients arguing for a multigene process. CONCLUSION Neutropenia is generally associated with another cytopenia and presumably of autoimmune origin during CVID. In the DEFI study, neutropenia is coupled with more severe clinical outcomes. It appears as an "alarm bell" considering patients' presentation and the high rate of deaths. Whole exome sequencing diagnosis should improve management.
Collapse
|
135
|
Li E, Grimes AB, Rider NL, Mahoney DH, Fleisher TA, Shearer WT. Diagnostic dilemma: ALPS versus Evans syndrome. Clin Immunol 2017; 183:247-248. [PMID: 28802957 DOI: 10.1016/j.clim.2017.08.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 08/08/2017] [Indexed: 12/30/2022]
Affiliation(s)
- Evan Li
- Department of Medicine, Section of Allergy and Immunology, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, United States.
| | - Amanda B Grimes
- Department of Pediatrics, Section of Hematology and Oncology, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, United States
| | - Nicholas L Rider
- Department of Pediatrics, Section of Immunology, Allergy and Rheumatology, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, United States
| | - Donald H Mahoney
- Department of Pediatrics, Section of Hematology and Oncology, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, United States
| | - Thomas A Fleisher
- Department of Laboratory Medicine, Immunology Service, National Institutes of Health Clinical Center, Bethesda, MD, United States
| | - William T Shearer
- Department of Pediatrics, Section of Immunology, Allergy and Rheumatology, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, United States
| |
Collapse
|
136
|
Sirolimus as an Effective Agent in the Treatment of Immune Thrombocytopenia (ITP) and Evans Syndrome (ES): A Single Institution's Experience. J Pediatr Hematol Oncol 2017; 39:420-424. [PMID: 28267088 DOI: 10.1097/mph.0000000000000818] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
BACKGROUND Autoimmune cytopenias are characterized by immune-mediated destruction of hematopoietic cell lines with immune thrombocytopenia (ITP) affecting platelets and Evans syndrome (ES) affecting platelets and red blood cells. For patients with persistent disease, limited options for effective and well-tolerated therapies exist. OBJECTIVES Our aim is to describe our institution's experience with sirolimus as therapy for pediatric patients with persistent ITP and ES. DESIGN/METHOD A retrospective analysis was performed in patients with persistent ITP and ES treated with sirolimus. Responses were categorized as complete response (CR), partial response, modest response, or no response. RESULTS Of the 17 patients treated, 12 had ITP and 5 had ES. Seventy-three percent of ITP patients achieved a CR, 78% of them by 3 months. Only 2 patients did not achieve a durable response. Eighty percent of ES patients had a response, with 50% of them achieving CR and the other 50% an asymptomatic partial response. One patient with ES achieved modest response, but discontinued therapy due to an adverse effect. Of the patients that achieved CR, 90% remain off all therapy for a median of 2 years. CONCLUSIONS Our data suggest that sirolimus is a safe and effective steroid-sparing agent in the treatment of persistent ITP and ES.
Collapse
|
137
|
Abstract
Primary Evans syndrome (ES) is defined by the concurrent or sequential occurrence of immune thrombocytopenia and autoimmune hemolytic anemia in the absence of an underlying etiology. The syndrome is characterized by a chronic, relapsing, and potentially fatal course requiring long-term immunosuppressive therapy. Treatment of ES is hardly evidence-based. Corticosteroids are the mainstay of therapy. Rituximab has emerged as the most widely used second-line treatment, as it can safely achieve high response rates and postpone splenectomy. An increasing number of new genetic defects involving critical pathways of immune regulation identify specific disorders, which explain cases of ES previously reported as "idiopathic".
Collapse
|
138
|
Lymphadenopathy driven by TCR-V γ8V δ1 T-cell expansion in FAS-related autoimmune lymphoproliferative syndrome. Blood Adv 2017; 1:1101-1106. [PMID: 29296752 DOI: 10.1182/bloodadvances.2017006411] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 04/30/2017] [Indexed: 12/25/2022] Open
Abstract
FAS-dependent apoptosis in Vδ1 T cells makes the latter possible culprits for the lymphadenopathy observed in patients with FAS mutations.Rapamycin and methylprednisolone resistance should prompt clinicians to look for Vδ1 T cell proliferation in ALPS-FAS patients.
