101
|
Luiza Atella A, Fatima Grossi-de-Sá M, Alves-Ferreira M. Cotton promoters for controlled gene expression. ELECTRON J BIOTECHN 2023. [DOI: 10.1016/j.ejbt.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
102
|
Liu X, Cui Y, Kang R, Zhang H, Huang H, Lei Y, Fan Y, Zhang Y, Wang J, Xu N, Han M, Feng X, Ni K, Jiang T, Rui C, Sun L, Chen X, Lu X, Wang D, Wang J, Wang S, Zhao L, Guo L, Chen C, Chen Q, Ye W. GhAAO2 was observed responding to NaHCO 3 stress in cotton compared to AAO family genes. BMC PLANT BIOLOGY 2022; 22:603. [PMID: 36539701 PMCID: PMC9768942 DOI: 10.1186/s12870-022-03999-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Abscisic acid (ABA) is an important stress hormone, the changes of abscisic acid content can alter plant tolerance to stress, abscisic acid is crucial for studying plant responses to abiotic stress. The abscisic acid aldehyde oxidase (AAO) plays a vital role in the final step in the synthesis of abscisic acid, therefore, understanding the function of AAO gene family is of great significance for plants to response to abiotic stresses. RESULT In this study, 6, 8, 4 and 4 AAO genes were identified in four cotton species. According to the structural characteristics of genes and the traits of phylogenetic tree, we divided the AAO gene family into 4 clades. Gene structure analysis showed that the AAO gene family was relatively conservative. The analysis of cis-elements showed that most AAO genes contained cis-elements related to light response and plant hormones. Tissue specificity analysis under NaHCO3 stress showed that GhAAO2 gene was differentially expressed in both roots and leaves. After GhAAO2 gene silencing, the degree of wilting of seedlings was lighter than that of the control group, indicating that GhAAO2 could respond to NaHCO3 stress. CONCLUSIONS In this study, the AAO gene family was analyzed by bioinformatics, the response of GhAAO gene to various abiotic stresses was preliminarily verified, and the function of the specifically expressed gene GhAAO2 was further verified. These findings provide valuable information for the study of potential candidate genes related to plant growth and stress.
Collapse
Affiliation(s)
- Xiaoyu Liu
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China
- Engineering Research Centre of Cotton, Ministry of Education / College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi, 830052, China
| | - Yupeng Cui
- Anyang Institute of Technology, Anyang, 455000, Henan, China
| | - Ruiqin Kang
- Anyang Institute of Technology, Anyang, 455000, Henan, China
| | - Hong Zhang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China
| | - Hui Huang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China
| | - Yuqian Lei
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China
| | - Yapeng Fan
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China
| | - Yuexin Zhang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China
| | - Jing Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China
| | - Nan Xu
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China
| | - Mingge Han
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China
| | - Xixian Feng
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China
| | - Kesong Ni
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China
| | - Tiantian Jiang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China
| | - Cun Rui
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China
| | - Liangqing Sun
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China
| | - Xiugui Chen
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China
| | - Xuke Lu
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China
| | - Delong Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China
| | - Junjuan Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China
| | - Shuai Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China
| | - Lanjie Zhao
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China
| | - Lixue Guo
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China
| | - Chao Chen
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China
| | - Quanjia Chen
- Engineering Research Centre of Cotton, Ministry of Education / College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi, 830052, China
| | - Wuwei Ye
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China.
- Engineering Research Centre of Cotton, Ministry of Education / College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi, 830052, China.
| |
Collapse
|
103
|
Evolutionary Relationships and Divergence of Filamin Gene Family Involved in Development and Stress in Cotton ( Gossypium hirsutum L.). Genes (Basel) 2022; 13:genes13122313. [PMID: 36553581 PMCID: PMC9777546 DOI: 10.3390/genes13122313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/29/2022] [Accepted: 12/03/2022] [Indexed: 12/14/2022] Open
Abstract
Filamin protein is characterized by an N-terminal actin-binding domain that is followed by 24 Ig (immunoglobulin)-like repeats, which act as hubs for interactions with a variety of proteins. In humans, this family has been found to be involved in cancer cell invasion and metastasis and can be involved in a variety of growth signal transduction processes, but it is less studied in plants. Therefore, in this study, 54 Filamin gene family members from 23 plant species were investigated and divided into two subfamilies: FLMN and GEX2. Subcellular localization showed that most of the Filamin gene family members were located in the cell membrane. A total of 47 Filamin gene pairs were identified, most of which were whole-genome copies. Through the analyses of cis-acting elements, expression patterns and quantitative fluorescence, it was found that GH_ A02G0519 and GH_ D02G0539 are mainly expressed in the reproductive organs of upland cotton, and their interacting proteins are also related to the fertilization process, whereas GH_A02G0216 and GH_D02G0235 were related to stress. Thus, it is speculated that two genes of the GEX2 subfamily (GH_A02G0519 and GH_D02G0539) may be involved in the reproductive development of cotton and may affect the fertilization process of cotton. This study provides a theoretical basis for the further study of the cotton Filamin gene family.
Collapse
|
104
|
Gowda SA, Shrestha N, Harris TM, Phillips AZ, Fang H, Sood S, Zhang K, Bourland F, Bart R, Kuraparthy V. Identification and genomic characterization of major effect bacterial blight resistance locus (BB-13) in Upland cotton (Gossypium hirsutum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:4421-4436. [PMID: 36208320 DOI: 10.1007/s00122-022-04229-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Identification and genomic characterization of major resistance locus against cotton bacterial blight (CBB) using GWAS and linkage mapping to enable genomics-based development of durable CBB resistance and gene discovery in cotton. Cotton bacterial leaf blight (CBB), caused by Xanthomonas citri subsp. malvacearum (Xcm), has periodically been a damaging disease in the USA. Identification and deployment of genetic resistance in cotton cultivars is the most economical and efficient means of reducing crop losses due to CBB. In the current study, genome-wide association study (GWAS) of CBB resistance using an elite diversity panel of 380 accessions, genotyped with the cotton single nucleotide polymorphism (SNP) 63 K array, and phenotyped with race-18 of CBB, localized the CBB resistance to a 2.01-Mb region in the long arm of chromosome D02. Molecular genetic mapping using an F6 recombinant inbred line (RIL) population showed the CBB resistance in cultivar Arkot 8102 was controlled by a single locus (BB-13). The BB-13 locus was mapped within the 0.95-cM interval near the telomeric region in the long arm of chromosome D02. Flanking SNP markers, i04890Gh and i04907Gh of the BB-13 locus, identified from the combined linkage analysis and GWAS, targeted it to a 371-Kb genomic region. Candidate gene analysis identified thirty putative gene sequences in the targeted genomic region. Nine of these putative genes and two NBS-LRR genes adjacent to the targeted region were putatively involved in plant disease resistance and are possible candidate genes for BB-13 locus. Genetic mapping and genomic targeting of the BB13 locus in the current study will help in cloning the CBB-resistant gene and establishing the molecular genetic architecture of the BB-13 locus towards developing durable resistance to CBB in cotton.
Collapse
Affiliation(s)
- S Anjan Gowda
- Crop & Soil Sciences Department, North Carolina State University, Raleigh, NC, 27695, USA
| | - Navin Shrestha
- Crop & Soil Sciences Department, North Carolina State University, Raleigh, NC, 27695, USA
| | - Taylor M Harris
- Donald Danforth Plant Science Center, 975 N Warson Rd, St Louis, MO, 63132, USA
- Division of Biology & Biomedical Sciences, Washington University in St. Louis, St Louis, MO, 63110, USA
| | - Anne Z Phillips
- Donald Danforth Plant Science Center, 975 N Warson Rd, St Louis, MO, 63132, USA
| | - Hui Fang
- Crop & Soil Sciences Department, North Carolina State University, Raleigh, NC, 27695, USA
| | - Shilpa Sood
- Crop & Soil Sciences Department, North Carolina State University, Raleigh, NC, 27695, USA
| | - Kuang Zhang
- Crop & Soil Sciences Department, North Carolina State University, Raleigh, NC, 27695, USA
| | - Fred Bourland
- NE Research & Extension Center, Crop, Soil, and Environmental Sciences, University of Arkansas, Keiser, AR, 72351, USA
| | - Rebecca Bart
- Donald Danforth Plant Science Center, 975 N Warson Rd, St Louis, MO, 63132, USA
| | - Vasu Kuraparthy
- Crop & Soil Sciences Department, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
105
|
Zhao L, Sun L, Guo L, Lu X, Malik WA, Chen X, Wang D, Wang J, Wang S, Chen C, Nie T, Ye W. Systematic analysis of Histidine photosphoto transfer gene family in cotton and functional characterization in response to salt and around tolerance. BMC PLANT BIOLOGY 2022; 22:548. [PMID: 36443680 PMCID: PMC9703675 DOI: 10.1186/s12870-022-03947-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Phosphorylation regulated by the two-component system (TCS) is a very important approach signal transduction in most of living organisms. Histidine phosphotransfer (HP) is one of the important members of the TCS system. Members of the HP gene family have implications in plant stresses tolerance and have been deeply studied in several crops. However, upland cotton is still lacking with complete systematic examination of the HP gene family. RESULTS A total of 103 HP gene family members were identified. Multiple sequence alignment and phylogeny of HPs distributed them into 7 clades that contain the highly conserved amino acid residue "XHQXKGSSXS", similar to the Arabidopsis HP protein. Gene duplication relationship showed the expansion of HP gene family being subjected with whole-genome duplication (WGD) in cotton. Varying expression profiles of HPs illustrates their multiple roles under altering environments particularly the abiotic stresses. Analysis is of transcriptome data signifies the important roles played by HP genes against abiotic stresses. Moreover, protein regulatory network analysis and VIGS mediated functional approaches of two HP genes (GhHP23 and GhHP27) supports their predictor roles in salt and drought stress tolerance. CONCLUSIONS This study provides new bases for systematic examination of HP genes in upland cotton, which formulated the genetic makeup for their future survey and examination of their potential use in cotton production.
Collapse
Affiliation(s)
- Lanjie Zhao
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, 455000, China
| | - Liangqing Sun
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, 455000, China
- Cotton Research Institute of Jiangxi Province, Jiujiang, Jiangxi, 332105, China
| | - Lixue Guo
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, 455000, China
| | - Xuke Lu
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, 455000, China
| | - Waqar Afzal Malik
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, 455000, China
| | - Xiugui Chen
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, 455000, China
| | - Delong Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, 455000, China
| | - Junjuan Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, 455000, China
| | - Shuai Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, 455000, China
| | - Chao Chen
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, 455000, China
| | - Taili Nie
- Cotton Research Institute of Jiangxi Province, Jiujiang, Jiangxi, 332105, China.
| | - Wuwei Ye
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, 455000, China.
| |
Collapse
|
106
|
Pan J, Ahmad MZ, Zhu S, Chen W, Yao J, Li Y, Fang S, Li T, Yeboah A, He L, Zhang Y. Identification, Classification and Characterization Analysis of FBXL Gene in Cotton. Genes (Basel) 2022; 13:genes13122194. [PMID: 36553463 PMCID: PMC9777894 DOI: 10.3390/genes13122194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/25/2022] Open
Abstract
F-box/LR (FBXL), Leucine-rich repeats in F-box proteins, belongs to the Skp1-Cullin1-F-box protein (SCF) E3 ligase family. FBXL genes play important roles in plant growth, such as plant hormones, responses to environmental stress, and floral organ development. Here, a total of 518 FBXL genes were identified and analyzed in six plant species. Phylogenetic analysis showed that AtFBXLs, VvFBXLs, and GrFBXLs were clustered into three subfamilies (Ⅰ-Ⅲ). Based on the composition of the F-box domain and carboxyl-terminal amino acid sequence, FBXL proteins were classified into three types (Type-A/-B/-C). Whole-genome duplication (WGD) along with tandem duplications and segmental contributed to the expansion of this gene family. The result indicates that four cotton species are also divided into three subfamilies. FBXLs in cotton were classified into three clades by phylogenetic and structural analyses. Furthermore, expression analyses indicated that the expression patterns of GhFBXLs in different cotton tissues were different. The highly expressed of GH_A07G2363 in 5-8 mm anthers, indicates that this gene might play a role in the reproductive process, providing candidate genes for future studies on cotton fertility materials. This study provides an original functional opinion and a useful interpretation of the FBXL protein family in cotton.
Collapse
Affiliation(s)
- Jingwen Pan
- College of Agronomy, Tarim University, Alar 843300, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Muhammad Zulfiqar Ahmad
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Shouhong Zhu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Wei Chen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Jinbo Yao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Yan Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Shengtao Fang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Tengyu Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Akwasi Yeboah
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Liangrong He
- College of Agronomy, Tarim University, Alar 843300, China
- Correspondence: (L.H.); (Y.Z.)
| | - Yongshan Zhang
- College of Agronomy, Tarim University, Alar 843300, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
- Correspondence: (L.H.); (Y.Z.)
| |
Collapse
|
107
|
Zhao L, Li Y, Li Y, Chen W, Yao J, Fang S, Lv Y, Zhang Y, Zhu S. Systematical Characterization of the Cotton Di19 Gene Family and the Role of GhDi19-3 and GhDi19-4 as Two Negative Regulators in Response to Salt Stress. Antioxidants (Basel) 2022; 11:2225. [PMID: 36421411 PMCID: PMC9686973 DOI: 10.3390/antiox11112225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 11/29/2023] Open
Abstract
Drought-induced 19 (Di19) protein is a Cys2/His2 (C2H2) type zinc-finger protein, which plays a crucial role in plant development and in response to abiotic stress. This study systematically investigated the characteristics of the GhDi19 gene family, including the member number, gene structure, chromosomal distribution, promoter cis-elements, and expression profiles. Transcriptomic analysis indicated that some GhDi19s were up-regulated under heat and salt stress. Particularly, two nuclear localized proteins, GhDi19-3 and GhDi19-4, were identified as being in potential salt stress responsive roles. GhDi19-3 and GhDi19-4 decreased sensitivity under salt stress through virus-induced gene silencing (VIGS), and showed significantly lower levels of H2O2, malondialdehyde (MDA), and peroxidase (POD) as well as significantly increased superoxide dismutase (SOD) activity. This suggested that their abilities were improved to effectively reduce the reactive oxygen species (ROS) damage. Furthermore, certain calcium signaling and abscisic acid (ABA)-responsive gene expression levels showed up- and down-regulation changes in target gene-silenced plants, suggesting that GhDi19-3 and GhDi19-4 were involved in calcium signaling and ABA signaling pathways in response to salt stress. In conclusion, GhDi19-3 and GhDi19-4, two negative transcription factors, were found to be responsive to salt stress through calcium signaling and ABA signaling pathways.
