101
|
Faldaas BO, Nielsen EW, Storm BS, Lappegård KT, Nilsen BA, Kiss G, Skogvoll E, Torp H, Ingul CB. Real-time feedback on chest compression efficacy by hands-free carotid Doppler in a porcine model. Resusc Plus 2024; 18:100583. [PMID: 38404755 PMCID: PMC10885784 DOI: 10.1016/j.resplu.2024.100583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/30/2024] [Accepted: 02/08/2024] [Indexed: 02/27/2024] Open
Abstract
Aim Current guidelines for cardiopulmonary resuscitation (CPR) recommend a one-size-fits-all approach in relation to the positioning of chest compressions. We recently developed RescueDoppler, a hands-free Doppler ultrasound device for continuous monitoring of carotid blood flow velocity during CPR. The aim of the present study is to investigate whether RescueDoppler via real-time hemodynamic feedback, could identify both optimal and suboptimal compression positions. Methods In this model of animal cardiac arrest, we induced ventricular fibrillation in five domestic pigs. Manual chest compressions were performed for ten seconds at three different positions on the sternum in random order and repeated six times. We analysed Time Average Velocity (TAV) with chest compression position as a fixed effect and animal, position, and sequential time within animals as random effects. Furthermore, we compared TAV to invasive blood pressure from the contralateral carotid artery. Results We were able to detect changes in TAV when altering positions. The positions with the highest (range 19 to 48 cm/s) and lowest (6-25 cm/s) TAV were identified in all animals, with corresponding peak pressure 50-81 mmHg, and 46-64 mmHg, respectively. Blood flow velocity was, on average, highest at the middle position (TAV 33 cm/s), but with significant variability between animals (SD 2.8) and positions within the same animal (SD 9.3). Conclusion RescueDoppler detected TAV changes during CPR with alternating chest compression positions, identifying the position yielding maximal TAV. Future clinical studies should investigate if RescueDoppler can be used as a real-time hemodynamical feedback device to guide compression position.
Collapse
Affiliation(s)
- Bjørn Ove Faldaas
- Faculty of Nursing and Health Sciences, Nord University, Bodø, Norway
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Erik Waage Nielsen
- Faculty of Nursing and Health Sciences, Nord University, Bodø, Norway
- Department of Clinical Medicine, Faculty of Health Sciences, UiT the Arctic University of Norway, Tromsø, Norway
- Department of Surgery, Nordland Hospital Trust, Bodø, Norway
- Department of Pain Management and Research, Division of Emergencies and Critical Care, Oslo University Hospital, Oslo, Norway
| | - Benjamin Stage Storm
- Faculty of Nursing and Health Sciences, Nord University, Bodø, Norway
- Department of Clinical Medicine, Faculty of Health Sciences, UiT the Arctic University of Norway, Tromsø, Norway
- Department of Surgery, Nordland Hospital Trust, Bodø, Norway
| | - Knut Tore Lappegård
- Department of Clinical Medicine, Faculty of Health Sciences, UiT the Arctic University of Norway, Tromsø, Norway
- Department of Medicine, Nordland Hospital Trust, Bodø, Norway
| | - Bent Aksel Nilsen
- Faculty of Nursing and Health Sciences, Nord University, Bodø, Norway
- Department of Surgery, Nordland Hospital Trust, Bodø, Norway
| | - Gabriel Kiss
- Department of Computer Science (IDI), Faculty of Information Technology and Electrical Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Eirik Skogvoll
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Clinic of Anesthesia and Intensive Care Medicine, St Olav University Hospital, Trondheim, Norway
| | - Hans Torp
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Charlotte Björk Ingul
- Faculty of Nursing and Health Sciences, Nord University, Bodø, Norway
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
102
|
Alotaibi BS, Abdel-Rahman Mohamed A, Abd-Elhakim YM, Noreldin AE, Elhamouly M, Khamis T, El-Far AH, Alosaimi ME, Dahran N, Alqahtani LS, Nicotra M, El-Gamal M, Di Cerbo A. Exploring the link between pyrethroids exposure and dopaminergic degeneration through morphometric, immunofluorescence, and in-silico approaches: the therapeutic role of chitosan-encapsulated curcumin nanoparticles. Front Pharmacol 2024; 15:1388784. [PMID: 38751787 PMCID: PMC11094265 DOI: 10.3389/fphar.2024.1388784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/11/2024] [Indexed: 05/18/2024] Open
Abstract
