101
|
Czemeres J, Buse K, Verkhivker GM. Atomistic simulations and network-based modeling of the Hsp90-Cdc37 chaperone binding with Cdk4 client protein: A mechanism of chaperoning kinase clients by exploiting weak spots of intrinsically dynamic kinase domains. PLoS One 2017; 12:e0190267. [PMID: 29267381 PMCID: PMC5739471 DOI: 10.1371/journal.pone.0190267] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 11/21/2017] [Indexed: 12/31/2022] Open
Abstract
A fundamental role of the Hsp90 and Cdc37 chaperones in mediating conformational development and activation of diverse protein kinase clients is essential in signal transduction. There has been increasing evidence that the Hsp90-Cdc37 system executes its chaperoning duties by recognizing conformational instability of kinase clients and modulating their folding landscapes. The recent cryo-electron microscopy structure of the Hsp90-Cdc37-Cdk4 kinase complex has provided a framework for dissecting regulatory principles underlying differentiation and recruitment of protein kinase clients to the chaperone machinery. In this work, we have combined atomistic simulations with protein stability and network-based rigidity decomposition analyses to characterize dynamic factors underlying allosteric mechanism of the chaperone-kinase cycle and identify regulatory hotspots that control client recognition. Through comprehensive characterization of conformational dynamics and systematic identification of stabilization centers in the unbound and client- bound Hsp90 forms, we have simulated key stages of the allosteric mechanism, in which Hsp90 binding can induce instability and partial unfolding of Cdk4 client. Conformational landscapes of the Hsp90 and Cdk4 structures suggested that client binding can trigger coordinated dynamic changes and induce global rigidification of the Hsp90 inter-domain regions that is coupled with a concomitant increase in conformational flexibility of the kinase client. This process is allosteric in nature and can involve reciprocal dynamic exchanges that exert global effect on stability of the Hsp90 dimer, while promoting client instability. The network-based rigidity analysis and emulation of thermal unfolding of the Cdk4-cyclin D complex and Hsp90-Cdc37-Cdk4 complex revealed weak spots of kinase instability that are present in the native Cdk4 structure and are targeted by the chaperone during client recruitment. Our findings suggested that this mechanism may be exploited by the Hsp90-Cdc37 chaperone to recruit and protect intrinsically dynamic kinase clients from degradation. The results of this investigation are discussed and interpreted in the context of diverse experimental data, offering new insights into mechanisms of chaperone regulation and binding.
Collapse
Affiliation(s)
- Josh Czemeres
- Department of Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, California, United States of America
| | - Kurt Buse
- Department of Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, California, United States of America
| | - Gennady M. Verkhivker
- Department of Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, California, United States of America
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|
102
|
Grudniak AM, Klecha B, Wolska KI. Effects of null mutation of the heat-shock gene htpG on the production of virulence factors by Pseudomonas aeruginosa. Future Microbiol 2017; 13:69-80. [PMID: 29199454 DOI: 10.2217/fmb-2017-0111] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM Pseudomonas aeruginosa is one of the most clinically important opportunistic pathogen in humans. The aim of the project was to study effects of HtpG on the selected virulence factors responsible for pathogenesis and biofilm formation of P. aeruginosa. METHODOLOGY By characterizing a htpG null mutant of P. aeruginosa, we have identified the role of HtpG in the production of selected factors. RESULTS We showed that ΔhtpG mutant affects many physiological processes containing: decreased activity of the LasA protease, reduction of biofilm formation, decreased motility, and diminished amount of rhamnolipids and pyoverdine/pyocyanin. These defects were most evident when the ΔhtpG strain was cultured at 42°C. CONCLUSION Our findings demonstrate the unexplored role of HtpG in the pathogenicity of P. aeruginosa, and indicate potential targets for antibacterial therapeutics. [Formula: see text].
Collapse
Affiliation(s)
- Anna M Grudniak
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Barbara Klecha
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Krystyna I Wolska
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| |
Collapse
|
103
|
Khawaldeh S, Pervaiz U, Elsharnoby M, Alchalabi AE, Al-Zubi N. Taxonomic Classification for Living Organisms Using Convolutional Neural Networks. Genes (Basel) 2017; 8:genes8110326. [PMID: 29149087 PMCID: PMC5704239 DOI: 10.3390/genes8110326] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 11/05/2017] [Accepted: 11/14/2017] [Indexed: 12/11/2022] Open
Abstract
Taxonomic classification has a wide-range of applications such as finding out more about evolutionary history. Compared to the estimated number of organisms that nature harbors, humanity does not have a thorough comprehension of to which specific classes they belong. The classification of living organisms can be done in many machine learning techniques. However, in this study, this is performed using convolutional neural networks. Moreover, a DNA encoding technique is incorporated in the algorithm to increase performance and avoid misclassifications. The algorithm proposed outperformed the state of the art algorithms in terms of accuracy and sensitivity, which illustrates a high potential for using it in many other applications in genome analysis.
Collapse
Affiliation(s)
- Saed Khawaldeh
- Erasmus+ Joint Master Program in Medical Imaging and Applications, University of Burgundy, 21000 Dijon, France.
- Erasmus+ Joint Master Program in Medical Imaging and Applications, UNICLAM, 03043 Cassino FR, Italy.
- Erasmus+ Joint Master Program in Medical Imaging and Applications, University of Girona, 17004 Girona, Spain.
- Graduate School of Natural and Applied Sciences, Istanbul Sehir University, 34865 Kartal/İstanbul, Turkey.
- Department of Electrical Engineering and Automation, Aalto University, 02150 Espoo, Finland.
| | - Usama Pervaiz
- Erasmus+ Joint Master Program in Medical Imaging and Applications, University of Burgundy, 21000 Dijon, France.
- Erasmus+ Joint Master Program in Medical Imaging and Applications, UNICLAM, 03043 Cassino FR, Italy.
- Erasmus+ Joint Master Program in Medical Imaging and Applications, University of Girona, 17004 Girona, Spain.
| | - Mohammed Elsharnoby
- Graduate School of Natural and Applied Sciences, Istanbul Sehir University, 34865 Kartal/İstanbul, Turkey.
| | - Alaa Eddin Alchalabi
- Graduate School of Natural and Applied Sciences, Istanbul Sehir University, 34865 Kartal/İstanbul, Turkey.
| | - Nayel Al-Zubi
- Department of Computer Engineering, Al-Balqa' Applied University, 19117 Al-Salt, Jordan.
| |
Collapse
|
104
|
Giannetto A, Oliva S, Mazza L, Mondello G, Savastano D, Mauceri A, Fasulo S. Molecular characterization and expression analysis of heat shock protein 70 and 90 from Hermetia illucens reared in a food waste bioconversion pilot plant. Gene 2017; 627:15-25. [DOI: 10.1016/j.gene.2017.06.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 05/29/2017] [Accepted: 06/05/2017] [Indexed: 10/19/2022]
|
105
|
Wang Y, Li Y, Ding T. Heat shock protein 90β in the Vero cell membrane binds Japanese encephalitis virus. Int J Mol Med 2017; 40:474-482. [PMID: 28656253 PMCID: PMC5505021 DOI: 10.3892/ijmm.2017.3041] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 06/14/2017] [Indexed: 12/20/2022] Open
Abstract
The pathogenesis of Japanese encephalitis virus (JEV) is complex and unclearly defined, and in particular, the effects of the JEV receptor (JEVR) on diverse susceptible cells are elusive. In contrast to previous studies investigating JEVR in rodent or mosquito cells, in this study, we used primate Vero cells instead. We noted that few novel proteins co‑immunoprecipitated with JEV, and discovered that one of these was heat shock protein 90β (HSP90β), which was probed by mass spectrometry with the highest score of 60.3 after questing the monkey and human protein databases. The specific HSP90β‑JEV binding was confirmed by western blot analysis under non‑reducing conditions, and this was significantly inhibited by an anti‑human HSP90β monoclonal antibody in a dose‑dependent manner, as shown by immunofluorescence assay and flow cytometry. In addition, the results of confocal laser scanning microscopic examination demonstrated that the HSP90β‑JEV binding occurred on the Vero cell surface. Finally, JEV progeny yields determined by plaque assay were also markedly decreased in siRNA‑treated Vero cells, particularly at 24 and 36 h post‑infection. Thus, our data indicate that HSP90β is a binding receptor for JEV in Vero cells.
Collapse
Affiliation(s)
- Yuan Wang
- Department of Microbiology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yan Li
- Department of Microbiology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Tianbing Ding
- Department of Microbiology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
106
|
Chen H, Xin L, Song X, Wang L, Wang W, Liu Z, Zhang H, Wang L, Zhou Z, Qiu L, Song L. A norepinephrine-responsive miRNA directly promotes CgHSP90AA1 expression in oyster haemocytes during desiccation. FISH & SHELLFISH IMMUNOLOGY 2017; 64:297-307. [PMID: 28286314 DOI: 10.1016/j.fsi.2017.03.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 03/03/2017] [Accepted: 03/07/2017] [Indexed: 06/06/2023]
Abstract
Oyster Crassostrea gigas is one model mollusc inhabiting in the intertidal zone and is frequently stressed by desiccation. The adaptation mechanism of oyster to environmental stress involves multiple levels, and miRNA is one of the most important regulators in post-transcriptional level. In the present study, an oyster norepinephrine-responsive miRNA cgi-miR-365 was proved to contribute to the host adaptation against desiccation by directly promoting the expression of CgHSP90AA1. Briefly, a significant increase of cgi-miR-365 was observed from the first day after aerial exposure and the up-regulation was vigorously repressed when oysters were injected with adrenoceptors antagonists. A total of 15 genes involved in biological regulation, metabolic process and response to stimulus were predicted to be modulated by cgi-miR-365. Among these genes, CgHSP90AA1 was up-regulated significantly during desiccation and could be down-regulated after simultaneous injection of adrenoceptors antagonists. The interaction between cgi-miR-365 and CgHSP90AA1 was subsequently verified in vitro, and a significant promotion of CgHSP90AA1 transcripts was observed after overexpressing cgi-miR-365 in either in vitro luciferase reporter assay or primarily cultured haemocytes. Meanwhile, CgHSP90AA1 transcripts decreased in vivo when cgi-miR-365 was repressed by its inhibitor during desiccation. Collectively, it was suggested that cgi-miR-365 could be induced by norepinephrine during desiccation and promote CgHSP90AA1 expression directly after binding to its 3'-UTR, which would provide new evidence in miRNA-mediated adaptation mechanism in oysters against intertidal stress.
