101
|
Gait speed in clinical and daily living assessments in Parkinson's disease patients: performance versus capacity. NPJ Parkinsons Dis 2021; 7:24. [PMID: 33674597 PMCID: PMC7935857 DOI: 10.1038/s41531-021-00171-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 01/25/2021] [Indexed: 01/31/2023] Open
Abstract
Gait speed often referred as the sixth vital sign is the most powerful biomarker of mobility. While a clinical setting allows the estimation of gait speed under controlled conditions that present functional capacity, gait speed in real-life conditions provides the actual performance of the patient. The goal of this study was to investigate objectively under what conditions during daily activities, patients perform as well as or better than in the clinic. To this end, we recruited 27 Parkinson's disease (PD) patients and measured their gait speed by inertial measurement units through several walking tests in the clinic as well as their daily activities at home. By fitting a bimodal Gaussian model to their gait speed distribution, we found that on average, patients had similar modes in the clinic and during daily activities. Furthermore, we observed that the number of medication doses taken throughout the day had a moderate correlation with the difference between clinic and home. Performing a cycle-by-cycle analysis on gait speed during the home assessment, overall only about 3% of the strides had equal or greater gait speeds than the patients' capacity in the clinic. These strides were during long walking bouts (>1 min) and happened before noon, around 26 min after medication intake, reaching their maximum occurrence probability 3 h after Levodopa intake. These results open the possibility of better control of medication intake in PD by considering both functional capacity and continuous monitoring of gait speed during real-life conditions.
Collapse
|
102
|
Fall risk assessment in the wild: A critical examination of wearable sensor use in free-living conditions. Gait Posture 2021; 85:178-190. [PMID: 33601319 DOI: 10.1016/j.gaitpost.2020.04.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/12/2020] [Accepted: 04/04/2020] [Indexed: 02/02/2023]
Abstract
BACKGROUND Despite advances in laboratory-based supervised fall risk assessment methods (FRAs), falls still remain a major public health problem. This can be due to the alteration of behavior in laboratory due to the awareness of being observed (i.e., Hawthorne effect), the multifactorial complex etiology of falls, and our limited understanding of human behaviour in natural environments, or in the' wild'. To address these imitations, a growing body of literature has focused on free-living wearable-sensor-based FRAs. The objective of this narrative literature review is to discuss papers investigating natural data collected by wearable sensors for a duration of at least 24 h to identify fall-prone older adults. METHODS Databases (Scopus, PubMed and Google Scholar) were searched for studies based on a rigorous search strategy. RESULTS Twenty-four journal papers were selected, in which inertial sensors were the only wearable system employed for FRA in the wild. Gait was the most-investigated activity; but sitting, standing, lying, transitions and gait events, such as turns and missteps, were also explored. A multitude of free-living fall predictors (FLFPs), e.g., the quantity of daily steps, were extracted from activity bouts and events. FLFPs were further categorized into discrete domains (e.g., pace, complexity) defined by conceptual or data-driven models. Heterogeneity was found within the reviewed studies, which includes variance in: terminology (e.g., quantity vs macro), hyperparameters to define/estimate FLFPs, models and domains, and data processing approaches (e.g., the cut-off thresholds to define an ambulatory bout). These inconsistencies led to different results for similar FLFPs, limiting the ability to interpret and compare the evidence. CONCLUSION Free-living FRA is a promising avenue for fall prevention. Achieving a harmonized model is necessary to systematically address the inconsistencies in the field and identify FLFPs with the highest predictive values for falls to eventually address intervention programs and fall prevention.
Collapse
|
103
|
Sada YH, Poursina O, Zhou H, Workeneh BT, Maddali SV, Najafi B. Harnessing digital health to objectively assess cancer-related fatigue: The impact of fatigue on mobility performance. PLoS One 2021; 16:e0246101. [PMID: 33636720 PMCID: PMC7910036 DOI: 10.1371/journal.pone.0246101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 01/11/2021] [Indexed: 11/23/2022] Open
Abstract
Objective Cancer-related fatigue (CRF) is highly prevalent among cancer survivors, which may have long-term effects on physical activity and quality of life. CRF is assessed by self-report or clinical observation, which may limit timely diagnosis and management. In this study, we examined the effect of CRF on mobility performance measured by a wearable pendant sensor. Methods This is a secondary analysis of a clinical trial evaluating the benefit of exercise in cancer survivors with chemotherapy-induced peripheral neuropathy (CIPN). CRF status was classified based on a Functional Assessment of Chronic Illness Therapy-Fatigue (FACIT-F) score ≤ 33. Among 28 patients (age = 65.7±9.8 years old, BMI = 26.9±4.1kg/m2, sex = 32.9%female) with database variables of interest, twenty-one subjects (75.9%) were classified as non-CRF. Mobility performance, including behavior (sedentary, light, and moderate to vigorous activity (MtV)), postures (sitting, standing, lying, and walking), and locomotion (e.g., steps, postural transitions) were measured using a validated pendant-sensor over 24-hours. Baseline psychosocial, Functional Assessment of Cancer Therapy–General (FACT-G), Falls Efficacy Scale–International (FES-I), and motor-capacity assessments including gait (habitual speed, fast speed, and dual-task speed) and static balance were also performed. Results Both groups had similar baseline clinical and psychosocial characteristics, except for body-mass index (BMI), FACT-G, FACIT-F, and FES-I (p<0.050). The groups did not differ on motor-capacity. However, the majority of mobility performance parameters were different between groups with large to very large effect size, Cohen’s d ranging from 0.91 to 1.59. Among assessed mobility performance, the largest effect sizes were observed for sedentary-behavior (d = 1.59, p = 0.006), light-activity (d = 1.48, p = 0.009), and duration of sitting+lying (d = 1.46, p = 0.016). The largest correlations between mobility performance and FACIT-F were observed for sitting+lying (rho = -0.67, p<0.001) and the number of steps per day (rho = 0.60, p = 0.001). Conclusion The results of this study suggest that sensor-based mobility performance monitoring could be considered as a potential digital biomarker for CRF assessment. Future studies warrant evaluating utilization of mobility performance to track changes in CRF over time, response to CRF-related interventions, and earlier detection of CRF.
Collapse
Affiliation(s)
- Yvonne H. Sada
- Department of Medicine, Section of Hematology and Oncology, Dan L Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, United States of America
- Houston VA Center for Innovations in Quality, Effectiveness, and Safety, Michael E. DeBakey VA Medical Center, Houston, Texas, United States of America
| | - Olia Poursina
- Michael E. DeBakey Department of Surgery, Interdisciplinary Consortium on Advanced Motion Performance (iCAMP), Baylor College of Medicine, Houston, Texas, United States of America
| | - He Zhou
- Michael E. DeBakey Department of Surgery, Interdisciplinary Consortium on Advanced Motion Performance (iCAMP), Baylor College of Medicine, Houston, Texas, United States of America
| | - Biruh T. Workeneh
- Department of Nephrology, Division of Internal Medicine, MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Sandhya V. Maddali
- Michael E. DeBakey Department of Surgery, Interdisciplinary Consortium on Advanced Motion Performance (iCAMP), Baylor College of Medicine, Houston, Texas, United States of America
| | - Bijan Najafi
- Michael E. DeBakey Department of Surgery, Interdisciplinary Consortium on Advanced Motion Performance (iCAMP), Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
104
|
Mirelman A, Dorsey ER, Brundin P, Bloem BR. Using Technology to Reshape Clinical Care and Research in Parkinson's Disease. JOURNAL OF PARKINSONS DISEASE 2021; 11:S1-S3. [PMID: 33612498 DOI: 10.3233/jpd-219002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Anat Mirelman
- Laboratory for Early Markers Of Neurodegeneration, Center for The Study of Movement, Cognition and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv Israel.,Sackler Faculty of Medicine, and Sagol School of Neuroscience, Tel Aviv University, Israel
| | - E Ray Dorsey
- Department of Neurology, Centre for Health + Technology, University of Rochester Medical Centre, Rochester, New York, USA
| | - Patrik Brundin
- Laboratory of Translational Parkinson's Disease Research, Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Bastiaan R Bloem
- Department of Neurology, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands.,Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
105
|
Romijnders R, Warmerdam E, Hansen C, Welzel J, Schmidt G, Maetzler W. Validation of IMU-based gait event detection during curved walking and turning in older adults and Parkinson's Disease patients. J Neuroeng Rehabil 2021; 18:28. [PMID: 33549105 PMCID: PMC7866479 DOI: 10.1186/s12984-021-00828-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 01/26/2021] [Indexed: 11/16/2022] Open
Abstract
Background Identification of individual gait events is essential for clinical gait analysis, because it can be used for diagnostic purposes or tracking disease progression in neurological diseases such as Parkinson’s disease. Previous research has shown that gait events can be detected from a shank-mounted inertial measurement unit (IMU), however detection performance was often evaluated only from straight-line walking. For use in daily life, the detection performance needs to be evaluated in curved walking and turning as well as in single-task and dual-task conditions. Methods Participants (older adults, people with Parkinson’s disease, or people who had suffered from a stroke) performed three different walking trials: (1) straight-line walking, (2) slalom walking, (3) Stroop-and-walk trial. An optical motion capture system was used a reference system. Markers were attached to the heel and toe regions of the shoe, and participants wore IMUs on the lateral sides of both shanks. The angular velocity of the shank IMUs was used to detect instances of initial foot contact (IC) and final foot contact (FC), which were compared to reference values obtained from the marker trajectories. Results The detection method showed high recall, precision and F1 scores in different populations for both initial contacts and final contacts during straight-line walking (IC: recall \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$=$$\end{document}= 100%, precision \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$=$$\end{document}= 100%, F1 score \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$=$$\end{document}= 100%; FC: recall \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$=$$\end{document}= 100%, precision \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$=$$\end{document}= 100%, F1 score \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$=$$\end{document}= 100%), slalom walking (IC: recall \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$=$$\end{document}= 100%, precision \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\ge$$\end{document}≥ 99%, F1 score \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$=$$\end{document}=100%; FC: recall \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$=$$\end{document}= 100%, precision \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\ge$$\end{document}≥ 99%, F1 score \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$=$$\end{document}=100%), and turning (IC: recall \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\ge$$\end{document}≥ 85%, precision \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\ge$$\end{document}≥ 95%, F1 score \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\ge$$\end{document}≥91%; FC: recall \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\ge$$\end{document}≥ 84%, precision \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\ge$$\end{document}≥ 95%, F1 score \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\ge$$\end{document}≥89%). Conclusions Shank-mounted IMUs can be used to detect gait events during straight-line walking, slalom walking and turning. However, more false events were observed during turning and more events were missed during turning. For use in daily life we recommend identifying turning before extracting temporal gait parameters from identified gait events.