Collapse
Affiliation(s)
- Lanjie Zhao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Youzhong Li
- Xinjiang Production & Construction Group Key Laboratory of Crop Germplasm Enhancement and Gene Resources Utilization, Biotechnology Research Institute, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi 832000, China
| | - Yan Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Wei Chen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Jinbo Yao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Shengtao Fang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Youjun Lv
- Anyang Institute of Technology, Anyang 455000, China
| | - Yongshan Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Shouhong Zhu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| |
Collapse
|
108
|
Zeng J, Yan X, Bai W, Zhang M, Chen Y, Li X, Hou L, Zhao J, Ding X, Liu R, Wang F, Ren H, Zhang J, Ding B, Liu H, Xiao Y, Pei Y. Carpel-specific down-regulation of GhCKXs in cotton significantly enhances seed and fiber yield. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6758-6772. [PMID: 35792654 PMCID: PMC9629787 DOI: 10.1093/jxb/erac303] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
Cytokinin is considered to be an important driver of seed yield. To increase the yield of cotton while avoiding the negative consequences caused by constitutive overproduction of cytokinin, we down-regulated specifically the carpel genes for cytokinin oxidase/dehydrogenase (CKX), a key negative regulator of cytokinin levels, in transgenic cotton. The carpel-specific down-regulation of CKXs significantly enhanced cytokinin levels in the carpels. The elevated cytokinin promoted the expression of carpel- and ovule-development-associated genes, GhSTK2, GhAG1, and GhSHP, boosting ovule formation and thus producing more seeds in the ovary. Field experiments showed that the carpel-specific increase of cytokinin significantly increased both seed yield and fiber yield of cotton, without resulting in detrimental phenotypes. Our study details the regulatory mechanism of cytokinin signaling for seed development, and provides an effective and feasible strategy for yield improvement of seed crops.
Collapse
Affiliation(s)
- Jianyan Zeng
- Biotechnology Research Center, Southwest University, Beibei, Chongqing, P. R. China
| | - Xingying Yan
- Biotechnology Research Center, Southwest University, Beibei, Chongqing, P. R. China
| | - Wenqin Bai
- Biotechnology Research Center, Southwest University, Beibei, Chongqing, P. R. China
| | - Mi Zhang
- Biotechnology Research Center, Southwest University, Beibei, Chongqing, P. R. China
| | - Yang Chen
- Biotechnology Research Center, Southwest University, Beibei, Chongqing, P. R. China
| | - Xianbi Li
- Biotechnology Research Center, Southwest University, Beibei, Chongqing, P. R. China
| | - Lei Hou
- Biotechnology Research Center, Southwest University, Beibei, Chongqing, P. R. China
| | - Juan Zhao
- Biotechnology Research Center, Southwest University, Beibei, Chongqing, P. R. China
| | - Xiaoyan Ding
- Biotechnology Research Center, Southwest University, Beibei, Chongqing, P. R. China
| | - Ruochen Liu
- Biotechnology Research Center, Southwest University, Beibei, Chongqing, P. R. China
| | - Fanlong Wang
- Biotechnology Research Center, Southwest University, Beibei, Chongqing, P. R. China
| | - Hui Ren
- Biotechnology Research Center, Southwest University, Beibei, Chongqing, P. R. China
| | - Jingyi Zhang
- Biotechnology Research Center, Southwest University, Beibei, Chongqing, P. R. China
| | - Bo Ding
- Biotechnology Research Center, Southwest University, Beibei, Chongqing, P. R. China
| | - Haoru Liu
- Biotechnology Research Center, Southwest University, Beibei, Chongqing, P. R. China
| | - Yuehua Xiao
- Biotechnology Research Center, Southwest University, Beibei, Chongqing, P. R. China
| | | |
Collapse
|
109
|
Deng Y, Chen Q, Qu Y. Protein S-Acyl Transferase GhPAT27 Was Associated with Verticillium wilt Resistance in Cotton. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11202758. [PMID: 36297782 PMCID: PMC9611673 DOI: 10.3390/plants11202758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/11/2022] [Accepted: 10/15/2022] [Indexed: 05/16/2023]
Abstract
Protein palmitoylation is an ability of the frame of the cell marker protein is one of the most notable reversible changes after translation. However, studies on protein palmitoylation in cotton have not yet been performed. In our current research, the PAT gene family was systematically identified and bioinformatically analyzed in G. arboreum, G. raimondii, G. barbadense and G. hirsutum, and 211 PAT genes were authenticated and classified into six subfamilies. Sixty-nine PAT genes were identified in upland cotton, mainly at the ends of its the 26 chromosomes of upland cotton. The majority of these genes are located in the nucleus of the plant. Gene structure analysis revealed that each member encodes a protein that which contains at least one DHHC structural domain. Cis-acting element analysis indicated that GhPATs genes are mainly involved in hormone production, light response and stress response. Gene expression pattern analysis indicated that most GhPATs genes were differentially expressed upon induction by pathogenic bacteria, drought, salt, hot and cold stresses, and some GhPATs could be induced by multiple abiotic stresses simultaneously. GhPATs genes showed different expression patterns in tissue-specific assays and were found to be preferentially expressed in roots, followed by expression in stems and leaves. Virus-induced gene silencing (VIGS) experiments showed that cotton was significantly less resistant to Verticillium dahliae when GhPAT27 was silenced. We conclude that the GhPAT27 gene, which mediates S-palmitoylation acetylation, may be involved in the regulation of upland cotton resistance to Verticillium wilt (VW). Overall, this work has provided a fundamental framework for understanding the latent capabilities of GhPATs and a solid foundation for molecular breeding and plant pathogen resistance in cotton.
Collapse
|
110
|
Yang Z, Wang J, Huang Y, Wang S, Wei L, Liu D, Weng Y, Xiang J, Zhu Q, Yang Z, Nie X, Yu Y, Yang Z, Yang QY. CottonMD: a multi-omics database for cotton biological study. Nucleic Acids Res 2022; 51:D1446-D1456. [PMID: 36215030 PMCID: PMC9825545 DOI: 10.1093/nar/gkac863] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/08/2022] [Accepted: 09/24/2022] [Indexed: 01/30/2023] Open
Abstract
Cotton is an important economic crop, and many loci for important traits have been identified, but it remains challenging and time-consuming to identify candidate or causal genes/variants and clarify their roles in phenotype formation and regulation. Here, we first collected and integrated the multi-omics datasets including 25 genomes, transcriptomes in 76 tissue samples, epigenome data of five species and metabolome data of 768 metabolites from four tissues, and genetic variation, trait and transcriptome datasets from 4180 cotton accessions. Then, a cotton multi-omics database (CottonMD, http://yanglab.hzau.edu.cn/CottonMD/) was constructed. In CottonMD, multiple statistical methods were applied to identify the associations between variations and phenotypes, and many easy-to-use analysis tools were provided to help researchers quickly acquire the related omics information and perform multi-omics data analysis. Two case studies demonstrated the power of CottonMD for identifying and analyzing the candidate genes, as well as the great potential of integrating multi-omics data for cotton genetic breeding and functional genomics research.
Collapse
Affiliation(s)
| | | | | | - Shengbo Wang
- National Key Laboratory of Crop Genetic Improvement, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China,Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Lulu Wei
- National Key Laboratory of Crop Genetic Improvement, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China,Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Dongxu Liu
- National Key Laboratory of Crop Genetic Improvement, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China,Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Yonglin Weng
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinhai Xiang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiang Zhu
- National Key Laboratory of Crop Genetic Improvement, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China,Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhaoen Yang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Xinhui Nie
- Key Laboratory of Oasis Ecology Agricultural of Xinjiang Bingtuan, Agricultural College, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Yu Yu
- Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, Xinjiang 832000, China
| | - Zuoren Yang
- Correspondence may also be addressed to Zuoren Yang. Tel: +86 371 55912660;
| | - Qing-Yong Yang
- To whom correspondence should be addressed. Tel: +86 27 87288509;
| |
Collapse
|
111
|
Sequence Characteristics and Expression Analysis of GhCIPK23 Gene in Upland Cotton ( Gossypium hirsutum L.). Int J Mol Sci 2022; 23:ijms231912040. [PMID: 36233340 PMCID: PMC9570493 DOI: 10.3390/ijms231912040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/21/2022] [Accepted: 10/07/2022] [Indexed: 11/17/2022] Open
Abstract
CIPK (calcineurin B-like-interacting protein kinase) is a kind of serine/threonine protein kinase widely existing in plants, and it plays an important role in plant growth and development and stress response. To better understand the biological functions of the GhCIPK23 gene in upland cotton, the coding sequence (CDS) of the GhCIPK23 gene was cloned in upland cotton, and its protein sequence, evolutionary relationship, subcellular localization, expression pattern and cis-acting elements in the promoter region were analyzed. Our results showed that the full-length CDS of GhCIPK23 was 1368 bp, encoding a protein with 455 amino acids. The molecular weight and isoelectric point of this protein were 50.83 KDa and 8.94, respectively. The GhCIPK23 protein contained a conserved N-terminal protein kinase domain and C-terminal regulatory domain of the CIPK gene family member. Phylogenetic tree analysis demonstrated that GhCIPK23 had a close relationship with AtCIPK23, followed by OsCIPK23, and belonged to Group A with AtCIPK23 and OsCIPK23. The subcellular localization experiment indicated that GhCIPK23 was located in the plasma membrane. Tissue expression analysis showed that GhCIPK23 had the highest expression in petals, followed by sepals, and the lowest in fibers. Stress expression analysis showed that the expression of the GhCIPK23 gene was in response to drought, salt, low-temperature and exogenous abscisic acid (ABA) treatment, and had different expression patterns under different stress conditions. Further cis-acting elements analysis showed that the GhCIPK23 promoter region had cis-acting elements in response to abiotic stress, phytohormones and light. These results established a foundation for understanding the function of GhCIPK23 and breeding varieties with high-stress tolerance in cotton.
Collapse
|
112
|
Chen Y, Fu M, Li H, Wang L, Liu R, Liu Z. Genome-wide characterization of the UDP-glycosyltransferase gene family reveals their potential roles in leaf senescence in cotton. Int J Biol Macromol 2022; 222:2648-2660. [DOI: 10.1016/j.ijbiomac.2022.10.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/30/2022] [Accepted: 10/05/2022] [Indexed: 11/05/2022]
|
113
|
Grover CE, Forsythe ES, Sharbrough J, Miller ER, Conover JL, DeTar RA, Chavarro C, Arick MA, Peterson DG, Leal-Bertioli SCM, Sloan DB, Wendel JF. Variation in cytonuclear expression accommodation among allopolyploid plants. Genetics 2022; 222:iyac118. [PMID: 35951749 PMCID: PMC9526054 DOI: 10.1093/genetics/iyac118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
Cytonuclear coevolution is a common feature among plants, which coordinates gene expression and protein products between the nucleus and organelles. Consequently, lineage-specific differences may result in incompatibilities between the nucleus and cytoplasm in hybrid taxa. Allopolyploidy is also a common phenomenon in plant evolution. The hybrid nature of allopolyploids may result in cytonuclear incompatibilities, but the massive nuclear redundancy created during polyploidy affords additional avenues for resolving cytonuclear conflict (i.e. cytonuclear accommodation). Here we evaluate expression changes in organelle-targeted nuclear genes for 6 allopolyploid lineages that represent 4 genera (i.e. Arabidopsis, Arachis, Chenopodium, and Gossypium) and encompass a range in polyploid ages. Because incompatibilities between the nucleus and cytoplasm could potentially result in biases toward the maternal homoeolog and/or maternal expression level, we evaluate patterns of homoeolog usage, expression bias, and expression-level dominance in cytonuclear genes relative to the background of noncytonuclear expression changes and to the diploid parents. Although we find subsets of cytonuclear genes in most lineages that match our expectations of maternal preference, these observations are not consistent among either allopolyploids or categories of organelle-targeted genes. Our results indicate that cytonuclear expression evolution may be subtle and variable among genera and genes, likely reflecting a diversity of mechanisms to resolve nuclear-cytoplasmic incompatibilities in allopolyploid species.
Collapse
Affiliation(s)
- Corrinne E Grover
- Ecology, Evolution, and Organismal Biology Department, Iowa State University, Ames, IA 50010, USA
| | - Evan S Forsythe
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Joel Sharbrough
- Biology Department, New Mexico Institute of Mining and Technology, Socorro, NM 87801, USA
| | - Emma R Miller
- Ecology, Evolution, and Organismal Biology Department, Iowa State University, Ames, IA 50010, USA
| | - Justin L Conover
- Ecology, Evolution, and Organismal Biology Department, Iowa State University, Ames, IA 50010, USA
| | - Rachael A DeTar
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Carolina Chavarro
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA 30602, USA
| | - Mark A Arick
- Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA
| | - Daniel G Peterson
- Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA
| | - Soraya C M Leal-Bertioli
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA 30602, USA
- Department of Plant Pathology, University of Georgia, Athens, GA 30602, USA
| | - Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Jonathan F Wendel
- Ecology, Evolution, and Organismal Biology Department, Iowa State University, Ames, IA 50010, USA
| |
Collapse
|
114
|
Huang H, He Y, Cui A, Sun L, Han M, Wang J, Rui C, Lei Y, Liu X, Xu N, Zhang H, Zhang Y, Fan Y, Feng X, Ni K, Jiang J, Zhang X, Chen C, Wang S, Chen X, Lu X, Wang D, Wang J, Yin Z, Qaraevna BZ, Guo L, Zhao L, Ye W. Genome-wide identification of GAD family genes suggests GhGAD6 functionally respond to Cd2+ stress in cotton. Front Genet 2022; 13:965058. [PMID: 36176295 PMCID: PMC9513066 DOI: 10.3389/fgene.2022.965058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/10/2022] [Indexed: 11/25/2022] Open
Abstract
Glutamate decarboxylase (GAD) mainly regulated the biosynthesis of γ-aminobutyric acid (GABA) and played an important role in plant growth and stress resistance. To explore the potential function of GAD in cotton growth, the genome-wide identification, structure, and expression analysis of GAD genes were performed in this study. There were 10, 9, 5, and 5 GAD genes identified in G. hirsutum, G. barbadense, G. arboreum, and G. raimondii, respectively. GAD was divided into four clades according to the protein motif composition, gene structure, and phylogenetic relationship. The segmental duplication was the main way of the GAD gene family evolution. Most GhGADs respond to abiotic stress. Clade Ⅲ GAD was induced by Cd2+ stress, especially GhGAD6, and silencing GhGAD6 would lead to more serious Cd2+ poisoning in cotton. The oxidative damage caused by Cd2+ stress was relieved by increasing the GABA content. It was speculated that the decreased expression of GhGAD6 reduced the content of GABA in vivo and caused the accumulation of ROS. This study will further expand our understanding of the relationship between the evolution and function of the GhGAD gene family and provide new genetic resources for cotton breeding under environmental stress and phytoremediation.