Collapse
Affiliation(s)
- Hao Chen
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lusheng Xin
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaorui Song
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Lin Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weilin Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaoqun Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huan Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China.
| | - Zhi Zhou
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Limei Qiu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Linsheng Song
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China
| |
Collapse
|
107
|
Zhou A, Xie S, Wang Z, Junaid M, Fan L, Wang C, Ye Q, Chen Y, Pei DS, Zou J. Molecular cloning, characterization and expression analysis of heat shock protein 90 in albino northern snakehead Channa argus. Gene 2017; 626:173-181. [PMID: 28442397 DOI: 10.1016/j.gene.2017.04.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 03/15/2017] [Accepted: 04/21/2017] [Indexed: 12/22/2022]
Abstract
The great albino northern snakehead Channa argus is habitual to only the Sichuan Jialing Rivers System in China, making its introduction difficult to other riverine systems. Here, we characterized heat shock protein 90 (AcaHSP90) and probed its molecular responses toward the environmental stressors that C. argus can face during its introduction and breeding in the other southern latitudes of China. To serve the purpose, cDNA encoding of AcaHSP90 were cloned and characterized in albino C. argus. The cDNA was 2752bps that contained an open reading frame (ORF), encoding a 726-amino-acid polypeptide of 83.35kDa (theoretical isoelectric point [pI]: 4.89). Genomic DNA analysis showed that the AcaHSP90 gene consisted of 7 introns, five conserved amino acid blocks and other motifs or domains. The AcaHSP90 structure was highly similar with the other known HSP90s except those identified in the bacteria. The expression profiles of AcaHSP90 gene in albino C. argus were also investigated after experimentally exposed to different temperature stresses (8.5, 26 and 37°C) and infected with Edwardsiella tarda (strain NO. DL1476) at different time intervals (0, 6, 12, 24, 36, 48, 72h). In addition, the AcaHSP90 expression in different tissues of albino C. argus were also analyzed. The quantitative real-time PCR and western blot analysis revealed tissue-specific AcaHSP90 expressions in control group, and expressions were significantly stimulated in the brain, heart, kidney, liver, muscle and spleen after the heat shock (37°C), while showed no significant difference after the cold treatment (8.5°C). The mRNA levels of AcaHSP90 were also significantly upregulated in the spleen and muscle at 12h and in the kidney at 12 and 48h post pathogen injections. In a nut shell, these novel results showed tissue-specific responses of AcaHSP90 and indicated that this heat shock protein might also be sensitive to pathogen infection, but closely related to the thermal resistance in albino C. argus.
Collapse
Affiliation(s)
- Aiguo Zhou
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, China; Qingyuan North River Fishery Science Institute, Qingyuan 511510, Guangdong, China
| | - Shaolin Xie
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Zhenlu Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Muhammad Junaid
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 401122, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lanfen Fan
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Chao Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Qiao Ye
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Yanfeng Chen
- College of Life Science, Foshan University, Foshan 528231, Guangdong, China
| | - De-Sheng Pei
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 401122, China
| | - Jixing Zou
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, China.
| |
Collapse
|
108
|
Abstract
The heat shock protein 90 (HSP90) chaperone machinery is a key regulator of proteostasis under both physiological and stress conditions in eukaryotic cells. As HSP90 has several hundred protein substrates (or 'clients'), it is involved in many cellular processes beyond protein folding, which include DNA repair, development, the immune response and neurodegenerative disease. A large number of co-chaperones interact with HSP90 and regulate the ATPase-associated conformational changes of the HSP90 dimer that occur during the processing of clients. Recent progress has allowed the interactions of clients with HSP90 and its co-chaperones to be defined. Owing to the importance of HSP90 in the regulation of many cellular proteins, it has become a promising drug target for the treatment of several diseases, which include cancer and diseases associated with protein misfolding.
Collapse
Affiliation(s)
- Florian H Schopf
- Center for Integrated Protein Science at the Department of Chemistry, Technische Universität München, Garching, Germany
| | - Maximilian M Biebl
- Center for Integrated Protein Science at the Department of Chemistry, Technische Universität München, Garching, Germany
| | - Johannes Buchner
- Center for Integrated Protein Science at the Department of Chemistry, Technische Universität München, Garching, Germany
| |
Collapse
|
109
|
Sontake V, Wang Y, Kasam RK, Sinner D, Reddy GB, Naren AP, McCormack FX, White ES, Jegga AG, Madala SK. Hsp90 regulation of fibroblast activation in pulmonary fibrosis. JCI Insight 2017; 2:e91454. [PMID: 28239659 DOI: 10.1172/jci.insight.91454] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a severe fibrotic lung disease associated with fibroblast activation that includes excessive proliferation, tissue invasiveness, myofibroblast transformation, and extracellular matrix (ECM) production. To identify inhibitors that can attenuate fibroblast activation, we queried IPF gene signatures against a library of small-molecule-induced gene-expression profiles and identified Hsp90 inhibitors as potential therapeutic agents that can suppress fibroblast activation in IPF. Although Hsp90 is a molecular chaperone that regulates multiple processes involved in fibroblast activation, it has not been previously proposed as a molecular target in IPF. Here, we found elevated Hsp90 staining in lung biopsies of patients with IPF. Notably, fibroblasts isolated from fibrotic lesions showed heightened Hsp90 ATPase activity compared with normal fibroblasts. 17-N-allylamino-17-demethoxygeldanamycin (17-AAG), a small-molecule inhibitor of Hsp90 ATPase activity, attenuated fibroblast activation and also TGF-β-driven effects on fibroblast to myofibroblast transformation. The loss of the Hsp90AB, but not the Hsp90AA isoform, resulted in reduced fibroblast proliferation, myofibroblast transformation, and ECM production. Finally, in vivo therapy with 17-AAG attenuated progression of established and ongoing fibrosis in a mouse model of pulmonary fibrosis, suggesting that targeting Hsp90 represents an effective strategy for the treatment of fibrotic lung disease.
Collapse
Affiliation(s)
- Vishwaraj Sontake
- Division of Pulmonary Medicine.,Department of Biochemistry, National Institute of Nutrition, Hyderabad, Telangana, India
| | | | - Rajesh K Kasam
- Division of Pulmonary Medicine.,Department of Biochemistry, National Institute of Nutrition, Hyderabad, Telangana, India
| | - Debora Sinner
- Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio USA
| | - Geereddy B Reddy
- Department of Biochemistry, National Institute of Nutrition, Hyderabad, Telangana, India
| | | | - Francis X McCormack
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Cincinnati, Cincinnati, Ohio USA
| | - Eric S White
- Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, AnnArbor, Michigan, USA
| | | | | |
Collapse
|
110
|
Garbuz DG, Evgen’ev MB. The evolution of heat shock genes and expression patterns of heat shock proteins in the species from temperature contrasting habitats. RUSS J GENET+ 2017. [DOI: 10.1134/s1022795417010069] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
111
|
Heat Shock Proteins in Aquaculture Disease Immunology and Stress Response of Crustaceans. HEAT SHOCK PROTEINS 2017. [DOI: 10.1007/978-3-319-73377-7_10] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
112
|
Rosse IC, Assis JG, Oliveira FS, Leite LR, Araujo F, Zerlotini A, Volpini A, Dominitini AJ, Lopes BC, Arbex WA, Machado MA, Peixoto MGCD, Verneque RS, Martins MF, Coimbra RS, Silva MVGB, Oliveira G, Carvalho MRS. Whole genome sequencing of Guzerá cattle reveals genetic variants in candidate genes for production, disease resistance, and heat tolerance. Mamm Genome 2016; 28:66-80. [PMID: 27853861 DOI: 10.1007/s00335-016-9670-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 10/24/2016] [Indexed: 01/08/2023]
Abstract
In bovines, artificial selection has produced a large number of breeds which differ in production, environmental adaptation, and health characteristics. To investigate the genetic basis of these phenotypical differences, several bovine breeds have been sequenced. Millions of new SNVs were described at every new breed sequenced, suggesting that every breed should be sequenced. Guzerat or Guzerá is an indicine breed resistant to drought and parasites that has been the base for some important breeds such as Brahman. Here, we describe the sequence of the Guzerá genome and the in silico functional analyses of intragenic breed-specific variations. Mate-paired libraries were generated using the ABI SOLiD system. Sequences were mapped to the Bos taurus reference genome (UMD 3.1) and 87% of the reference genome was covered at a 26X. Among the variants identified, 2,676,067 SNVs and 463,158 INDELs were homozygous, not found in any database searched, and may represent true differences between Guzerá and B. taurus. Functional analyses investigated with the NGS-SNP package focused on 1069 new, non-synonymous SNVs, splice-site variants (including acceptor and donor sites, and the conserved regions at both intron borders, referred to here as splice regions) and coding INDELs (NS/SS/I). These NS/SS/I map to 935 genes belonging to cell communication, environmental adaptation, signal transduction, sensory, and immune systems pathways. These pathways have been involved in phenotypes related to health, adaptation to the environment and behavior, and particularly, disease resistance and heat tolerance. Indeed, 105 of these genes are known QTLs for milk, meat and carcass, production, reproduction, and health traits. Therefore, in addition to describing new genetic variants, our approach provided groundwork for unraveling key candidate genes and mutations.
Collapse
Affiliation(s)
- Izinara C Rosse
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais - UFMG, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG, 31901-207, Brazil
| | - Juliana G Assis
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais - UFMG, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG, 31901-207, Brazil.,Grupo de Genômica e Biologia Computacional, Centro de Pesquisas René Rachou - FIOCRUZ-Minas, Belo Horizonte, MG, Brazil
| | - Francislon S Oliveira
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais - UFMG, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG, 31901-207, Brazil.,Grupo de Genômica e Biologia Computacional, Centro de Pesquisas René Rachou - FIOCRUZ-Minas, Belo Horizonte, MG, Brazil
| | - Laura R Leite
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais - UFMG, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG, 31901-207, Brazil.,Grupo de Genômica e Biologia Computacional, Centro de Pesquisas René Rachou - FIOCRUZ-Minas, Belo Horizonte, MG, Brazil
| | - Flávio Araujo
- Grupo de Genômica e Biologia Computacional, Centro de Pesquisas René Rachou - FIOCRUZ-Minas, Belo Horizonte, MG, Brazil
| | | | - Angela Volpini
- Grupo de Genômica e Biologia Computacional, Centro de Pesquisas René Rachou - FIOCRUZ-Minas, Belo Horizonte, MG, Brazil
| | - Anderson J Dominitini
- Grupo de Genômica e Biologia Computacional, Centro de Pesquisas René Rachou - FIOCRUZ-Minas, Belo Horizonte, MG, Brazil
| | | | | | | | | | | | | | - Roney S Coimbra
- Neurogenômica, Centro de Pesquisa René Rachou - FIOCRUZ-Minas, Belo Horizonte, MG, Brazil
| | | | - Guilherme Oliveira
- Grupo de Genômica e Biologia Computacional, Centro de Pesquisas René Rachou - FIOCRUZ-Minas, Belo Horizonte, MG, Brazil.,Vale Technology Institute, Belém, PA, Brazil
| | - Maria Raquel S Carvalho
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais - UFMG, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG, 31901-207, Brazil.
| |
Collapse
|
113
|
Gu X, Xue W, Yin Y, Liu H, Li S, Sun X. The Hsp90 Co-chaperones Sti1, Aha1, and P23 Regulate Adaptive Responses to Antifungal Azoles. Front Microbiol 2016; 7:1571. [PMID: 27761133 PMCID: PMC5050212 DOI: 10.3389/fmicb.2016.01571] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 09/20/2016] [Indexed: 12/26/2022] Open
Abstract
Heat Shock Protein 90 (Hsp90) is essential for tumor progression in humans and drug resistance in fungi. However, the roles of its many co-chaperones in antifungal resistance are unknown. In this study, by susceptibility test of Neurospora crassa mutants lacking each of 18 Hsp90/Calcineurin system member genes (including 8 Hsp90 co-chaperone genes) to antifungal drugs and other stresses, we demonstrate that the Hsp90 co-chaperones Sti1 (Hop1 in yeast), Aha1, and P23 (Sba1 in yeast) were required for the basal resistance to antifungal azoles and heat stress. Deletion of any of them resulted in hypersensitivity to azoles and heat. Liquid chromatography-mass spectrometry (LC-MS) analysis showed that the toxic sterols eburicol and 14α-methyl-3,6-diol were significantly accumulated in the sti1 and p23 deletion mutants after ketoconazole treatment, which has been shown before to led to cell membrane stress. At the transcriptional level, Aha1, Sti1, and P23 positively regulate responses to ketoconazole stress by erg11 and erg6, key genes in the ergosterol biosynthetic pathway. Aha1, Sti1, and P23 are highly conserved in fungi, and sti1 and p23 deletion also increased the susceptibility to azoles in Fusarium verticillioides. These results indicate that Hsp90-cochaperones Aha1, Sti1, and P23 are critical for the basal azole resistance and could be potential targets for developing new antifungal agents.