Collapse
Affiliation(s)
- Robbin Romijnders
- Digital Signal Processing and System Theory, Institute of Electrical and Information Engineering, Kiel University, Kaiserstraße 2, 24143, Kiel, Germany. .,Neurogeriatrics, Department of Neurology, University Hospital Schleswig-Holstein, Arnold-Heller-Straße 3, Haus D, 24105, Kiel, Germany.
| | - Elke Warmerdam
- Digital Signal Processing and System Theory, Institute of Electrical and Information Engineering, Kiel University, Kaiserstraße 2, 24143, Kiel, Germany.,Neurogeriatrics, Department of Neurology, University Hospital Schleswig-Holstein, Arnold-Heller-Straße 3, Haus D, 24105, Kiel, Germany
| | - Clint Hansen
- Neurogeriatrics, Department of Neurology, University Hospital Schleswig-Holstein, Arnold-Heller-Straße 3, Haus D, 24105, Kiel, Germany
| | - Julius Welzel
- Neurogeriatrics, Department of Neurology, University Hospital Schleswig-Holstein, Arnold-Heller-Straße 3, Haus D, 24105, Kiel, Germany
| | - Gerhard Schmidt
- Digital Signal Processing and System Theory, Institute of Electrical and Information Engineering, Kiel University, Kaiserstraße 2, 24143, Kiel, Germany
| | - Walter Maetzler
- Neurogeriatrics, Department of Neurology, University Hospital Schleswig-Holstein, Arnold-Heller-Straße 3, Haus D, 24105, Kiel, Germany
| |
Collapse
|
106
|
Schneider N, Dagan M, Katz R, Thumm PC, Brozgol M, Giladi N, Manor B, Mirelman A, Hausdorff JM. Combining transcranial direct current stimulation with a motor-cognitive task: the impact on dual-task walking costs in older adults. J Neuroeng Rehabil 2021; 18:23. [PMID: 33526043 PMCID: PMC7852224 DOI: 10.1186/s12984-021-00826-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/18/2021] [Indexed: 01/12/2024] Open
Abstract
Background The performance of a secondary task while walking increases motor-cognitive interference and exacerbates fall risk in older adults. Previous studies have demonstrated that transcranial direct current stimulation (tDCS) may improve certain types of dual-task performance, and, that tDCS delivered during the performance of a task may augment the benefits of stimulation, potentially reducing motor-cognitive interference. However, it is not yet known if combining multi-target tDCS with the simultaneous performance of a task related to the tDCS targets reduces or increases dual-task walking costs among older adults. The objectives of the present work were (1) To examine whether tDCS applied during the performance of a task that putatively utilizes the brain networks targeted by the neuro-stimulation reduces dual-task costs, and (2) to compare the immediate after-effects of tDCS applied during walking, during seated-rest, and during sham stimulation while walking, on dual-task walking costs in older adults. We also explored the impact on postural sway and other measures of cognitive function. Methods A double-blind, ‘within-subject’ cross-over pilot study evaluated the effects of 20 min of anodal tDCS targeting both the primary motor cortex (M1) and the left dorsolateral prefrontal cortex (lDLPFC) in 25 healthy older adults (73.9 ± 5.2 years). Three stimulation conditions were assessed in three separate sessions: (1) tDCS while walking in a complex environment (tDCS + walking), (2) tDCS while seated (tDCS + seated), and (3) walking in a complex environment with sham tDCS (sham + walking). The complex walking condition utilized virtual reality to tax motor and cognitive abilities. During each session, usual-walking, dual-task walking, quiet standing sway, and cognitive function (e.g., Stroop test) were assessed before and immediately after stimulation. Dual-task costs to gait speed and other measures were computed. Results The dual-task cost to gait speed was reduced after tDCS + walking (p = 0.004) as compared to baseline values. Neither tDCS + seated (p = 0.173) nor sham + walking (p = 0.826) influenced this outcome. Similar results were seen for other gait measures and for Stroop performance. Sway was not affected by tDCS. Conclusions tDCS delivered during the performance of challenging walking decreased the dual-task cost to walking in older adults when they were tested just after stimulation. These results support the existence of a state-dependent impact of neuro-modulation that may set the stage for a more optimal neuro-rehabilitation. Trial registration: Clinical Trials Gov Registrations Number: NCT02954328.
Collapse
Affiliation(s)
- Nofar Schneider
- Center for the Study of Movement, Cognition and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, 6 Weizmann Street, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Moria Dagan
- Center for the Study of Movement, Cognition and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, 6 Weizmann Street, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Racheli Katz
- Department of Physical Therapy, Sacker School of Medicine, Tel Aviv, Israel
| | - Pablo Cornejo Thumm
- Center for the Study of Movement, Cognition and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, 6 Weizmann Street, Tel Aviv, Israel
| | - Marina Brozgol
- Center for the Study of Movement, Cognition and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, 6 Weizmann Street, Tel Aviv, Israel
| | - Nir Giladi
- Center for the Study of Movement, Cognition and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, 6 Weizmann Street, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.,Department of Neurology, Sacker School of Medicine, Tel Aviv, Israel
| | - Brad Manor
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA.,Division of Gerontology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Anat Mirelman
- Center for the Study of Movement, Cognition and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, 6 Weizmann Street, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.,Department of Neurology, Sacker School of Medicine, Tel Aviv, Israel
| | - Jeffery M Hausdorff
- Center for the Study of Movement, Cognition and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, 6 Weizmann Street, Tel Aviv, Israel. .,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel. .,Department of Physical Therapy, Sacker School of Medicine, Tel Aviv, Israel. .,Department of Orthopaedic Surgery, Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA.
| |
Collapse
|
107
|
Ahmadi S, Siragy T, Nantel J. Regularity of kinematic data between single and dual-task treadmill walking in people with Parkinson's disease. J Neuroeng Rehabil 2021; 18:20. [PMID: 33526049 PMCID: PMC7852223 DOI: 10.1186/s12984-021-00807-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 01/11/2021] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Regularity, quantified by sample entropy (SampEn), has been extensively used as a gait stability measure. Yet, there is no consensus on the calculation process and variant approaches, e.g. single-scale SampEn with and without incorporating a time delay greater than one, multiscale SampEn, and complexity index, have been used to calculate the regularity of kinematic or kinetic signals. The aim of the present study was to test the discriminatory performance of the abovementioned approaches during single and dual-task walking in people with Parkinson's disease (PD). METHODS Seventeen individuals with PD were included in this study. Participants completed two walking trials that included single and dual-task conditions. The secondary task was word searching with twelve words randomly appearing in the participants' visual field. Trunk linear acceleration at sternum level, linear acceleration of the center of gravity, and angular velocity of feet, shanks, and thighs, each in three planes of motion were collected. The regularity of signals was computed using approaches mentioned above for single and dual-task conditions. RESULTS Incorporating a time delay greater than one and considering multiple scales helped better distinguish between single and dual-task walking. For all signals, the complexity index, defined as the summary of multiscale SampEn analysis, was the most efficient discriminatory index between single-task walking and dual-tasking in people with Parkinson's disease. Specifically, the complexity index of the trunk linear acceleration of the center of gravity distinguished between the two walking conditions in all three planes of motion. CONCLUSIONS The significant results observed across the 24 signals studied in this study are illustrative examples of the complexity index's potential as a gait feature for classifying different walking conditions.
Collapse
Affiliation(s)
- Samira Ahmadi
- School of Human Kinetics, University of Ottawa, Ottawa, ON, Canada
| | - Tarique Siragy
- School of Human Kinetics, University of Ottawa, Ottawa, ON, Canada
| | - Julie Nantel
- School of Human Kinetics, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
108
|
Shah VV, McNames J, Harker G, Curtze C, Carlson-Kuhta P, Spain RI, El-Gohary M, Mancini M, Horak FB. Does gait bout definition influence the ability to discriminate gait quality between people with and without multiple sclerosis during daily life? Gait Posture 2021; 84:108-113. [PMID: 33302221 PMCID: PMC7946343 DOI: 10.1016/j.gaitpost.2020.11.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 10/21/2020] [Accepted: 11/24/2020] [Indexed: 02/02/2023]
Abstract
BACKGROUND There is currently no consensus about standardized gait bout definitions when passively monitoring walking during normal daily life activities. It is also not known how different definitions of a gait bout in daily life monitoring affects the ability to distinguish pathological gait quality. Specifically, how many seconds of a pause with no walking indicates an end to one gait bout and the start of another bout? In this study, we investigated the effect of 3 gait bout definitions on the discriminative ability to distinguish quality of walking in people with multiple sclerosis (MS) from healthy control subjects (HC) during a week of daily living. METHODS 15 subjects with MS and 16 HC wore instrumented socks on each foot and one Opal sensor over the lower lumbar area for a week of daily activities for at least 8 h/day. Three gait bout definitions were based on the length of the pause between the end of one gait bout and start of another bout (1.25 s, 2.50 s, and 5.0 s pause). Area under the curve (AUC) was used to compare gait quality measures in MS versus HC. RESULTS Total number of gait bouts over the week were statistically significantly different across bout definitions, as expected. However, AUCs of gait quality measures (such as gait speed, stride length, stride time) discriminating people with MS from HC were not different despite the 3 bout definitions. SIGNIFICANCE Quality of gait measures that discriminate MS from HC during daily life are not influenced by the length of a gait bout, despite large differences in quantity of gait across bout definitions. Thus, gait quality measures in people with MS versus controls can be compared across studies using different gait bout definitions with pause lengths ≤5 s.
Collapse
Affiliation(s)
- Vrutangkumar V. Shah
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA,Corresponding author at: Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239-3098, USA. (V.V. Shah)
| | - James McNames
- Department of Electrical and Computer Engineering, Portland State University, Portland, OR, USA,APDM, Inc., Portland, OR, USA
| | - Graham Harker
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| | - Carolin Curtze
- Department of Biomechanics, University of Nebraska at Omaha, Omaha, NE, USA
| | | | - Rebecca I. Spain
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA,Veterans Affairs Portland Health Care System, Portland, OR, USA
| | | | - Martina Mancini
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| | - Fay B. Horak
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA,APDM, Inc., Portland, OR, USA
| |
Collapse
|
109
|
Abasıyanık Z, Kahraman T, Ertekin Ö, Baba C, Özakbaş S. Prevalence and determinants of falls in persons with multiple sclerosis without a clinical disability. Mult Scler Relat Disord 2021; 49:102771. [PMID: 33493789 DOI: 10.1016/j.msard.2021.102771] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/20/2020] [Accepted: 01/14/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Falls are common in persons with Multiple Sclerosis (pwMS) and lead to destructive results, specifically with increasing disability. However, there is only scarce data investigating prevalence and determinants of falls in pwMS without a clinical disability. Therefore, this study aimed to investigate proportion of fallers and related factors in pwMS without a clinical disability. METHODS One hundred and four pwMS with no clinical disability (EDSS≤1.5) were recruited in this cross-sectional study. The outcome measures comprised of the Timed 25-Foot Walk (T25FW), Six Minute Walk Test (6MWT), Timed Up and Go Test (TUG), Multiple Sclerosis Walking Scale (MSWS-12), Single Leg Stance Test (SLS), Activities-Specific Balance Confidence Scale (ABC), Symbol Digit Modalities Test (SDMT), Modified Fatigue Impact Scale (MFIS), and Beck Depression Inventory-II (BDI-II). The number of falls during the last three months was recorded. RESULTS Twenty-five percent of the pwMS reported at least one fall in the last three months. The TUG and MSWS-12 scores were significantly greater in the fallers compared to non-fallers (p<0.05). Whereas the fallers had significantly less ABC scores (p<0.05). Increasing TUG and MSWS-12 score and decreasing ABC score was related with increased risk of being classified as a faller adjusting for EDSS score. CONCLUSION The present findings highlight that falls are frequent problem for pwMS, even if they do not have a clinical disability. Therefore, falls prevention strategies are also required in the early stages of the disease in clinical practice. The ABC scale, MSWS-12, and TUG test can be used by the clinicians and researchers to predict potential fallers of the pwMS without a clinical disability.
Collapse
Affiliation(s)
- Zuhal Abasıyanık
- Graduate School of Health Sciences, Dokuz Eylül University, Izmir, Turkey; Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Izmir Katip Celebi University, Izmir, Turkey.
| | - Turhan Kahraman
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Izmir Katip Celebi University, Izmir, Turkey
| | - Özge Ertekin
- School of Physical Therapy and Rehabilitation, Dokuz Eylül University, Izmir, Turkey
| | - Cavid Baba
- Department of Neurology, Faculty of Medicine, Dokuz Eylül University, Izmir, Turkey
| | - Serkan Özakbaş
- Department of Neurology, Faculty of Medicine, Dokuz Eylül University, Izmir, Turkey
| |
Collapse
|
110
|
Abel B, Bongartz M, Eckert T, Ullrich P, Beurskens R, Mellone S, Bauer JM, Lamb SE, Hauer K. Will We Do If We Can? Habitual Qualitative and Quantitative Physical Activity in Multi-Morbid, Older Persons with Cognitive Impairment. SENSORS 2020; 20:s20247208. [PMID: 33339293 PMCID: PMC7766414 DOI: 10.3390/s20247208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/04/2020] [Accepted: 12/14/2020] [Indexed: 11/16/2022]
Abstract
This study aimed to identify determinants of quantitative dimensions of physical activity (PA; duration, frequency, and intensity) in community-dwelling, multi-morbid, older persons with cognitive impairment (CI). In addition, qualitative and quantitative aspects of habitual PA have been described. Quantitative PA and qualitative gait characteristics while walking straight and while walking turns were documented by a validated, sensor-based activity monitor. Univariate and multiple linear regression analyses were performed to delineate associations of quantitative PA dimensions with qualitative characteristics of gait performance and further potential influencing factors (motor capacity measures, demographic, and health-related parameters). In 94 multi-morbid, older adults (82.3 ± 5.9 years) with CI (Mini-Mental State Examination score: 23.3 ± 2.4), analyses of quantitative and qualitative PA documented highly inactive behavior (89.6% inactivity) and a high incidence of gait deficits, respectively. The multiple regression models (adjusted R2 = 0.395–0.679, all p < 0.001) identified specific qualitative gait characteristics as independent determinants for all quantitative PA dimensions, whereas motor capacity was an independent determinant only for the PA dimension duration. Demographic and health-related parameters were not identified as independent determinants. High associations between innovative, qualitative, and established, quantitative PA performances may suggest gait quality as a potential target to increase quantity of PA in multi-morbid, older persons.