Collapse
|
139
|
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease mediated by pathogenic autoantibodies directed against nucleoprotein complexes. Beyond the activation of autoreactive B cells, this process involves dysregulation in many other types of immune cells, including CD4+ T cells, dendritic cells, macrophages and neutrophils. Metabolic substrate utilization and integration of cues from energy sensors are critical checkpoints of effector functions in the immune system, with common as well as cell-specific programmes. Patients with SLE and lupus-prone mice present with activated metabolism of CD4+ T cells, and the use of metabolic inhibitors to normalize these features is associated with therapeutic effects. Far less is known about the metabolic requirements of B cells and myeloid cells in SLE. This article reviews current knowledge of the alterations in metabolism of immune cells in patients with SLE and mouse models of lupus in the context of what is known about the metabolic regulation of these cells during normal immune responses. How these alterations might contribute to lupus pathogenesis and how they can be targeted therapeutically are also discussed.
Collapse
Affiliation(s)
- Laurence Morel
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, Florida 32610, USA
| |
Collapse
|
140
|
Abstract
The genomic revolution in the past decade fuelled by breathtaking advances in sequencing technologies has defined several new genetic diseases of the immune system. Many of these newly characterized diseases are a result of defects in genes involved in immune regulation. The discovery of these diseases has opened a vista of new therapeutic possibilities. Immunomodulatory agents, a hitherto unexplored therapeutic option in primary immunodeficiency diseases have been tried in a host of these newly described maladies. These agents have been shown conclusively to favorably modulate immune responses, resulting in abatement of clinical manifestations both in experimental models and patients. While some of the treatment options have been approved for therapeutic use or have been shown to be of merit in open-label trials, others have been shown to be efficacious in a handful of clinical cases, animal models, and cell lines. Interferon γ is approved for use in chronic granulomatous disease (CGD) to reduce the burden of infection and and has a good long-term efficacy. Recombinant human IL7 therapy has been shown increase the peripheral CD4 and CD8 T cell counts in patients with idiopathic CD4. Anti-IL1 agents are approved for the management of cryopyrin-related autoinflammatory syndrome, and their therapeutic efficacy is being increasingly recognized in other autoinflammatory syndromes and CGD. Mammalian target of rapamycin (mTOR) inhibitors have been proven useful in autoimmune lymphoproliferative syndrome (ALPS) and in IPEX syndrome. Therapies reported to be potential use in case reports include abatacept in CTLA4 haploinsufficiency and LRBA deficiency, ruxolitinib in gain-of-function STAT1, tocilizumab in gain-of-function STAT3 defect, mTOR inhibitors in PIK3CD activation, magnesium in XMEN syndrome, and pioglitazone in CGD. Treatment options of merit in human cell lines include interferon α and interferon β in TLR3 and UNC-93B deficiencies, anti-interferon therapy in SAVI, and Rho-kinase inhibitors in TTC7A deficiency. Anti-IL17 agents have show efficacy in animal models of leukocyte adhesion defect (LAD) and ALPS. This topical review explores the use of various immunomodulators and other biological agents in the context of primary immunodeficiency and autoinflammatory diseases.
Collapse
|
141
|
Panigrahi A, Clark A, Myers J, Raj A. A novel immunomodulatory treatment involving mycophenolate mofetil and corticosteroids for pediatric autoimmune cytopenias. Pediatr Blood Cancer 2017; 64:287-293. [PMID: 27615037 DOI: 10.1002/pbc.26210] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 07/11/2016] [Accepted: 07/22/2016] [Indexed: 01/19/2023]
Abstract
BACKGROUND Successful treatment of both pediatric autoimmune hemolytic anemia (AIHA) and immune thrombocytopenic purpura (ITP), specifically those that are refractory to first-line therapies, remains unsatisfactory in terms of long-term remission and medication side effects. Here, we propose a novel combination therapy of mycophenolate mofetil (MMF), an adjunct immunosuppressive, and short-term corticosteroids for the treatment of persistent or chronic autoimmune cytopenias in children. This combination may allow for rapid decrease of steroid usage as well as prolonged count stabilization with minimal toxicity to the patient. PROCEDURE Prospective case series of nine patients, six with persistent or chronic ITP and three with persistent or chronic AIHA, between the ages of 5 and 19 years who are being treated with combination therapy consisting of corticosteroids and MMF. RESULTS All patients with ITP (Patients 4-9) and AIHA (Patients 1-3) met complete response (CR) criteria, as they all initially achieved platelet counts 100 × 109 l-1 or more or hemoglobin level greater than or equal to 10 g/dl, respectively, while on combination therapy and then maintained this level or higher while on MMF alone after steroids were discontinued. CONCLUSIONS Our results are very promising, as MMF appears to be an effective and well-tolerated adjunct immunosuppressant that allows for rapid weaning of steroid usage, minimal adverse side effects to the patients, and long-term stabilization of counts, a goal that has not been achieved successfully with other secondary treatment modalities. Therefore, this novel combination therapy may be an excellent alternative for the treatment of persistent or chronic autoimmune cytopenias in the pediatric population.