Collapse
Affiliation(s)
- Hui Huang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, China
| | - Yunxin He
- Hunan Institute of Cotton Science, Changde, China
| | - Aihua Cui
- Cotton Research Institute of Jiangxi Province, Jiujiang, China
| | - Liangqing Sun
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, China
| | - Mingge Han
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, China
| | - Jing Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, China
| | - Cun Rui
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, China
| | - Yuqian Lei
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, China
| | - Xiaoyu Liu
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, China
| | - Nan Xu
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, China
| | - Hong Zhang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, China
| | - Yuexin Zhang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, China
| | - Yapeng Fan
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, China
| | - Xixian Feng
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, China
| | - Kesong Ni
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, China
| | - Jie Jiang
- Hunan Institute of Cotton Science, Changde, China
| | | | - Chao Chen
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, China
| | - Shuai Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, China
| | - Xiugui Chen
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, China
| | - Xuke Lu
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, China
| | - Delong Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, China
| | - Junjuan Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, China
| | - Zujun Yin
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, China
| | - Bobokhonova Zebinisso Qaraevna
- Department Cotton Growing, Genetics, Breeding and Seed, Tajik Agrarian University Named Shirinsho Shotemur Dushanbe, Dushanbe, Tajikistan
| | - Lixue Guo
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, China
| | - Lanjie Zhao
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, China
| | - Wuwei Ye
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, China
- *Correspondence: Wuwei Ye,
| |
Collapse
|
115
|
Sun L, Zhao L, Huang H, Zhang Y, Wang J, Lu X, Wang S, Wang D, Chen X, Chen C, Guo L, Xu N, Zhang H, Wang J, Rui C, Han M, Fan Y, Nie T, Ye W. Genome-wide identification, evolution and function analysis of UGTs superfamily in cotton. Front Mol Biosci 2022; 9:965403. [PMID: 36177349 PMCID: PMC9513525 DOI: 10.3389/fmolb.2022.965403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
Glycosyltransferases mainly catalyse the glycosylation reaction in living organisms and widely exists in plants. UGTs have been identified from G. raimondii, G. arboreum and G. hirsutum. However, Genome-wide systematic analysis of UGTs superfamily have not been studied in G. barbadense. 752 UGTs were identified from four cotton species and grouped into 18 clades, of which R was newly discovered clades. Most UGTs were clustered at both ends of the chromosome and showed a heterogeneous distribution. UGT proteins were widely distributed in cells, with the highest distribution in chloroplasts. UGTs of the same clade shared similar intron/exon structural features. During evolution, the gene family has undergone strong selection for purification. UGTs were significantly enriched in “transcriptional activity (GO:0016758)” and “metabolic processes (GO:0008152)”. Genes from the same clade differed in function under various abiotic stresses. The analysis of cis-acting element and qRT–PCR may indicate that GHUGTs play important roles in plant growth, development and abiotic stress. We further found that GHUGT74-2 plays an important role under submergence. The study broadens the understanding of UGTs in terms of gene characteristics, evolutionary processes, and gene function in cotton and provides a new way to systematically and globally understand the structure–function relationship of multigene families in the evolutionary process.
Collapse
Affiliation(s)
- Liangqing Sun
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, China
- Cotton Research Institute of Jiangxi Province, Jiujiang, China
| | - Lanjie Zhao
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, China
| | - Hui Huang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, China
| | - Yuexin Zhang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, China
| | - Junjuan Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, China
| | - Xuke Lu
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, China
| | - Shuai Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, China
| | - Delong Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, China
| | - Xiugui Chen
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, China
| | - Chao Chen
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, China
| | - Lixue Guo
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, China
| | - Nan Xu
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, China
| | - Hong Zhang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, China
| | - Jing Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, China
| | - Cun Rui
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, China
| | - Mingge Han
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, China
| | - Yapeng Fan
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, China
| | - Taili Nie
- Cotton Research Institute of Jiangxi Province, Jiujiang, China
- *Correspondence: Wuwei Ye, ; Taili Nie,
| | - Wuwei Ye
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, China
- *Correspondence: Wuwei Ye, ; Taili Nie,
| |
Collapse
|
116
|
Dai F, Chen J, Zhang Z, Liu F, Li J, Zhao T, Hu Y, Zhang T, Fang L. COTTONOMICS: a comprehensive cotton multi-omics database. Database (Oxford) 2022; 2022:6696321. [PMID: 36094905 PMCID: PMC9467004 DOI: 10.1093/database/baac080] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/02/2022] [Accepted: 09/01/2022] [Indexed: 11/26/2022]
Abstract
The rapid advancement of sequencing technology, including next-generation sequencing (NGS), has greatly improved sequencing efficiency and decreased cost. Consequently, huge amounts of genomic, transcriptomic and epigenetic data concerning cotton species have been generated and released. These large-scale data provide immense opportunities for the study of cotton genomic structure and evolution, population genetic diversity and genome-wide mining of excellent genes for important traits. However, the complexity of NGS data also causes distress, as it cannot be utilized easily. Here, we presented the cotton omics data platform COTTONOMICS (http://cotton.zju.edu.cn/), an easily accessible web database that integrates 32.5 TB of omics data including seven assembled genomes, resequencing data from 1180 allotetraploid cotton accessions and RNA-sequencing (RNA-seq), small RNA-sequencing (smRNA-seq), Chromatin Immunoprecipitation sequencing (ChIP-seq), DNase hypersensitive sites sequencing (DNase-seq) and Bisulfite sequencing (BS-seq). COTTONOMICS allows users to employ various search scenarios and retrieve information concerning the cotton genomes, genomic variation (Single nucleotide polymorphisms (SNPs) and Insertion and Deletion (InDels)), gene expression, smRNA expression, epigenetic regulation and quantitative trait locus (QTLs). The user-friendly web interface offers a variety of modules for storing, retrieving, analyzing and visualizing cotton multi-omics data to diverse ends, thereby enabling users to decipher cotton population genetics and identify potential novel genes that influence agronomically beneficial traits. Database URL: http://cotton.zju.edu.cn
Collapse
Affiliation(s)
- Fan Dai
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University , Hangzhou, Zhejiang 310058, China
| | - Jiedan Chen
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University , Hangzhou, Zhejiang 310058, China
- Tea Research Institute, Chinese Academy of Agricultural Science , Hangzhou 310008, China
| | - Ziqian Zhang
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University , Hangzhou, Zhejiang 310058, China
| | - Fengjun Liu
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University , Hangzhou, Zhejiang 310058, China
| | - Jun Li
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University , Hangzhou, Zhejiang 310058, China
| | - Ting Zhao
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University , Hangzhou, Zhejiang 310058, China
| | - Yan Hu
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University , Hangzhou, Zhejiang 310058, China
| | - Tianzhen Zhang
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University , Hangzhou, Zhejiang 310058, China
| | - Lei Fang
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University , Hangzhou, Zhejiang 310058, China
| |
Collapse
|
117
|
Fu M, Chen Y, Li H, Wang L, Liu R, Liu Z. Genome-Wide Identification and Expression Analyses of the Cotton AGO Genes and Their Potential Roles in Fiber Development and Stress Response. Genes (Basel) 2022; 13:genes13081492. [PMID: 36011401 PMCID: PMC9408788 DOI: 10.3390/genes13081492] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/09/2022] [Accepted: 08/19/2022] [Indexed: 11/19/2022] Open
Abstract
Argonaute proteins (AGOs) are indispensable components of RNA silencing. However, systematic characterization of the AGO genes have not been completed in cotton until now. In this study, cotton AGO genes were identified and analyzed with respect to their evolution and expression profile during biotic and abiotic stresses. We identified 14 GaAGO, 14 GrAGO, and 28 GhAGO genes in the genomes of Gossypium arboreum, Gossypium raimondii, and Gossypium hirsutum. Cotton AGO proteins were classified into four subgroups. Structural and functional conservation were observed in the same subgroups based on the analysis of the gene structure and conserved domains. Twenty-four duplicated gene pairs were identified in GhAGO genes, and all of them exhibited strong purifying selection during evolution. Moreover, RNA-seq analysis showed that most of the GhAGO genes exhibit high expression levels in the fiber initiation and elongation processes. Furthermore, the expression profiles of GhAGO genes tested by quantitative real-time polymerase chain reaction (qPCR) demonstrated that they were sensitive to Verticillium wilt infection and salt and drought stresses. Overall, our results will pave the way for further functional investigation of the cotton AGO gene family, which may be involved in fiber development and stress response.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhanji Liu
- Correspondence: ; Tel.: +86-531-6665-9992
| |
Collapse
|
118
|
Zhao L, Guo L, Lu X, Malik WA, Zhang Y, Wang J, Chen X, Wang S, Wang J, Wang D, Ye W. Structure and character analysis of cotton response regulator genes family reveals that GhRR7 responses to draught stress. Biol Res 2022; 55:27. [PMID: 35974357 PMCID: PMC9380331 DOI: 10.1186/s40659-022-00394-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 07/29/2022] [Indexed: 11/10/2022] Open
Abstract
Background Cytokinin signal transduction is mediated by a two-component system (TCS). Two-component systems are utilized in plant responses to hormones as well as to biotic and abiotic environmental stimuli. In plants, response regulatory genes (RRs) are one of the main members of the two-component system (TCS). Method From the aspects of gene structure, evolution mode, expression type, regulatory network and gene function, the evolution process and role of RR genes in the evolution of the cotton genome were analyzed. Result A total of 284 RR genes in four cotton species were identified. Including 1049 orthologous/paralogous gene pairs were identified, most of which were whole genome duplication (WGD). The RR genes promoter elements contain phytohormone responses and abiotic or biotic stress-related cis-elements. Expression analysis showed that RR genes family may be negatively regulate and involved in salt stress and drought stress in plants. Protein regulatory network analysis showed that RR family proteins are involved in regulating the DNA-binding transcription factor activity (COG5641) pathway and HP kinase pathways. VIGS analysis showed that the GhRR7 gene may be in the same regulatory pathway as GhAHP5 and GhPHYB, ultimately negatively regulating cotton drought stress by regulating POD, SOD, CAT, H2O2 and other reactive oxygen removal systems. Conclusion This study is the first to gain insight into RR gene members in cotton. Our research lays the foundation for discovering the genes related to drought and salt tolerance and creating new cotton germplasm materials for drought and salt tolerance. Supplementary Information The online version contains supplementary material available at 10.1186/s40659-022-00394-2.
Collapse
Affiliation(s)
- Lanjie Zhao
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China
| | - Lixue Guo
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China
| | - Xuke Lu
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China
| | - Waqar Afzal Malik
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China
| | - Yuexin Zhang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China
| | - Jing Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China
| | - Xiugui Chen
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China
| | - Shuai Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China
| | - Junjuan Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China
| | - Delong Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China
| | - Wuwei Ye
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China.
| |
Collapse
|
119
|
Hussain A, Liu J, Mohan B, Burhan A, Nasim Z, Bano R, Ameen A, Zaynab M, Mukhtar MS, Pajerowska-Mukhtar KM. A genome-wide comparative evolutionary analysis of zinc finger-BED transcription factor genes in land plants. Sci Rep 2022; 12:12328. [PMID: 35853967 PMCID: PMC9296551 DOI: 10.1038/s41598-022-16602-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 07/12/2022] [Indexed: 11/09/2022] Open
Abstract
Zinc finger (Zf)-BED proteins are a novel superfamily of transcription factors that controls numerous activities in plants including growth, development, and cellular responses to biotic and abiotic stresses. Despite their important roles in gene regulation, little is known about the specific functions of Zf-BEDs in land plants. The current study identified a total of 750 Zf-BED-encoding genes in 35 land plant species including mosses, bryophytes, lycophytes, gymnosperms, and angiosperms. The gene family size was somewhat proportional to genome size. All identified genes were categorized into 22 classes based on their specific domain architectures. Of these, class I (Zf-BED_DUF-domain_Dimer_Tnp_hAT) was the most common in the majority of the land plants. However, some classes were family-specific, while the others were species-specific, demonstrating diversity at different classification levels. In addition, several novel functional domains were also predicated including WRKY and nucleotide-binding site (NBS). Comparative genomics, transcriptomics, and proteomics provided insights into the evolutionary history, duplication, divergence, gene gain and loss, species relationship, expression profiling, and structural diversity of Zf-BEDs in land plants. The comprehensive study of Zf-BEDs in Gossypium sp., (cotton) also demonstrated a clear footprint of polyploidization. Overall, this comprehensive evolutionary study of Zf-BEDs in land plants highlighted significant diversity among plant species.
Collapse
Affiliation(s)
- Athar Hussain
- Genomics Lab, School of Food and Agricultural Sciences (SFAS), University of Management and Technology (UMT), Lahore, 54770, Pakistan
| | - Jinbao Liu
- Department of Biology, University of Alabama at Birmingham, 1300 University Blvd, Birmingham, AL, 35294, USA
| | - Binoop Mohan
- Department of Biology, University of Alabama at Birmingham, 1300 University Blvd, Birmingham, AL, 35294, USA
| | - Akif Burhan
- Department of Life Science, University of Management and Technology (UMT), Lahore, 54770, Pakistan
| | - Zunaira Nasim
- Department of Life Science, University of Management and Technology (UMT), Lahore, 54770, Pakistan
| | - Raveena Bano
- Department of Life Science, University of Management and Technology (UMT), Lahore, 54770, Pakistan
| | - Ayesha Ameen
- Office of Research Innovation and Commercialization, University of Management and Technology, Lahore, 54770, Pakistan
| | - Madiha Zaynab
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Sciences, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 51807, Guangdong, China
| | - M Shahid Mukhtar
- Department of Biology, University of Alabama at Birmingham, 1300 University Blvd, Birmingham, AL, 35294, USA.
| | | |
Collapse
|
120
|
Mehari TG, Xu Y, Umer MJ, Hui F, Cai X, Zhou Z, Hou Y, Wang K, Wang B, Liu F. Genome-Wide Identification and Expression Analysis Elucidates the Potential Role of PFK Gene Family in Drought Stress Tolerance and Sugar Metabolism in Cotton. Front Genet 2022; 13:922024. [PMID: 35795210 PMCID: PMC9251378 DOI: 10.3389/fgene.2022.922024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 05/13/2022] [Indexed: 11/13/2022] Open
Abstract
Drought has been identified as a major threat for global crop production worldwide. Phosphofructokinase (PFK) is vital for sugar metabolism. During phosphorylation, plants have two enzymes: ATP-dependent phosphofructokinase (PFK) and pyrophosphate-dependent fructose-6-phosphate phosphotransferase (PFP). Genome-wide identification led to the identification of 80 PFK genes, 26 genes in G. hirsutum and G. barbadense, and 14 genes in G. arboreum and G. raimondii. Phylogenetic, gene structure, and motif analyses showed that PFK genes were grouped into two main categories, namely, PFK and PFP, with 18 and 8 genes in the allotetraploid species and 10 PFK and 4 PFP genes in the diploid species, respectively. Using the RNA-seq expressions of 26 genes from GhPFK, a co-expression network analysis was performed to identify the hub genes. GhPFK04, GhPFK05, GhPFK09, GhPFK11, GhPFK13, GhPFK14, and GhPFK17 in leaves and GhPFK02, GhPFK09, GhPFK11, GhPFK15, GhPFK16, and GhPFK17 in root tissues were found as hub genes. RT-qPCR analysis validated the expressions of identified hub genes. Interestingly, GhPFK11 and GhPFK17 were identified as common hub genes, and these might be the true candidate genes involved in the drought stress tolerance. In the KEGG enrichment analysis, amino acids such as L-valine, L-histidine, L-glutamine, L-serine, L-homoserine, L-methionine, L-cysteine, and gluconic acid were significantly upregulated, whereas sugars, mainly fructose-1-phosphate, D-mannitol, D-sorbitol, dulcitol, and lactose, were significantly downregulated during drought stress. Genome-wide analysis paves the way for a deeper understanding of the PFK genes and establishes the groundwork for future research into PFK’s role in enhancing drought stress tolerance and sugar metabolism in cotton.