Collapse
Affiliation(s)
- Bastian Abel
- Department of Geriatric Research, AGAPLESION Bethanien Hospital Heidelberg, Geriatric Center at the University of Heidelberg, 69126 Heidelberg, Germany; (B.A.); (M.B.); (T.E.); (P.U.); (R.B.); (J.M.B.)
- Center for Geriatric Medicine, Heidelberg University, 69126 Heidelberg, Germany
| | - Martin Bongartz
- Department of Geriatric Research, AGAPLESION Bethanien Hospital Heidelberg, Geriatric Center at the University of Heidelberg, 69126 Heidelberg, Germany; (B.A.); (M.B.); (T.E.); (P.U.); (R.B.); (J.M.B.)
- Network Aging Research (NAR), Heidelberg University, 69115 Heidelberg, Germany
| | - Tobias Eckert
- Department of Geriatric Research, AGAPLESION Bethanien Hospital Heidelberg, Geriatric Center at the University of Heidelberg, 69126 Heidelberg, Germany; (B.A.); (M.B.); (T.E.); (P.U.); (R.B.); (J.M.B.)
- Department for Social and Health Sciences in Sport, Institute of Sports and Sports Science, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Phoebe Ullrich
- Department of Geriatric Research, AGAPLESION Bethanien Hospital Heidelberg, Geriatric Center at the University of Heidelberg, 69126 Heidelberg, Germany; (B.A.); (M.B.); (T.E.); (P.U.); (R.B.); (J.M.B.)
| | - Rainer Beurskens
- Department of Geriatric Research, AGAPLESION Bethanien Hospital Heidelberg, Geriatric Center at the University of Heidelberg, 69126 Heidelberg, Germany; (B.A.); (M.B.); (T.E.); (P.U.); (R.B.); (J.M.B.)
- Department of Health and Social Affairs, FHM Bielefeld, University of Applied Sciences, 33602 Bielefeld, Germany
| | - Sabato Mellone
- Department of Electrical, Electronic, and Information Engineering, University of Bologna, 40136 Bologna, Italy;
| | - Jürgen M. Bauer
- Department of Geriatric Research, AGAPLESION Bethanien Hospital Heidelberg, Geriatric Center at the University of Heidelberg, 69126 Heidelberg, Germany; (B.A.); (M.B.); (T.E.); (P.U.); (R.B.); (J.M.B.)
- Center for Geriatric Medicine, Heidelberg University, 69126 Heidelberg, Germany
| | - Sallie E. Lamb
- Institute of Health Research, University of Exeter, South Cloisters, St. Luke’s Campus, Exeter EX1 2LU, UK;
| | - Klaus Hauer
- Department of Geriatric Research, AGAPLESION Bethanien Hospital Heidelberg, Geriatric Center at the University of Heidelberg, 69126 Heidelberg, Germany; (B.A.); (M.B.); (T.E.); (P.U.); (R.B.); (J.M.B.)
- Correspondence: ; Tel.: +49-6221-319-1532
| |
Collapse
|
111
|
Kobsar D, Masood Z, Khan H, Khalil N, Kiwan MY, Ridd S, Tobis M. Wearable Inertial Sensors for Gait Analysis in Adults with Osteoarthritis-A Scoping Review. SENSORS 2020; 20:s20247143. [PMID: 33322187 PMCID: PMC7763184 DOI: 10.3390/s20247143] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/01/2020] [Accepted: 12/09/2020] [Indexed: 12/13/2022]
Abstract
Our objective was to conduct a scoping review which summarizes the growing body of literature using wearable inertial sensors for gait analysis in lower limb osteoarthritis. We searched six databases using predetermined search terms which highlighted the broad areas of inertial sensors, gait, and osteoarthritis. Two authors independently conducted title and abstract reviews, followed by two authors independently completing full-text screenings. Study quality was also assessed by two independent raters and data were extracted by one reviewer in areas such as study design, osteoarthritis sample, protocols, and inertial sensor outcomes. A total of 72 articles were included, which studied the gait of 2159 adults with osteoarthritis (OA) using inertial sensors. The most common location of OA studied was the knee (n = 46), followed by the hip (n = 22), and the ankle (n = 7). The back (n = 41) and the shank (n = 40) were the most common placements for inertial sensors. The three most prevalent biomechanical outcomes studied were: mean spatiotemporal parameters (n = 45), segment or joint angles (n = 33), and linear acceleration magnitudes (n = 22). Our findings demonstrate exceptional growth in this field in the last 5 years. Nevertheless, there remains a need for more longitudinal study designs, patient-specific models, free-living assessments, and a push for "Code Reuse" to maximize the unique capabilities of these devices and ultimately improve how we diagnose and treat this debilitating disease.
Collapse
Affiliation(s)
- Dylan Kobsar
- Department of Kinesiology, Faculty of Science, McMaster University, Hamilton, ON L8S 4L8, Canada; (Z.M.); (H.K.); (N.K.); (M.Y.K.); (M.T.)
- Correspondence:
| | - Zaryan Masood
- Department of Kinesiology, Faculty of Science, McMaster University, Hamilton, ON L8S 4L8, Canada; (Z.M.); (H.K.); (N.K.); (M.Y.K.); (M.T.)
| | - Heba Khan
- Department of Kinesiology, Faculty of Science, McMaster University, Hamilton, ON L8S 4L8, Canada; (Z.M.); (H.K.); (N.K.); (M.Y.K.); (M.T.)
| | - Noha Khalil
- Department of Kinesiology, Faculty of Science, McMaster University, Hamilton, ON L8S 4L8, Canada; (Z.M.); (H.K.); (N.K.); (M.Y.K.); (M.T.)
| | - Marium Yossri Kiwan
- Department of Kinesiology, Faculty of Science, McMaster University, Hamilton, ON L8S 4L8, Canada; (Z.M.); (H.K.); (N.K.); (M.Y.K.); (M.T.)
| | - Sarah Ridd
- Department of Psychology, Neuroscience, and Behaviour, Faculty of Science, McMaster University, Hamilton, ON L8S 4L8, Canada;
| | - Matthew Tobis
- Department of Kinesiology, Faculty of Science, McMaster University, Hamilton, ON L8S 4L8, Canada; (Z.M.); (H.K.); (N.K.); (M.Y.K.); (M.T.)
| |
Collapse
|
112
|
Shah VV, McNames J, Mancini M, Carlson-Kuhta P, Spain RI, Nutt JG, El-Gohary M, Curtze C, Horak FB. Laboratory versus daily life gait characteristics in patients with multiple sclerosis, Parkinson's disease, and matched controls. J Neuroeng Rehabil 2020; 17:159. [PMID: 33261625 PMCID: PMC7708140 DOI: 10.1186/s12984-020-00781-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/25/2020] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND AND PURPOSE Recent findings suggest that a gait assessment at a discrete moment in a clinic or laboratory setting may not reflect functional, everyday mobility. As a step towards better understanding gait during daily life in neurological populations, we compared gait measures that best discriminated people with multiple sclerosis (MS) and people with Parkinson's Disease (PD) from their respective, age-matched, healthy control subjects (MS-Ctl, PD-Ctl) in laboratory tests versus a week of daily life monitoring. METHODS We recruited 15 people with MS (age mean ± SD: 49 ± 10 years), 16 MS-Ctl (45 ± 11 years), 16 people with idiopathic PD (71 ± 5 years), and 15 PD-Ctl (69 ± 7 years). Subjects wore 3 inertial sensors (one each foot and lower back) in the laboratory followed by 7 days during daily life. Mann-Whitney U test and area under the curve (AUC) compared differences between PD and PD-Ctl, and between MS and MS-Ctl in the laboratory and in daily life. RESULTS Participants wore sensors for 60-68 h in daily life. Measures that best discriminated gait characteristics in people with MS and PD from their respective control groups were different between the laboratory gait test and a week of daily life. Specifically, the toe-off angle best discriminated MS versus MS-Ctl in the laboratory (AUC [95% CI] = 0.80 [0.63-0.96]) whereas gait speed in daily life (AUC = 0.84 [0.69-1.00]). In contrast, the lumbar coronal range of motion best discriminated PD versus PD-Ctl in the laboratory (AUC = 0.78 [0.59-0.96]) whereas foot-strike angle in daily life (AUC = 0.84 [0.70-0.98]). AUCs were larger in daily life compared to the laboratory. CONCLUSIONS Larger AUC for daily life gait measures compared to the laboratory gait measures suggest that daily life monitoring may be more sensitive to impairments from neurological disease, but each neurological disease may require different gait outcome measures.
Collapse
Affiliation(s)
- Vrutangkumar V Shah
- Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239-3098, USA.
| | - James McNames
- Department of Electrical and Computer Engineering, Portland State University, Portland, OR, USA
- APDM Wearable Technologies, Portland, OR, USA
| | - Martina Mancini
- Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239-3098, USA
| | - Patricia Carlson-Kuhta
- Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239-3098, USA
| | - Rebecca I Spain
- Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239-3098, USA
- Veterans Affairs Portland Health Care System, Portland, OR, USA
| | - John G Nutt
- Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239-3098, USA
| | | | - Carolin Curtze
- Department of Biomechanics, University of Nebraska At Omaha, Omaha, NE, USA
| | - Fay B Horak
- Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239-3098, USA
- APDM Wearable Technologies, Portland, OR, USA
| |
Collapse
|
113
|
Adamowicz L, Karahanoglu FI, Cicalo C, Zhang H, Demanuele C, Santamaria M, Cai X, Patel S. Assessment of Sit-to-Stand Transfers during Daily Life Using an Accelerometer on the Lower Back. SENSORS (BASEL, SWITZERLAND) 2020; 20:s20226618. [PMID: 33228035 PMCID: PMC7699326 DOI: 10.3390/s20226618] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/10/2020] [Accepted: 11/17/2020] [Indexed: 06/11/2023]
Abstract
The ability to perform sit-to-stand (STS) transfers has a significant impact on the functional mobility of an individual. Wearable technology has the potential to enable the objective, long-term monitoring of STS transfers during daily life. However, despite several recent efforts, most algorithms for detecting STS transfers rely on multiple sensing modalities or device locations and have predominantly been used for assessment during the performance of prescribed tasks in a lab setting. A novel wavelet-based algorithm for detecting STS transfers from data recorded using an accelerometer on the lower back is presented herein. The proposed algorithm is independent of device orientation and was validated on data captured in the lab from younger and older healthy adults as well as in people with Parkinson's disease (PwPD). The algorithm was then used for processing data captured in free-living conditions to assess the ability of multiple features extracted from STS transfers to detect age-related group differences and assess the impact of monitoring duration on the reliability of measurements. The results show that performance of the proposed algorithm was comparable or significantly better than that of a commercially available system (precision: 0.990 vs. 0.868 in healthy adults) and a previously published algorithm (precision: 0.988 vs. 0.643 in persons with Parkinson's disease). Moreover, features extracted from STS transfers at home were able to detect age-related group differences at a higher level of significance compared to data captured in the lab during the performance of prescribed tasks. Finally, simulation results showed that a monitoring duration of 3 days was sufficient to achieve good reliability for measurement of STS features. These results point towards the feasibility of using a single accelerometer on the lower back for detection and assessment of STS transfers during daily life. Future work in different patient populations is needed to evaluate the performance of the proposed algorithm, as well as assess the sensitivity and reliability of the STS features.