Collapse
Affiliation(s)
- Xiaokui Gu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of SciencesBeijing, China; College of Life Sciences, University of Chinese Academy of SciencesBeijing, China
| | - Wei Xue
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of SciencesBeijing, China; College of Life Sciences, University of Chinese Academy of SciencesBeijing, China
| | - Yajing Yin
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of SciencesBeijing, China; College of Life Sciences, University of Chinese Academy of SciencesBeijing, China
| | - Hongwei Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences Beijing, China
| | - Shaojie Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences Beijing, China
| | - Xianyun Sun
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences Beijing, China
| |
Collapse
|
114
|
Wang PF, Zeng S, Xu P, Zhou L, Li GF. Two HSP90 genes in mandarin fish Siniperca chuatsi: identification, characterization and their specific expression profiles during embryogenesis and under stresses. FISH PHYSIOLOGY AND BIOCHEMISTRY 2016; 42:1123-1136. [PMID: 26820141 DOI: 10.1007/s10695-016-0202-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 01/17/2016] [Indexed: 06/05/2023]
Abstract
HSP90 plays important roles in multiple cellular stress responses. Here, two cytoplasmic HSP90 isoforms, ScHSP90α and ScHSP90β, were identified from Siniperca chuatsi. Their cDNA and gDNA structures, amino acid sequence features, and sequence identities and phylogenetic analysis with other species were described. Their expression profiles during embryonic development in different tissues and under stressful conditions were analyzed using real-time quantitative PCR. During embryogenesis, transcripts of both genes were detected at low levels during the early developmental stages and were up-regulated from appearance of myomere for ScHSP90a and closure of blastopore for ScHSP90β. ScHSP90α showed a tissue-specific variation with high expression in ovary and brain under non-stressed conditions, while ScHSP90β was ubiquitously highly expressed in different tissues. Acute heat shock resulted in a strong up-regulation of ScHSP90α in heart, liver, and head kidney, while it only weakly induced ScHSP90β in these tissues. ScHSP90α was also markedly induced in liver in a time-dependent manner under hypoxia, while the expression of ScHSP90β was not affected by hypoxia. Additionally, Aeromonas hydrophila infection markedly augmented ScHSP90α in head kidney and spleen and mildly up-regulated ScHSP90β in spleen, while suppressing ScHSP90β in head kidney. These results suggest that ScHSP90α and ScHSP90β are differently involved in embryogenesis and under different environmental conditions including high temperature, hypoxia, and bacterial infection. This study will benefit to further clarify the roles of fish HSP90 isoforms in embryogenesis and under stressful conditions and contribute to further study on enhancing stress tolerance and disease resistance of mandarin fish.
Collapse
Affiliation(s)
- Peng-Fei Wang
- Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yatsen University, Guangzhou, 510006, China
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, The South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou, 510275, China
| | - Shuang Zeng
- Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yatsen University, Guangzhou, 510006, China
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou, 510275, China
| | - Peng Xu
- Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yatsen University, Guangzhou, 510006, China
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou, 510275, China
| | - Lei Zhou
- Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yatsen University, Guangzhou, 510006, China
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou, 510275, China
| | - Gui-Feng Li
- Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yatsen University, Guangzhou, 510006, China.
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou, 510275, China.
| |
Collapse
|
115
|
A novel algorithm for detecting multiple covariance and clustering of biological sequences. Sci Rep 2016; 6:30425. [PMID: 27451921 PMCID: PMC4958985 DOI: 10.1038/srep30425] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 07/05/2016] [Indexed: 12/14/2022] Open
Abstract
Single genetic mutations are always followed by a set of compensatory mutations. Thus, multiple changes commonly occur in biological sequences and play crucial roles in maintaining conformational and functional stability. Although many methods are available to detect single mutations or covariant pairs, detecting non-synchronous multiple changes at different sites in sequences remains challenging. Here, we develop a novel algorithm, named Fastcov, to identify multiple correlated changes in biological sequences using an independent pair model followed by a tandem model of site-residue elements based on inter-restriction thinking. Fastcov performed exceptionally well at harvesting co-pairs and detecting multiple covariant patterns. By 10-fold cross-validation using datasets of different scales, the characteristic patterns successfully classified the sequences into target groups with an accuracy of greater than 98%. Moreover, we demonstrated that the multiple covariant patterns represent co-evolutionary modes corresponding to the phylogenetic tree, and provide a new understanding of protein structural stability. In contrast to other methods, Fastcov provides not only a reliable and effective approach to identify covariant pairs but also more powerful functions, including multiple covariance detection and sequence classification, that are most useful for studying the point and compensatory mutations caused by natural selection, drug induction, environmental pressure, etc.
Collapse
|
116
|
Garcie C, Tronnet S, Garénaux A, McCarthy AJ, Brachmann AO, Pénary M, Houle S, Nougayrède JP, Piel J, Taylor PW, Dozois CM, Genevaux P, Oswald E, Martin P. The Bacterial Stress-Responsive Hsp90 Chaperone (HtpG) Is Required for the Production of the Genotoxin Colibactin and the Siderophore Yersiniabactin inEscherichia coli. J Infect Dis 2016; 214:916-24. [DOI: 10.1093/infdis/jiw294] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 07/06/2016] [Indexed: 01/04/2023] Open
|
117
|
Aquilino M, Sánchez-Argüello P, Martínez-Guitarte JL. Vinclozolin alters the expression of hormonal and stress genes in the midge Chironomus riparius. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 174:179-187. [PMID: 26966872 DOI: 10.1016/j.aquatox.2016.03.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 03/01/2016] [Accepted: 03/02/2016] [Indexed: 06/05/2023]
Abstract
Vinclozolin is a fungicide used in agriculture that can reach aquatic ecosystems and affect the organisms living there. Its effects have been intensively studied in vertebrates, where it acts as an antiandrogen, but there is a lack of information about its mechanistic effects on invertebrates. In this work, we analyzed the response of genes related to the endocrine system, the stress response, and the detoxification mechanisms of Chironomus riparius fourth instar larvae after 24h and 48h exposures to 20 (69.9nM), 200 (699nM), and 2000μg/L (6.99μM) of Vinclozolin. Survival analysis showed that this compound has low toxicity, as it was not lethal for this organism at the concentrations used. However, this fungicide was shown to modify the transcriptional activity of the ecdysone response pathway genes EcR, E74, and Kr-h1 by increasing their mRNA levels. While no changes were observed in disembodied, a gene related with the ecdysone synthesis metabolic pathway, Cyp18A1, which is involved in the inactivation of the active form of ecdysone, was upregulated. Additionally, the expression of two genes related to other hormones, FOXO and MAPR, did not show any changes when Vinclozolin was present. The analysis of stress response genes showed significant changes in the mRNA levels of Hsp70, Hsp24, and Gp93, indicating that Vinclozolin activates the cellular stress mechanisms. Finally, the expressions of the genes Cyp4G and GstD3, which encode enzymes involved in phase I and phase II detoxification, respectively, were analyzed. It was found that their mRNA levels were altered by Vinclozolin, suggesting their involvement in the degradation of this compound. For the first time, these results show evidence that Vinclozolin can modulate gene expression, leading to possible significant endocrine alterations of the insect endocrine system. These results also offer new clues about the mode of action of this compound in invertebrates.
Collapse
Affiliation(s)
- Mónica Aquilino
- Grupo de Biología y Toxicología Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, UNED, Senda del Rey 9, 28040 Madrid, Spain
| | - Paloma Sánchez-Argüello
- Laboratorio de Ecotoxicología, Departamento de Medioambiente, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Ctra. La Coruña km 7, 28040 Madrid, Spain
| | - José-Luis Martínez-Guitarte
- Grupo de Biología y Toxicología Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, UNED, Senda del Rey 9, 28040 Madrid, Spain.
| |
Collapse
|
118
|
González K, Gaitán-Espitia J, Font A, Cárdenas CA, González-Aravena M. Expression pattern of heat shock proteins during acute thermal stress in the Antarctic sea urchin, Sterechinus neumayeri. REVISTA CHILENA DE HISTORIA NATURAL 2016. [DOI: 10.1186/s40693-016-0052-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
119
|
Kumar R, Gupta ID, Verma A, Singh SV, Verma N, Vineeth MR, Magotra A, Das R. Novel SNP identification in exon 3 of HSP90AA1 gene and their association with heat tolerance traits in Karan Fries (Bos taurus × Bos indicus) cows under tropical climatic condition. Trop Anim Health Prod 2016; 48:735-40. [PMID: 26898694 DOI: 10.1007/s11250-016-1016-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 02/10/2016] [Indexed: 01/11/2023]
Abstract
Heat shock proteins (HSPs) act as molecular chaperones those are preferentially transcribed in respose to heat stress and the polymorphism in HSP genes associated with heat tolerance traits in cows. HSP90AA1 gene has been mapped on Bos taurus autosome 21 (BTA-21) and spans nearly 5368 bp comprising of 11 exons out of which the first exon does not translate. The present study was done on Karan Fries (5/8 HF × 3/8 Tharparkar) cows reared in tropical climate with the objectives of identifying single-nucleotide polymorphisms (SNPs) in targeted regions (exon 3) of HSP90AA1 gene and analyzing their association with heat tolerance traits in Karan Fries cows. Respiration rate (RR) and rectal temperature (RT) were recorded once daily for four consecutive days during probable extreme hours in different seasons or temperature humidity index (THI), viz., winter, spring, and summer. For detecting single-nucleotide polymorphisms, sequence data were analyzed using BioEdit software (version 7.2). Comparative sequence analysis of HSP90AA1 gene showed point mutation, viz., g.1209A>G (exon 3) as compared to Bos taurus (NCBI Ref Seq: AC_000178.1). Association analysis indicated that THI was influenced (P < 0.01) by RR, RT, and HTC. Similarly, SNPs at locus g.1209A>G were categorized into three genotypes, i.e., AA, AG, and GG, and the least squares means (LSMEANS) of RR, RT, and HTC for GG (homozygous) genotype were significantly lower (P < 0.01) than AA (homozygous) and AG (heterozygous) genotypes. These findings may partly suggest that cows with GG genotypes were favored for heat tolerance trait, which can be used as an aid to selection for thermo-tolerance Karan Fries cows for better adaptation in subtropical and tropical hot climate.