Collapse
Affiliation(s)
| | - Yanchao Xu
- State Key Laboratory of Cotton Biology, Cotton Institute of the Chinese Academy of Agricultural Sciences, Anyang, China
| | - Muhammad Jawad Umer
- State Key Laboratory of Cotton Biology, Cotton Institute of the Chinese Academy of Agricultural Sciences, Anyang, China
| | - Fang Hui
- School of Life Sciences, Nantong University, Nantong, China
| | - Xiaoyan Cai
- State Key Laboratory of Cotton Biology, Cotton Institute of the Chinese Academy of Agricultural Sciences, Anyang, China
| | - Zhongli Zhou
- State Key Laboratory of Cotton Biology, Cotton Institute of the Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yuqing Hou
- State Key Laboratory of Cotton Biology, Cotton Institute of the Chinese Academy of Agricultural Sciences, Anyang, China
| | - Kai Wang
- School of Life Sciences, Nantong University, Nantong, China
- *Correspondence: Kai Wang, ; Baohua Wang, ; Fang Liu,
| | - Baohua Wang
- School of Life Sciences, Nantong University, Nantong, China
- *Correspondence: Kai Wang, ; Baohua Wang, ; Fang Liu,
| | - Fang Liu
- State Key Laboratory of Cotton Biology, Cotton Institute of the Chinese Academy of Agricultural Sciences, Anyang, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- *Correspondence: Kai Wang, ; Baohua Wang, ; Fang Liu,
| |
Collapse
|
121
|
Wang C, Li T, Liu Q, Li L, Feng Z, Yu S. Characterization and Functional Analysis of GhNAC82, A NAM Domain Gene, Coordinates the Leaf Senescence in Upland Cotton ( Gossypium hirsutum L.). PLANTS (BASEL, SWITZERLAND) 2022; 11:1491. [PMID: 35684264 PMCID: PMC9182992 DOI: 10.3390/plants11111491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/22/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
In the process of growth and development, cotton exhibits premature senescence under various abiotic stresses, impairing yield and fiber quality. NAC (NAM, ATAF1,2, and CUC2) protein widely distributed in land plants, play the critical role in responding to abiotic stress and regulating leaf senescence. We have identified and functional analyzed a NAM domain gene GhNAC82 in upland cotton, it was located on the A11 chromosome 4,921,702 to 4,922,748 bp, only containing one exon. The spatio-temporal expression pattern analysis revealed that it was highly expressed in root, torus, ovule and fiber development stage. The results of qRT-PCR validated that GhNAC82 negatively regulated by salt stress, drought stress, H2O2 stress, IAA treatment, and ethylene treatment, positively regulated by the ABA and MeJA treatment. Moreover, heterologous overexpression of GhNAC82 results in leaf premature senescence and delays root system development in Arabidopsis thaliana. The phenotype of delayed-senescence was performed after silencing GhNAC82 by VIGS in premature cotton. Taken together, GhNAC82 was involved in different abiotic stress pathways and play important roles in negatively regulating leaf premature senescence.
Collapse
Affiliation(s)
- Chenlei Wang
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (C.W.); (L.L.)
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang 455000, China; (T.L.); (Q.L.)
| | - Tengyu Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang 455000, China; (T.L.); (Q.L.)
| | - Qibao Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang 455000, China; (T.L.); (Q.L.)
| | - Libei Li
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (C.W.); (L.L.)
| | - Zhen Feng
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (C.W.); (L.L.)
| | - Shuxun Yu
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (C.W.); (L.L.)
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang 455000, China; (T.L.); (Q.L.)
| |
Collapse
|
122
|
Lu G, Wang L, Zhou L, Su X, Guo H, Cheng H. Overexpression of AmCBF1 enhances drought and cold stress tolerance, and improves photosynthesis in transgenic cotton. PeerJ 2022; 10:e13422. [PMID: 35637712 PMCID: PMC9147321 DOI: 10.7717/peerj.13422] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 04/20/2022] [Indexed: 01/14/2023] Open
Abstract
China's main cotton production area is located in the northwest where abiotic stresses, particularly cold and drought, have serious effects on cotton production. In this study, Ammopiptanthus mongolicus C-repeat-binding factor (AmCBF1) isolated from the shrub Ammopiptanthus mongolicus was inserted into upland cotton (Gossypium hirsutum L.) cultivar R15 to evaluate the potential benefits of this gene. Two transgenic lines were selected, and the transgene insertion site was identified using whole-genome sequencing. The results showed that AmCBF1 was incorporated into the cotton genome as a single copy. Transgenic plants had distinctly higher relative water content (RWC), chlorophyll content, soluble sugar content, and lower ion leakage than R15 after drought and cold stress. Some characteristics, such as the area of lower epidermal cells, stomatal density, and root to shoot ratio, varied significantly between transgenic cotton lines and R15. Although the photosynthetic ability of transgenic plants was inhibited after stress, the net photosynthetic rate, stomatal conductance, and transpiration rate in transgenic plants were significantly higher than in R15. This suggested that an enhanced stress tolerance and photosynthesis of transgenic cotton was achieved by overexpressing AmCBF1. All together, our results demonstrate that the new transgenic cotton germplasm has great application value against abiotic stresses, especially in the northwest inland area of China.
Collapse
Affiliation(s)
- Guoqing Lu
- Chinese Academy of Agricultural Sciences, Biotechnology Research Institute, Beijing, China,Tianjin Academy of Agricultural Sciences, Institute of Germplasm Resources and Biotechnology, Tianjin, China
| | - Lihua Wang
- Chinese Academy of Agricultural Sciences, Biotechnology Research Institute, Beijing, China
| | - Lili Zhou
- Chinese Academy of Agricultural Sciences, Biotechnology Research Institute, Beijing, China
| | - Xiaofeng Su
- Chinese Academy of Agricultural Sciences, Biotechnology Research Institute, Beijing, China
| | - Huiming Guo
- Chinese Academy of Agricultural Sciences, Biotechnology Research Institute, Beijing, China
| | - Hongmei Cheng
- Chinese Academy of Agricultural Sciences, Biotechnology Research Institute, Beijing, China
| |
Collapse
|
123
|
Genome-Wide Identification of the SAMS Gene Family in Upland Cotton (Gossypium hirsutum L.) and Expression Analysis in Drought Stress Treatments. Genes (Basel) 2022; 13:genes13050860. [PMID: 35627245 PMCID: PMC9141922 DOI: 10.3390/genes13050860] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 12/10/2022] Open
Abstract
Cotton is an important commercial crop whose growth and yield are severely affected by drought. S-adenosylmethionine (SAM) is widely involved in the plant stress response and growth regulation; however, the role of the S-adenosylmethionine synthase (SAMS) gene family in this process is poorly understood. Here, we systematically analyzed the expression of SAMS genes in Upland Cotton (Gossypium hirsutum L.). A total of 16 SAMS genes were identified, each with a similar predicted structure. A large number of cis-acting elements involved in the response to abiotic stress were predicted based on promoter analysis, indicating a likely important role in abiotic stress responses. The results of qRT-PCR validation showed that GhSAMS genes had different expression patterns after drought stress and in response to drought stress. Analysis of a selected subset of GhSAMS genes showed increased expression in cultivar Xinluzhong 39 (drought resistant) when compared to cultivar Xinluzao 26 (drought-sensitive) upland cotton. This study provides important relevant information for further study of SAMS genes in drought resistance research of upland cotton, which is helpful for drought-resistance improvement of upland cotton.
Collapse
|
124
|
Li Y, Zhu S, Yao J, Fang S, Li T, Li B, Wang X, Wang M, Wu L, Pan J, Feng X, Chen W, Zhang Y. Genome-wide Characterization of the JmjC Domain-Containing Histone Demethylase Gene Family Reveals GhJMJ24 and GhJMJ49 Involving in Somatic Embryogenesis Process in Cotton. Front Mol Biosci 2022; 9:888983. [PMID: 35573733 PMCID: PMC9091307 DOI: 10.3389/fmolb.2022.888983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/08/2022] [Indexed: 11/16/2022] Open
Abstract
The Jumonji C (JmjC) domain-containing protein family, an important family of histone demethylase in plants, can directly reverse histone methylation and play important roles in various growth and development processes. In the present study, 51 JmjC genes (GhJMJs) were identified by genome-wide analysis in upland cotton (Gossypium hirsutum), which can be categorized into six distinct groups by phylogenetic analysis. Extensive syntenic relationship events were found between G. hirsutum and Theobroma cacao. We have further explored the putative molecular regulatory mechanisms of the JmjC gene family in cotton. GhJMJ24 and GhJMJ49 were both preferentially expressed in embryogenic callus compared to nonembryogenic callus in cotton tissue culture, which might be regulated by transcription factors and microRNAs to some extent. Further experiments indicated that GhJMJ24 and GhJMJ49 might interact with SUVH4, SUVH6, DDM1, CMT3, and CMT1 in the nucleus, potentially in association with demethylation of H3K9me2. Taken together, our results provide a foundation for future research on the biological functions of GhJMJ genes in cotton, especially in somatic embryogenesis in cotton tissue culture, which is crucial for the regeneration of transgenic plants.
Collapse
Affiliation(s)
- Yan Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Shouhong Zhu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Jinbo Yao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Shengtao Fang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Tengyu Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Bei Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Xinyu Wang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Mingyang Wang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Lanxin Wu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Jingwen Pan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Xuemei Feng
- Shandong Denghai Shengfeng Seed Industry Co., Ltd., Jining, china
| | - Wei Chen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yongshan Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
125
|
Wang X, Wu P, Hu X, Chang S, Zhang M, Zhang K, Zhai S, Yang X, He L, Guo X. Identification and stress function verification of the HAK/KUP/KT family in Gossypium hirsutum. Gene X 2022; 818:146249. [PMID: 35085713 DOI: 10.1016/j.gene.2022.146249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 01/03/2022] [Accepted: 01/21/2022] [Indexed: 11/25/2022] Open
Abstract
The potassium transporter family HAK/KUP/KT is a large group of proteins that are important in plant potassium transport and play a crucial role in plant growth and development. The members of the family play an important role in the response of plants to abiotic stress by maintaining osmotic balance. However, the function of the family in cotton is unclear. In this study, whole genome identification and characterization of the HAK/KUP/KT family from upland cotton (Gossypium hirsutum) were carried out. Bioinformatics methods were used to identify HAK/KUP/KT family members from the G. hirsutum genome and to analyse the physical and chemical properties, basic characteristics, phylogeny, chromosome location and expression of HAK/KUP/KT family members. A total of 41 HAK/KUP/KT family members were identified in the G. hirsutum genome. Phylogenetic analysis grouped these genes into four clusters (I, II, III, IV), containing 6, 10, 3 and 22 genes, respectively. Chromosomal distribution, gene structure and conserved motif analyses of the 41 GhHAK genes were subsequently performed. The RNA-seq data and qRT-PCR results showed that the family had a wide range of tissue expression patterns, and they responded to certain drought stresses. Through expression analysis, seven HAK/KUP/KT genes involved in drought stress were screened, and four genes with obvious phenotypes under drought stress were obtained by VIGS verification, which laid a theoretical foundation for the function of the cotton HAK/KUP/KT family.
Collapse
Affiliation(s)
- Xingxing Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Peng Wu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiubao Hu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Siyuan Chang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Meiwei Zhang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Kaiyan Zhang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shuwei Zhai
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiyan Yang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Liangrong He
- College of Plant Sciences, Tarum University, Alaer 843300, China.
| | - Xiaoping Guo
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
126
|
Genome-Wide Identification of Cotton (Gossypium spp.) Trehalose-6-Phosphate Phosphatase (TPP) Gene Family Members and the Role of GhTPP22 in the Response to Drought Stress. PLANTS 2022; 11:plants11081079. [PMID: 35448808 PMCID: PMC9024796 DOI: 10.3390/plants11081079] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 01/10/2023]
Abstract
Trehalose-6-phosphate phosphatase (TPP) is a key enzyme involved in trehalose synthesis in higher plants. Previous studies have shown that TPP family genes increase yields without affecting plant growth under drought conditions, but their functions in cotton have not been reported. In this study, 17, 12, 26 and 24 TPP family genes were identified in Gossypium arboreum, Gossypium raimondii, Gossypium barbadense and Gossypium hirsutum, respectively. The 79 TPP family genes were divided into three subgroups by phylogenetic analysis. Virus-induced gene silencing (VIGS) of GhTPP22 produced TRV::GhTPP22 plants that were more sensitive to drought stress than the control plants, and the relative expression of GhTPP22 was decreased, as shown by qRT–PCR. Moreover, we analysed the gene structure, targeted small RNAs, and gene expression patterns of TPP family members and the physicochemical properties of their encoded proteins. Overall, members of the TPP gene family in cotton were systematically identified, and the function of GhTPP22 under drought stress conditions was preliminarily verified. These findings provide new information for improving drought resistance for cotton breeding in the future.
Collapse
|
127
|
Gong J, Peng Y, Yu J, Pei W, Zhang Z, Fan D, Liu L, Xiao X, Liu R, Lu Q, Li P, Shang H, Shi Y, Li J, Ge Q, Liu A, Deng X, Fan S, Pan J, Chen Q, Yuan Y, Gong W. Linkage and association analyses reveal that hub genes in energy-flow and lipid biosynthesis pathways form a cluster in upland cotton. Comput Struct Biotechnol J 2022; 20:1841-1859. [PMID: 35521543 PMCID: PMC9046884 DOI: 10.1016/j.csbj.2022.04.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 04/11/2022] [Accepted: 04/11/2022] [Indexed: 11/25/2022] Open
Abstract
Upland cotton is an important allotetraploid crop that provides both natural fiber for the textile industry and edible vegetable oil for the food or feed industry. To better understand the genetic mechanism that regulates the biosynthesis of storage oil in cottonseed, we identified the genes harbored in the major quantitative trait loci/nucleotides (QTLs/QTNs) of kernel oil content (KOC) in cottonseed via both multiple linkage analyses and genome-wide association studies (GWAS). In ‘CCRI70′ RILs, six stable QTLs were simultaneously identified by linkage analysis of CHIP and SLAF-seq strategies. In ‘0-153′ RILs, eight stable QTLs were detected by consensus linkage analysis integrating multiple strategies. In the natural panel, thirteen and eight loci were associated across multiple environments with two algorithms of GWAS. Within the confidence interval of a major common QTL on chromosome 3, six genes were identified as participating in the interaction network highly correlated with cottonseed KOC. Further observations of gene differential expression showed that four of the genes, LtnD, PGK, LPLAT1, and PAH2, formed hub genes and two of them, FER and RAV1, formed the key genes in the interaction network. Sequence variations in the coding regions of LtnD, FER, PGK, LPLAT1, and PAH2 genes may support their regulatory effects on oil accumulation in mature cottonseed. Taken together, clustering of the hub genes in the lipid biosynthesis interaction network provides new insights to understanding the mechanism of fatty acid biosynthesis and TAG assembly and to further genetic improvement projects for the KOC in cottonseeds.