Collapse
|
114
|
Maetzler W, Rochester L, Bhidayasiri R, Espay AJ, Sánchez-Ferro A, van Uem JMT. Modernizing Daily Function Assessment in Parkinson's Disease Using Capacity, Perception, and Performance Measures. Mov Disord 2020; 36:76-82. [PMID: 33191498 DOI: 10.1002/mds.28377] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 12/28/2022] Open
Abstract
Many disease symptoms restrict the quality of life of the affected. This usually occurs indirectly, at least in most neurological diseases. Here, impaired daily function is interposed between the symptoms and the reduced quality of life. This is reflected in the International Classification of Function, Disability and Health model published by the World Health Organization in 2001. This correlation between symptom, daily function, and quality of life makes it clear that to evaluate the success of a therapy and develop new therapies, daily function must also be evaluated as accurately as possible. However, daily function is a complex construct and therefore difficult to quantify. To date, daily function has been measured primarily by capacity (clinical assessments) and perception (surveys and patient-reported outcomes) assessment approaches. Now, daily function can be captured in a new dimension, that is, performance, through new digital technologies that can be used in the home environment of patients. This viewpoint discusses the differences and interdependencies of capacity, perception, and performance assessment types using the example of Parkinson's disease. Options regarding how future study protocols should be designed to get the most comprehensive and validated picture of daily function in patients are presented. © 2020 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Walter Maetzler
- Department of Neurology, Kiel University and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Lynn Rochester
- Translational and Clinical Research Institute Campus for Ageing and Vitality, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Roongroj Bhidayasiri
- Department of Medicine, Faculty of Medicine, Chulalongkorn Center of Excellence for Parkinson's Disease & Related Disorders, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Alberto J Espay
- Department of Neurology, Gardner Center for Parkinson's Disease and Movement Disorders, University of Cincinnati, Cincinnati, Ohio, USA
| | | | - Janet M T van Uem
- Department of Neurology, Kiel University and University Hospital Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
115
|
Agathos CP, Ramanoël S, Bécu M, Bernardin D, Habas C, Arleo A. Postural Control While Walking Interferes With Spatial Learning in Older Adults Navigating in a Real Environment. Front Aging Neurosci 2020; 12:588653. [PMID: 33281600 PMCID: PMC7689348 DOI: 10.3389/fnagi.2020.588653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/16/2020] [Indexed: 11/21/2022] Open
Abstract
Cognitive demands for postural control increase with aging and cognitive-motor interference (CMI) exists for a number of walking situations, especially with visuo-spatial cognitive tasks. Such interference also influences spatial learning abilities among older adults; however, this is rarely considered in research on aging in spatial navigation. We posited that visually and physically exploring an unknown environment may be subject to CMI for older adults. We investigated potential indicators of postural control interfering with spatial learning. Given known associations between age-related alterations in gait and brain structure, we also examined potential neuroanatomical correlates of this interference. Fourteen young and 14 older adults had to find an invisible goal in an unfamiliar, real, ecological environment. We measured walking speed, trajectory efficiency (direct route over taken route) and goal fixations (proportion of visual fixations toward the goal area). We calculated the change in walking speed between the first and last trials and adaptation indices for all three variables to quantify their modulation across learning trials. All participants were screened with a battery of visuo-cognitive tests. Eighteen of our participants (10 young, 8 older) also underwent a magnetic resonance imaging (MRI) examination. Older adults reduced their walking speed considerably on the first, compared to the last trial. The adaptation index of walking speed correlated positively with those of trajectory efficiency and goal fixations, indicating a reduction in resource sharing between walking and encoding the environment. The change in walking speed correlated negatively with gray matter volume in superior parietal and occipital regions and the precuneus. We interpret older adults’ change in walking speed as indicative of CMI, similar to dual task costs. This is supported by the correlations between the adaptation indices and between the change in walking speed and gray matter volume in brain regions that are important for navigation, given that they are involved in visual attention, sensory integration and encoding of space. These findings under ecological conditions in a natural spatial learning task question what constitutes dual tasking in older adults and they can lead future research to reconsider the actual cognitive burden of postural control in aging navigation research.
Collapse
Affiliation(s)
| | - Stephen Ramanoël
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France.,University of Côte d'Azur, LAMHESS, Nice, France
| | - Marcia Bécu
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Delphine Bernardin
- Vision Sciences Department, Essilor International R&D, Paris, France.,Essilor Canada Ltd., Montreal, QC, Canada
| | | | - Angelo Arleo
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| |
Collapse
|
116
|
Soulard J, Vaillant J, Balaguier R, Baillet A, Gaudin P, Vuillerme N. Foot-Worn Inertial Sensors Are Reliable to Assess Spatiotemporal Gait Parameters in Axial Spondyloarthritis under Single and Dual Task Walking in Axial Spondyloarthritis. SENSORS (BASEL, SWITZERLAND) 2020; 20:E6453. [PMID: 33198119 PMCID: PMC7697708 DOI: 10.3390/s20226453] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 02/07/2023]
Abstract
The aim of this study was (1) to evaluate the relative and absolute reliability of gait parameters during walking in single- and dual-task conditions in patients with axial spondyloarthritis (axSpA), (2) to evaluate the absolute and relative reliability of dual task effects (DTE) parameters, and (3) to determine the number of trials required to ensure reliable gait assessment, in patients with axSpA. Twenty patients with axSpa performed a 10-m walk test in single- and dual-task conditions, three times for each condition. Spatiotemporal, symmetry, and DTE gait parameters were calculated from foot-worn inertial sensors. The relative reliability (intraclass correlation coefficients-ICC) and absolute reliability (standard error of measurement-SEM and minimum detectable change-MDC) were calculated for these parameters in each condition. Spatiotemporal gait parameters showed good to excellent reliability in both conditions (0.59 < ICC < 0.90). The reliability of symmetry and DTE parameters was low. ICC, SEM, and MDC were better when using the mean of the second and the third trials. Spatiotemporal gait parameters obtained from foot-worn inertial sensors assessed in patients with axSpA in single- and dual-task conditions are reliable. However, symmetry and DTE parameters seem less reliable and need to be interpreted with caution. Finally, better reliability of gait parameters was found when using the mean of the 2nd and the 3rd trials.
Collapse
Affiliation(s)
- Julie Soulard
- University Grenoble Alpes, AGEIS, 38000 Grenoble, France; (J.V.); (R.B.); (N.V.)
- CHU Grenoble Alpes, 38000 Grenoble, France
| | - Jacques Vaillant
- University Grenoble Alpes, AGEIS, 38000 Grenoble, France; (J.V.); (R.B.); (N.V.)
| | - Romain Balaguier
- University Grenoble Alpes, AGEIS, 38000 Grenoble, France; (J.V.); (R.B.); (N.V.)
| | - Athan Baillet
- University Grenoble Alpes, CNRS, CHU Grenoble Alpes, Grenoble INP, TIMC-IMAG UMR5525, 38000 Grenoble, France; (A.B.); (P.G.)
| | - Philippe Gaudin
- University Grenoble Alpes, CNRS, CHU Grenoble Alpes, Grenoble INP, TIMC-IMAG UMR5525, 38000 Grenoble, France; (A.B.); (P.G.)
| | - Nicolas Vuillerme
- University Grenoble Alpes, AGEIS, 38000 Grenoble, France; (J.V.); (R.B.); (N.V.)
- Institut Universitaire de France, 75000 Paris, France
- LabCom Telecom4Health, University Grenoble Alpes & Orange Labs, 38000 Grenoble, France
| |
Collapse
|
117
|
Bayot M, Dujardin K, Dissaux L, Tard C, Defebvre L, Bonnet CT, Allart E, Allali G, Delval A. Can dual-task paradigms predict Falls better than single task? - A systematic literature review. Neurophysiol Clin 2020; 50:401-440. [PMID: 33176988 DOI: 10.1016/j.neucli.2020.10.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/06/2020] [Accepted: 10/06/2020] [Indexed: 11/18/2022] Open
Abstract
With about one third of adults aged 65 years and older being reported worldwide to fall each year, and an even higher prevalence with advancing age, aged-related falls and the associated disabilities and mortality are a major public health concern. In this context, identification of fall risk in healthy older adults is a key component of fall prevention. Since dual-task outcomes rely on the interaction between cognition and motor control, some studies have demonstrated the role of dual-task walking performance or costs in predicting future fallers. However, based on previous reviews on the topic, (1) discriminative and (2) predictive powers of dual tasks involving gait and a concurrent task are still a matter of debate, as is (3) their superiority over single tasks in terms of fall-risk prediction. Moreover, less attention has been paid to dual tasks involving postural control and transfers (such as gait initiation and turns) as motor tasks. In the present paper, we therefore systematically reviewed recent literature over the last 7 years in order to answer the three above mentioned questions regarding the future of lab-based dual tasks (involving posture, gait initiation, gait and turning) as easily applicable tests for identifying healthy older adult fallers. Despite great heterogeneity among included studies, we emphasized, among other things, the promising added value of dual tasks including turns and other transfers, such as in the Timed Up and Go test, for prediction of falls. Further investigation of these is thus warranted.
Collapse
Affiliation(s)
- Madli Bayot
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Department of Clinical Neurophysiology, F-59000 Lille, France
| | - Kathy Dujardin
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Department of Neurology and Movement Disorders, F-59000 Lille, France
| | - Lucile Dissaux
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Department of Clinical Neurophysiology, F-59000 Lille, France
| | - Céline Tard
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Department of Neurology and Movement Disorders, F-59000 Lille, France
| | - Luc Defebvre
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Department of Neurology and Movement Disorders, F-59000 Lille, France
| | - Cédrick T Bonnet
- Univ. Lille, UMR 9193 - SCALab - Sciences Cognitives et Sciences Affectives, CNRS UMR 9193, F-59000 Lille, France
| | - Etienne Allart
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Neurorehabilitation Unit, F-59000 Lille, France
| | - Gilles Allali
- Department of Neurology, Geneva University Hospitals and University of Geneva, Geneva 1211, Switzerland, Department of Neurology, Division of Cognitive and Motor Aging, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY, US
| | - Arnaud Delval
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Department of Clinical Neurophysiology, F-59000 Lille, France.
| |
Collapse
|
118
|
Jung SH, Hasegawa N, Mancini M, King LA, Carlson-Kuhta P, Smulders K, Peterson DS, Barlow N, Harker G, Morris R, Lapidus J, Nutt JG, Horak FB. Effects of the agility boot camp with cognitive challenge (ABC-C) exercise program for Parkinson’s disease. NPJ PARKINSONS DISEASE 2020; 6:31. [PMID: 33298934 PMCID: PMC7608677 DOI: 10.1038/s41531-020-00132-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 09/10/2020] [Indexed: 01/03/2023]
Abstract
Few exercise interventions practice both gait and balance tasks with cognitive tasks to improve functional mobility in people with PD. We aimed to investigate whether the Agility Boot Camp with Cognitive Challenge (ABC-C), that simultaneously targets both mobility and cognitive function, improves dynamic balance and dual-task gait in individuals with Parkinson’s disease (PD). We used a cross-over, single-blind, randomized controlled trial to determine efficacy of the exercise intervention. Eighty-six people with idiopathic PD were randomized into either an exercise (ABC-C)-first or an active, placebo, education-first intervention and then crossed over to the other intervention. Both interventions were carried out in small groups led by a certified exercise trainer (90-min sessions, 3 times a week, for 6 weeks). Outcome measures were assessed Off levodopa at baseline and after the first and second interventions. A linear mixed-effects model tested the treatment effects on the Mini-BESTest for balance, dual-task cost on gait speed, SCOPA-COG, the UPDRS Parts II and III and the PDQ-39. Although no significant treatment effects were observed for the Mini-BESTest, SCOPA-COG or MDS-UPDRS Part III, the ABC-C intervention significantly improved the following outcomes: anticipatory postural adjustment sub-score of the Mini-BESTest (p = 0.004), dual-task cost on gait speed (p = 0.001), MDS-UPDRS Part II score (p = 0.01), PIGD sub-score of MDS-UPDRS Part III (p = 0.02), and the activities of daily living domain of the PDQ-39 (p = 0.003). Participants with more severe motor impairment or more severe cognitive dysfunction improved their total Mini-BESTest scores after exercise. The ABC-C exercise intervention can improve specific balance deficits, cognitive-gait interference, and perceived functional independence and quality of life, especially in participants with more severe PD, but a longer period of intervention may be required to improve global cognitive and motor function.