Introduction: The synthetic pyrethroid derivative fenpropathrin (FNE), a commonly used insecticide, has been associated with various toxic effects in mammals, particularly neurotoxicity. The study addressed the hallmarks of the pathophysiology of Parkinson's disease upon oral exposure to fenpropathrin (FNE), mainly the alteration of dopaminergic markers, oxidative stress, and molecular docking in rat models. In addition, the protective effect of curcumin-encapsulated chitosan nanoparticles (CRM-Chs-NPs) was also assessed. Methods: In a 60-day trial, 40 male Sprague Dawley rats were divided into 4 groups: Control, CRM-Chs-NPs (curcumin-encapsulated chitosan nanoparticles), FNE (15 mg/kg bw), and FNE + CRM-Chs-NPs. Results: FNE exposure induced reactive oxygen species generation, ATP production disruption, activation of inflammatory and apoptotic pathways, mitochondrial function and dynamics impairment, neurotransmitter level perturbation, and mitophagy promotion in rat brains. Molecular docking analysis revealed that FNE interacts with key binding sites of dopamine synthesis and transport proteins. On the other hand, CRM-Chs-NPs mitigated FNE's toxic effects by enhancing mitochondrial dynamics, antioxidant activity, and ATP production and promoting anti-inflammatory and antiapoptotic responses. Conclusion: In summary, FNE appears to induce dopaminergic degeneration through various mechanisms, and CRM-Chs-NPs emerged as a potential therapeutic intervention for protecting the nervous tissue microenvironment.
Collapse
Affiliation(s)
- Badriyah S. Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Amany Abdel-Rahman Mohamed
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Yasmina M. Abd-Elhakim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Ahmed E. Noreldin
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Moustafa Elhamouly
- Cytology and Histology Department, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Tarek Khamis
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
- Laboratory of Biotechnology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Ali H. El-Far
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Manal E. Alosaimi
- Department of Basic Health Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Naief Dahran
- Department of Anatomy, Faculty of Medicine, University of Jeddah, Jeddah, Saudi Arabia
| | - Leena S. Alqahtani
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Mario Nicotra
- School of Biosciences and Veterinary Medicine, University of Camerino, Matelica, Italy
| | - Mohamed El-Gamal
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- Department of Biological Sciences, Faculty of Science, New Mansoura University, New Mansoura City, Egypt
| | - Alessandro Di Cerbo
- School of Biosciences and Veterinary Medicine, University of Camerino, Matelica, Italy
| |
Collapse
|
103
|
Kouroupis D, Perucca Orfei C, Correa D, Talò G, Libonati F, De Luca P, Raffo V, Best TM, de Girolamo L. Cellular and Structural Changes in Achilles and Patellar Tendinopathies: A Pilot In Vivo Study. Biomedicines 2024; 12:995. [PMID: 38790957 PMCID: PMC11117798 DOI: 10.3390/biomedicines12050995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/19/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
Tendinopathies continue to be a challenge for both patients and the medical teams providing care as no universal clinical practice guidelines have been established. In general, tendinopathies are typically characterized by prolonged, localized, activity-related pain with abnormalities in tissue composition, cellularity, and microstructure that may be observed on imaging or histology. In the lower limb, tendinopathies affecting the Achilles and the patellar tendons are the most common, showing a high incidence in athletic populations. Consistent diagnosis and management have been challenged by a lack of universal consensus on the pathophysiology and clinical presentation. Current management is primarily based on symptom relief and often consists of medications such as non-steroidal anti-inflammatories, injectable therapies, and exercise regimens that typically emphasize progressive eccentric loading of the affected structures. Implementing the knowledge of tendon stem/progenitor cells (TSPCs) and assessing their potential in enhancing tendon repair could fill an important gap in this regard. In the present pilot in vivo study, we have characterized the structural and cellular alterations that occur soon after tendon insult in models of both Achilles and patellar tendinopathy. Upon injury, CD146+ TSPCs are recruited from the interfascicular tendon matrix to the vicinity of the paratenon, whereas the observed reduction in M1 macrophage polarization is related to a greater abundance of reparative CD146+ TSPCs in situ. The robust TSPCs' immunomodulatory effects on macrophages were also demonstrated in in vitro settings where TSPCs can effectively polarize M1 macrophages towards an anti-inflammatory therapeutic M2 phenotype. Although preliminary, our findings suggest CD146+ TSPCs as a key phenotype that could be explored in the development of targeted regenerative therapies for tendinopathies.
Collapse
Affiliation(s)
- Dimitrios Kouroupis
- Department of Orthopedics, UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, FL 33146, USA; (D.K.)