Collapse
Affiliation(s)
- Juwu Gong
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
- Engineering Research Centre of Cotton, Ministry of Education, College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi 830052, Xinjiang, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Yan Peng
- Third Division of the Xinjiang Production and Construction Corps Agricultural Research Institute, Tumushuke, Xijiang 843900, China
| | - Jiwen Yu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Wenfeng Pei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Zhen Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Daoran Fan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Linjie Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
- Engineering Research Centre of Cotton, Ministry of Education, College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi 830052, Xinjiang, China
| | - Xianghui Xiao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
- Engineering Research Centre of Cotton, Ministry of Education, College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi 830052, Xinjiang, China
| | - Ruixian Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
- Engineering Research Centre of Cotton, Ministry of Education, College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi 830052, Xinjiang, China
| | - Quanwei Lu
- College of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Pengtao Li
- College of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Haihong Shang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Yuzhen Shi
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Junwen Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Qun Ge
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Aiying Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Xiaoying Deng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Senmiao Fan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Jingtao Pan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Quanjia Chen
- Engineering Research Centre of Cotton, Ministry of Education, College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi 830052, Xinjiang, China
| | - Youlu Yuan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
- Engineering Research Centre of Cotton, Ministry of Education, College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi 830052, Xinjiang, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Wankui Gong
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| |
Collapse
|
128
|
Zafar MM, Rehman A, Razzaq A, Parvaiz A, Mustafa G, Sharif F, Mo H, Youlu Y, Shakeel A, Ren M. Genome-wide characterization and expression analysis of Erf gene family in cotton. BMC PLANT BIOLOGY 2022; 22:134. [PMID: 35317739 PMCID: PMC8939120 DOI: 10.1186/s12870-022-03521-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 03/04/2022] [Indexed: 05/13/2023]
Abstract
BACKGROUND AP2/ERF transcription factors are important in a variety of biological activities, including plant growth, development, and responses to biotic and abiotic stressors. However, little study has been done on cotton's AP2/ERF genes, although cotton is an essential fibre crop. We were able to examine the tissue and expression patterns of AP2/ERF genes in cotton on a genome-wide basis because of the recently published whole genome sequence of cotton. Genome-wide analysis of ERF gene family within two diploid species (G. arboreum & G. raimondii) and two tetraploid species (G. barbadense, G. hirsutum) was performed. RESULTS A total of 118, 120, 213, 220 genes containing the sequence of single AP2 domain were identified in G. arboreum, G. raimondii, G. barbadense and G. hirsutum respectively. The identified genes were unevenly distributed across 13/26 chromosomes of A and D genomes of cotton. Synteny and collinearity analysis revealed that segmental duplications may have played crucial roles in the expansion of the cotton ERF gene family, as well as tandem duplications played a minor role. Cis-acting elements of the promoter sites of Ghi-ERFs genes predict the involvement in multiple hormone responses and abiotic stresses. Transcriptome and qRT-PCR analysis revealed that Ghi-ERF-2D.6, Ghi-ERF-12D.13, Ghi-ERF-6D.1, Ghi-ERF-7A.6 and Ghi-ERF-11D.5 are candidate genes against salinity tolerance in upland cotton. CONCLUSION Overwhelmingly, the present study paves the way to better understand the evolution of cotton ERF genes and lays a foundation for future investigation of ERF genes in improving salinity stress tolerance in cotton.
Collapse
Affiliation(s)
- Muhammad Mubashar Zafar
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture; Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000 Henan China
| | - Abdul Rehman
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture; Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000 Henan China
| | - Abdul Razzaq
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture; Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000 Henan China
- The Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Aqsa Parvaiz
- Center of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Pakistan
| | - Ghulam Mustafa
- Center of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Pakistan
| | - Faiza Sharif
- University Institute of Physical Therapy, The University of Lahore, Lahore, Pakistan
| | - Huijuan Mo
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture; Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000 Henan China
| | - Yuan Youlu
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture; Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000 Henan China
| | - Amir Shakeel
- Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Maozhi Ren
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture; Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000 Henan China
| |
Collapse
|
129
|
Hussain A, Asif N, Pirzada AR, Noureen A, Shaukat J, Burhan A, Zaynab M, Ali E, Imran K, Ameen A, Mahmood MA, Nazar A, Mukhtar MS. Genome wide study of cysteine rich receptor like proteins in Gossypium sp. Sci Rep 2022; 12:4885. [PMID: 35318409 PMCID: PMC8941122 DOI: 10.1038/s41598-022-08943-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 03/11/2022] [Indexed: 02/08/2023] Open
Abstract
Cysteine-rich receptor-like-kinases (CRKs), a transmembrane subfamily of receptor-like kinase, play crucial roles in plant adaptation. As such cotton is the major source of fiber for the textile industry, but environmental stresses are limiting its growth and production. Here, we have performed a deep computational analysis of CRKs in five Gossypium species, including G. arboreum (60 genes), G. raimondii (74 genes), G. herbaceum (65 genes), G. hirsutum (118 genes), and G. barbadense (120 genes). All identified CRKs were classified into 11 major classes and 43 subclasses with the finding of several novel CRK-associated domains including ALMT, FUSC_2, Cript, FYVE, and Pkinase. Of these, DUF26_DUF26_Pkinase_Tyr was common and had elevated expression under different biotic and abiotic stresses. Moreover, the 35 land plants comparison identified several new CRKs domain-architectures. Likewise, several SNPs and InDels were observed in CLCuD resistant G. hirsutum. The miRNA target side prediction and their expression profiling in different tissues predicted miR172 as a major CRK regulating miR. The expression profiling of CRKs identified multiple clusters with co-expression under certain stress conditions. The expression analysis under CLCuD highlighted the role of GhCRK057, GhCRK059, GhCRK058, and GhCRK081 in resistant accession. Overall, these results provided primary data for future potential functional analysis as well as a reference study for other agronomically important crops.
Collapse
Affiliation(s)
- Athar Hussain
- Genomics Lab, School of Food and Agricultural Sciences (SFAS), University of Management and Technology (UMT), Lahore, 54000, Pakistan.
| | - Naila Asif
- Department of Life Sciences, School of Science, University of Management and Technology (UMT), Lahore, 54000, Pakistan
| | - Abdul Rafay Pirzada
- Department of Life Sciences, School of Science, University of Management and Technology (UMT), Lahore, 54000, Pakistan
| | - Azka Noureen
- National Institute for Biotechnology and Genetic Engineering (NIBGE), College of Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, 38000, Pakistan.,PMAS-Arid Agriculture University Rawalpindi, Rawalpindi, 46300, Pakistan
| | - Javeria Shaukat
- Department of Life Sciences, School of Science, University of Management and Technology (UMT), Lahore, 54000, Pakistan
| | - Akif Burhan
- Department of Life Sciences, School of Science, University of Management and Technology (UMT), Lahore, 54000, Pakistan
| | - Madiha Zaynab
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Sciences, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 51807, China
| | - Ejaz Ali
- Center of Excellence in Molecular Biology, University of Punjab, Lahore, 54000, Pakistan
| | - Koukab Imran
- Department of Life Sciences, School of Science, University of Management and Technology (UMT), Lahore, 54000, Pakistan
| | - Ayesha Ameen
- Office of Research Innovation and Commercialization, University of Management and Technology (UMT), Lahore, 54000, Pakistan
| | - Muhammad Arslan Mahmood
- National Institute for Biotechnology and Genetic Engineering (NIBGE), College of Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, 38000, Pakistan
| | - Aquib Nazar
- Department of Life Sciences, School of Science, University of Management and Technology (UMT), Lahore, 54000, Pakistan
| | - M Shahid Mukhtar
- Department of Biology, the University of Alabama at Birmingham, 1300 University Blvd., Birmingham, AL, 35294, USA
| |
Collapse
|
130
|
Iqbal A, Huiping G, Xiangru W, Hengheng Z, Xiling Z, Meizhen S. Genome-wide expression analysis reveals involvement of asparagine synthetase family in cotton development and nitrogen metabolism. BMC PLANT BIOLOGY 2022; 22:122. [PMID: 35296248 PMCID: PMC8925137 DOI: 10.1186/s12870-022-03454-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/27/2022] [Indexed: 05/09/2023]
Abstract
Asparagine synthetase (ASN) is one of the key enzymes of nitrogen (N) metabolism in plants. The product of ASN is asparagine, which is one of the key compounds involved in N transport and storage in plants. Complete genome-wide analysis and classifications of the ASN gene family have recently been reported in different plants. However, little is known about the systematic analysis and expression profiling of ASN proteins in cotton development and N metabolism. Here, various bioinformatics analysis was performed to identify ASN gene family in cotton. In the cotton genome, forty-three proteins were found that determined ASN genes, comprising of 20 genes in Gossypium hirsutum (Gh), 13 genes in Gossypium arboreum, and 10 genes in Gossypium raimondii. The ASN encoded genes unequally distributed on various chromosomes with conserved glutamine amidotransferases and ASN domains. Expression analysis indicated that the majority of GhASNs were upregulated in vegetative and reproductive organs, fiber development, and N metabolism. Overall, the results provide proof of the possible role of the ASN genes in improving cotton growth, fiber development, and especially N metabolism in cotton. The identified hub genes will help to functionally elucidate the ASN genes in cotton development and N metabolism.
Collapse
Affiliation(s)
- Asif Iqbal
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou Research Base, School of Agricultural Sciences, Zhengzhou University, State Key Laboratory of Cotton Biology, Anyang, Henan, 455000, People's Republic of China
| | - Gui Huiping
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou Research Base, School of Agricultural Sciences, Zhengzhou University, State Key Laboratory of Cotton Biology, Anyang, Henan, 455000, People's Republic of China
| | - Wang Xiangru
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou Research Base, School of Agricultural Sciences, Zhengzhou University, State Key Laboratory of Cotton Biology, Anyang, Henan, 455000, People's Republic of China
- Western Agricultural Research Center of Chinese Academy of Agricultural Sciences, Changji, 831100, Xinjiang, China
| | - Zhang Hengheng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou Research Base, School of Agricultural Sciences, Zhengzhou University, State Key Laboratory of Cotton Biology, Anyang, Henan, 455000, People's Republic of China
| | - Zhang Xiling
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou Research Base, School of Agricultural Sciences, Zhengzhou University, State Key Laboratory of Cotton Biology, Anyang, Henan, 455000, People's Republic of China.
- Western Agricultural Research Center of Chinese Academy of Agricultural Sciences, Changji, 831100, Xinjiang, China.
| | - Song Meizhen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou Research Base, School of Agricultural Sciences, Zhengzhou University, State Key Laboratory of Cotton Biology, Anyang, Henan, 455000, People's Republic of China.
- Western Agricultural Research Center of Chinese Academy of Agricultural Sciences, Changji, 831100, Xinjiang, China.
| |
Collapse
|
131
|
Hu D, Ge Y, Jia Y, He S, Geng X, Wang L, Pan Z, Iqbal Z, Mahmood T, Li H, Chen B, Wang X, Pang B, Du X. Identification and Characterization of the Growth-Regulating Factors-Interacting Factors in Cotton. Front Genet 2022; 13:851343. [PMID: 35360847 PMCID: PMC8964071 DOI: 10.3389/fgene.2022.851343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 02/23/2022] [Indexed: 11/15/2022] Open
Abstract
Growth-regulating factors-interacting factors (GIFs) are a type of transcription co-activators in plants, playing crucial roles in plants’ growth, development, and stress adaptation. Here, a total of 35 GIF genes were identified and clustered into two groups by phylogenetic analysis in four cotton genus. The gene structure and conserved domain analysis proved the conservative characteristics of GIF genes in cotton. The function of GIF genes was evaluated in two cotton accessions, Ji A-1-7 (33xi) and King, which have larger and smaller lateral root numbers, respectively. The results showed that the expression of GhGIF4 in Ji A-1-7 (33xi) was higher than that in King. The enzyme activity and microstructure assay showed a higher POD activity, lower MDA content, and more giant cells of the lateral root emergence part phenotype in Ji A-1-7 (33xi) than in King. A mild waterlogging assay showed the GIF genes were down-regulated in the waterlogged seedling. Further confirmation of the suppression of GhGIF4 in cotton plants further confirmed that GhGIF4 could reduce the lateral root numbers in cotton. This study could provide a basis for future studies of the role of GIF genes in upland cotton.
Collapse
|
132
|
Huang L, Yang S, Wu L, Xin Y, Song J, Wang L, Pei W, Wu M, Yu J, Ma X, Hu S. Genome-Wide Analysis of the GW2-Like Genes in Gossypium and Functional Characterization of the Seed Size Effect of GhGW2-2D. FRONTIERS IN PLANT SCIENCE 2022; 13:860922. [PMID: 35330874 PMCID: PMC8940273 DOI: 10.3389/fpls.2022.860922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
Cotton is one of the most economically important crops worldwide. Seed size is a vital trait for plants connected with yield and germination. GW2 encodes a RING_Ubox E3 ubiquitin ligase that controls seed development by affecting cell growth. Here, are few reports on GW2-like genes in cotton, and the function of GW2 in cotton is poorly understood. In the present study, a genome-wide analysis identified 6 and 3 GW2-like genes in each of the two cultivated tetraploids (Gossypium hirsutum and G. barbadense) and each of their diploid ancestral species (G. arboreum, G. raimondii), respectively. GhGW2-2D has the same functional domain and high sequence similarity with AtDA2 in Arabidopsis. Overexpression of GhGW2-2D in Arabidopsis significantly reduced seed and seedling size, suggesting GhGW2-2D is a potential target for regulating cotton seed size. These results provided information on the genetic and molecular basis of GW2-like genes in cotton, thus establishing a foundation for functional studies of cotton seeds.
Collapse
Affiliation(s)
- Li Huang
- College of Plant Sciences, Tarim University, Xinjiang, China
- State Key Laboratory of Cotton Biology, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Shuxian Yang
- State Key Laboratory of Cotton Biology, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Luyao Wu
- State Key Laboratory of Cotton Biology, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yue Xin
- State Key Laboratory of Cotton Biology, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Jikun Song
- State Key Laboratory of Cotton Biology, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Li Wang
- State Key Laboratory of Cotton Biology, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Wenfeng Pei
- State Key Laboratory of Cotton Biology, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
- Western Agriculture Research Centre, Chinese Academy of Agricultural Sciences, Changji, China
| | - Man Wu
- State Key Laboratory of Cotton Biology, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Jiwen Yu
- State Key Laboratory of Cotton Biology, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Xiaoyan Ma
- State Key Laboratory of Cotton Biology, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Shoulin Hu
- College of Plant Sciences, Tarim University, Xinjiang, China
| |
Collapse
|
133
|
Sun J, Cui H, Wu B, Wang W, Yang Q, Zhang Y, Yang S, Zhao Y, Xu D, Liu G, Qin T. Genome-Wide Identification of Cotton ( Gossypium spp.) Glycerol-3-Phosphate Dehydrogenase (GPDH) Family Members and the Role of GhGPDH5 in Response to Drought Stress. PLANTS (BASEL, SWITZERLAND) 2022; 11:592. [PMID: 35270062 PMCID: PMC8912411 DOI: 10.3390/plants11050592] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
Glycerol-3-phosphate dehydrogenase (GPDH) is a key enzyme in plant glycerol synthesis and metabolism, and plays an important role in plant resistance to abiotic stress. Here, we identified 6, 7, 14 and 14 GPDH genes derived from Gossypium arboreum, Gossypium raimondii, Gossypium barbadense and Gossypium hirsutum, respectively. Phylogenetic analysis assigned these genes into three classes, and most of the genes within the family were expanded by whole-genome duplication (WGD) and segmental duplications. Moreover, determination of the nonsynonymous substitution rate/synonymous substitution rate (Ka/Ks) ratio showed that the GPDH had an evolutionary preference for purifying selection. Transcriptome data revealed that GPDH genes were more active in the early stages of fiber development. Additionally, numerous stress-related cis-elements were identified in the potential promoter region. Then, a protein-protein-interaction (PPI) network of GPDH5 in G. hirsutum was constructed. In addition, we predicted 30 underlying miRNAs in G. hirsutum. Functional validation results indicated that silencing GhGPDH5 diminished drought tolerance in the upland cotton TM-1 line. In summary, this study provides a fundamental understanding of the GPDH gene family in cotton, GhGPDH5 exerts a positive effect during drought stress and is potentially involved in stomatal closure movements.