Collapse
|
119
|
D'Cruz N, Seuthe J, Ginis P, Hulzinga F, Schlenstedt C, Nieuwboer A. Short-Term Effects of Single-Session Split-Belt Treadmill Training on Dual-Task Performance in Parkinson's Disease and Healthy Elderly. Front Neurol 2020; 11:560084. [PMID: 33101174 PMCID: PMC7554617 DOI: 10.3389/fneur.2020.560084] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 08/19/2020] [Indexed: 12/30/2022] Open
Abstract
Background: Dual-tasking is challenging for people with Parkinson's disease and freezing of gait (PD+FOG) and can exacerbate freezing episodes and falls. Split-belt treadmill training (SBT) is a novel tool to train complex gait and may improve dual-task (DT) walking and turning. Objective: To investigate the single-session effects of SBT on DT walking and DT turning performance in PD+FOG and older adults (OA), compared to regular treadmill training. Methods: Forty-five PD+FOG and 36 OA participated in a single training session (30 min). They were randomized into one of four training groups: (A) SB75—steady belt speed ratio 0.75:1; (B) SB50—steady belt speed ratio 0.5:1; (C) SBCR—changing belt speed ratios between 0.75:1 and 0.5:1; and (D) Tied-Belt (TBT). Over-ground straight-line gait and an alternating turning in place task combined with a cognitive dual-task (DT) (auditory Stroop) were assessed pre- and post-training, and the following day (retention). Constrained longitudinal data analysis was used to investigate the training effects for all participants and for PD+FOG alone. Results: DT gait speed improved at post-training for all groups (p < 0.001). However, SBT (SB50 and SBCR) led to larger post-training improvements compared to TBT, which were still visible at retention (SB50). For mean DT turning speed and Stroop response time while walking, only SBT groups showed significant improvements at post-training or retention. DT stride length, peak DT turning speed, and Stroop performance index while walking also showed larger gains in SBT compared to TBT. Results for PD+FOG alone showed similar effects although with smaller effect sizes. Conclusions: A single session of SBT in PD+FOG and OA showed larger short-term effects on DT walking and turning compared to TBT. Cognitive DT performance was also improved in SBT, likely due to reduced cortical control of gait. These results illustrate the potential for SBT to improve DT during complex gait and possibly reduce fall risk in clinical and healthy populations.
Collapse
Affiliation(s)
- Nicholas D'Cruz
- Neurorehabilitation Research Group, Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Jana Seuthe
- Department of Neurology, University Hospital Schleswig-Holstein, Christian-Albrechts-University (CAU) Kiel, Kiel, Germany
| | - Pieter Ginis
- Neurorehabilitation Research Group, Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Femke Hulzinga
- Neurorehabilitation Research Group, Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Christian Schlenstedt
- Department of Neurology, University Hospital Schleswig-Holstein, Christian-Albrechts-University (CAU) Kiel, Kiel, Germany
| | - Alice Nieuwboer
- Neurorehabilitation Research Group, Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
120
|
Shah VV, McNames J, Harker G, Mancini M, Carlson-Kuhta P, Nutt JG, El-Gohary M, Curtze C, Horak FB. Effect of Bout Length on Gait Measures in People with and without Parkinson's Disease during Daily Life. SENSORS (BASEL, SWITZERLAND) 2020; 20:E5769. [PMID: 33053703 PMCID: PMC7601493 DOI: 10.3390/s20205769] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/30/2020] [Accepted: 10/09/2020] [Indexed: 01/06/2023]
Abstract
Although the use of wearable technology to characterize gait disorders in daily life is increasing, there is no consensus on which specific gait bout length should be used to characterize gait. Clinical trialists using daily life gait quality as study outcomes need to understand how gait bout length affects the sensitivity and specificity of measures to discriminate pathological gait as well as the reliability of gait measures across gait bout lengths. We investigated whether Parkinson's disease (PD) affects how gait characteristics change as bout length changes, and how gait bout length affects the reliability and discriminative ability of gait measures to identify gait impairments in people with PD compared to neurotypical Old Adults (OA). We recruited 29 people with PD and 20 neurotypical OA of similar age for this study. Subjects wore 3 inertial sensors, one on each foot and one over the lumbar spine all day, for 7 days. To investigate which gait bout lengths should be included to extract gait measures, we determined the range of gait bout lengths available across all subjects. To investigate if the effect of bout length on each gait measure is similar or not between subjects with PD and OA, we used a growth curve analysis. For reliability and discriminative ability of each gait measure as a function of gait bout length, we used the intraclass correlation coefficient (ICC) and area under the curve (AUC), respectively. Ninety percent of subjects walked with a bout length of less than 53 strides during the week, and the majority (>50%) of gait bouts consisted of less than 12 strides. Although bout length affected all gait measures, the effects depended on the specific measure and sometimes differed for PD versus OA. Specifically, people with PD did not increase/decrease cadence and swing duration with bout length in the same way as OA. ICC and AUC characteristics tended to be larger for shorter than longer gait bouts. Our findings suggest that PD interferes with the scaling of cadence and swing duration with gait bout length. Whereas control subjects gradually increased cadence and decreased swing duration as bout length increased, participants with PD started with higher than normal cadence and shorter than normal stride duration for the smallest bouts, and cadence and stride duration changed little as bout length increased, so differences between PD and OA disappeared for the longer bout lengths. Gait measures extracted from shorter bouts are more common, more reliable, and more discriminative, suggesting that shorter gait bouts should be used to extract potential digital biomarkers for people with PD.
Collapse
Affiliation(s)
- Vrutangkumar V. Shah
- Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA; (G.H.); (M.M.); (P.C.-K.); (J.G.N.); (F.B.H.)
| | - James McNames
- Department of Electrical and Computer Engineering, Portland State University, Portland, OR 97207, USA;
| | - Graham Harker
- Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA; (G.H.); (M.M.); (P.C.-K.); (J.G.N.); (F.B.H.)
| | - Martina Mancini
- Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA; (G.H.); (M.M.); (P.C.-K.); (J.G.N.); (F.B.H.)
| | - Patricia Carlson-Kuhta
- Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA; (G.H.); (M.M.); (P.C.-K.); (J.G.N.); (F.B.H.)
| | - John G. Nutt
- Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA; (G.H.); (M.M.); (P.C.-K.); (J.G.N.); (F.B.H.)
| | | | - Carolin Curtze
- Department of Biomechanics, University of Nebraska at Omaha, Omaha, NE 68182, USA;
| | - Fay B. Horak
- Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA; (G.H.); (M.M.); (P.C.-K.); (J.G.N.); (F.B.H.)
| |
Collapse
|
121
|
Toepfer M, Padilla A, Ponto K, Mason AH, Pickett KA. The Effects of Systematic Environmental Manipulation on Gait of Older Adults. Healthcare (Basel) 2020; 8:healthcare8040386. [PMID: 33036233 PMCID: PMC7712942 DOI: 10.3390/healthcare8040386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/02/2020] [Accepted: 10/04/2020] [Indexed: 11/25/2022] Open
Abstract
Quantification of gait changes in response to altered environmental stimuli may allow for improved understanding of the mechanisms that influence gait changes and fall occurrence in older adults. This study explored how systematic manipulation of a single dimension of one’s environment affects spatiotemporal gait parameters. A total of 20 older adult participants walked at a self-selected pace in a constructed research hallway featuring a mobile wall, which allowed manipulation of the hallway width between three conditions: 1.14 m, 1.31 m, and 1.48 m. Spatiotemporal data from participants’ walks were captured using an instrumented GAITRite mat. A repeated measures ANOVA revealed older adults spent significantly more time in double support in the narrowest hallway width compared to the widest, but did not significantly alter other spatiotemporal measures. Small-scale manipulations of a single dimension of the environment led to subtle, yet in some cases significant changes in gait, suggesting that small or even imperceptible environmental changes may contribute to altered gait patterns for older adults.
Collapse
Affiliation(s)
- Max Toepfer
- Program in Occupational Therapy, University of Wisconsin-Madison, Madison, WI 53750, USA;
- Department of Kinesiology, University of Wisconsin-Madison, Madison, WI 53750, USA; (A.P.); (A.H.M.)
| | - Alejandra Padilla
- Department of Kinesiology, University of Wisconsin-Madison, Madison, WI 53750, USA; (A.P.); (A.H.M.)
| | - Kevin Ponto
- Department of Design Studies, School of Human Ecology, University of Wisconsin-Madison, Madison, WI 53750, USA;
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53750, USA
| | - Andrea H Mason
- Department of Kinesiology, University of Wisconsin-Madison, Madison, WI 53750, USA; (A.P.); (A.H.M.)
| | - Kristen A Pickett
- Program in Occupational Therapy, University of Wisconsin-Madison, Madison, WI 53750, USA;
- Department of Kinesiology, University of Wisconsin-Madison, Madison, WI 53750, USA; (A.P.); (A.H.M.)
- Correspondence: ; Tel.: +1-608-890-2103
| |
Collapse
|
122
|
Czech MD, Psaltos D, Zhang H, Adamusiak T, Calicchio M, Kelekar A, Messere A, Van Dijk KRA, Ramos V, Demanuele C, Cai X, Santamaria M, Patel S, Karahanoglu FI. Age and environment-related differences in gait in healthy adults using wearables. NPJ Digit Med 2020; 3:127. [PMID: 33083562 PMCID: PMC7528045 DOI: 10.1038/s41746-020-00334-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/31/2020] [Indexed: 11/13/2022] Open
Abstract
Technological advances in multimodal wearable and connected devices have enabled the measurement of human movement and physiology in naturalistic settings. The ability to collect continuous activity monitoring data with digital devices in real-world environments has opened unprecedented opportunity to establish clinical digital phenotypes across diseases. Many traditional assessments of physical function utilized in clinical trials are limited because they are episodic, therefore, cannot capture the day-to-day temporal fluctuations and longitudinal changes in activity that individuals experience. In order to understand the sensitivity of gait speed as a potential endpoint for clinical trials, we investigated the use of digital devices during traditional clinical assessments and in real-world environments in a group of healthy younger (n = 33, 18-40 years) and older (n = 32, 65-85 years) adults. We observed good agreement between gait speed estimated using a lumbar-mounted accelerometer and gold standard system during the performance of traditional gait assessment task in-lab, and saw discrepancies between in-lab and at-home gait speed. We found that gait speed estimated in-lab, with or without digital devices, failed to differentiate between the age groups, whereas gait speed derived during at-home monitoring was able to distinguish the age groups. Furthermore, we found that only three days of at-home monitoring was sufficient to reliably estimate gait speed in our population, and still capture age-related group differences. Our results suggest that gait speed derived from activities during daily life using data from wearable devices may have the potential to transform clinical trials by non-invasively and unobtrusively providing a more objective and naturalistic measure of functional ability.
Collapse
Affiliation(s)
- Matthew D. Czech
- Early Clinical Development, Pfizer, Inc., Cambridge, 02139 MA USA
| | | | - Hao Zhang
- Early Clinical Development, Pfizer, Inc., Cambridge, 02139 MA USA
| | - Tomasz Adamusiak
- Early Clinical Development, Pfizer, Inc., Cambridge, 02139 MA USA
| | - Monica Calicchio
- Early Clinical Development, Pfizer, Inc., Cambridge, 02139 MA USA
| | - Amey Kelekar
- Early Clinical Development, Pfizer, Inc., Cambridge, 02139 MA USA
| | - Andrew Messere
- Early Clinical Development, Pfizer, Inc., Cambridge, 02139 MA USA
| | | | - Vesper Ramos
- Early Clinical Development, Pfizer, Inc., Cambridge, 02139 MA USA
| | | | - Xuemei Cai
- Early Clinical Development, Pfizer, Inc., Cambridge, 02139 MA USA
| | - Mar Santamaria
- Early Clinical Development, Pfizer, Inc., Cambridge, 02139 MA USA
| | - Shyamal Patel
- Early Clinical Development, Pfizer, Inc., Cambridge, 02139 MA USA
| | | |
Collapse
|
123
|
Freiberger E, Sieber CC, Kob R. Mobility in Older Community-Dwelling Persons: A Narrative Review. Front Physiol 2020; 11:881. [PMID: 33041836 PMCID: PMC7522521 DOI: 10.3389/fphys.2020.00881] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 06/29/2020] [Indexed: 12/21/2022] Open
Abstract
Due to the demographic changes and the increasing awareness of the role of physical function, mobility in older age is becoming an important topic. Mobility limitations have been reported as increasingly prevalent in older persons affecting about 35% of persons aged 70 and the majority of persons over 85 years. Mobility limitations have been associated with increased fall risk, hospitalization, a decreased quality of life, and even mortality. As concepts of mobility are multifactorial and complex, in this narrative review, definitions, physical factors, and their age-related changes associated with mobility will be presented. Also, areas of cognitive decline and their impact on mobility, as well as neuromuscular factors related to mobility will be addressed. Another section will relate psychological factors such as Fall-related psychological concerns and sedentary behavior to mobility. Assessment of mobility as well as effective exercise interventions are only shortly addressed. In the last part, gaps and future work on mobility in older persons are discussed.