Collapse
Affiliation(s)
- Rakesh Kumar
- Dairy Cattle Breeding Division, Indian Council of Agricultural Research, National Dairy Research Institute, Karnal, Haryana, 132001, India.
| | - Ishwar Dayal Gupta
- Principal Scientist, Dairy Cattle Breeding Division, Indian Council of Agricultural Research, National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Archana Verma
- Principal Scientist, Dairy Cattle Breeding Division, Indian Council of Agricultural Research, National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Sohan Vir Singh
- Principal Scientist, Dairy Cattle Breeding Division, Indian Council of Agricultural Research, National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Nishant Verma
- Dairy Cattle Breeding Division, Indian Council of Agricultural Research, National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - M R Vineeth
- Dairy Cattle Breeding Division, Indian Council of Agricultural Research, National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Ankit Magotra
- Animal Genetics and Breeding Department, LUVAS, Hisar, Haryana, 125004, India
| | - Ramendra Das
- Dairy Cattle Breeding Division, Indian Council of Agricultural Research, National Dairy Research Institute, Karnal, Haryana, 132001, India
| |
Collapse
|
120
|
Plant Small Heat Shock Proteins and Its Interactions with Biotic Stress. HEAT SHOCK PROTEINS AND PLANTS 2016. [DOI: 10.1007/978-3-319-46340-7_2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
121
|
Role of Heat Shock Proteins in Improving Heat Stress Tolerance in Crop Plants. HEAT SHOCK PROTEINS AND PLANTS 2016. [DOI: 10.1007/978-3-319-46340-7_14] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
122
|
Targeting the heat shock response in combination with radiotherapy: Sensitizing cancer cells to irradiation-induced cell death and heating up their immunogenicity. Cancer Lett 2015; 368:209-29. [DOI: 10.1016/j.canlet.2015.02.047] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 02/22/2015] [Accepted: 02/26/2015] [Indexed: 12/16/2022]
|
123
|
Grudniak AM, Markowska K, Wolska KI. Interactions of Escherichia coli molecular chaperone HtpG with DnaA replication initiator DNA. Cell Stress Chaperones 2015; 20:951-7. [PMID: 26246199 PMCID: PMC4595432 DOI: 10.1007/s12192-015-0623-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 06/24/2015] [Accepted: 07/10/2015] [Indexed: 12/31/2022] Open
Abstract
The bacterial chaperone high-temperature protein G (HtpG), a member of the Hsp90 protein family, is involved in the protection of cells against a variety of environmental stresses. The ability of HtpG to form complexes with other bacterial proteins, especially those involved in fundamental functions, is indicative of its cellular role. An interaction between HtpG and DnaA, the main initiator of DNA replication, was studied both in vivo, using a bacterial two-hybrid system, and in vitro with a modified pull-down assay and by chemical cross-linking. In vivo, this interaction was demonstrated only when htpG was expressed from a high copy number plasmid. Both in vitro assays confirmed HtpG-DnaA interactions.
Collapse
Affiliation(s)
- Anna M Grudniak
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland.
| | - Katarzyna Markowska
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Krystyna I Wolska
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| |
Collapse
|
124
|
Bennur T, Ravi Kumar A, Zinjarde S, Javdekar V. Nocardiopsis
species: a potential source of bioactive compounds. J Appl Microbiol 2015; 120:1-16. [DOI: 10.1111/jam.12950] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 06/16/2015] [Accepted: 07/07/2015] [Indexed: 12/12/2022]
Affiliation(s)
- T. Bennur
- Institute of Bioinformatics and Biotechnology; Savitribai Phule Pune University; Pune India
| | - A. Ravi Kumar
- Institute of Bioinformatics and Biotechnology; Savitribai Phule Pune University; Pune India
| | - S.S. Zinjarde
- Institute of Bioinformatics and Biotechnology; Savitribai Phule Pune University; Pune India
| | - V. Javdekar
- Department of Biotechnology; Abasaheb Garware College; Pune India
| |
Collapse
|
125
|
Client Proteins and Small Molecule Inhibitors Display Distinct Binding Preferences for Constitutive and Stress-Induced HSP90 Isoforms and Their Conformationally Restricted Mutants. PLoS One 2015; 10:e0141786. [PMID: 26517842 PMCID: PMC4627809 DOI: 10.1371/journal.pone.0141786] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 10/13/2015] [Indexed: 12/14/2022] Open
Abstract
The two cytosolic/nuclear isoforms of the molecular chaperone HSP90, stress-inducible HSP90α and constitutively expressed HSP90β, fold, assemble and maintain the three-dimensional structure of numerous client proteins. Because many HSP90 clients are important in cancer, several HSP90 inhibitors have been evaluated in the clinic. However, little is known concerning possible unique isoform or conformational preferences of either individual HSP90 clients or inhibitors. In this report, we compare the relative interaction strength of both HSP90α and HSP90β with the transcription factors HSF1 and HIF1α, the kinases ERBB2 and MET, the E3-ubiquitin ligases KEAP1 and RHOBTB2, and the HSP90 inhibitors geldanamycin and ganetespib. We observed unexpected differences in relative client and drug preferences for the two HSP90 isoforms, with HSP90α binding each client protein with greater apparent affinity compared to HSP90β, while HSP90β bound each inhibitor with greater relative interaction strength compared to HSP90α. Stable HSP90 interaction was associated with reduced client activity. Using a defined set of HSP90 conformational mutants, we found that some clients interact strongly with a single, ATP-stabilized HSP90 conformation, only transiently populated during the dynamic HSP90 chaperone cycle, while other clients interact equally with multiple HSP90 conformations. These data suggest different functional requirements among HSP90 clientele that, for some clients, are likely to be ATP-independent. Lastly, the two inhibitors examined, although sharing the same binding site, were differentially able to access distinct HSP90 conformational states.
Collapse
|
126
|
Lalrengpuii S, I DG, Archana V, Ramendra D, M VC. Association of single nucleotide polymorphism of Hsp90ab1 gene with thermotolerance and milk yield in Sahiwal cows. ACTA ACUST UNITED AC 2015. [DOI: 10.5897/ajbr2015.0837] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
127
|
Haase M, Fitze G. HSP90AB1: Helping the good and the bad. Gene 2015; 575:171-86. [PMID: 26358502 DOI: 10.1016/j.gene.2015.08.063] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 07/30/2015] [Accepted: 08/27/2015] [Indexed: 12/11/2022]
Affiliation(s)
- Michael Haase
- Department of Pediatric Surgery, University Hospital Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, 01307 Dresden, Germany.
| | - Guido Fitze
- Department of Pediatric Surgery, University Hospital Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| |
Collapse
|
128
|
Nordin BE, Liu Y, Aban A, Brown HE, Wu J, Hainley AK, Rosenblum JS, Nomanbhoy TK, Kozarich JW. ATP Acyl Phosphate Reactivity Reveals Native Conformations of Hsp90 Paralogs and Inhibitor Target Engagement. Biochemistry 2015; 54:3024-36. [PMID: 25905789 DOI: 10.1021/acs.biochem.5b00148] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hsp90 is an ATP-dependent chaperone of widespread interest as a drug target. Here, using an LC-MS/MS chemoproteomics platform based on a lysine-reactive ATP acyl phosphate probe, several Hsp90 inhibitors were profiled in native cell lysates. Inhibitor specificities for all four human paralogs of Hsp90 were simultaneously monitored at their endogenous relative abundances. Equipotent inhibition of probe labeling in each paralog occurred at sites both proximal to and distal from bound ATP observed in Hsp90 cocrystal structures, suggesting that the ATP probe is assaying a native conformation not predicted by available structures. Inhibitor profiling against a comprehensive panel of protein kinases and other ATP-binding proteins detected in native cell lysates identified PMS2, a member of the GHKL ATPase superfamily as an off-target of NVP-AUY922 and radicicol. Because of the endogenously high levels of Hsp90 paralogs in typical cell lysates, the measured potency of inhibitors was weaker than published IC₅₀ values. Significant inhibition of Hsp90 required inhibitor concentrations above a threshold where off-target activity was detectable. Direct on- and off-target engagement was measured by profiling lysates derived from cells treated with Hsp90 inhibitors. These studies also assessed the downstream cellular pathway effects of Hsp90 inhibition, including the down regulation of several known Hsp90 client proteins and some previously unknown client proteins. Overall, the ATP probe-based assay methodology enabled a broad characterization of Hsp90 inhibitor activity and specificity in native cell lysates.
Collapse
|
129
|
Kumar R, Gupta ID, Verma A, Verma N, Vineeth MR. Genetic polymorphisms within exon 3 of heat shock protein 90AA1 gene and its association with heat tolerance traits in Sahiwal cows. Vet World 2015; 8:932-6. [PMID: 27047179 PMCID: PMC4774691 DOI: 10.14202/vetworld.2015.932-936] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 06/24/2015] [Accepted: 07/02/2015] [Indexed: 01/06/2023] Open
Abstract
AIM The present study was undertaken to identify novel single nucleotide polymorphism (SNP) in Exon 3 of HSP90AA1 gene and to analyze their association with respiration rate (RR) and rectal temperature (RT) in Sahiwal cows. MATERIALS AND METHODS The present study was carried out in Sahiwal cows (n=100) with the objectives to identify novel SNP in exon 3 of HSP90AA1 gene and to explore the association with heat tolerance traits. CLUSTAL-W multiple sequence analysis was used to identify novel SNPs in exon 3 of HSP90AA1 gene in Sahiwal cows. Gene and genotype frequencies of different genotypes were estimated by standard procedure POPGENE version 1.32 (University of Alberta, Canada). The significant effect of SNP variants on physiological parameters, e.g. RR and RT were analyzed using the General Linear model procedure of SAS Version 9.2. RESULTS The polymerase chain reaction product with the amplicon size of 450 bp was successfully amplified, covering exon 3 region of HSP90AA1 gene in Sahiwal cows. On the basis of comparative sequence analysis of Sahiwal samples (n=100), transitional mutations were detected at locus A1209G as compared to Bos taurus (NCBI GenBank AC_000178.1). After chromatogram analysis, three genotypes AA, AG, and GG with respective frequencies of 0.23, 0.50, and 0.27 ascertained. RR and RT were recorded once during probable extreme hours in winter, spring, and summer seasons. It was revealed that significant difference (p<0.01) among genetic variants of HSP90AA1 gene with heat tolerance trait was found in Sahiwal cattle. The homozygotic animals with AA genotype had lower heat tolerance coefficient (HTC) (1.78±0.04(a)), as compared to both AG and GG genotypes (1.85±0.03(b) and 1.91±0.02(c)), respectively. The gene and genotype frequencies for the locus A1209G were ascertained. CONCLUSIONS Novel SNP was found at the A1209G position showed all possible three genotypes (homozygous and heterozygous). Temperature humidity index has a highly significant association with RR, RT, and HTC in all the seasons. Perusal of results across different seasons showed the significant (p<0.01) difference in RR, RT, and HTC among winter, spring, and summer seasons. Genetic association with heat tolerance traits reveals their importance as a potential genetic marker for heat tolerance traits in Sahiwal cows.