Collapse
Affiliation(s)
- Jialiang Sun
- Key Laboratory of Tobacco Improvement and Biotechnology, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266100, China;
- College of Agriculture, Liaocheng University, Liaocheng 252059, China; (B.W.); (W.W.); (Q.Y.); (Y.Z.); (S.Y.); (Y.Z.)
| | - Hua Cui
- Key Laboratory of Cell and Gene Circuit Design, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China;
| | - Bingjie Wu
- College of Agriculture, Liaocheng University, Liaocheng 252059, China; (B.W.); (W.W.); (Q.Y.); (Y.Z.); (S.Y.); (Y.Z.)
| | - Weipeng Wang
- College of Agriculture, Liaocheng University, Liaocheng 252059, China; (B.W.); (W.W.); (Q.Y.); (Y.Z.); (S.Y.); (Y.Z.)
| | - Qiuyue Yang
- College of Agriculture, Liaocheng University, Liaocheng 252059, China; (B.W.); (W.W.); (Q.Y.); (Y.Z.); (S.Y.); (Y.Z.)
| | - Yaxin Zhang
- College of Agriculture, Liaocheng University, Liaocheng 252059, China; (B.W.); (W.W.); (Q.Y.); (Y.Z.); (S.Y.); (Y.Z.)
| | - Song Yang
- College of Agriculture, Liaocheng University, Liaocheng 252059, China; (B.W.); (W.W.); (Q.Y.); (Y.Z.); (S.Y.); (Y.Z.)
| | - Yuping Zhao
- College of Agriculture, Liaocheng University, Liaocheng 252059, China; (B.W.); (W.W.); (Q.Y.); (Y.Z.); (S.Y.); (Y.Z.)
| | - Dongbei Xu
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Guoxiang Liu
- Key Laboratory of Tobacco Improvement and Biotechnology, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266100, China;
| | - Tengfei Qin
- Key Laboratory of Tobacco Improvement and Biotechnology, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266100, China;
- College of Agriculture, Liaocheng University, Liaocheng 252059, China; (B.W.); (W.W.); (Q.Y.); (Y.Z.); (S.Y.); (Y.Z.)
| |
Collapse
|
134
|
Rui C, Chen X, Xu N, Wang J, Zhang H, Li S, Huang H, Fan Y, Zhang Y, Lu X, Wang D, Gao W, Ye W. Identification and Structure Analysis of KCS Family Genes Suggest Their Reponding to Regulate Fiber Development in Long-Staple Cotton Under Salt-Alkaline Stress. Front Genet 2022; 13:812449. [PMID: 35186036 PMCID: PMC8850988 DOI: 10.3389/fgene.2022.812449] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/12/2022] [Indexed: 11/13/2022] Open
Abstract
Plant 3-ketoacyl-CoA synthase (KCS) gene family catalyzed a β ketoacyl-CoA synthase, which was the rate-limiting enzyme for the synthesis of very long chain fatty acids (VLCFAs). Gossypium barbadense was well-known not only for high-quality fiber, which was perceived as a cultivated species of Gossypium. In this study, a total of 131 KCS genes were identified in four cotton species, there were 38, 44, 26, 23 KCS genes in the G. barbadense, the G. hirsutum, the G. arboreum and G. raimondii, respectively. The gene structure and expression pattern were analyzed. GBKCS genes were divided into six subgroups, the chromosome distribution of members of the family were mapped. The prediction of cis-acting elements of the GBKCS gene promoters suggested that the GBKCS genes may be involved in hormone signaling, defense and the stress response. Collinearity analysis on the KCS genes of the four cotton species were formulated. Tandem duplication played an indispensable role in the evolution of the KCS gene family. Specific expression analysis of 20 GBKCS genes indicated that GBKCS gene were widely expressed in the first 25 days of fiber development. Among them, GBKCS3, GBKCS8, GBKCS20, GBKCS34 were expressed at a high level in the initial long-term level of the G. barbadense fiber. This study established a foundation to further understanding of the evolution of KCS genes and analyze the function of GBKCS genes.
Collapse
Affiliation(s)
- Cun Rui
- Engineering Research Centre of Cotton, Ministry of Education, College of Agriculture, Xinjiang Agricultural University, Urumqi, China
| | - Xiugui Chen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou Research Base, School of Agricultural Sciences, Zhengzhou University, Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, China
| | - Nan Xu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou Research Base, School of Agricultural Sciences, Zhengzhou University, Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, China
| | - Jing Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou Research Base, School of Agricultural Sciences, Zhengzhou University, Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, China
| | - Hong Zhang
- Engineering Research Centre of Cotton, Ministry of Education, College of Agriculture, Xinjiang Agricultural University, Urumqi, China
| | - Shengmei Li
- Engineering Research Centre of Cotton, Ministry of Education, College of Agriculture, Xinjiang Agricultural University, Urumqi, China
| | - Hui Huang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou Research Base, School of Agricultural Sciences, Zhengzhou University, Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, China
| | - Yapeng Fan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou Research Base, School of Agricultural Sciences, Zhengzhou University, Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, China
| | - Yuexin Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou Research Base, School of Agricultural Sciences, Zhengzhou University, Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, China
| | - Xuke Lu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou Research Base, School of Agricultural Sciences, Zhengzhou University, Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, China
| | - Delong Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou Research Base, School of Agricultural Sciences, Zhengzhou University, Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, China
| | - Wenwei Gao
- Engineering Research Centre of Cotton, Ministry of Education, College of Agriculture, Xinjiang Agricultural University, Urumqi, China
| | - Wuwei Ye
- Engineering Research Centre of Cotton, Ministry of Education, College of Agriculture, Xinjiang Agricultural University, Urumqi, China.,State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou Research Base, School of Agricultural Sciences, Zhengzhou University, Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, China
| |
Collapse
|
135
|
Zhang Y, Rui C, Fan Y, Xu N, Zhang H, Wang J, Sun L, Dai M, Ni K, Chen X, Lu X, Wang D, Wang J, Wang S, Guo L, Zhao L, Feng X, Chen C, Ye W. Identification of SNAT Family Genes Suggests GhSNAT3D Functional Reponse to Melatonin Synthesis Under Salinity Stress in Cotton. Front Mol Biosci 2022; 9:843814. [PMID: 35223998 PMCID: PMC8867073 DOI: 10.3389/fmolb.2022.843814] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 01/18/2022] [Indexed: 11/24/2022] Open
Abstract
Serotonin N-acetyltransferase (SNAT) is a key enzyme in the biosynthesis of melatonin, and plays an important role in the regulation of melatonin synthesis. The study of SNAT is of great significance to understand the function of melatonin. In this study, we analyzed the structural characteristics, phylogenetic relationship, gene structure, expression pattern, evolutionary relationship and stress response of the members of the SNAT gene family in upland cotton through bioinformatics. A putative Serotonin n-acetyltransferase gene GhSNAT3D was identified, and preliminarily function of GhSNAT3D was verified by virus-induced gene silencing. We identified a total of 52 SNAT genes in the whole genome of G. hirsutum, and part of the GhSNATs were regulated by exogenous melatonin. The content of melatonin, antioxidant enzyme activity and Ca2+ content of GhSNAT3D gene silenced plants decreased, and the salt tolerance of GhSNAT3D gene silenced plants was reduced. Exogenous melatonin supplementation restored the salt tolerance of GhSNAT3D gene silenced plants. GhSNAT3D may interact with GhSNAT25D and ASMT to regulate melatonin synthesis. This study provided an important basis for further study on the regulation of melatonin in cotton against abiotic stress.
Collapse
|
136
|
Shi G, Zhu X. Genome-wide identification and functional characterization of CDPK gene family reveal their involvement in response to drought stress in Gossypium barbadense. PeerJ 2022; 10:e12883. [PMID: 35186477 PMCID: PMC8833227 DOI: 10.7717/peerj.12883] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/13/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Calcium dependent protein kinases (CDPKs) are a class of important calcium signal sensing response proteins, which play an important regulatory role in response to abiotic stress. However, researchers have not been excavated CDPKs' role in drought in sea-island cotton(Gossypium barbadense L. 'H7124'). RESULTS Eighty-four CDPK genes have been identified in G. barbadense. These GbCDPK genes are unevenly distributed on 26 chromosomes, and segmental duplication is the significant way for the extension of CDPK family. Also, members within the same subfamily share a similar gene structure and motif composition. There are a large number of cis-elements involved in plant growth and response to stresses in the promoter regions of GbCDPKs. Additionally, these GbCDPKs show differential expression patterns in cotton tissues. The transcription levels of most genes were markedly altered in cotton under heat, cold, salt and PEG treatments, while the expressions of some GbCDPKs were induced in cotton under drought stress. Among these drought-induced genes, we selected GbCDPK32, GbCDPK68, GbCDPK74, GbCDPK80 and GbCDPK83 for further functional characterization by virus-induced gene silencing (VIGS) method. CONCLUSIONS In conclusion, the principal findings of this prospective study are that CDPKs were associated with drought. These findings provide a solid foundation for the development of future molecular mechanism in sea-island cotton.
Collapse
Affiliation(s)
- Guangzhen Shi
- Key Laboratory of Oasis Town and Mountain-basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, Xinjiang, China
| | - Xinxia Zhu
- Key Laboratory of Oasis Town and Mountain-basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, Xinjiang, China
| |
Collapse
|
137
|
Zhao N, Wang W, Jiang K, Grover CE, Cheng C, Pan Z, Zhao C, Zhu J, Li D, Wang M, Xiao L, Yang J, Ning X, Li B, Xu H, Su Y, Aierxi A, Li P, Guo B, Wendel JF, Kong J, Hua J. A Calmodulin-Like Gene ( GbCML7) for Fiber Strength and Yield Improvement Identified by Resequencing Core Accessions of a Pedigree in Gossypium barbadense. FRONTIERS IN PLANT SCIENCE 2022; 12:815648. [PMID: 35185964 PMCID: PMC8850914 DOI: 10.3389/fpls.2021.815648] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/29/2021] [Indexed: 05/23/2023]
Abstract
Sea Island cotton (Gossypium barbadense) is world-renowned for its superior natural fiber. Although fiber strength is one of the most important fiber quality traits, genes contributing to fiber strength are poorly understood. Production of sea island cotton also is inextricably linked to improving its relatively low yield, thus enhancing the importance of joint improvement of both fiber quality and yield. We used genomic variation to uncover the genetic evidence of trait improvement resulting from pedigree breeding of Sea Island cotton. This pedigree was aimed at improving fiber strength and yielded an elite cultivar, XH35. Using a combination of genome-wide association study (GWAS) and selection screens, we detected 82 putative fiber-strength-related genes. Expression analysis confirmed a calmodulin-like gene, GbCML7, which enhanced fiber strength in a specific haplotype. This gene is a major-effect gene, which interacts with a minor-effect gene, GbTUA3, facilitating the enhancement of fiber strength in a synergistic fashion. Moreover, GbCML7 participates in the cooperative improvement of fiber strength, fiber length, and fiber uniformity, though a slight compromise exists between the first two of these traits and the latter. Importantly, GbCML7 is shown to boost yield in some backgrounds by increasing multiple yield components to varying degrees, especially boll number. Our work provides valuable genomic evidence and a key genetic factor for the joint improvement of fiber quality and yield in Sea Island cotton.
Collapse
Affiliation(s)
- Nan Zhao
- Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education/College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Weiran Wang
- Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Ürümqi, China
| | - Kaiyun Jiang
- Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education/College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Corrinne E. Grover
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, United States
| | - Cheng Cheng
- Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education/College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Zhuanxia Pan
- Institute of Cotton Research, Shanxi Agricultural University, Yuncheng, China
| | - Cunpeng Zhao
- Cotton Research Institute, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Jiahui Zhu
- Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Ürümqi, China
| | - Dan Li
- Cotton Research Institute, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Meng Wang
- Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Ürümqi, China
| | - Li Xiao
- Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Ürümqi, China
| | - Jing Yang
- Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Ürümqi, China
| | - Xinmin Ning
- Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Ürümqi, China
| | - Bin Li
- Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education/College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Haijiang Xu
- Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Ürümqi, China
| | - Ying Su
- Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education/College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Alifu Aierxi
- Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Ürümqi, China
| | - Pengbo Li
- Institute of Cotton Research, Shanxi Agricultural University, Yuncheng, China
| | - Baosheng Guo
- Cotton Research Institute, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Jonathan F. Wendel
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, United States
| | - Jie Kong
- Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Ürümqi, China
| | - Jinping Hua
- Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education/College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| |
Collapse
|
138
|
Zhao R, Cheng H, Wang Q, Lv L, Zhang Y, Song G, Zuo D. Identification of the CesA Subfamily and Functional Analysis of GhMCesA35 in Gossypium Hirsutum L. Genes (Basel) 2022; 13:genes13020292. [PMID: 35205337 PMCID: PMC8871739 DOI: 10.3390/genes13020292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/27/2022] [Accepted: 01/29/2022] [Indexed: 02/05/2023] Open
Abstract
The cellulose synthase genes control the biosynthesis of cellulose in plants. Nonetheless, the gene family members of CesA have not been identified in the newly assembled genome of Gossypiumhirsutum (AD1, HEBAU_NDM8). We identified 38 CesA genes in G. hirsutum (NDM8) and found that the protein sequence of GhMCesA35 is 100% identical to CelA1 in a previous study. It is already known that CelA1 is involved in cellulose biosynthesis in vitro. However, the function of this gene in vivo has not been validated. In this study, we verified the function of GhMCesA35 in vivo based on overexpressed Arabidopsis thaliana. In addition, we found that it interacted with GhCesA7 through the yeast two-hybrid assay. This study provides new insights for studying the biological functions of CesA genes in G. hirsutum, thereby improving cotton fiber quality and yield.
Collapse
Affiliation(s)
- Ruolin Zhao
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China; (R.Z.); (H.C.); (Q.W.); (L.L.); (Y.Z.); (G.S.)
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
| | - Hailiang Cheng
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China; (R.Z.); (H.C.); (Q.W.); (L.L.); (Y.Z.); (G.S.)
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
| | - Qiaolian Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China; (R.Z.); (H.C.); (Q.W.); (L.L.); (Y.Z.); (G.S.)
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
| | - Limin Lv
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China; (R.Z.); (H.C.); (Q.W.); (L.L.); (Y.Z.); (G.S.)
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
| | - Youping Zhang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China; (R.Z.); (H.C.); (Q.W.); (L.L.); (Y.Z.); (G.S.)
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
| | - Guoli Song
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China; (R.Z.); (H.C.); (Q.W.); (L.L.); (Y.Z.); (G.S.)
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
| | - Dongyun Zuo
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China; (R.Z.); (H.C.); (Q.W.); (L.L.); (Y.Z.); (G.S.)