Collapse
Affiliation(s)
- Arun Panigrahi
- Division of Pediatric Hematology-Oncology, University of Louisville, Louisville, Kentucky
| | - Amy Clark
- University of Louisville School of Medicine, Louisville, Kentucky
| | - John Myers
- University of Louisville School of Medicine, Louisville, Kentucky.,Department of Pediatrics, University of Louisville, Louisville, Kentucky
| | - Ashok Raj
- Division of Pediatric Hematology-Oncology, University of Louisville, Louisville, Kentucky
| |
Collapse
|
142
|
Togashi Y, Nishikawa H. Regulatory T Cells: Molecular and Cellular Basis for Immunoregulation. Curr Top Microbiol Immunol 2017; 410:3-27. [PMID: 28879523 DOI: 10.1007/82_2017_58] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
CD4+ regulatory T cells (Tregs) are a highly immune-suppressive subset of CD4+ T cells, characterized by expression of the master regulatory transcription factor FOXP3. Tregs are proven to play central roles in the maintenance of self-tolerance in healthy individuals. Tregs are involved in maintaining immune homeostasis: they protect hosts from developing autoimmune diseases and allergy, whereas in malignancies, they promote tumor progression by suppressing anti-tumor immunity. Elucidating factors influencing Treg homeostasis and function have important implications for understanding disease pathogenesis and identifying therapeutic opportunities. Thus, the manipulating Tregs for up- or down-regulation of their suppressive function is a new therapeutic strategy for treating various diseases including autoimmune disorders and cancer. This review will focus on recent advances in how Tregs integrate extracellular and intracellular signals to control their survival and stability. Deeper mechanistic understanding of disease-specific Treg development, maintenance, and function could make disease-specific Treg-targeted therapy more effective, resulting in an increase of efficacy and decrease of side effects related to manipulating Tregs.
Collapse
Affiliation(s)
- Yosuke Togashi
- Division of Cancer Immunology, Research Institute/EPOC, National Cancer Center, Tokyo, Japan
| | - Hiroyoshi Nishikawa
- Division of Cancer Immunology, Research Institute/EPOC, National Cancer Center, Tokyo, Japan. .,Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| |
Collapse
|
143
|
Grace RF, Neunert C. Second-line therapies in immune thrombocytopenia. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2016; 2016:698-706. [PMID: 27913549 PMCID: PMC6142486 DOI: 10.1182/asheducation-2016.1.698] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Immune thrombocytopenia (ITP) is a rare, acquired autoimmune condition characterized by a low platelet count and an increased risk of bleeding. Although many children and adults with ITP will not need therapy beyond historic first-line treatments of observation, steroids, intravenous immunoglobulin (IVIG), and anti-D globulin, others will have an indication for second-line treatment. Selecting a second-line therapy depends on the reason for treatment, which can vary from bleeding to implications for health-related quality of life (HRQoL) to likelihood of remission and patient preference with regard to adverse effects, route of administration, and cost. Published studies of these treatments are limited by lack of comparative trials, in addition to inconsistent outcome measures, definitions, and efficacy endpoints. This article provides an up-to-date comparison of the second-line treatments, highlighting important outcome measures including bleeding, HRQoL, fatigue, and platelet counts, which influence treatment selection in a shared decision-making model.