Collapse
Affiliation(s)
- Ellen Freiberger
- Institute for Biomedicine of Aging, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nürnberg, Germany
| | - Cornel Christian Sieber
- Institute for Biomedicine of Aging, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nürnberg, Germany
| | - Robert Kob
- Institute for Biomedicine of Aging, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nürnberg, Germany
| |
Collapse
|
124
|
Gaßner H, Sanders P, Dietrich A, Marxreiter F, Eskofier BM, Winkler J, Klucken J. Clinical Relevance of Standardized Mobile Gait Tests. Reliability Analysis Between Gait Recordings at Hospital and Home in Parkinson's Disease: A Pilot Study. JOURNAL OF PARKINSONS DISEASE 2020; 10:1763-1773. [PMID: 32925099 DOI: 10.3233/jpd-202129] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND Gait impairments in Parkinson's disease (PD) are quantified using inertial sensors under standardized test settings in the hospital. Recent studies focused on the assessment of free-living gait in PD. However, the clinical relevance of standardized gait tests recorded at the patient's home is unclear. OBJECTIVE To evaluate the reliability of supervised, standardized sensor-based gait outcomes at home compared to the hospital. METHODS Patients with PD (n = 20) were rated by a trained investigator using the Unified Parkinson Disease Rating Scale (UPDRS-III). Gait tests included a standardized 4×10 m walk test and the Timed Up and Go Test (TUG). Tests were performed in the hospital (HOSPITAL) and at patients' home (HOME), and controlled for investigator, time of the day, and medication. Statistics included reliability analysis using Intra-Class correlations and Bland-Altman plots. RESULTS UPDRS-III and TUG were comparable between HOSPITAL and HOME. PD patients' gait at HOME was slower (gait velocity Δ= -0.07±0.11 m/s, -6.1%), strides were shorter (stride length Δ= -9.2±9.4 cm; -7.3%), and shuffling of gait was more present (maximum toe-clearance Δ= -0.7±2.5 cm; -8.8%). Particularly, narrow walkways (<85 cm) resulted in a significant reduction of gait velocity at home. Reliability analysis (HOSPITAL vs. HOME) revealed excellent ICC coefficients for UPDRS-III (0.950, p < 0.000) and gait parameters (e.g., stride length: 0.898, p < 0.000; gait velocity: 0.914, p < 0.000; stance time: 0.922, p < 0.000; stride time: 0.907, p < 0.000). CONCLUSION This pilot study underlined the clinical relevance of gait parameters by showing excellent reliability for supervised, standardized gait tests at HOSPITAL and HOME, even though gait parameters were different between test conditions.
Collapse
Affiliation(s)
- Heiko Gaßner
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Philipp Sanders
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Alisa Dietrich
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Franz Marxreiter
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Bjoern M Eskofier
- Machine Learning and Data Analytics Lab, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Jürgen Winkler
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Jochen Klucken
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany.,Medical Valley - Digital Health Application Center GmbH, Bamberg, Germany.,Fraunhofer Institute for Integrated Circuits IIS, Erlangen, Germany
| |
Collapse
|
125
|
Dagan M, Herman T, Bernad-Elazari H, Gazit E, Maidan I, Giladi N, Mirelman A, Manor B, Hausdorff JM. Dopaminergic therapy and prefrontal activation during walking in individuals with Parkinson's disease: does the levodopa overdose hypothesis extend to gait? J Neurol 2020; 268:658-668. [PMID: 32902733 DOI: 10.1007/s00415-020-10089-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 11/24/2022]
Abstract
The "levodopa-overdose hypothesis" posits that dopaminergic replacement therapy (1) increases performance on tasks that depend on the nigrostriatal-pathway (e.g., motor-control circuits), yet (2) decreases performance on tasks that depend upon the mesocorticolimbic-pathway (e.g., prefrontal cortex, PFC). Previous work in Parkinson's disease (PD) investigated this model while focusing on cognitive function. Here, we evaluated whether this model applies to gait in patients with PD and freezing of gait (FOG). Forty participants were examined in both the OFF anti-Parkinsonian medication state (hypo-dopaminergic) and ON state (hyper-dopaminergic) while walking with and without the concurrent performance of a serial subtraction task. Wireless functional near-infrared spectroscopy measured PFC activation during walking. Consistent with the "overdose-hypothesis", performance on the subtraction task decreased (p = 0.027) after dopamine intake. Moreover, the effect of walking condition on PFC activation depended on the dopaminergic state (i.e., interaction effect p = 0.001). Gait significantly improved after levodopa administration (p < 0.001). Nonetheless, PFC activation was higher (p = 0.013) in this state than in the OFF state during usual-walking. This increase in PFC activation in the ON state suggests that dopamine treatment interfered with PFC functioning. Otherwise, PFC activation, putatively a reflection of cognitive compensation, should have decreased. Moreover, in contrast to the OFF state, in the ON state, PFC activation failed to increase (p = 0.313) during dual-tasking, perhaps due to a "ceiling effect". These findings extend the "levodopa-overdose hypothesis" and suggest that it also applies to gait in PD patients. While dopaminergic therapy improves certain aspects of motor performance, optimal treatment should consider the "double-edged sword" of levodopa.
Collapse
Affiliation(s)
- Moria Dagan
- Center for the Study of Movement, Cognition and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Talia Herman
- Center for the Study of Movement, Cognition and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Hagar Bernad-Elazari
- Center for the Study of Movement, Cognition and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Eran Gazit
- Center for the Study of Movement, Cognition and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Inbal Maidan
- Center for the Study of Movement, Cognition and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.,Department of Neurology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nir Giladi
- Center for the Study of Movement, Cognition and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.,Department of Neurology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Anat Mirelman
- Center for the Study of Movement, Cognition and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.,Department of Neurology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Brad Manor
- Harvard Medical School, Boston, MA, USA.,Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Roslindale, MA, USA
| | - Jeffrey M Hausdorff
- Center for the Study of Movement, Cognition and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel. .,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel. .,Department of Physical Therapy, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel. .,Department of Orthopedic Surgery, Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA.
| |
Collapse
|
126
|
Fadillioglu C, Stetter BJ, Ringhof S, Krafft FC, Sell S, Stein T. Automated gait event detection for a variety of locomotion tasks using a novel gyroscope-based algorithm. Gait Posture 2020; 81:102-108. [PMID: 32707401 DOI: 10.1016/j.gaitpost.2020.06.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 06/09/2020] [Accepted: 06/14/2020] [Indexed: 02/02/2023]
Abstract
BACKGROUND The robust identification of initial contact (IC) and toe-off (TO) events is a vital task in mobile sensor-based gait analysis. Shank attached gyroscopes in combination with suitable algorithms for data processing can robustly and accurately complete this task for gait event detection. However, little research has considered gait detection algorithms that are applicable to different locomotion tasks. RESEARCH QUESTION Does a gait event detection algorithm for various locomotion tasks provide comparable estimation accuracies as existing task-specific algorithms? METHODS Thirteen males, equipped with a gyroscope attached to the right shank, volunteered to perform nine different locomotion tasks consisting of linear movements and movements with a change of direction. A rule-based algorithm for IC and TO events was developed based on the shank sagittal plane angular velocity. The algorithm was evaluated against events determined by vertical ground reaction force. Absolute mean error (AME), relative absolute mean error (RAME) and Bland-Altman analysis was used to assess its accuracy. RESULTS The average AME and RAME were 11 ± 3 ms and 3.07 ± 1.33 %, respectively, for IC and 29 ± 11 ms and 7.27 ± 2.92 %, respectively, for TO. Alterations of the walking movement, such as turns and types of running, slightly reduced the accuracy of IC and TO detection. In comparison to previous methods, increased or comparable accuracies for both IC and TO detection are shown. SIGNIFICANCE The study shows that the proposed algorithm is capable of detecting gait events for a variety of locomotion tasks by means of a single gyroscope located on the shank. In consequence, the algorithm can be applied to activities, which consist of various movements (e.g., soccer). Ultimately, this extends the use of mobile sensor-based gait analysis.
Collapse
Affiliation(s)
- Cagla Fadillioglu
- Institute of Sports and Sports Science, Karlsruhe Institute of Technology, Engler-Bunte-Ring 15, 76131 Karlsruhe, Germany
| | - Bernd J Stetter
- Institute of Sports and Sports Science, Karlsruhe Institute of Technology, Engler-Bunte-Ring 15, 76131 Karlsruhe, Germany.
| | - Steffen Ringhof
- Institute of Sports and Sports Science, Karlsruhe Institute of Technology, Engler-Bunte-Ring 15, 76131 Karlsruhe, Germany; Department of Sport and Sport Science, University of Freiburg, Schwarzwaldstr. 175, 79117 Freiburg, Germany
| | - Frieder C Krafft
- Institute of Sports and Sports Science, Karlsruhe Institute of Technology, Engler-Bunte-Ring 15, 76131 Karlsruhe, Germany
| | - Stefan Sell
- Institute of Sports and Sports Science, Karlsruhe Institute of Technology, Engler-Bunte-Ring 15, 76131 Karlsruhe, Germany; Joint Center Black Forest, Hospital Neuenbuerg, 75305 Neuenbuerg, Germany
| | - Thorsten Stein
- Institute of Sports and Sports Science, Karlsruhe Institute of Technology, Engler-Bunte-Ring 15, 76131 Karlsruhe, Germany
| |
Collapse
|
127
|
Virtual reality in research and rehabilitation of gait and balance in Parkinson disease. Nat Rev Neurol 2020; 16:409-425. [DOI: 10.1038/s41582-020-0370-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2020] [Indexed: 02/06/2023]
|
128
|
Perring J, Mobbs R, Betteridge C. Analysis of Patterns of Gait Deterioration in Patients with Lumbar Spinal Stenosis. World Neurosurg 2020; 141:e55-e59. [PMID: 32387784 DOI: 10.1016/j.wneu.2020.04.146] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 04/16/2020] [Accepted: 04/18/2020] [Indexed: 10/24/2022]
Abstract
OBJECTIVE Quantitative gait analysis has been established as a valuable tool for functional assessment and evaluation of intervention efficacy in lumbar spinal stenosis (LSS). We aimed to bolster the limited evidence on the specific aspects of gait that are altered in LSS. METHODS Fifteen patients with LSS and 15 healthy subjects performed a 30-m-long walk. Gait was assessed by video recording. Four spatiotemporal parameters were compared between groups: cadence, gait velocity, step length, and step duration. RESULTS Compared with healthy subjects, gait of patients with LSS demonstrated significant differences for all spatiotemporal parameters. Differences in mean cadence, step length, gait velocity, and step duration were -14%, -24%, -37%, and +16% between patients with LSS and healthy subjects. CONCLUSIONS This study demonstrated significant alterations in clinically measurable gait parameters in patients with LSS compared with healthy subjects. Future studies should assess the value of these gait parameters for objective clinical assessment of functional status and intervention efficacy through correlation with currently used subjective tools and comparison at preoperative and postoperative time points. Specific gait alterations identified in patients with LSS may be valuable for clinical objective assessment of functional status and intervention efficacy.