Collapse
Affiliation(s)
- Rakesh Kumar
- Division of Dairy Cattle Breeding, Indian Council of Agricultural Research-National Dairy Research Institute, Karnal, Haryana, India
| | - I. D. Gupta
- Division of Dairy Cattle Breeding, Indian Council of Agricultural Research-National Dairy Research Institute, Karnal, Haryana, India
| | - Archana Verma
- Division of Dairy Cattle Breeding, Indian Council of Agricultural Research-National Dairy Research Institute, Karnal, Haryana, India
| | - Nishant Verma
- Division of Dairy Cattle Breeding, Indian Council of Agricultural Research-National Dairy Research Institute, Karnal, Haryana, India
| | - M. R. Vineeth
- Division of Dairy Cattle Breeding, Indian Council of Agricultural Research-National Dairy Research Institute, Karnal, Haryana, India
| |
Collapse
|
130
|
Advances in Development of New Treatment for Leishmaniasis. BIOMED RESEARCH INTERNATIONAL 2015; 2015:815023. [PMID: 26078965 PMCID: PMC4442256 DOI: 10.1155/2015/815023] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 04/07/2015] [Accepted: 04/18/2015] [Indexed: 01/01/2023]
Abstract
Leishmaniasis is a neglected infectious disease caused by several different species of protozoan parasites of the genus Leishmania. Current strategies to control this disease are mainly based on chemotherapy. Despite being available for the last 70 years, leishmanial chemotherapy has lack of efficiency, since its route of administration is difficult and it can cause serious side effects, which results in the emergence of resistant cases. The medical-scientific community is facing difficulties to overcome these problems with new suitable and efficient drugs, as well as the identification of new drug targets. The availability of the complete genome sequence of Leishmania has given the scientific community the possibility of large-scale analysis, which may lead to better understanding of parasite biology and consequent identification of novel drug targets. In this review we focus on how high-throughput analysis is helping us and other groups to identify novel targets for chemotherapeutic interventions. We further discuss recent data produced by our group regarding the use of the high-throughput techniques and how this helped us to identify and assess the potential of new identified targets.
Collapse
|
131
|
Liu W, Vielhauer GA, Holzbeierlein JM, Zhao H, Ghosh S, Brown D, Lee E, Blagg BSJ. KU675, a Concomitant Heat-Shock Protein Inhibitor of Hsp90 and Hsc70 that Manifests Isoform Selectivity for Hsp90α in Prostate Cancer Cells. Mol Pharmacol 2015; 88:121-30. [PMID: 25939977 DOI: 10.1124/mol.114.097303] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 05/04/2015] [Indexed: 12/29/2022] Open
Abstract
The 90-kDa heat-shock protein (Hsp90) assists in the proper folding of numerous mutated or overexpressed signal transduction proteins that are involved in cancer. Inhibiting Hsp90 consequently is an attractive strategy for cancer therapy as the concomitant degradation of multiple oncoproteins may lead to effective antineoplastic agents. Here we report a novel C-terminal Hsp90 inhibitor, designated KU675, that exhibits potent antiproliferative and cytotoxic activity along with client protein degradation without induction of the heat-shock response in both androgen-dependent and -independent prostate cancer cell lines. In addition, KU675 demonstrates direct inhibition of Hsp90 complexes as measured by the inhibition of luciferase refolding in prostate cancer cells. In direct binding studies, the internal fluorescence signal of KU675 was used to determine the binding affinity of KU675 to recombinant Hsp90α, Hsp90β, and Hsc70 proteins. The binding affinity (Kd) for Hsp90α was determined to be 191 μM, whereas the Kd for Hsp90β was 726 μM, demonstrating a preference for Hsp90α. Western blot experiments with four different prostate cancer cell lines treated with KU675 supported this selectivity by inducing the degradation of Hsp90α -: dependent client proteins. KU675 also displayed binding to Hsc70 with a Kd value at 76.3 μM, which was supported in cellular by lower levels of Hsc70-specific client proteins on Western blot analyses. Overall, these findings suggest that KU675 is an Hsp90 C-terminal inhibitor, as well as a dual inhibitor of Hsc70, and may have potential use for the treatment of cancer.
Collapse
Affiliation(s)
- Weiya Liu
- Department of Urology, University of Kansas Medical Center, Kansas City, Kansas (W.L., G.A.V., J.M.H., D.B., E.L.); and Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas (H.Z., S.G., B.S.J.B.)
| | - George A Vielhauer
- Department of Urology, University of Kansas Medical Center, Kansas City, Kansas (W.L., G.A.V., J.M.H., D.B., E.L.); and Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas (H.Z., S.G., B.S.J.B.)
| | - Jeffrey M Holzbeierlein
- Department of Urology, University of Kansas Medical Center, Kansas City, Kansas (W.L., G.A.V., J.M.H., D.B., E.L.); and Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas (H.Z., S.G., B.S.J.B.)
| | - Huiping Zhao
- Department of Urology, University of Kansas Medical Center, Kansas City, Kansas (W.L., G.A.V., J.M.H., D.B., E.L.); and Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas (H.Z., S.G., B.S.J.B.)
| | - Suman Ghosh
- Department of Urology, University of Kansas Medical Center, Kansas City, Kansas (W.L., G.A.V., J.M.H., D.B., E.L.); and Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas (H.Z., S.G., B.S.J.B.)
| | - Douglas Brown
- Department of Urology, University of Kansas Medical Center, Kansas City, Kansas (W.L., G.A.V., J.M.H., D.B., E.L.); and Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas (H.Z., S.G., B.S.J.B.)
| | - Eugene Lee
- Department of Urology, University of Kansas Medical Center, Kansas City, Kansas (W.L., G.A.V., J.M.H., D.B., E.L.); and Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas (H.Z., S.G., B.S.J.B.)
| | - Brian S J Blagg
- Department of Urology, University of Kansas Medical Center, Kansas City, Kansas (W.L., G.A.V., J.M.H., D.B., E.L.); and Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas (H.Z., S.G., B.S.J.B.)
| |
Collapse
|
132
|
Chong LP, Wang Y, Gad N, Anderson N, Shah B, Zhao R. A highly charged region in the middle domain of plant endoplasmic reticulum (ER)-localized heat-shock protein 90 is required for resistance to tunicamycin or high calcium-induced ER stresses. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:113-24. [PMID: 25297550 PMCID: PMC4265155 DOI: 10.1093/jxb/eru403] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Heat-shock protein 90 (HSP90) is a highly conserved molecular chaperone that is involved in modulating a multitude of cellular processes under both physiological and stress conditions. In Arabidopsis, there are seven HSP90 isoforms (HSP90.1-HSP90.7) that are localized in the cytoplasm/nucleus, mitochondrion, chloroplast, and endoplasmic reticulum (ER) where protein folding actively takes place. In this study, we analysed the sequence of ER-localized Arabidopsis HSP90.7 and the other ER GRP94 proteins from plants and animals, and identified a short, charged region that is specifically present in the middle domain of plant-derived GRP94 proteins. To understand the role of this charged region, we analysed transgenic plants that expressed a mutant protein, HSP90.7(Δ22), which had this charged region deleted. We showed that seedlings expressing HSP90.7(Δ22) had significantly enhanced sensitivity to ER stress induced by tunicamycin or a high concentration of calcium, although its general chaperone activity in preventing the model protein from heat-induced aggregation was not significantly affected. We also analysed the ATP-binding and hydrolysis activity of both wild-type and mutant HSP90.7 proteins, and found that they had slightly different ATP-binding affinities. Finally, using a yeast two-hybrid screen, we identified a small set of HSP90.7 interactors and showed that the charged region is not required for the candidate client interaction, although it may affect their binding affinity, thus providing potential targets for further investigation of HSP90.7 functions.
Collapse
Affiliation(s)
- Lisa P Chong
- Department of Biological Sciences, University of Toronto, Toronto, Ontario, Canada M1C 1A4
| | - Yao Wang
- Department of Biological Sciences, University of Toronto, Toronto, Ontario, Canada M1C 1A4
| | - Nanette Gad
- Department of Biological Sciences, University of Toronto, Toronto, Ontario, Canada M1C 1A4
| | - Nathaniel Anderson
- Department of Biological Sciences, University of Toronto, Toronto, Ontario, Canada M1C 1A4
| | - Bhavank Shah
- Department of Biological Sciences, University of Toronto, Toronto, Ontario, Canada M1C 1A4
| | - Rongmin Zhao
- Department of Biological Sciences, University of Toronto, Toronto, Ontario, Canada M1C 1A4
| |
Collapse
|
133
|
Partridge JR, Lavery LA, Elnatan D, Naber N, Cooke R, Agard DA. A novel N-terminal extension in mitochondrial TRAP1 serves as a thermal regulator of chaperone activity. eLife 2014; 3. [PMID: 25531069 PMCID: PMC4381864 DOI: 10.7554/elife.03487] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 12/21/2014] [Indexed: 12/28/2022] Open
Abstract
Hsp90 is a conserved chaperone that facilitates protein homeostasis. Our crystal
structure of the mitochondrial Hsp90, TRAP1, revealed an extension of the N-terminal
β-strand previously shown to cross between protomers in the closed state. In
this study, we address the regulatory function of this extension or
‘strap’ and demonstrate its responsibility for an unusual temperature
dependence in ATPase rates. This dependence is a consequence of a thermally sensitive
kinetic barrier between the apo ‘open’ and ATP-bound
‘closed’ conformations. The strap stabilizes the closed state through
trans-protomer interactions. Displacement of cis-protomer contacts from the apo state
is rate-limiting for closure and ATP hydrolysis. Strap release is coupled to rotation
of the N-terminal domain and dynamics of the nucleotide binding pocket lid. The strap
is conserved in higher eukaryotes but absent from yeast and prokaryotes suggesting
its role as a thermal and kinetic regulator, adapting Hsp90s to the demands of unique
cellular and organismal environments. DOI:http://dx.doi.org/10.7554/eLife.03487.001 Proteins—which are made of chains of molecules called amino acids—play
many important roles in cells. Before a newly made protein can work properly, the
amino acid chain has to be folded into the correct three-dimensional shape. Many
proteins that have folded incorrectly are harmless, but some can disrupt the cell and
cause damage. Although most proteins can fold properly on their own, they are often
helped by ‘chaperone’ proteins, which speed up the process and
encourage correct folding. Many chaperone proteins belong to a family called the heat shock proteins, which are
found in almost all species: from bacteria, to plants and animals. High temperatures
can severely impair and destabilize proper protein folding, and the heat shock
proteins counteract this by helping to prevent, or correct, protein misfolding. Most
animals and plants have at least four genes that make different versions of heat
shock protein 90 (Hsp90). These versions work in different places in the cell and
one—called TRAP1—is found in internal compartments called mitochondria.