Collapse
Affiliation(s)
- Rachael F Grace
- Pediatric Hematology/Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorder Center, Boston, MA; and
| | - Cindy Neunert
- Division of Pediatric Hematology/Oncology/Stem Cell Transplantation, Columbia University Medical Center, New York, NY
| |
Collapse
|
144
|
Kalfa TA. Warm antibody autoimmune hemolytic anemia. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2016; 2016:690-697. [PMID: 27913548 PMCID: PMC6142448 DOI: 10.1182/asheducation-2016.1.690] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Autoimmune hemolytic anemia (AIHA) is a rare and heterogeneous disease that affects 1 to 3/100 000 patients per year. AIHA caused by warm autoantibodies (w-AIHA), ie, antibodies that react with their antigens on the red blood cell optimally at 37°C, is the most common type, comprising ∼70% to 80% of all adult cases and ∼50% of pediatric cases. About half of the w-AIHA cases are called primary because no specific etiology can be found, whereas the rest are secondary to other recognizable underlying disorders. This review will focus on the postulated immunopathogenetic mechanisms in idiopathic and secondary w-AIHA and report on the rare cases of direct antiglobulin test-negative AIHA, which are even more likely to be fatal because of inherent characteristics of the causative antibodies, as well as because of delays in diagnosis and initiation of appropriate treatment. Then, the characteristics of w-AIHA associated with genetically defined immune dysregulation disorders and special considerations on its management will be discussed. Finally, the standard treatment options and newer therapeutic approaches for this chronic autoimmune blood disorder will be reviewed.
Collapse
Affiliation(s)
- Theodosia A Kalfa
- Division of Hematology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH
| |
Collapse
|
145
|
Guffroy A, Gies V, Martin M, Korganow AS. [Primary immunodeficiency and autoimmunity]. Rev Med Interne 2016; 38:383-392. [PMID: 27889323 DOI: 10.1016/j.revmed.2016.10.388] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 10/03/2016] [Accepted: 10/20/2016] [Indexed: 12/15/2022]
Abstract
Many evidences highlight that immunodeficiency and autoimmunity are two sides of a same coin. Primary immune deficiencies (PIDs), which are rare mono- or multigenic defects of innate or adaptative immunity, frequently associate with autoimmunity. Analyses of single-gene defects in immune pathways of families with PIDs, by new tools of molecular biology (next genome sequencing technologies), allowed a better understanding of the ways that could both drive immune defect with immune deficiency and autoimmunity. Moreover, genes implicated in rare single-gene defects are now known to be also involved in polygenic conventional autoimmune diseases. Here, we describe the main autoimmune symptoms occurring in PIDs and the underlying mechanisms that lead to autoimmunity in immunodeficiency. We review the links between autoimmunity and immunodeficiency and purpose some principles of care for patients with PIDs and autoimmunity.
Collapse
Affiliation(s)
- A Guffroy
- CNRS UPR 3572 « immunopathologie et chimie thérapeutique », laboratoire d'excellence Medalis, institut de biologie moléculaire et cellulaire (IBMC), 67000 Strasbourg, France; Service d'immunologie clinique et de médecine interne, Centre national de référence des maladies auto-immunes rares, hôpitaux universitaires de Strasbourg, 1, place de l'Hôpital, 67091 Strasbourg, France.