- Diabetes Research Institute & Cell Transplant Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Carlotta Perucca Orfei
- Laboratorio di Biotecnologie Applicate all’Ortopedia, IRCCS Istituto Ortopedico Galeazzi, Via C. Belgioioso 173, 20157 Milan, Italy (L.d.G.)
| | - Diego Correa
- Department of Orthopedics, UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, FL 33146, USA; (D.K.)
- Diabetes Research Institute & Cell Transplant Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Giuseppe Talò
- Cell and Tissue Engineering Laboratory, IRCCS Istituto Ortopedico Galeazzi, Via C. Belgioioso 173, 20157 Milan, Italy
| | - Francesca Libonati
- Laboratorio di Biotecnologie Applicate all’Ortopedia, IRCCS Istituto Ortopedico Galeazzi, Via C. Belgioioso 173, 20157 Milan, Italy (L.d.G.)
| | - Paola De Luca
- Laboratorio di Biotecnologie Applicate all’Ortopedia, IRCCS Istituto Ortopedico Galeazzi, Via C. Belgioioso 173, 20157 Milan, Italy (L.d.G.)
| | - Vincenzo Raffo
- Laboratorio di Biotecnologie Applicate all’Ortopedia, IRCCS Istituto Ortopedico Galeazzi, Via C. Belgioioso 173, 20157 Milan, Italy (L.d.G.)
| | - Thomas M. Best
- Department of Orthopedics, UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, FL 33146, USA; (D.K.)
| | - Laura de Girolamo
- Laboratorio di Biotecnologie Applicate all’Ortopedia, IRCCS Istituto Ortopedico Galeazzi, Via C. Belgioioso 173, 20157 Milan, Italy (L.d.G.)
| |
Collapse
|
104
|
Lee SM, Lee SM, Song J. Effects of Taraxaci Herba (Dandelion) on Testosterone Propionate-Induced Benign Prostatic Hyperplasia in Rats. Nutrients 2024; 16:1189. [PMID: 38674879 PMCID: PMC11054461 DOI: 10.3390/nu16081189] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Benign prostatic hyperplasia (BPH) is the non-malignant enlargement of the prostate, associated with lower urinary tract symptoms (LUTSs). Taraxaci Herba (TH), commonly known as dandelion, has traditionally been utilized in East Asia to treat symptoms related to LUTSs. Based on this traditional use, our study aimed to explore the inhibitory effects of TH on BPH progression using a testosterone propionate-induced rat model. To induce BPH, male Sprague Dawley rats were castrated and injected subcutaneously with testosterone propionate (3 mg/kg/day) for 28 days. Concurrently, TH extract was administered orally at doses of 100 and 300 mg/kg/day throughout the four-week period of testosterone propionate injections. The TH extract significantly reduced both the absolute and relative weights of the prostate, along with histopathological changes in the gland. Moreover, it lowered serum levels of testosterone and dihydrotestosterone and reduced the expression of the androgen receptor in the prostate. Additionally, the TH extract modulated the protein expressions of Bax and Bcl-2, which are key regulators of apoptosis in prostate cells. Collectively, our findings suggest that TH inhibits BPH development partially by modulating androgen signaling and inducing apoptosis within the prostate.