Along with its role in assisting protein folding, TRAP1 also acts as an indicator of
the health of the proteins in the mitochondria. One section or ‘domain’ of Hsp90 is able to bind to and break down a
molecule called ATP. This releases energy that is used to change the shape of the
protein-binding domain—which is responsible for helping other proteins to
fold. Recent studies of TRAP1 using a technique called protein crystallography
highlighted the presence of a short amino acid tail or ‘strap’ at one
end of the protein, but it is not known what role it may play in protein folding. In this study, Partridge et al. reveal that the amino acid strap of TRAP1 controls
the breakdown of ATP in a way that depends on the surrounding temperature. Similar
straps are also present in the Hsp90 proteins that are found in other parts of the
cell. However, the strap is absent from the Hsp90 proteins of yeast and bacteria.
These experiments used proteins that had been taken from living cells and placed in
an artificial setting, so an important next step will be to study the role of the
strap in the folding of proteins inside living cells. Also, future work could
investigate the potential role of the protein in maintaining healthy
mitochondria. DOI:http://dx.doi.org/10.7554/eLife.03487.002
Collapse
Affiliation(s)
- James R Partridge
- Department of Biochemistry and Biophysics, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
| | - Laura A Lavery
- Department of Biochemistry and Biophysics, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
| | - Daniel Elnatan
- Department of Biochemistry and Biophysics, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
| | - Nariman Naber
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
| | - Roger Cooke
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
| | - David A Agard
- Department of Biochemistry and Biophysics, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
134
|
Synoradzki K, Bieganowski P. Middle domain of human Hsp90 isoforms differentially binds Aha1 in human cells and alters Hsp90 activity in yeast. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1853:445-52. [PMID: 25486457 DOI: 10.1016/j.bbamcr.2014.11.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 11/23/2014] [Accepted: 11/24/2014] [Indexed: 11/28/2022]
Abstract
Hsp90 is an essential chaperone for more than 200 client proteins in eukaryotic cells. The human genome encodes two highly similar cytosolic Hsp90 proteins called Hsp90α and Hsp90β. Most of the client proteins can interact with either Hsp90 protein; however, only a handful client proteins and one co-chaperone that interact specifically with one of the Hsp90 isoforms were identified. Structural differences underlying these isoform-specific interactions were not studied. Here we report for the first time that the Hsp90 co-chaperone Aha1 interacts preferentially with Hsp90α. The distinction depends on the middle domain of Hsp90. The middle domain of Hsp90α is also responsible for the slow growth phenotype of yeasts that express this isoform as a sole source of Hsp90. These results suggest that differences in the middle domain of Hsp90α and Hsp90β may be responsible for the isoform-specific interactions with selected proteins. Also shown here within, we determine that preferential chaperoning of cIAP1 by Hsp90β is mediated by the N-terminal domain of this isoform.
Collapse
Affiliation(s)
- Kamil Synoradzki
- Department of Experimental Pharmacology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawinskiego St., Warsaw 02-106, Poland
| | - Pawel Bieganowski
- Department of Experimental Pharmacology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawinskiego St., Warsaw 02-106, Poland.
| |
Collapse
|
135
|
Xu Y, Zheng G, Dong S, Liu G, Yu X. Molecular cloning, characterization and expression analysis of HSP60, HSP70 and HSP90 in the golden apple snail, Pomacea canaliculata. FISH & SHELLFISH IMMUNOLOGY 2014; 41:643-653. [PMID: 25462459 DOI: 10.1016/j.fsi.2014.10.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 10/06/2014] [Accepted: 10/07/2014] [Indexed: 06/04/2023]
Abstract
The golden apple snail, Pomacea canaliculata, has strong tolerance to high temperature, facilitating its invasion in East and Southeast Asia. In the present study, three cDNAs encoding heat shock proteins (PocaHSP60, PocaHSP70, PocaHSP90) in P. canaliculata were cloned and characterized. The PocaHSP60 cDNA was 2447 bp, containing an ORF encoding a polypeptide of 574 amino acids. The PocaHSP70 cDNA was 2644 bp, containing an ORF encoding a polypeptide of 643 amino acids. The PocaHSP90 cDNA was 2546 bp, containing an ORF encoding a polypeptide of 726 amino acids. Genomic DNA analysis showed that PocaHSP60 had 11 introns in the coding region and PocaHSP90 had 7 introns but PocaHSP70 had no one. The expression changes of these three PocaHSPs in the gill, digestive gland, kidney and foot muscle of P. canaliculata exposed to high and low temperature were investigated. The results of quantitative PCR and western blotting showed that the expression level of PocaHSP90 was much higher than PocaHSP60 and PocaHSP70 at room temperature, and PocaHSP70 expression level was the lowest among them. Afterheat shock, PocaHSP70 expression increased rapidly, much more significantly than PocaHSP90 expression, and the effect of heat shock on the expression of PocaHSP70 and PocaHSP90 in the different tissues of P. canaliculata was not the same. Unlike PocaHSP70 and PocaHSP90, PocaHSP60 expression seemed not to be affected by heat shock, because its expression was moderately induced only in the foot muscle. However, cool shock had little effect on the expression change of above three PocaHSPs. These results indicated that HSPs might be related to the thermal resistance of P. canaliculata.
Collapse
Affiliation(s)
- Yipeng Xu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | | | | | | | | |
Collapse
|
136
|
Ren L, Sun J, Chen S, Gao J, Dong B, Liu Y, Xia X, Wang Y, Liao Y, Teng N, Fang W, Guan Z, Chen F, Jiang J. A transcriptomic analysis of Chrysanthemum nankingense provides insights into the basis of low temperature tolerance. BMC Genomics 2014; 15:844. [PMID: 25277256 PMCID: PMC4197275 DOI: 10.1186/1471-2164-15-844] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 09/23/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A major constraint affecting the quality and productivity of chrysanthemum is the unusual period of low temperature occurring during early spring, late autumn, and winter. Yet, there has been no systematic investigation on the genes underlying the response to low temperature in chrysanthemum. Herein, we used RNA-Seq platform to characterize the transcriptomic response to low temperature by comparing different transcriptome of Chrysanthemum nankingense plants and subjecting them to a period of sub-zero temperature, with or without a prior low temperature acclimation. RESULTS Six separate RNA-Seq libraries were generated from the RNA samples of leaves and stems from six different temperature treatments, including one cold acclimation (CA), two freezing treatments without prior CA, two freezing treatments with prior CA and the control. At least seven million clean reads were obtained from each library. Over 77% of the reads could be mapped to sets of C. nankingense unigenes established previously. The differentially transcribed genes (DTGs) were identified as low temperature sensing and signalling genes, transcription factors, functional proteins associated with the abiotic response, and low temperature-responsive genes involved in post-transcriptional regulation. The differential transcription of 15 DTGs was validated using quantitative RT-PCR. CONCLUSIONS The large number of DTGs identified in this study, confirmed the complexity of the regulatory machinery involved in the processes of low temperature acclimation and low temperature/freezing tolerance.
Collapse
Affiliation(s)
- Liping Ren
- />College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
- />Jiangsu Province Engineering Lab for Modern Facility Agriculture Technology & Equipment, No. 1 Weigang, Nanjing, 210095 Jiangsu Province China
| | - Jing Sun
- />College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Sumei Chen
- />College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Jiaojiao Gao
- />College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Bin Dong
- />College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Yanan Liu
- />College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Xiaolong Xia
- />College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Yinjie Wang
- />College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Yuan Liao
- />College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Nianjun Teng
- />College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Weimin Fang
- />College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Zhiyong Guan
- />College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Fadi Chen
- />College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
- />Jiangsu Province Engineering Lab for Modern Facility Agriculture Technology & Equipment, No. 1 Weigang, Nanjing, 210095 Jiangsu Province China
| | - Jiafu Jiang
- />College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
137
|
Ichiyanagi T, Ichiyanagi K, Ogawa A, Kuramochi-Miyagawa S, Nakano T, Chuma S, Sasaki H, Udono H. HSP90α plays an important role in piRNA biogenesis and retrotransposon repression in mouse. Nucleic Acids Res 2014; 42:11903-11. [PMID: 25262350 PMCID: PMC4231750 DOI: 10.1093/nar/gku881] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
HSP90, found in all kingdoms of life, is a major chaperone protein regulating many client proteins. We demonstrated that HSP90α, one of two paralogs duplicated in vertebrates, plays an important role in the biogenesis of fetal PIWI-interacting RNAs (piRNA), which act against the transposon activities, in mouse male germ cells. The knockout mutation of Hsp90α resulted in a large reduction in the expression of primary and secondary piRNAs and mislocalization of MIWI2, a PIWI homolog. Whereas the mutation in Fkbp6 encoding a co-chaperone reduced piRNAs of 28–32 nucleotides in length, the Hsp90α mutation reduced piRNAs of 24–32 nucleotides, suggesting the presence of both FKBP6-dependent and -independent actions of HSP90α. Although DNA methylation and mRNA levels of L1 retrotransposon were largely unchanged in the Hsp90α mutant testes, the L1-encoded protein was increased, suggesting the presence of post-transcriptional regulation. This study revealed the specialized function of the HSP90α isofom in the piRNA biogenesis and repression of retrotransposons during the development of male germ cells in mammals.
Collapse
Affiliation(s)
- Tomoko Ichiyanagi
- Department of Immunology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Kita-ku, Okayama 700-8558, Japan Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kenji Ichiyanagi
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Ayako Ogawa
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Satomi Kuramochi-Miyagawa
- Department of Pathology, Medical School and Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan CREST, Japan Science and Technology Agency (JST), Saitama 332-0012, Japan
| | - Toru Nakano
- Department of Pathology, Medical School and Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan CREST, Japan Science and Technology Agency (JST), Saitama 332-0012, Japan
| | - Shinichiro Chuma
- Department of Development and Differentiation, Institute for Frontier Medical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | - Hiroyuki Sasaki
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Heiichiro Udono
- Department of Immunology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Kita-ku, Okayama 700-8558, Japan
| |
Collapse
|
138
|
Jiménez-González AS, Fernández N, Martínez-Salas E, Sánchez de Jiménez E. Functional and structural analysis of maize hsp101 IRES. PLoS One 2014; 9:e107459. [PMID: 25222534 PMCID: PMC4164631 DOI: 10.1371/journal.pone.0107459] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 08/17/2014] [Indexed: 11/18/2022] Open
Abstract
Maize heat shock protein of 101 KDa (HSP101) is essential for thermotolerance induction in this plant. The mRNA encoding this protein harbors an IRES element in the 5'UTR that mediates cap-independent translation initiation. In the current work it is demonstrated that hsp101 IRES comprises the entire 5'UTR sequence (150 nts), since deletion of 17 nucleotides from the 5' end decreased translation efficiency by 87% compared to the control sequence. RNA structure analysis of maize hsp101 IRES revealed the presence of three stem-loops toward its 5' end, whereas the remainder sequence contains a great proportion of unpaired nucleotides. Furthermore, HSP90 protein was identified by mass spectrometry as the protein preferentially associated with the maize hsp101 IRES. In addition, it has been found that eIFiso4G rather than eIF4G initiation factor mediates translation of the maize hsp101 mRNA.