Collapse
Affiliation(s)
- Jordan Perring
- Department of Spinal Surgery, NeuroSpine Surgery Research Group, Sydney, Australia; Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Ralph Mobbs
- Department of Spinal Surgery, NeuroSpine Surgery Research Group, Sydney, Australia; Faculty of Medicine, University of New South Wales, Sydney, Australia; Department of Neurosurgery, Prince of Wales Hospital, Sydney, Australia; Prince of Wales Private Hospital, NeuroSpineClinic, Sydney, Australia
| | - Callum Betteridge
- Department of Spinal Surgery, NeuroSpine Surgery Research Group, Sydney, Australia; Faculty of Medicine, University of New South Wales, Sydney, Australia.
| |
Collapse
|
129
|
Kim J, Colabianchi N, Wensman J, Gates DH. Wearable Sensors Quantify Mobility in People With Lower Limb Amputation During Daily Life. IEEE Trans Neural Syst Rehabil Eng 2020; 28:1282-1291. [PMID: 32356753 DOI: 10.1109/tnsre.2020.2990824] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
It is necessary to effectively assess functional mobility for appropriate prosthetic prescription and post-amputation rehabilitation. As part of this process, patients' ability for variable cadence and community ambulation are assessed in-clinic, often through visual assessments and without objective standards. The purpose of this study was to explore the clinical viability of using wearable sensors to characterize the functional mobility of people with lower limb amputation. We collected inertial measurement unit (IMU) and global positioning system (GPS) data over two weeks, from 17 individuals with lower limb amputation and 14 healthy non-amputee controls. We calculated stride-by-stride cadence, walking speed and stride lengths, along with whether they occurred in or out of the home. Self-selected walking speed was also assessed in the lab. Compared to the lab, both groups walked slower and with a lower cadence during their daily lives. There were no differences in cadence variability between groups or between strides taken in and out of the home. Both groups walked faster and with greater stride lengths away from the homes. The results suggest that functional capacity measured in the lab was not necessarily reflected in routine walking during daily life. The walking measures derived in this approach can be used to aid in the prosthetic prescription process or in the assessment of different interventions.
Collapse
|
130
|
Siragy T, Nantel J. Absent Arm Swing and Dual Tasking Decreases Trunk Postural Control and Dynamic Balance in People With Parkinson's Disease. Front Neurol 2020; 11:213. [PMID: 32362863 PMCID: PMC7180219 DOI: 10.3389/fneur.2020.00213] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/09/2020] [Indexed: 11/29/2022] Open
Abstract
Introduction: Falling during walking is a common occurrence in people with Parkinson's disease and is closely associated with severe social and medical consequences. Recent evidence demonstrates that arm swing affects dynamic balance in healthy young adults; however, it remains unexamined what its effect is in people with Parkinson's disease, particularly when combined with a secondary dual task. Methods: Twenty people with Parkinson's disease (63.78 ± 8.97) walked with two arm swing conditions (absent and normal) with and without a secondary dual task. Data were collected on a split-belt treadmill CAREN Extended-System (Motek Medical, Amsterdam, NL). Average and standard deviations for trunk linear and angular velocity were calculated along with their instantaneous values (during foot strikes) in all three axes. Averages and coefficient of variations for step length, time, and width; margin of stability; and harmonic ratios were also calculated. Results: Compared with normal arm swing, absent arm swing reduced the least affected leg's average step length and increased its step length coefficient of variation while increasing step time coefficient of variation in the most affected leg. Further, absent arm swing reduced trunk anteroposterior instantaneous angular velocity (least affected leg) and reduced anteroposterior instantaneous linear velocity (bilaterally). For the vertical axis, absent arm swing increased the trunk's average angular velocity but reduced its instantaneous linear velocity and angular velocity standard deviation (least affected leg). Additionally, the margin of stability increased when the arms were absent (least affected leg). Alternatively, dual tasking reduced average step time (most affected leg) and increased the step width coefficient of variation (bilaterally). Additionally, dual tasking increased the mediolateral average angular velocity, instantaneous linear velocity standard deviation (bilaterally), and instantaneous angular velocity standard deviation (least affected leg). For the vertical axis, dual tasking increased average linear and angular velocity standard deviation as well as instantaneous angular velocity standard deviation (bilaterally). Conclusion: Findings suggest that participants attempted to control extraneous trunk movement (due to absent arm swing) through compensatory responses in both lower and upper extremities. However, participants appeared to predominately compensate on their least affected side. Contrastingly, modifying mediolateral foot placement appeared to be the main means of maintaining walking stability while dual tasking.
Collapse
Affiliation(s)
- Tarique Siragy
- School of Human Kinetics, University of Ottawa, Ottawa, ON, Canada
| | - Julie Nantel
- School of Human Kinetics, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
131
|
Shah VV, McNames J, Mancini M, Carlson-Kuhta P, Spain RI, Nutt JG, El-Gohary M, Curtze C, Horak FB. Quantity and quality of gait and turning in people with multiple sclerosis, Parkinson's disease and matched controls during daily living. J Neurol 2020; 267:1188-1196. [PMID: 31927614 PMCID: PMC7294824 DOI: 10.1007/s00415-020-09696-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/31/2019] [Accepted: 01/03/2020] [Indexed: 12/12/2022]
Abstract
Clinical trials need to specify which specific gait characteristics to monitor as mobility measures for each neurological disorder. As a first step, this study aimed to investigate a set of measures from daily-life monitoring that best discriminate mobility between people with multiple sclerosis (MS) and age-matched healthy control subjects (MS-Ctl) and between people with Parkinson's disease (PD) and age-matched healthy control subjects (PD-Ctl). Further, we investigated how these discriminative measures relate to the disease severity of MS or PD. We recruited 13 people with MS, 21 MS-Ctl, 29 people with idiopathic PD, and 20 PD-Ctl. Subjects wore 3 inertial sensors on their feet and the lumbar back for a week. The Area Under Curves (AUC) from the receiver operator characteristic (ROC) plot was calculated for each measure to determine the objective measures that best separated the MS and PD groups from their respective control cohorts. Adherence wearing the sensors was similar among groups for 58-66 h of recording (p = 0.14). Quantity of mobility (activity measures, such as a median number of strides per gait bout, AUC = 0.93) best discriminated mobility impairments in MS from MS-Ctl. In contrast, quality of mobility (such as turn angle, AUC = 0.90) best discriminated mobility impairments in PD from PD-Ctl. Mobility measures with AUC > 0.80 were correlated with MS and PD clinical scores of disease severity. Thus, measures characterizing mobility impairments differ for MS versus PD during daily life suggesting that mobility measures for clinical trials and clinical practice need to be specific to each neurological disorder.
Collapse
Affiliation(s)
- Vrutangkumar V Shah
- Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239-3098, USA.
| | - James McNames
- Department of Electrical and Computer Engineering, Portland State University, Portland, OR, USA
- APDM, Inc., Portland, OR, USA
| | - Martina Mancini
- Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239-3098, USA
| | - Patricia Carlson-Kuhta
- Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239-3098, USA
| | - Rebecca I Spain
- Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239-3098, USA
- Veterans Affairs Portland Health Care System, Portland, OR, USA
| | - John G Nutt
- Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239-3098, USA
| | | | - Carolin Curtze
- Department of Biomechanics, University of Nebraska at Omaha, Omaha, NE, USA
| | - Fay B Horak
- Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239-3098, USA
- APDM, Inc., Portland, OR, USA
| |
Collapse
|
132
|
Amaral-Felipe KMD, Yamada PDA, Abreu DCCD, Freire Júnior RC, Stroppa-Marques AEZ, Faganello-Navega FR. Kinematic gait parameters for older adults with Parkinson's disease during street crossing simulation. Hum Mov Sci 2020; 70:102599. [PMID: 32217200 DOI: 10.1016/j.humov.2020.102599] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 02/14/2020] [Accepted: 02/27/2020] [Indexed: 12/11/2022]
Abstract
Safe street crossing is important for older adults' social inclusion. We assessed gait kinematic adaptation under different simulated street crossing conditions in older adults with Parkinson's disease (PD) and made comparisons with older adults without PD to understand how PD interferes in outdoor task performance, helping in the development of strategies to reduce road traffic accident risk. In 20 older adults without PD (control group - CG) and 20 with PD (GPD), we assessed usual gait (C1), gait during street crossing simulation (C2), and gait during reduced-time street crossing simulation (C3). Velocity, step length, and step, swing, stance, and double support time were analyzed. Spatiotemporal differences in gait between groups and conditions were analyzed. The GPD walked 16% slower in C1 and 12% slower in C2 and C3 than the CG. GPD also took 11% shorter steps in C1 and 9.5% shorter steps in C2. The double support time was 8.5% greater in C1. In intragroup comparisons, there were significant differences in all gait conditions. The CG showed increased velocity (C2 15% > C1; C3 13% > C2; C3 26% > C1), step length (C2 8% > C1; C3 5% > C2; C3 13% > C1), and swing time (C2 2% > C1; C3 3.7% > C2; C3 6% > C1), and decreased step time (C2 7.5% < C1; C3 8% < C2; C3 15% < C1), stance time (C2 1.3% < C1; C3 2.5% < C2; C3 3.6% < C1), and double support time (C2 6.3% < C1; C3 10.5% < C2; C3 16% < C1). GPD showed increased velocity (C2 19% > C1; C3 13.5% > C2; C3 29.7% > C1), step length, (C2 6% > C1; C3 7% > C2; C3 16% > C1), and swing time (C2 3% > C1; C3 3% > C2; C3 5.5% > C1) and decreased step time (C2 10.3% < C1; C3 7.7% < C2; C3 17% < C1), stance time (C2 1.7% < C1; C3 1.7% < C2; C3 3.4% < C1), and double support time (C2 7% < C1; C3 9.5% < C2; C3 16% < C1). Kinematic changes observed in the intergroup comparison show that participants with PD had lower velocity in all conditions. However, per the intragroup results, both participants with and without PD managed to significantly modify gait variables to attempt to cross the street in the given time. It is necessary to assess whether this increases fall risk by exposing them to road traffic accidents.
Collapse
Affiliation(s)
- Késia Maísa do Amaral-Felipe
- Institute of Biosciences, São Paulo State University (UNESP), Avenida vinte e quatro A, 1515, CEP 13506-900 Rio Claro, São Paulo, Brazil; Faculty Anhanguera of Jundiaí, Rua do Retiro, 3000, CEP 13209-002 Jundiaí, São Paulo, Brazil.