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
- Correspondence: ; Tel.: +86-037-2256-2375
| |
Collapse
|
139
|
Yadav UP, Evers JF, Shaikh MA, Ayre BG. Cotton phloem loads from the apoplast using a single member of its nine-member sucrose transporter gene family. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:848-859. [PMID: 34687198 DOI: 10.1093/jxb/erab461] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
Phloem loading and transport are fundamental processes for allocating carbon from source organs to sink tissues. Cotton (Gossypium spp.) has a high sink demand for the cellulosic fibers that grow on the seed coat and for the storage reserves in the developing embryo, along with the demands of new growth in the shoots and roots. Addressing how cotton mobilizes resources from source leaves to sink organs provides insight into processes contributing to fiber and seed yield. Plasmodesmata frequencies between companion cells and flanking parenchyma in minor veins are higher than expected for an apoplastic loader, and cotton's close relatedness to Tilia spp. hints at passive loading. Suc was the only canonical transport sugar in leaves and constituted 87% of 14C-labeled photoassimilate being actively transported. [14C]Suc uptake coupled with autoradiography indicated active [14C]Suc accumulation in minor veins, suggesting Suc loading from the apoplast; esculin, a fluorescent Suc analog, did not accumulate in minor veins. Of the nine sucrose transporter (SUT) genes identified per diploid genome, only GhSUT1-L2 showed appreciable expression in mature leaves, and silencing GhSUT1-L2 yielded phenotypes characteristic of blocked phloem transport. Furthermore, only GhSUT1-L2 cDNA stimulated esculin and [14C]Suc uptake into yeast, and only the GhSUT1-L2 promoter caused uidA (β-glucuronidase) reporter gene expression in minor vein phloem of Arabidopsis thaliana. Collectively, these results argue that apoplastic phloem loading mediated by GhSUT1-L2 is the dominant mode of phloem loading in cotton.
Collapse
Affiliation(s)
- Umesh P Yadav
- BioDiscovery Institute, Department of Biological Sciences, University of North Texas, 1155 Union Circle 305220, Denton, TX 76203-5017, USA
| | - John F Evers
- BioDiscovery Institute, Department of Biological Sciences, University of North Texas, 1155 Union Circle 305220, Denton, TX 76203-5017, USA
| | - Mearaj A Shaikh
- BioDiscovery Institute, Department of Biological Sciences, University of North Texas, 1155 Union Circle 305220, Denton, TX 76203-5017, USA
| | - Brian G Ayre
- BioDiscovery Institute, Department of Biological Sciences, University of North Texas, 1155 Union Circle 305220, Denton, TX 76203-5017, USA
| |
Collapse
|
140
|
Hu D, He S, Jia Y, Nazir MF, Sun G, Geng X, Pan Z, Wang L, Chen B, Li H, Ge Y, Pang B, Du X. Genome-wide association study for seedling biomass-related traits in Gossypium arboreum L. BMC PLANT BIOLOGY 2022; 22:54. [PMID: 35086471 PMCID: PMC8793229 DOI: 10.1186/s12870-022-03443-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 01/11/2022] [Indexed: 05/31/2023]
Abstract
BACKGROUND Seedling stage plant biomass is usually used as an auxiliary trait to study plant growth and development or stress adversities. However, few molecular markers and candidate genes of seedling biomass-related traits were found in cotton. RESULT Here, we collected 215 Gossypium arboreum accessions, and investigated 11 seedling biomass-related traits including the fresh weight, dry weight, water content, and root shoot ratio. A genome-wide association study (GWAS) utilizing 142,5003 high-quality SNPs identified 83 significant associations and 69 putative candidate genes. Furthermore, the transcriptome profile of the candidate genes emphasized higher expression of Ga03G1298, Ga09G2054, Ga10G1342, Ga11G0096, and Ga11G2490 in four representative cotton accessions. The relative expression levels of those five genes were further verified by qRT-PCR. CONCLUSIONS The significant SNPs, candidate genes identified in this study are expected to lay a foundation for studying the molecular mechanism for early biomass development and related traits in Asian cotton.
Collapse
Affiliation(s)
- Daowu Hu
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, State Key Laboratory of Cotton Biology, Anyang, 455000, Henan, China
| | - Shoupu He
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, State Key Laboratory of Cotton Biology, Anyang, 455000, Henan, China
| | - Yinhua Jia
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, State Key Laboratory of Cotton Biology, Anyang, 455000, Henan, China
| | - Mian Faisal Nazir
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, State Key Laboratory of Cotton Biology, Anyang, 455000, Henan, China
| | - Gaofei Sun
- Anyang Institute of Technology, Anyang, 455000, China
| | - Xiaoli Geng
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, State Key Laboratory of Cotton Biology, Anyang, 455000, Henan, China
| | - Zhaoe Pan
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, State Key Laboratory of Cotton Biology, Anyang, 455000, Henan, China
| | - Liru Wang
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, State Key Laboratory of Cotton Biology, Anyang, 455000, Henan, China
| | - Baojun Chen
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, State Key Laboratory of Cotton Biology, Anyang, 455000, Henan, China
| | - Hongge Li
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, State Key Laboratory of Cotton Biology, Anyang, 455000, Henan, China
| | - Yuting Ge
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, State Key Laboratory of Cotton Biology, Anyang, 455000, Henan, China
| | - Baoyin Pang
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, State Key Laboratory of Cotton Biology, Anyang, 455000, Henan, China
| | - Xiongming Du
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, State Key Laboratory of Cotton Biology, Anyang, 455000, Henan, China.
| |
Collapse
|
141
|
Zhang Z, Chai M, Yang Z, Yang Z, Fan L. GRAND: An Integrated Genome, Transcriptome Resources, and Gene Network Database for Gossypium. FRONTIERS IN PLANT SCIENCE 2022; 13:773107. [PMID: 35126443 PMCID: PMC8814657 DOI: 10.3389/fpls.2022.773107] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 01/04/2022] [Indexed: 05/26/2023]
Abstract
With the increasing amount of cotton omics data, breeding scientists are confronted with the question of how to use massive cotton data to mine effective breeding information. Here, we construct a Gossypium Resource And Network Database (GRAND), which integrates 18 cotton genome sequences, genome annotations, two cotton genome variations information, and also four transcriptomes for Gossypium species. GRAND allows to explore and mine this data with the help of a toolbox that comprises a flexible search system, BLAST and BLAT suite, orthologous gene ID, networks of co-expressed genes, primer design, Gbrowse and Jbrowse, and drawing instruments. GRAND provides important information regarding Gossypium resources and hopefully can accelerate the progress of cultivating cotton varieties.
Collapse
Affiliation(s)
- Zhibin Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Mao Chai
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Zhaoen Yang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Zuoren Yang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Liqiang Fan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| |
Collapse
|
142
|
Li Y, Mo T, Ran L, Zeng J, Wang C, Liang A, Dai Y, Wu Y, Zhong Z, Xiao Y. Genome resequencing-based high-density genetic map and QTL detection for yield and fiber quality traits in diploid Asiatic cotton (Gossypium arboreum). Mol Genet Genomics 2022; 297:199-212. [PMID: 35048185 DOI: 10.1007/s00438-021-01848-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 12/14/2021] [Indexed: 10/19/2022]
Abstract
Cotton is the most important fiber crop in the world. Asiatic cotton (Gossypium arboreum, genome A2) is a diploid cotton species producing spinnable fibers and important germplasm for cotton breeding and a significant model for fiber biology. However, the genetic map of Asiatic cotton has been lagging behind tetraploid cottons, as well as other stable crops. This study aimed to construct a high-density SNP genetic map and to map QTLs for important yield and fiber quality traits. Using a recombinant inbred line (RIL) population and genome resequencing technology, we constructed a high-density genetic map that covered 1980.17 cM with an average distance of 0.61 cM between adjacent markers. QTL analysis revealed a total of 297 QTLs for 13 yield and fiber quality traits in three environments, explaining 5.0-37.4% of the phenotypic variance, among which 75 were stably detected in two or three environments. Besides, 47 QTL clusters, comprising 131 QTLs for representative traits, were identified. Our works laid solid foundation for fine mapping and cloning of QTL for yield and fiber quality traits in Asiatic cotton.
Collapse
Affiliation(s)
- Yaohua Li
- Biotechnology Research Center, Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Southwest University Southern Campus, Tiansheng Rd No. 2, Beibei, Chongqing, 400716, China
| | - Tong Mo
- Biotechnology Research Center, Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Southwest University Southern Campus, Tiansheng Rd No. 2, Beibei, Chongqing, 400716, China
| | - Lingfang Ran
- Biotechnology Research Center, Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Southwest University Southern Campus, Tiansheng Rd No. 2, Beibei, Chongqing, 400716, China
| | - Jianyan Zeng
- Biotechnology Research Center, Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Southwest University Southern Campus, Tiansheng Rd No. 2, Beibei, Chongqing, 400716, China
| | - Chuannan Wang
- Biotechnology Research Center, Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Southwest University Southern Campus, Tiansheng Rd No. 2, Beibei, Chongqing, 400716, China
| | - Aimin Liang
- Biotechnology Research Center, Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Southwest University Southern Campus, Tiansheng Rd No. 2, Beibei, Chongqing, 400716, China
| | - Yonglu Dai
- Biotechnology Research Center, Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Southwest University Southern Campus, Tiansheng Rd No. 2, Beibei, Chongqing, 400716, China
| | - Yiping Wu
- Biotechnology Research Center, Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Southwest University Southern Campus, Tiansheng Rd No. 2, Beibei, Chongqing, 400716, China
| | - Ziman Zhong
- Biotechnology Research Center, Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Southwest University Southern Campus, Tiansheng Rd No. 2, Beibei, Chongqing, 400716, China
| | - Yuehua Xiao
- Biotechnology Research Center, Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Southwest University Southern Campus, Tiansheng Rd No. 2, Beibei, Chongqing, 400716, China.
| |
Collapse
|
143
|
Zhou J, Wu Y, Zhang X, Zhao L, Feng Z, Wei F, Zhang Y, Feng H, Zhou Y, Zhu H. MPK homolog GhNTF6 was involved in cotton against Verticillium wilt by interacted with VdEPG1. Int J Biol Macromol 2022; 195:456-465. [PMID: 34920061 DOI: 10.1016/j.ijbiomac.2021.12.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/10/2021] [Accepted: 12/05/2021] [Indexed: 11/18/2022]
Abstract
Mitogen-activated protein kinases (MPKs) are important in regulating plant development and stress response. Rapid activation of MPKs in plants usually depends on its phosphorylated. In view of this situation, a phosphorylated GhNTF6 belonged to MPKs family was screened in cotton roots under Verticillium dahliae challenge by phosphoproteomics analysis. Expression of GhNTF6 in cotton plants was did not induce by V. dahliae infection, while, silencing GhNTF6 results to enhance cotton plants susceptibility to V. dahliae, overexpression - GhNTF6 enhance Arabidopsis plants survivability to V. dahliae. Moreover, the mutation of GhNTF6 at site Thr195 and Thy197 with the phosphorylation decreased the plant resistance to V. dahliae. Therefore, GhNTF6 phosphorylation is important in plants against V. dahliae. Further analysis demonstrated that GhNTF6 interacted with a V. dahliae endopolygalacturonase (VdEPG1) on the cell nucleus. We propose that GhNTF6 is a potential molecular target for improving resistance to Verticillium wilt in cotton.
Collapse
Affiliation(s)
- Jinglong Zhou
- College of Agriculture, Yangtze University, Jingzhou, Hubei 434025, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Yajie Wu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Xiaojian Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Lihong Zhao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Zili Feng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Feng Wei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yalin Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Hongjie Feng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Yi Zhou
- College of Agriculture, Yangtze University, Jingzhou, Hubei 434025, China.
| | - Heqin Zhu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, Henan 450001, China.
| |
Collapse
|
144
|
Peng Z, Li H, Sun G, Dai P, Geng X, Wang X, Zhang X, Wang Z, Jia Y, Pan Z, Chen B, Du X, He S. CottonGVD: A Comprehensive Genomic Variation Database for Cultivated Cottons. FRONTIERS IN PLANT SCIENCE 2021; 12. [PMID: 34992626 PMCID: PMC8724205 DOI: 10.3389/fpls.2021.803736] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Cultivated cottons are the most important economic crop, which produce natural fiber for the textile industry. In recent years, the genetic basis of several essential traits for cultivated cottons has been gradually elucidated by decoding their genomic variations. Although an abundance of resequencing data is available in public, there is still a lack of a comprehensive tool to exhibit the results of genomic variations and genome-wide association study (GWAS). To assist cotton researchers in utilizing these data efficiently and conveniently, we constructed the cotton genomic variation database (CottonGVD; http://120.78.174.209/ or http://db.cngb.org/cottonGVD). This database contains the published genomic information of three cultivated cotton species, the corresponding population variations (SNP and InDel markers), and the visualized results of GWAS for major traits. Various built-in genomic tools help users retrieve, browse, and query the variations conveniently. The database also provides interactive maps (e.g., Manhattan map, scatter plot, heatmap, and linkage disequilibrium block) to exhibit GWAS and expression GWAS results. Cotton researchers could easily focus on phenotype-associated loci visualization, and they are interested in and screen for candidate genes. Moreover, CottonGVD will continue to update by adding more data and functions.
Collapse
|
145
|
Zhang J, Jia X, Guo X, Wei H, Zhang M, Wu A, Cheng S, Cheng X, Yu S, Wang H. QTL and candidate gene identification of the node of the first fruiting branch (NFFB) by QTL-seq in upland cotton (Gossypium hirsutum L.). BMC Genomics 2021; 22:882. [PMID: 34872494 PMCID: PMC8650230 DOI: 10.1186/s12864-021-08164-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 11/08/2021] [Indexed: 12/05/2022] Open
Abstract
Background The node of the first fruiting branch (NFFB) is an important precocious trait in cotton. Many studies have been conducted on the localization of quantitative trait loci (QTLs) and genes related to fiber quality and yield, but there has been little attention to traits related to early maturity, especially the NFFB, in cotton. Results To identify the QTL associated with the NFFB in cotton, a BC4F2 population comprising 278 individual plants was constructed. The parents and two DNA bulks for high and low NFFB were whole genome sequenced, and 243.8 Gb of clean nucleotide data were generated. A total of 449,302 polymorphic SNPs and 135,353 Indels between two bulks were identified for QTL-seq. Seventeen QTLs were detected and localized on 11 chromosomes in the cotton genome, among which two QTLs (qNFFB-Dt2–1 and qNFFB-Dt3–3) were located in hotspots. Two candidate genes (GhAPL and GhHDA5) related to the NFFB were identified using quantitative real-time PCR (qRT-PCR) and virus-induced gene silencing (VIGS) experiments in this study. Both genes exhibited higher expression levels in the early-maturing cotton material RIL182 during flower bud differentiation, and the silencing of GhAPL and GhHDA5 delayed the flowering time and increased the NFFB compared to those of VA plants in cotton. Conclusions Our study preliminarily found that GhAPL and GhHDA5 are related to the early maturity in cotton. The findings provide a basis for the further functional verification of candidate genes related to the NFFB and contribute to the study of early maturity in cotton. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08164-2.