| | - V Gies
- CNRS UPR 3572 « immunopathologie et chimie thérapeutique », laboratoire d'excellence Medalis, institut de biologie moléculaire et cellulaire (IBMC), 67000 Strasbourg, France; Service d'immunologie clinique et de médecine interne, Centre national de référence des maladies auto-immunes rares, hôpitaux universitaires de Strasbourg, 1, place de l'Hôpital, 67091 Strasbourg, France
| | - M Martin
- CNRS UPR 3572 « immunopathologie et chimie thérapeutique », laboratoire d'excellence Medalis, institut de biologie moléculaire et cellulaire (IBMC), 67000 Strasbourg, France; Service d'immunologie clinique et de médecine interne, Centre national de référence des maladies auto-immunes rares, hôpitaux universitaires de Strasbourg, 1, place de l'Hôpital, 67091 Strasbourg, France
| | - A-S Korganow
- CNRS UPR 3572 « immunopathologie et chimie thérapeutique », laboratoire d'excellence Medalis, institut de biologie moléculaire et cellulaire (IBMC), 67000 Strasbourg, France; Service d'immunologie clinique et de médecine interne, Centre national de référence des maladies auto-immunes rares, hôpitaux universitaires de Strasbourg, 1, place de l'Hôpital, 67091 Strasbourg, France
| |
Collapse
|
146
|
Klemann C, Esquivel M, Magerus-Chatinet A, Lorenz MR, Fuchs I, Neveux N, Castelle M, Rohr J, da Cunha CB, Ebinger M, Kobbe R, Kremens B, Kollert F, Gambineri E, Lehmberg K, Seidel MG, Siepermann K, Voelker T, Schuster V, Goldacker S, Schwarz K, Speckmann C, Picard C, Fischer A, Rieux-Laucat F, Ehl S, Rensing-Ehl A, Neven B. Evolution of disease activity and biomarkers on and off rapamycin in 28 patients with autoimmune lymphoproliferative syndrome. Haematologica 2016; 102:e52-e56. [PMID: 27789675 DOI: 10.3324/haematol.2016.153411] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Christian Klemann
- Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, University of Freiburg, Germany.,Center for Pediatrics, Department of Pediatric Hematology and Oncology, University Medical Center, Faculty of Medicine, University of Freiburg, Germany
| | - Myrian Esquivel
- INSERM UMR 1163, Laboratory of the immunogenetics of Pediatric Autoimmune Diseases, Paris, France.,Unite d'Immuno Hematologie Pediatrique, Hopital Necker-Enfants Malades, Assistance Publique des Hopitaux de Paris, France
| | - Aude Magerus-Chatinet
- INSERM UMR 1163, Laboratory of the immunogenetics of Pediatric Autoimmune Diseases, Paris, France.,Paris Descartes - Sorbonne Paris Cité University, Imagine Institute, France
| | - Myriam R Lorenz
- Institute for Transfusion Medicine, University of Ulm, Germany.,Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Service, Germany
| | - Ilka Fuchs
- Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, University of Freiburg, Germany
| | - Nathalie Neveux
- Service de Biochimie, Hopital Cochin, Assistance Publique Hopitaux de Paris, France
| | - Martin Castelle
- Unite d'Immuno Hematologie Pediatrique, Hopital Necker-Enfants Malades, Assistance Publique des Hopitaux de Paris, France
| | - Jan Rohr
- Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, University of Freiburg, Germany.,Center for Pediatrics, Department of Pediatric Hematology and Oncology, University Medical Center, Faculty of Medicine, University of Freiburg, Germany
| | | | | | - Robin Kobbe
- Department of Pediatrics, Infectious Diseases and Immunity, University Medical Centre Hamburg-Eppendorf, Germany
| | - Bernhard Kremens
- Department of Rheumatology and Clinical Immunology, University Medical Centre Freiburg, Germany
| | - Florian Kollert
- University Hospital Essen, Department of Paediatrics III, University of Duisburg-Essen, Germany
| | - Eleonora Gambineri
- Department of "NEUROFARBA": Section of Child's Health, University of Florence, Department of Haematology-Oncology: BMT Unit, Department of Fetal and Neonatal Medicine: Rare Diseases, "Anna Meyer" Children's Hospital, Florence, Italy
| | - Kai Lehmberg
- Department of Pediatric Haematology/Oncology, University Medical Centre Hamburg, Germany
| | - Markus G Seidel
- Division of Pediatric Hematology-Oncology, Department of Pediatrics and Adolescent Medicine, Medical University Graz, Austria
| | - Kathrin Siepermann
- Department of Pediatric and Adolescent Medicine, HELIOS Klinikum Krefeld, Germany
| | - Thomas Voelker
- Hospital for Pediatric Haematology and Oncology, Medical Center Kassel GmbH, Germany
| | - Volker Schuster
- Hospital for Children and Adolescents, University of Leipzig, Germany
| | - Sigune Goldacker
- Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, University of Freiburg, Germany