| | - Patrícia de Aguiar Yamada
- Institute of Biosciences, São Paulo State University (UNESP), Avenida vinte e quatro A, 1515, CEP 13506-900 Rio Claro, São Paulo, Brazil; Faculty of Higher Education of Interior São Paulo (FAIP), Avenida Antonieta Altenfelder, 65, CEP 17512-130 Marília, São Paulo, Brazil
| | - Daniela Cristina Carvalho de Abreu
- Laboratory of Assessment and Rehabilitation of Equilibrium, Department of Biomechanics, Medicine and Rehabilitation of the Locomotor System, School of Medicine of Ribeirão Preto, University of São Paulo, Avenida Bandeirantes, 3900, CEP 14049-900 Ribeirão Preto, São Paulo, Brazil
| | - Renato Campos Freire Júnior
- Laboratory of Assessment and Rehabilitation of Equilibrium, Department of Biomechanics, Medicine and Rehabilitation of the Locomotor System, School of Medicine of Ribeirão Preto, University of São Paulo, Avenida Bandeirantes, 3900, CEP 14049-900 Ribeirão Preto, São Paulo, Brazil; Faculty of Physical Education and Physiotherapy, Federal University of Amazonas, Avenida General Rodrigo Octavio Jordão Ramos, 1200, CEP 69067-005 Manaus, Amazonas, Brazil
| | - Ana Elisa Zuliani Stroppa-Marques
- Department of Physical Therapy and Occupational Therapy, School of Philosophy and Science, São Paulo State University (UNESP), Avenida Hygino Muzzi FIlho, 737, CEP 17525-000 Marília, São Paulo, Brazil
| | - Flávia Roberta Faganello-Navega
- Institute of Biosciences, São Paulo State University (UNESP), Avenida vinte e quatro A, 1515, CEP 13506-900 Rio Claro, São Paulo, Brazil; Department of Physical Therapy and Occupational Therapy, School of Philosophy and Science, São Paulo State University (UNESP), Avenida Hygino Muzzi FIlho, 737, CEP 17525-000 Marília, São Paulo, Brazil
| |
Collapse
|
133
|
A wearable sensor identifies alterations in community ambulation in multiple sclerosis: contributors to real-world gait quality and physical activity. J Neurol 2020; 267:1912-1921. [PMID: 32166481 DOI: 10.1007/s00415-020-09759-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/10/2020] [Accepted: 02/10/2020] [Indexed: 12/20/2022]
Abstract
People with multiple sclerosis (pwMS) often suffer from gait impairments. These changes in gait have been well studied in laboratory and clinical settings. A thorough investigation of gait alterations during community ambulation and their contributing factors, however, is lacking. The aim of the present study was to evaluate community ambulation and physical activity in pwMS and healthy controls and to compare in-lab gait to community ambulation. To this end, 104 subjects were studied: 44 pwMS and 60 healthy controls (whose age was similar to the controls). The subjects wore a tri-axial, lower back accelerometer during usual-walking and dual-task walking in the lab and during community ambulation (1 week) to evaluate the amount, type, and quality of activity. The results showed that during community ambulation, pwMS took fewer steps and walked more slowly, with greater asymmetry, and larger stride-to-stride variability, compared to the healthy controls (p < 0.001). Gait speed during most of community ambulation was significantly lower than the in-lab usual-walking value and similar to the in-lab dual-tasking value. Significant group (pwMS /controls)-by-walking condition (in-lab/community ambulation) interactions were observed (e.g., gait speed). Greater disability was associated with fewer steps and reduced gait speed during community ambulation. In contrast, physical fatigue was correlated with sedentary activity, but was not related to any of the measures of community ambulation gait quality including gait speed. This disparity suggests that more than one mechanism contributes to community ambulation and physical activity in pwMS. Together, these findings demonstrate that during community ambulation, pwMS have marked gait alterations in multiple gait features, reminiscent of dual-task walking measured in the laboratory. Disease-related factors associated with these changes might be targets of rehabilitation.
Collapse
|
134
|
Long-term unsupervised mobility assessment in movement disorders. Lancet Neurol 2020; 19:462-470. [PMID: 32059811 DOI: 10.1016/s1474-4422(19)30397-7] [Citation(s) in RCA: 162] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 09/26/2019] [Accepted: 10/07/2019] [Indexed: 12/25/2022]
Abstract
Mobile health technologies (wearable, portable, body-fixed sensors, or domestic-integrated devices) that quantify mobility in unsupervised, daily living environments are emerging as complementary clinical assessments. Data collected in these ecologically valid, patient-relevant settings can overcome limitations of conventional clinical assessments, as they capture fluctuating and rare events. These data could support clinical decision making and could also serve as outcomes in clinical trials. However, studies that directly compared assessments made in unsupervised and supervised (eg, in the laboratory or hospital) settings point to large disparities, even in the same parameters of mobility. These differences appear to be affected by psychological, physiological, cognitive, environmental, and technical factors, and by the types of mobilities and diagnoses assessed. To facilitate the successful adaptation of the unsupervised assessment of mobility into clinical practice and clinical trials, clinicians and researchers should consider these disparities and the multiple factors that contribute to them.
Collapse
|
135
|
Jansen CP, Toosizadeh N, Mohler MJ, Najafi B, Wendel C, Schwenk M. The association between motor capacity and mobility performance: frailty as a moderator. Eur Rev Aging Phys Act 2019; 16:16. [PMID: 31624506 PMCID: PMC6787993 DOI: 10.1186/s11556-019-0223-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 09/23/2019] [Indexed: 01/01/2023] Open
Abstract
Background In older adults, the linkage between laboratory-assessed ‘motor capacity’ and ‘mobility performance’ during daily routine is controversial. Understanding factors moderating this relationship could help developing more valid assessment as well as intervention approaches. We investigated whether the association between capacity and performance becomes evident with transition into frailty, that is, whether frailty status moderates their association. Methods We conducted a cross-sectional analysis of the observational (blinded for review) study in a community-dwelling cohort in (blinded for review). Participants were N = 112 older adults aged 65 years or older who were categorized as non-frail (n = 40), pre-frail (n = 53) or frail (n = 19) based on the Fried frailty index. Motor capacity was quantified as normal (NWS) and fast walking speed (FWS). Mobility performance was quantified as 1) cumulated physical activity (PA) time and 2) everyday walking performance (average steps per walking bout; maximal number of steps in one walking bout), measured by a motion sensor over a 48 h period. Hierarchical linear regression analyses were performed to evaluate moderation effects. Results Unlike in non-frail persons, the relationship between motor capacity and mobility performance was evident in pre-frail and frail persons, confirming our hypothesis. A moderating effect of frailty status was found for 1) the relationship between both NWS and FWS and maximal number of steps in one bout and 2) NWS and the average steps per bout. No moderation was found for the association between NWS and FWS with cumulated PA. Conclusion In pre-frail and frail persons, motor capacity is associated with everyday walking performance, indicating that functional capacity seems to better represent mobility performance in this impaired population. The limited relationship found in non-frail persons suggests that other factors account for their mobility performance. Our findings may help to inform tailored assessment approaches and interventions taking into consideration a person’s frailty status.
Collapse
Affiliation(s)
- Carl-Philipp Jansen
- 1Network Aging Research, Heidelberg University, Bergheimer Straße 20, 69115 Heidelberg, Germany
| | - Nima Toosizadeh
- 2Department of Biomedical Engineering & Medicine, University of Arizona, Tucson, USA
| | - M Jane Mohler
- 2Department of Biomedical Engineering & Medicine, University of Arizona, Tucson, USA
| | - Bijan Najafi
- 3Interdisciplinary Consortium on Advanced Motion Performance (iCAMP), Baylor College of Medicine, Houston, TX USA
| | - Christopher Wendel
- 2Department of Biomedical Engineering & Medicine, University of Arizona, Tucson, USA
| | - Michael Schwenk
- 1Network Aging Research, Heidelberg University, Bergheimer Straße 20, 69115 Heidelberg, Germany
| |
Collapse
|
136
|
Next Steps in Wearable Technology and Community Ambulation in Multiple Sclerosis. Curr Neurol Neurosci Rep 2019; 19:80. [DOI: 10.1007/s11910-019-0997-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
137
|
Buchman AS, Dawe RJ, Leurgans SE, Curran TA, Truty T, Yu L, Barnes LL, Hausdorff JM, Bennett DA. Different Combinations of Mobility Metrics Derived From a Wearable Sensor Are Associated With Distinct Health Outcomes in Older Adults. J Gerontol A Biol Sci Med Sci 2019; 75:1176-1183. [PMID: 31246244 PMCID: PMC8456516 DOI: 10.1093/gerona/glz160] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Indexed: 11/13/2022] Open
Abstract
Abstract
Background
Gait speed is a robust nonspecific predictor of health outcomes. We examined if combinations of gait speed and other mobility metrics are associated with specific health outcomes.
Methods
A sensor (triaxial accelerometer and gyroscope) placed on the lower back, measured mobility in the homes of 1,249 older adults (77% female; 80.0, SD = 7.72 years). Twelve gait scores were extracted from five performances, including (a) walking, (b) transition from sit to stand, (c) transition from stand to sit, (d) turning, and (e) standing posture. Using separate Cox proportional hazards models, we examined which metrics were associated with time to mortality, incident activities of daily living disability, mobility disability, mild cognitive impairment, and Alzheimer’s disease dementia. We used a single integrated analytic framework to determine which gait scores survived to predict each outcome.
Results
During 3.6 years of follow-up, 10 of the 12 gait scores predicted one or more of the five health outcomes. In further analyses, different combinations of 2–3 gait scores survived backward elimination and were associated with the five outcomes. Sway was one of the three scores that predicted activities of daily living disability but was not included in the final models for other outcomes. Gait speed was included along with other metrics in the final models predicting mortality and activities of daily living disability but not for other outcomes.
Conclusions
When analyzing multiple mobility metrics together, different combinations of mobility metrics are related to specific adverse health outcomes. Digital technology enhances our understanding of impaired mobility and may provide mobility biomarkers that predict distinct health outcomes.
Collapse
Affiliation(s)
- Aron S Buchman
- Rush Alzheimer’s Disease Center, Chicago, Illinois
- Department of Neurological Sciences, Chicago, Illinois
| | - Robert J Dawe
- Rush Alzheimer’s Disease Center, Chicago, Illinois
- Department of Diagnostic Radiology and Nuclear Medicine, Chicago, Illinois
| | - Sue E Leurgans
- Rush Alzheimer’s Disease Center, Chicago, Illinois
- Department of Neurological Sciences, Chicago, Illinois
| | | | | | - Lei Yu
- Rush Alzheimer’s Disease Center, Chicago, Illinois
| | - Lisa L Barnes
- Rush Alzheimer’s Disease Center, Chicago, Illinois
- Department of Neurological Sciences, Chicago, Illinois
- Department of Behavioral Sciences Rush University Medical Center, Chicago, Illinois
| | - Jeffrey M Hausdorff
- Rush Alzheimer’s Disease Center, Chicago, Illinois
- Tel Aviv University Medical School Center for the Study of Movement, Cognition, and Mobility, Neurological Institute, Tel Aviv Medical Center, Israel
- Department of Physical Therapy, Sackler Faculty of Medicine, Tel Aviv University, Israel
- Sagol School of Neuroscience, Tel Aviv University, Israel
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois
| | - David A Bennett
- Rush Alzheimer’s Disease Center, Chicago, Illinois
- Department of Neurological Sciences, Chicago, Illinois
| |
Collapse
|
138
|
Teshuva I, Hillel I, Gazit E, Giladi N, Mirelman A, Hausdorff JM. Using wearables to assess bradykinesia and rigidity in patients with Parkinson's disease: a focused, narrative review of the literature. J Neural Transm (Vienna) 2019; 126:699-710. [PMID: 31115669 DOI: 10.1007/s00702-019-02017-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 05/14/2019] [Indexed: 10/26/2022]
Abstract
The potential of using wearable technologies for the objective assessment of motor symptoms in Parkinson's disease (PD) has gained prominence recently. Nonetheless, compared to tremor and gait impairment, less emphasis has been placed on the quantification of bradykinesia and rigidity. This review aimed to consolidate the existing research on objective measurement of bradykinesia and rigidity in PD through the use of wearables, focusing on the continuous monitoring of these two symptoms in free-living environments. A search of PubMed was conducted through a combination of keyword and MeSH searches. We also searched the IEEE, Google Scholar, Embase, and Scopus databases to ensure thorough results and to minimize the chances of missing relevant studies. Papers published after the year 2000 with sample sizes greater than five were included. Studies were assessed for quality and information was extracted regarding the devices used and their location on the body, the setting and duration of the study, the "gold standard" used as a reference for validation, the metrics used, and the results of each paper. Thirty-one and eight studies met the search criteria and evaluated bradykinesia and rigidity, respectively. Several studies reported strong associations between wearable-based measures and the gold-standard references for bradykinesia, and, to a lesser extent, rigidity. Only a few, pilot studies investigated the measurement of bradykinesia and rigidity in the home and free-living settings. While the current results are promising for the future of wearables, additional work is needed on their validation and adaptation in ecological, free-living settings. Doing so has the potential to improve the assessment and treatment of motor fluctuations and symptoms of PD more generally through real-time objective monitoring of bradykinesia and rigidity.
Collapse
Affiliation(s)
- Itay Teshuva
- Center for the Study of Movement, Cognition and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Inbar Hillel
- Center for the Study of Movement, Cognition and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Eran Gazit
- Center for the Study of Movement, Cognition and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Nir Giladi
- Center for the Study of Movement, Cognition and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.,Department of Neurology and Neurosurgery, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Anat Mirelman
- Center for the Study of Movement, Cognition and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.,Department of Neurology and Neurosurgery, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Jeffrey M Hausdorff
- Center for the Study of Movement, Cognition and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel. .,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel. .,Department of Physical Therapy, Sackler Faculty of Medicine, Tel Aviv, Israel. .,Rush Alzheimer's Disease Center, Chicago, USA. .,Department of Orthopedic Surgery, Rush University Medical Center, Chicago, USA.
| |
Collapse
|