Collapse
Affiliation(s)
| | - Noemí Fernández
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Cientificas –Universidad Autónoma de Madrid, Madrid, Spain
| | - Encarnación Martínez-Salas
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Cientificas –Universidad Autónoma de Madrid, Madrid, Spain
- * E-mail: (ESDJ); (EMS)
| | - Estela Sánchez de Jiménez
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, México DF, México
- * E-mail: (ESDJ); (EMS)
| |
Collapse
|
139
|
Oh SE, Yeung C, Babaei-Rad R, Zhao R. Cosuppression of the chloroplast localized molecular chaperone HSP90.5 impairs plant development and chloroplast biogenesis in Arabidopsis. BMC Res Notes 2014; 7:643. [PMID: 25216779 PMCID: PMC4168064 DOI: 10.1186/1756-0500-7-643] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 09/11/2014] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND HSP90.5 is a chloroplast localized HSP90 family molecular chaperone in Arabidopsis, and it has been implicated in plant abiotic stress resistance, photomorphogenesis and nuclear-encoded protein import into the chloroplast. However, how these processes are controlled by HSP90 is not well understood. To understand the role of HSP90.5 in chloroplast function and biogenesis, in this study, we generated transgenic Arabidopsis plants that overexpress a C-terminally FLAG-tagged HSP90.5. By characterizing three HSP90.5 cosuppression lines, we demonstrated the essential role of HSP90.5 in plant growth and chloroplast biogenesis. RESULTS Immunoblotting and quantitative PCR analyses revealed three independent HSP90.5 cosuppressing transgenic lines. All three cosuppression lines displayed a certain degree of variegated phenotype in photosynthetic tissues, and the cosuppression did not affect the expression of cytosolic HSP90 isoforms. HSP90.5 cosuppression was shown to be developmentally regulated and occurred mostly at late developmental stage in adult leaves and inflorescence tissues. HSP90.5 cosuppression also caused significantly reduced rosette leaf growth, transient starch storage, but did not affect rosette leaf initiation or inflorescence production, although the fertility was reduced. Isolation of chloroplasts and size exclusion chromatography analysis indicated that the FLAG at the HSP90.5 C-terminus does not affect its proper chloroplast localization and dimerization. Finally, transmission electron microscopy indicated that chloroplast development in HSP90.5 cosuppression leaves was significantly impaired and the integrity of chloroplast is highly correlated to the expression level of HSP90.5. CONCLUSION We thoroughly characterized three HSP90.5 cosuppression lines, and demonstrated that properly controlled expression of HSP90.5 is required for plant growth and development in many tissues, and especially essential for chloroplast thylakoid formation. Since the homozygote of HSP90.5 knockout mutant is embryonically lethal, this study provides transgenic lines that mimic the conditional knockout line or siRNA line of the essential HSP90.5 gene in Arabidopsis.
Collapse
Affiliation(s)
- Saehong E Oh
- Department of Biological Sciences, University of Toronto, 1265 Military Trail, Scarborough, Ontario M1C 1A4 Canada
| | - Christine Yeung
- Department of Biological Sciences, University of Toronto, 1265 Military Trail, Scarborough, Ontario M1C 1A4 Canada
| | - Rebecca Babaei-Rad
- Department of Biological Sciences, University of Toronto, 1265 Military Trail, Scarborough, Ontario M1C 1A4 Canada
| | - Rongmin Zhao
- Department of Biological Sciences, University of Toronto, 1265 Military Trail, Scarborough, Ontario M1C 1A4 Canada
| |
Collapse
|
140
|
Zhang Y, Gu S, Li C, Sang M, Wu W, Yun X, Hu X, Li B. Identification and characterization of novel ER-based hsp90 gene in the red flour beetle, Tribolium castaneum. Cell Stress Chaperones 2014; 19:623-33. [PMID: 24379085 PMCID: PMC4147069 DOI: 10.1007/s12192-013-0487-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 12/09/2013] [Accepted: 12/11/2013] [Indexed: 01/02/2023] Open
Abstract
Heat-shock protein 90 (HSP90) is a highly conserved molecular chaperone found in all species except for Archaea, which is required not only for stress tolerance but also for normal development. Recently, it was reported that HSP83, one member of the cytosolic HSP90 family, contributes to oogenesis and responds to heat resistance in Tribolium castaneum. Here, a novel ER-based HSP90 gene, Tchsp90, has been identified in T. castaneum. Phylogenetic analysis showed that hsp90s and hsp83s evolved separately from a common ancestor but that hsp90s originated earlier. Quantitative real-time polymerase chain reaction illustrated that Tchsp90 is expressed in all developmental stages and is highly expressed at early pupa and late adult stages. Tchsp90 was upregulated in response to heat stress but not to cold stress. Laval RNAi revealed that Tchsp90 is important for larval/pupal development. Meanwhile, parental RNAi indicated that it completely inhibited female fecundity and partially inhibited male fertility once Tchsp90 was knocked down and that it will further shorten the lifespan of T. castaneum. These results suggest that Tchsp90 is essential for development, lifespan, and reproduction in T. castaneum in addition to its response to heat stress.
Collapse
Affiliation(s)
- Yi Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023 China
| | - Shasha Gu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023 China
| | - Chengjun Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023 China
| | - Ming Sang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023 China
| | - Wei Wu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023 China
| | - Xiaopei Yun
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023 China
| | - Xingxing Hu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023 China
| | - Bin Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023 China
| |
Collapse
|
141
|
Sajjanar B, Deb R, Singh U, Kumar S, Brahmane M, Nirmale A, Bal SK, Minhas PS. Identification of SNP inHSP90AB1and its Association with the Relative Thermotolerance and Milk Production Traits in Indian Dairy Cattle. Anim Biotechnol 2014; 26:45-50. [DOI: 10.1080/10495398.2014.882846] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
142
|
Heat shock proteins at the crossroads between cancer and Alzheimer's disease. BIOMED RESEARCH INTERNATIONAL 2014; 2014:239164. [PMID: 25147790 PMCID: PMC4131517 DOI: 10.1155/2014/239164] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 07/12/2014] [Indexed: 12/31/2022]
Abstract
Heat shock proteins 70 and heat shock proteins 90 (Hsp70/90) have been implicated in many crucial steps of carcinogenesis: stabilizing oncogenic proteins, inhibiting programmed cell death and replicative senescence, induction of tumor angiogenesis, and activation of the invasion and metastasis. Plenty of cancer related proteins have the ability of regulating the expression of Hsp70/90 through heat shock factor 1. Cancer and Alzheimer's disease (AD) have plenty of overlapping regions in molecular genetics and cell biology associated with Hsp70/90. The Hsp70, as a protein stabilizer, has a cellular protection against neurodegeneration of the central nervous system, while Hsp90 promote neurodegenerative disorders indirectly through regulating the expression of Hsp70 and other chaperones. All these make existing anticancer drugs target Hsp70/90 which might be used in AD therapy.
Collapse
|
143
|
Heinz E, Lithgow T. A comprehensive analysis of the Omp85/TpsB protein superfamily structural diversity, taxonomic occurrence, and evolution. Front Microbiol 2014; 5:370. [PMID: 25101071 PMCID: PMC4104836 DOI: 10.3389/fmicb.2014.00370] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 07/02/2014] [Indexed: 01/25/2023] Open
Abstract
Members of the Omp85/TpsB protein superfamily are ubiquitously distributed in Gram-negative bacteria, and function in protein translocation (e.g., FhaC) or the assembly of outer membrane proteins (e.g., BamA). Several recent findings are suggestive of a further level of variation in the superfamily, including the identification of the novel membrane protein assembly factor TamA and protein translocase PlpD. To investigate the diversity and the causal evolutionary events, we undertook a comprehensive comparative sequence analysis of the Omp85/TpsB proteins. A total of 10 protein subfamilies were apparent, distinguished in their domain structure and sequence signatures. In addition to the proteins FhaC, BamA, and TamA, for which structural and functional information is available, are families of proteins with so far undescribed domain architectures linked to the Omp85 β-barrel domain. This study brings a classification structure to a dynamic protein superfamily of high interest given its essential function for Gram-negative bacteria as well as its diverse domain architecture, and we discuss several scenarios of putative functions of these so far undescribed proteins.
Collapse
Affiliation(s)
- Eva Heinz
- Department of Microbiology, Monash University Melbourne, VIC, Australia ; Victorian Bioinformatics Consortium, Monash University Melbourne, VIC, Australia
| | - Trevor Lithgow
- Department of Microbiology, Monash University Melbourne, VIC, Australia
| |
Collapse
|
144
|
Nabeel-Shah S, Ashraf K, Pearlman RE, Fillingham J. Molecular evolution of NASP and conserved histone H3/H4 transport pathway. BMC Evol Biol 2014; 14:139. [PMID: 24951090 PMCID: PMC4082323 DOI: 10.1186/1471-2148-14-139] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 06/12/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND NASP is an essential protein in mammals that functions in histone transport pathways and maintenance of a soluble reservoir of histones H3/H4. NASP has been studied exclusively in Opisthokonta lineages where some functional diversity has been reported. In humans, growing evidence implicates NASP miss-regulation in the development of a variety of cancers. Although a comprehensive phylogenetic analysis is lacking, NASP-family proteins that possess four TPR motifs are thought to be widely distributed across eukaryotes. RESULTS We characterize the molecular evolution of NASP by systematically identifying putative NASP orthologs across diverse eukaryotic lineages ranging from excavata to those of the crown group. We detect extensive silent divergence at the nucleotide level suggesting the presence of strong purifying selection acting at the protein level. We also observe a selection bias for high frequencies of acidic residues which we hypothesize is a consequence of their critical function(s), further indicating the role of functional constraints operating on NASP evolution. Our data indicate that TPR1 and TPR4 constitute the most rapidly evolving functional units of NASP and may account for the functional diversity observed among well characterized family members. We also show that NASP paralogs in ray-finned fish have different genomic environments with clear differences in their GC content and have undergone significant changes at the protein level suggesting functional diversification. CONCLUSION We draw four main conclusions from this study. First, wide distribution of NASP throughout eukaryotes suggests that it was likely present in the last eukaryotic common ancestor (LECA) possibly as an important innovation in the transport of H3/H4. Second, strong purifying selection operating at the protein level has influenced the nucleotide composition of NASP genes. Further, we show that selection has acted to maintain a high frequency of functionally relevant acidic amino acids in the region that interrupts TPR2. Third, functional diversity reported among several well characterized NASP family members can be explained in terms of quickly evolving TPR1 and TPR4 motifs. Fourth, NASP fish specific paralogs have significantly diverged at the protein level with NASP2 acquiring a NNR domain.