Collapse
Affiliation(s)
- Jingjing Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Xiaoyun Jia
- Hebei Laboratory of Crop Genetics and Breeding, Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050051, Hebei, China
| | - Xiaohao Guo
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Hengling Wei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Meng Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Aimin Wu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Shuaishuai Cheng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Xiaoqian Cheng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Shuxun Yu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
| | - Hantao Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
| |
Collapse
|
146
|
Zhang H, Zhang Y, Xu N, Rui C, Fan Y, Wang J, Han M, Wang Q, Sun L, Chen X, Lu X, Wang D, Chen C, Ye W. Genome-wide expression analysis of phospholipase A1 (PLA1) gene family suggests phospholipase A1-32 gene responding to abiotic stresses in cotton. Int J Biol Macromol 2021; 192:1058-1074. [PMID: 34656543 DOI: 10.1016/j.ijbiomac.2021.10.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 01/01/2023]
Abstract
Cotton is the most important crop for the production of natural fibres used in the textile industry. High salinity, drought, cold and high temperature represent serious abiotic stresses, which seriously threaten cotton production. Phospholipase AS has an irreplaceable role in lipid signal transmission, growth and development and stress events. Phospholipase A can be divided into three families: PLA1, PLA2 and pPLA. Among them, the PLA1 family is rarely studied in plants. In order to study the potential functions of the PLA1 family in cotton, the bioinformatics analysis of the PLA1 family was correlated with cotton adversity, and tissue-specific analysis was performed. Explore the structure-function relationship of PLA1 members. It is found that the expression of GbPLA1-32 gene is affected by a variety of environmental stimuli, indicating that it plays a very important role in stress and hormone response, and closely associates the cotton adversity with this family. Through further functional verification, we found that virus-induced GbPLA1-32 gene silencing (VIGS) caused Gossypium barbadense to be sensitive to salt stress. This research provides an important basis for further research on the molecular mechanism of cotton resistance to abiotic stress.
Collapse
Affiliation(s)
- Hong Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou Research Base, School of Agricultural Sciences, Zhengzhou University, Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan 455000, China; Engineering Research Centre of Cotton, Ministry of Education/College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, 830052 Urumqi, China
| | - Yuexin Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou Research Base, School of Agricultural Sciences, Zhengzhou University, Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan 455000, China
| | - Nan Xu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou Research Base, School of Agricultural Sciences, Zhengzhou University, Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan 455000, China
| | - Cun Rui
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou Research Base, School of Agricultural Sciences, Zhengzhou University, Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan 455000, China
| | - Yapeng Fan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou Research Base, School of Agricultural Sciences, Zhengzhou University, Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan 455000, China
| | - Jing Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou Research Base, School of Agricultural Sciences, Zhengzhou University, Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan 455000, China
| | - Mingge Han
- Engineering Research Centre of Cotton, Ministry of Education/College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, 830052 Urumqi, China
| | - Qinqin Wang
- Engineering Research Centre of Cotton, Ministry of Education/College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, 830052 Urumqi, China
| | - Liangqing Sun
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou Research Base, School of Agricultural Sciences, Zhengzhou University, Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan 455000, China
| | - Xiugui Chen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou Research Base, School of Agricultural Sciences, Zhengzhou University, Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan 455000, China
| | - Xuke Lu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou Research Base, School of Agricultural Sciences, Zhengzhou University, Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan 455000, China
| | - Delong Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou Research Base, School of Agricultural Sciences, Zhengzhou University, Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan 455000, China
| | - Chao Chen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou Research Base, School of Agricultural Sciences, Zhengzhou University, Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan 455000, China
| | - Wuwei Ye
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou Research Base, School of Agricultural Sciences, Zhengzhou University, Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan 455000, China; Engineering Research Centre of Cotton, Ministry of Education/College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, 830052 Urumqi, China.
| |
Collapse
|
147
|
Lv J, Chen B, Ma C, Qiao K, Fan S, Ma Q. Identification and characterization of the AINV genes in five Gossypium species with potential functions of GhAINVs under abiotic stress. PHYSIOLOGIA PLANTARUM 2021; 173:2091-2102. [PMID: 34537974 DOI: 10.1111/ppl.13559] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 08/26/2021] [Accepted: 09/11/2021] [Indexed: 06/13/2023]
Abstract
Acid invertase (AINV) is a kind of sucrose hydrolase with an important role in plants. Currently, the AINV genes have not been systematically studied in cotton. In this study, a total of 92 AINV genes were identified in five cotton species. The phylogenetic analysis revealed that the AINV proteins were divided into two subgroups in cotton: vacuolar invertase (VINV) and cell wall invertase (CWINV). The analysis of gene structures, conserved motifs, and three-dimensional protein structures suggested that GhAINVs were significantly conserved. The synteny analysis showed that whole-genome duplication was the main force promoting the expansion of the AINV gene family. The cis-element, transcriptome, and quantitative real time-polymerase chain reaction (qRT-PCR) showed that some GhAINVs were possibly associated with stress response. GhCWINV4, highly expressed in PEG treatment, was cloned, and subsequent virus-induced gene silencing assay confirmed that this gene was involved in the drought stress response. Overall, this study might be helpful for further analyzing the biological function of AINVs and provide clues for improving the resistance of cotton to stress.
Collapse
Affiliation(s)
- Jiaoyan Lv
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang, Henan, China
| | - Baizhi Chen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang, Henan, China
| | - Changkai Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang, Henan, China
| | - Kaikai Qiao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang, Henan, China
| | - Shuli Fan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang, Henan, China
| | - Qifeng Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang, Henan, China
| |
Collapse
|
148
|
Yang D, Liu Y, Cheng H, Wang Q, Lv L, Zhang Y, Zuo D, Song G. Genome-Wide Analysis of AAT Genes and Their Expression Profiling during Fiber Development in Cotton. PLANTS 2021; 10:plants10112461. [PMID: 34834823 PMCID: PMC8619630 DOI: 10.3390/plants10112461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/02/2021] [Accepted: 11/08/2021] [Indexed: 01/02/2023]
Abstract
Amino acid transporters (AATs) are a kind of membrane proteins that mediate the transport of amino acids across cell membranes in higher plants. The AAT proteins are involved in regulating plant cell growth and various developmental processes. However, the biological function of this gene family in cotton fiber development is not clear. In this study, 190, 190, 101, and 94 full-length AAT genes were identified from Gossypiumhirsutum, G. barbadense, G. arboreum, and G. raimondii. A total of 575 AAT genes from the four cotton species were divided into two subfamilies and 12 clades based on phylogenetic analysis. The AAT genes in the four cotton species were distributed on all the chromosomes. All GhAAT genes contain multiple exons, and each GhAAT protein has multiple conserved motifs. Transcriptional profiling and RT qPCR analysis showed that four GhATT genes tend to express specifically at the fiber initiation stage. Eight genes tend to express specifically at the fiber elongation and maturity stage, and four genes tend to express specifically at the fiber initiation and elongation stages. Our results provide a solid basis for further elucidating the biological function of AAT genes related to cotton fiber development and offer valuable genetic resources for crop improvement in the future.
Collapse
Affiliation(s)
- Dongjie Yang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China; (D.Y.); (Y.L.); (H.C.); (Q.W.); (L.L.); (Y.Z.)
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
| | - Yuanyuan Liu
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China; (D.Y.); (Y.L.); (H.C.); (Q.W.); (L.L.); (Y.Z.)
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
| | - Hailiang Cheng
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China; (D.Y.); (Y.L.); (H.C.); (Q.W.); (L.L.); (Y.Z.)
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
| | - Qiaolian Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China; (D.Y.); (Y.L.); (H.C.); (Q.W.); (L.L.); (Y.Z.)
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
| | - Limin Lv
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China; (D.Y.); (Y.L.); (H.C.); (Q.W.); (L.L.); (Y.Z.)
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
| | - Youping Zhang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China; (D.Y.); (Y.L.); (H.C.); (Q.W.); (L.L.); (Y.Z.)
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
| | - Dongyun Zuo
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China; (D.Y.); (Y.L.); (H.C.); (Q.W.); (L.L.); (Y.Z.)
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
- Correspondence: (D.Z.); (G.S.); Tel.: +86-037-2256-2375 (D.Z.); +86-037-2256-2377 (G.S.)
| | - Guoli Song
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China; (D.Y.); (Y.L.); (H.C.); (Q.W.); (L.L.); (Y.Z.)
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
- Correspondence: (D.Z.); (G.S.); Tel.: +86-037-2256-2375 (D.Z.); +86-037-2256-2377 (G.S.)
| |
Collapse
|
149
|
Zhang Y, Wang J, Chen X, Lu X, Wang D, Wang J, Wang S, Chen C, Guo L, Malik WA, Fan Y, Rui C, Cui R, Wang Q, Lei Y, Ye W. Genome-wide identification and characteristic analysis of the downstream melatonin metabolism gene GhM2H in Gossypium hirsutum L. Biol Res 2021; 54:36. [PMID: 34736526 PMCID: PMC8567562 DOI: 10.1186/s40659-021-00358-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 10/16/2021] [Indexed: 12/13/2022] Open
Abstract
Background Melatonin 2-hydroxylase (M2H) is the first enzyme in the catabolism pathway of melatonin, which catalyzes the production of 2-hydroxymelatonin (2-OHM) from melatonin. The content of 2-hydroxymelatonin in plants is much higher than that of melatonin. So M2H may be a key enzyme in the metabolic pathway of melatonin. Method We conducted a systematic analysis of the M2H gene family in Gossypium hirsutum based on the whole genome sequence by integrating the structural characteristics, phylogenetic relationships, expression profile, and biological stress of the members of the Gossypium hirsutum M2H gene family. Result We identified 265 M2H genes in the whole genome of Gossypium hirsutum, which were divided into 7 clades (clades I-VII) according to phylogenetic analysis. Most M2H members in each group had similar motif composition and gene structure characteristics. More than half of GhM2H members contain ABA-responsive elements and MeJA-responsive elements. Under different stress conditions, the expression levels of the gene changed, indicating that GhM2H members were involved in the regulation of abiotic stress. Some genes in the GhM2H family were involved in regulating melatonin levels in cotton under salt stress, and some genes were regulated by exogenous melatonin. Conclusion This study is helpful to explore the function of GhM2H, the downstream metabolism gene of melatonin in cotton, and lay the foundation for better exploring the molecular mechanism of melatonin improving cotton's response to abiotic stress. Supplementary Information The online version contains supplementary material available at 10.1186/s40659-021-00358-y.
Collapse
Affiliation(s)
- Yuexin Zhang
- State Key Laboratory of Cotton Biology/Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou Research Base, School of Agricultural Sciences, Zhengzhou University Research Base, Zhengzhou University/Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan, China
| | - Jing Wang
- State Key Laboratory of Cotton Biology/Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou Research Base, School of Agricultural Sciences, Zhengzhou University Research Base, Zhengzhou University/Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan, China
| | - Xiugui Chen
- State Key Laboratory of Cotton Biology/Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou Research Base, School of Agricultural Sciences, Zhengzhou University Research Base, Zhengzhou University/Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan, China
| | - Xuke Lu
- State Key Laboratory of Cotton Biology/Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou Research Base, School of Agricultural Sciences, Zhengzhou University Research Base, Zhengzhou University/Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan, China
| | - Delong Wang
- State Key Laboratory of Cotton Biology/Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou Research Base, School of Agricultural Sciences, Zhengzhou University Research Base, Zhengzhou University/Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan, China
| | - Junjuan Wang
- State Key Laboratory of Cotton Biology/Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou Research Base, School of Agricultural Sciences, Zhengzhou University Research Base, Zhengzhou University/Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan, China
| | - Shuai Wang
- State Key Laboratory of Cotton Biology/Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou Research Base, School of Agricultural Sciences, Zhengzhou University Research Base, Zhengzhou University/Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan, China
| | - Chao Chen
- State Key Laboratory of Cotton Biology/Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou Research Base, School of Agricultural Sciences, Zhengzhou University Research Base, Zhengzhou University/Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan, China
| | - Lixue Guo
- State Key Laboratory of Cotton Biology/Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou Research Base, School of Agricultural Sciences, Zhengzhou University Research Base, Zhengzhou University/Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan, China
| | - Waqar Afzal Malik
- State Key Laboratory of Cotton Biology/Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou Research Base, School of Agricultural Sciences, Zhengzhou University Research Base, Zhengzhou University/Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan, China
| | - Yapeng Fan
- State Key Laboratory of Cotton Biology/Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou Research Base, School of Agricultural Sciences, Zhengzhou University Research Base, Zhengzhou University/Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan, China
| | - Cun Rui
- State Key Laboratory of Cotton Biology/Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou Research Base, School of Agricultural Sciences, Zhengzhou University Research Base, Zhengzhou University/Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan, China
| | - Ruifeng Cui
- State Key Laboratory of Cotton Biology/Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou Research Base, School of Agricultural Sciences, Zhengzhou University Research Base, Zhengzhou University/Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan, China
| | - Qinqin Wang
- State Key Laboratory of Cotton Biology/Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou Research Base, School of Agricultural Sciences, Zhengzhou University Research Base, Zhengzhou University/Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan, China
| | - Yuqian Lei
- State Key Laboratory of Cotton Biology/Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou Research Base, School of Agricultural Sciences, Zhengzhou University Research Base, Zhengzhou University/Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan, China
| | - Wuwei Ye
- State Key Laboratory of Cotton Biology/Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou Research Base, School of Agricultural Sciences, Zhengzhou University Research Base, Zhengzhou University/Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan, China.
| |
Collapse
|
150
|
Ma C, Zhang Q, Lv J, Qiao K, Fan S, Ma Q, Zhang C. Genome-Wide Analysis of the Phospholipase D Family in Five Cotton Species, and Potential Role of GhPLD2 in Fiber Development and Anther Dehiscence. FRONTIERS IN PLANT SCIENCE 2021; 12:728025. [PMID: 34659294 PMCID: PMC8517146 DOI: 10.3389/fpls.2021.728025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 09/08/2021] [Indexed: 05/27/2023]
Abstract
Phospholipase D (PLD) and its hydrolysis product phosphatidic acid play an important role in the regulation of several cellular processes, including root growth, pollen tube elongation, and microtubule reorganization. Here, we systematically identified and analyzed the membership, characterization, and evolutionary relationship of PLDs in five species of cotton. The results of the transcriptomic analysis suggested that the evaluated PLD genes showed high expression levels in anther tissue and during the fiber initiation and elongation periods. Quantitative real-time polymerase chain reaction showed differential expression of GhPLD genes in the anthers of photoperiod sensitive male sterility mutant 5 (psm5). Previous research on multiple stable quantitative trait loci also suggests the role of PLD genes in the fiber development. Further analyses showed that GhPLD2 protein is localized to the plasma membrane. The virus-induced gene silencing of GhPLD2 in cotton seedlings repressed its expression by 40-70%, which led to a reduction in reactive oxygen species (ROS) levels, 22% anther indehiscence, and disrupted fiber initiation and elongation. Thus, we inferred that GhPLD2 may promote ROS production, which, in turn, may regulate anther dehiscence and fiber development.
Collapse
Affiliation(s)
- Changkai Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang, China
| | - Qian Zhang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Jiaoyan Lv
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang, China
| | - Kaikai Qiao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang, China
| | - Shuli Fan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang, China
| | - Qifeng Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang, China
| | - Chaojun Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang, China
| |
Collapse
|