Collapse
Affiliation(s)
| | | | - Jungbin Song
- Department of Herbal Pharmacology, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| |
Collapse
|
105
|
Zhang H, Wang X, Liu J, Zhang Y, Ka M, Ma Y, Xu J, Zhang W. Role of neutrophil myeloperoxidase in the development and progression of high-altitude pulmonary edema. Biochem Biophys Res Commun 2024; 703:149681. [PMID: 38382360 DOI: 10.1016/j.bbrc.2024.149681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/28/2024] [Accepted: 02/12/2024] [Indexed: 02/23/2024]
Abstract
BACKGROUND Neutrophil infiltration and hypoxic pulmonary vasoconstriction induced by hypobaric hypoxic stress are vital in high-altitude pulmonary edema (HAPE). Myeloperoxidase (MPO), an important enzyme in neutrophils, is associated with inflammation and oxidative stress and is also involved in the regulation of nitric oxide synthase (NOS), an enzyme that catalyzes the production of the vasodilatory factor nitric oxide (NO). However, the role of neutrophil MPO in HAPE's progression is still uncertain. Therefore, we hypothesize that MPO is involved in the development of HAPE via NOS. METHODS In Xining, China (altitude: 2260 m), C57BL/6 N wild-type and mpo-/- mice served as normoxic controls, while a hypobaric chamber simulated 7000 m altitude for hypoxia. L-NAME, a nitric oxide synthase (NOS) inhibitor to inhibit NO production, was the experimental drug, and D-NAME, without NOS inhibitory effects, was the control. After measuring pulmonary artery pressure (PAP), samples were collected and analyzed for blood neutrophils, oxidative stress, inflammation, vasoactive substances, pulmonary alveolar-capillary barrier permeability, and lung tissue morphology. RESULTS Wild-type mice's lung injury scores, permeability, and neutrophil counts rose at 24 and 48 h of hypoxia exposure. Under hypoxia, PAP increased from 12.89 ± 1.51 mmHg under normoxia to 20.62 ± 3.33 mmHg significantly in wild-type mice and from 13.24 ± 0.79 mmHg to 16.50 ± 2.07 mmHg in mpo-/- mice. Consistent with PAP, inducible NOS activity, lung permeability, lung injury scores, oxidative stress response, and inflammation showed more significant increases in wild-type mice than in mpo-/- mice. Additionally, endothelial NOS activity and NO levels decreased more pronouncedly in wild-type mice than in mpo-/- mice. NOS inhibition during hypoxia led to more significant increases in PAP, permeability, and lung injury scores compared to the drug control group, especially in wild-type mice. CONCLUSION MPO knockout reduces oxidative stress and inflammation to preserve alveolar-capillary barrier permeability and limits the decline in endothelial NOS activity to reduce PAP elevation during hypoxia. MPO inhibition emerges as a prospective therapeutic strategy for HAPE, offering avenues for precise interventions.
Collapse
Affiliation(s)
- Huan Zhang
- Research Center for High Altitude Medicine, Qinghai University, Xining, Qinghai, 810001, China; Key Laboratory of High Altitude Medicine (Ministry of Education), 810000, China; Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, Qinghai, 810001, China; Department of Pathology, The Second Affiliated Hospital of Xi'an Jiaotong University, 710004, China.
| | - Xiaojun Wang
- Department of Basic Medicine, Medical College of Qinghai University, Xining, Qinghai, 810001, China.
| | - Jie Liu
- Department of Pathology, Xi'an Chest Hospital, Xian, Shaanxi, 710000, China.
| | - Yu Zhang
- Department of Basic Medicine, Medical College of Qinghai University, Xining, Qinghai, 810001, China.
| | - Maojia Ka
- Research Center for High Altitude Medicine, Qinghai University, Xining, Qinghai, 810001, China; Key Laboratory of High Altitude Medicine (Ministry of Education), 810000, China; Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, Qinghai, 810001, China.
| | - Yi Ma
- Research Center for High Altitude Medicine, Qinghai University, Xining, Qinghai, 810001, China; Key Laboratory of High Altitude Medicine (Ministry of Education), 810000, China; Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, Qinghai, 810001, China.
| | - Jiaolong Xu
- Department of Basic Medicine, Medical College of Qinghai University, Xining, Qinghai, 810001, China; Linyi Central Hospital, Linyi, Shandong, 276400, China.
| | - Wei Zhang
- Research Center for High Altitude Medicine, Qinghai University, Xining, Qinghai, 810001, China; Key Laboratory of High Altitude Medicine (Ministry of Education), 810000, China; Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, Qinghai, 810001, China.
| |
Collapse
|
106
|
Alam MK, Alqhtani NR, Alnufaiy B, Alqahtani AS, Elsahn NA, Russo D, Di Blasio M, Cicciù M, Minervini G. A systematic review and meta-analysis of the impact of resveratrol on oral cancer: potential therapeutic implications. BMC Oral Health 2024; 24:412. [PMID: 38575921 PMCID: PMC10993553 DOI: 10.1186/s12903-024-04045-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 02/17/2024] [Indexed: 04/06/2024] Open
Abstract
The present study aimed to investigate the impact of resveratrol on oral neoplastic parameters through a systematic review and meta-analysis. Resveratrol, a naturally occurring polyphenol, has shown promising potential as a therapeutic agent in various cancer types, including oral neoplasms. Understanding the collective findings from existing studies can shed light on the efficacy and mechanisms of resveratrol in oral cancer management. The systematic review was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. A comprehensive search was performed to identify relevant studies from various databases, registers, websites, and citation searches. The inclusion criteria encompassed in-vivo studies investigating the impact of resveratrol on oral neoplastic parameters in animal models. After screening and assessment, a total of five eligible studies were included in the meta-analysis. The meta-analysis of the selected studies revealed that resveratrol treatment exhibited a potential impact on reducing oral neoplastic proliferation and promoting neoplastic apoptosis. The combined analysis showed a statistically significant decrease in neoplastic parameters with an overall effect size (ES) of 0.85 (95% CI: [0.74, 0.98]). Subgroup analyses were conducted to explore potential variations among different cellular types and exposure compounds, providing further insights into the efficacy of resveratrol in specific contexts. This systematic review and meta-analysis support the potential of resveratrol as a promising therapeutic agent in oral cancer management. The findings indicate that resveratrol may effectively modulate neoplastic proliferation and apoptosis in various cellular types within animal models of oral cancer. However, further well-controlled studies and clinical trials are warranted to validate these observations and elucidate the underlying mechanisms of resveratrol's actions. Resveratrol holds promise as a complementary therapeutic approach in the prevention and treatment of oral neoplastic conditions.