Collapse
Affiliation(s)
| | | | | | - Jeffrey Fillingham
- Department of Chemistry and Biology, Ryerson University, 350 Victoria St,, Toronto M5B 2K3, Canada.
| |
Collapse
|
145
|
Lavery LA, Partridge JR, Ramelot TA, Elnatan D, Kennedy MA, Agard DA. Structural asymmetry in the closed state of mitochondrial Hsp90 (TRAP1) supports a two-step ATP hydrolysis mechanism. Mol Cell 2014; 53:330-43. [PMID: 24462206 PMCID: PMC3947485 DOI: 10.1016/j.molcel.2013.12.023] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 11/04/2013] [Accepted: 12/24/2013] [Indexed: 12/31/2022]
Abstract
While structural symmetry is a prevailing feature of homo-oligomeric proteins, asymmetry provides unique mechanistic opportunities. We present the crystal structure of full-length TRAP1, the mitochondrial Hsp90 molecular chaperone, in a catalytically active closed state. The TRAP1 homodimer adopts a distinct, asymmetric conformation, where one protomer is reconfigured via a helix swap at the middle:C-terminal domain (MD:CTD) interface. This interface plays a critical role in client binding. Solution methods validate the asymmetry and show extension to Hsp90 homologs. Point mutations that disrupt unique contacts at each MD:CTD interface reduce catalytic activity and substrate binding and demonstrate that each protomer needs access to both conformations. Crystallographic data on a dimeric NTD:MD fragment suggests that asymmetry arises from strain induced by simultaneous NTD and CTD dimerization. The observed asymmetry provides the potential for an additional step in the ATPase cycle, allowing sequential ATP hydrolysis steps to drive both client remodeling and client release.
Collapse
Affiliation(s)
- Laura A Lavery
- Howard Hughes Medical Institute and the Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - James R Partridge
- Howard Hughes Medical Institute and the Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Theresa A Ramelot
- Department of Chemistry and Biochemistry, Miami University Oxford, OH 45056, USA
| | - Daniel Elnatan
- Howard Hughes Medical Institute and the Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Michael A Kennedy
- Department of Chemistry and Biochemistry, Miami University Oxford, OH 45056, USA
| | - David A Agard
- Howard Hughes Medical Institute and the Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
146
|
Dziewit L, Czarnecki J, Wibberg D, Radlinska M, Mrozek P, Szymczak M, Schlüter A, Pühler A, Bartosik D. Architecture and functions of a multipartite genome of the methylotrophic bacterium Paracoccus aminophilus JCM 7686, containing primary and secondary chromids. BMC Genomics 2014; 15:124. [PMID: 24517536 PMCID: PMC3925955 DOI: 10.1186/1471-2164-15-124] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 02/07/2014] [Indexed: 11/10/2022] Open
Abstract
Background Paracoccus aminophilus JCM 7686 is a methylotrophic α-Proteobacterium capable of utilizing reduced one-carbon compounds as sole carbon and energy source for growth, including toxic N,N-dimethylformamide, formamide, methanol, and methylamines, which are widely used in the industry. P. aminophilus JCM 7686, as many other Paracoccus spp., possesses a genome representing a multipartite structure, in which the genomic information is split between various replicons, including chromids, essential plasmid-like replicons, with properties of both chromosomes and plasmids. In this study, whole-genome sequencing and functional genomics approaches were applied to investigate P. aminophilus genome information. Results The P. aminophilus JCM 7686 genome has a multipartite structure, composed of a single circular chromosome and eight additional replicons ranging in size between 5.6 and 438.1 kb. Functional analyses revealed that two of the replicons, pAMI5 and pAMI6, are essential for host viability, therefore they should be considered as chromids. Both replicons carry housekeeping genes, e.g. responsible for de novo NAD biosynthesis and ammonium transport. Other mobile genetic elements have also been identified, including 20 insertion sequences, 4 transposons and 10 prophage regions, one of which represents a novel, functional serine recombinase-encoding bacteriophage, ϕPam-6. Moreover, in silico analyses allowed us to predict the transcription regulatory network of the JCM 7686 strain, as well as components of the stress response, recombination, repair and methylation machineries. Finally, comparative genomic analyses revealed that P. aminophilus JCM 7686 has a relatively distant relationship to other representatives of the genus Paracoccus. Conclusions P. aminophilus genome exploration provided insights into the overall structure and functions of the genome, with a special focus on the chromids. Based on the obtained results we propose the classification of bacterial chromids into two types: “primary” chromids, which are indispensable for host viability and “secondary” chromids, which are essential, but only under some environmental conditions and which were probably formed quite recently in the course of evolution. Detailed genome investigation and its functional analysis, makes P. aminophilus JCM 7686 a suitable reference strain for the genus Paracoccus. Moreover, this study has increased knowledge on overall genome structure and composition of members within the class Alphaproteobacteria.
Collapse
Affiliation(s)
- Lukasz Dziewit
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland.
| | | | | | | | | | | | | | | | | |
Collapse
|
147
|
Regulatory role of the 90-kDa-heat-shock protein (Hsp90) and associated factors on gene expression. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:71-87. [DOI: 10.1016/j.bbagrm.2013.12.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Revised: 12/23/2013] [Accepted: 12/26/2013] [Indexed: 12/31/2022]
|
148
|
van Ommen Kloeke AEE, Gong P, Ellers J, Roelofs D. Effects of a natural toxin on life history and gene expression of Eisenia andrei. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2014; 33:412-20. [PMID: 24395740 DOI: 10.1002/etc.2446] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 05/20/2013] [Accepted: 10/16/2013] [Indexed: 05/27/2023]
Abstract
Earthworms perform key functions for a healthy soil ecosystem, such as bioturbation. The soil ecosystem can be challenged by natural toxins such as isothiocyanates (ITCs), produced by many commercial crops. Therefore, the effects of 2-phenylethyl ITC were investigated on the earthworm Eisenia andrei using an ecotoxicogenomics approach. Exposure to 2-phenylethyl ITC reduced both survival and reproduction of E. andrei in a dose-dependent manner (median effective concentration [EC50] = 556 nmol/g). Cross-species comparative genomic hybridization validated the applicability of an existing 4 × 44,000 Eisenia fetida microarray to E. andrei. Gene expression profiles revealed the importance of metallothionein (MT) as an early warning signal when E. andrei was exposed to low concentrations of 2-phenylethyl ITC. Alignment of these MT genes with the MT-2 gene of Lumbricus rubellus showed that at least 2 MT gene clusters are present in the Eisenia sp. genome. At high-exposure concentrations, gene expression was mainly affected by inhibiting chitinase activity, inducing an oxidative stress response, and stimulating energy metabolism. Furthermore, analysis by Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway implied that the high concentration may have caused impaired light sensitivity, angiogenesis, olfactory perception, learning, and memory. Increased levels of ITCs may be found in the field in the near future. The results presented call for a careful investigation to quantify the risk of such compounds before allowing them to enter the soil on a large scale.
Collapse
|
149
|
Kanamaru C, Yamada Y, Hayashi S, Matsushita T, Suda A, Nagayasu M, Kimura K, Chiba S. Retinal toxicity induced by small-molecule Hsp90 inhibitors in beagle dogs. J Toxicol Sci 2014; 39:59-69. [DOI: 10.2131/jts.39.59] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
| | | | | | | | - Atsushi Suda
- Research Division, Chugai Pharmaceutical Co., Ltd
| | | | | | | |
Collapse
|
150
|
Deb R, Sajjanar B, Singh U, Kumar S, Singh R, Sengar G, Sharma A. Effect of heat stress on the expression profile of Hsp90 among Sahiwal (Bos indicus) and Frieswal (Bos indicus × Bos taurus) breed of cattle: a comparative study. Gene 2013; 536:435-40. [PMID: 24333856 DOI: 10.1016/j.gene.2013.11.086] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 11/12/2013] [Accepted: 11/30/2013] [Indexed: 12/24/2022]
Abstract
We evaluated the effect of thermal challenge on the expression profile of heat shock protein 90 (Hsp90) among Sahiwal (Bos indicus) and Frieswal (Bos indicus × Bos taurus) breeds of cattle. The present investigation was focused on the comparative studies on Hsp90 expression among Frieswal and Sahiwal under in vitro and environmental heat stress. Measured immediately after the in vitro heat shock to the peripheral blood mononuclear cells (PBMCs), the relative expression of Hsp90 mRNA was significantly (P<0.05) higher in Sahiwal compared to those in Frieswal. In later intervals of time, the differences in the expression levels between the two breeds become negligible coming down towards the basal level. A similar pattern was observed in the protein concentration showing significantly (P<0.05) higher levels in Sahiwal compared to those in Frieswal. The second sets of experiments were undertaken during summer months (March to May) when temperature peaked from 37 to 45 °C. During these months, Frieswal cows consistently recorded higher rectal temperatures than the Sahiwal breed. Further during this peak summer stress, Sahiwal showed significantly higher levels of mRNA transcripts as well as protein concentration compared to the Frieswal breed. Our findings also interestingly showed that, the cell viability of PBMC are significantly higher among the Sahiwal than Frieswal. Taken together, the experiments of both induced in vitro and environmental stress conditions indicate that, Sahiwal may express higher levels of Hsp90 then Frieswal to regulate their body temperature and increase cell survivality under heat stressed conditions.
Collapse
Affiliation(s)
- Rajib Deb
- Molecular Genetics Laboratory, Animal Genetics & Breeding Section, Project Directorate on Cattle, Indian Council of Agricultural Research, Grass Farm Road, P. O. Box 17, Meerut Cantt., Meerut 250 001, Uttar Pradesh, India.
| | - Basavaraj Sajjanar
- Molecular Genetics Laboratory, Animal Genetics & Breeding Section, Project Directorate on Cattle, Indian Council of Agricultural Research, Grass Farm Road, P. O. Box 17, Meerut Cantt., Meerut 250 001, Uttar Pradesh, India
| | - Umesh Singh
- Molecular Genetics Laboratory, Animal Genetics & Breeding Section, Project Directorate on Cattle, Indian Council of Agricultural Research, Grass Farm Road, P. O. Box 17, Meerut Cantt., Meerut 250 001, Uttar Pradesh, India
| | - Sushil Kumar
- Molecular Genetics Laboratory, Animal Genetics & Breeding Section, Project Directorate on Cattle, Indian Council of Agricultural Research, Grass Farm Road, P. O. Box 17, Meerut Cantt., Meerut 250 001, Uttar Pradesh, India
| | - Rani Singh
- Molecular Genetics Laboratory, Animal Genetics & Breeding Section, Project Directorate on Cattle, Indian Council of Agricultural Research, Grass Farm Road, P. O. Box 17, Meerut Cantt., Meerut 250 001, Uttar Pradesh, India
| | - G Sengar
- Molecular Genetics Laboratory, Animal Genetics & Breeding Section, Project Directorate on Cattle, Indian Council of Agricultural Research, Grass Farm Road, P. O. Box 17, Meerut Cantt., Meerut 250 001, Uttar Pradesh, India
| | - Arjava Sharma
- Molecular Genetics Laboratory, Animal Genetics & Breeding Section, Project Directorate on Cattle, Indian Council of Agricultural Research, Grass Farm Road, P. O. Box 17, Meerut Cantt., Meerut 250 001, Uttar Pradesh, India
| |
Collapse
|