| | - Klaus Schwarz
- Institute for Transfusion Medicine, University of Ulm, Germany.,Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Service, Germany
| | - Carsten Speckmann
- Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, University of Freiburg, Germany.,Center for Pediatrics, Department of Pediatric Hematology and Oncology, University Medical Center, Faculty of Medicine, University of Freiburg, Germany
| | - Capucine Picard
- INSERM UMR 1163, Laboratory of the immunogenetics of Pediatric Autoimmune Diseases, Paris, France.,Unite d'Immuno Hematologie Pediatrique, Hopital Necker-Enfants Malades, Assistance Publique des Hopitaux de Paris, France.,Centre d'Etude des Deficits Immunitaires, Hopital Necker-Enfants Malades, Assistance Publique des Hopitaux de Paris, France
| | - Alain Fischer
- INSERM UMR 1163, Laboratory of the immunogenetics of Pediatric Autoimmune Diseases, Paris, France.,Unite d'Immuno Hematologie Pediatrique, Hopital Necker-Enfants Malades, Assistance Publique des Hopitaux de Paris, France.,College de France, Paris, France
| | - Frederic Rieux-Laucat
- INSERM UMR 1163, Laboratory of the immunogenetics of Pediatric Autoimmune Diseases, Paris, France.,Paris Descartes - Sorbonne Paris Cité University, Imagine Institute, France
| | - Stephan Ehl
- Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, University of Freiburg, Germany.,Center for Pediatrics, Department of Pediatric Hematology and Oncology, University Medical Center, Faculty of Medicine, University of Freiburg, Germany
| | - Anne Rensing-Ehl
- Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, University of Freiburg, Germany
| | - Benedicte Neven
- Unite d'Immuno Hematologie Pediatrique, Hopital Necker-Enfants Malades, Assistance Publique des Hopitaux de Paris, France
| |
Collapse
|
147
|
Precision treatment with sirolimus in a case of activated phosphoinositide 3-kinase δ syndrome. Clin Immunol 2016; 171:38-40. [DOI: 10.1016/j.clim.2016.07.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 07/15/2016] [Indexed: 12/30/2022]
|
148
|
Pesenacker AM, Cook L, Levings MK. The role of FOXP3 in autoimmunity. Curr Opin Immunol 2016; 43:16-23. [PMID: 27544816 DOI: 10.1016/j.coi.2016.07.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 07/24/2016] [Indexed: 12/11/2022]
Abstract
FOXP3 controls the development and function of T regulatory cells (Tregs). Autoimmunity is linked to changes in FOXP3 activity that can occur at multiple levels and lead to Treg dysfunction. For example, changes in IL-2 signaling, FOXP3 transcription and/or post-translational modifications can all contribute to loss of self-tolerance. As additional pathways of FOXP3 regulation are elucidated, new therapeutic approaches to increase Treg activity either by cell therapy or pharmacological intervention are being tested. Early success from pioneering studies of Treg-based therapy in transplantation has promoted the undertaking of similar studies in autoimmunity, with emerging evidence for the effectiveness of these approaches, particularly in the context of type 1 diabetes.
Collapse
Affiliation(s)
- Anne M Pesenacker
- Department of Surgery, University of British Columbia, Canada; BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Laura Cook
- Department of Surgery, University of British Columbia, Canada; BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Megan K Levings
- Department of Surgery, University of British Columbia, Canada; BC Children's Hospital Research Institute, Vancouver, BC, Canada.
| |
Collapse
|
149
|
Abstract
Autoimmune lymphoproliferative syndrome (ALPS) is a disorder of abnormal lymphocyte homeostasis, resulting from mutations in the Fas apoptotic pathway. Clinical manifestations include noninfectious and nonmalignant lymphadenopathy, splenomegaly, and autoimmune pathology-most commonly, autoimmune cytopenias. Rarely, and in association with specific genetic mutations, patients with ALPS may go on to develop secondary lymphoid malignancies. Though ALPS is a rare disorder, it should be suspected and ruled out in children presenting with chronic and refractory multilineage cytopenias associated with nonmalignant lymphoproliferation. Revised diagnostic criteria and insights into disease biology have improved both diagnosis and treatment. Sirolimus and mycophenolate mofetil are the best-studied and most effective corticosteroid-sparing therapies for ALPS, and they should be considered first-line therapy for patients who need chronic treatment. This review highlights practical clinical considerations for diagnosis and management of ALPS.
Collapse
|
150
|
|