Collapse
Affiliation(s)
- Mohammad Khursheed Alam
- Preventive Dentistry Department, College of Dentistry, Jouf University, 72345, Sakaka, Saudi Arabia.
- Department of Dental Research Cell, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospitals, Chennai, 600077, India.
- Department of Public Health, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh.
| | - Nasser Raqe Alqhtani
- Department of Oral and Maxillofacial Surgery and Diagnostic Sciences, College of Dentistry, Prince Sattam Bin Abdullaziz University, 11942, Al-Kharj, Saudi Arabia
| | - Banna Alnufaiy
- Department of Preventive Dental Sciences, College of Dentistry, Prince Sattam Bin Abdullaziz University, 11942, Al-Kharj, Saudi Arabia
| | - Abdullah Saad Alqahtani
- Department of Preventive Dental Sciences, College of Dentistry, Prince Sattam Bin Abdullaziz University, 11942, Al-Kharj, Saudi Arabia
| | - Nesrine A Elsahn
- Clinical Sciences Department, College of Dentistry, Ajman University, Ajman, UAE
- Center of Medical and Bioallied Health Sciences Research, Ajman University, Ajman, UAE
| | - Diana Russo
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania Luigi Vanvitelli, 81100, Caserta, Italy.
| | - Marco Di Blasio
- Department of Medicine and Surgery, University Center of Dentistry, University of Parma, 43126, Parma, Italy.
| | - Marco Cicciù
- Department of Biomedical and Surgical and Biomedical Sciences, Catania University, 95123, Catania, Italy
| | - Giuseppe Minervini
- Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, India.
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania Luigi Vanvitelli, 81100, Caserta, Italy.
| |
Collapse
|
107
|
Zavarzina II, Kuzmenkov AI, Dobrokhotov NA, Maleeva EE, Korolkova YV, Peigneur S, Tytgat J, Krylov NA, Vassilevski AA, Chugunov AO. The scorpion toxin BeKm-1 blocks hERG cardiac potassium channels using an indispensable arginine residue. FEBS Lett 2024; 598:889-901. [PMID: 38563123 DOI: 10.1002/1873-3468.14850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/07/2024] [Accepted: 02/20/2024] [Indexed: 04/04/2024]
Abstract
BeKm-1 is a peptide toxin from scorpion venom that blocks the pore of the potassium channel hERG (Kv11.1) in the human heart. Although individual protein structures have been resolved, the structure of the complex between hERG and BeKm-1 is unknown. Here, we used molecular dynamics and ensemble docking, guided by previous double-mutant cycle analysis data, to obtain an in silico model of the hERG-BeKm-1 complex. Adding to the previous mutagenesis study of BeKm-1, our model uncovers the key role of residue Arg20, which forms three interactions (a salt bridge and hydrogen bonds) with the channel vestibule simultaneously. Replacement of this residue even by lysine weakens the interactions significantly. In accordance, the recombinantly produced BeKm-1R20K mutant exhibited dramatically decreased activity on hERG. Our model may be useful for future drug design attempts.
Collapse
Affiliation(s)
- Iana I Zavarzina
- Moscow Institute of Physics and Technology (State University), Dolgoprudny, Russia
| | | | - Nikita A Dobrokhotov
- Moscow Institute of Physics and Technology (State University), Dolgoprudny, Russia
| | | | | | | | - Jan Tytgat
- Toxicology and Pharmacology, KU Leuven, Belgium
| | - Nikolay A Krylov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Alexander A Vassilevski
- Moscow Institute of Physics and Technology (State University), Dolgoprudny, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Anton O Chugunov
- Moscow Institute of Physics and Technology (State University), Dolgoprudny, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| |
Collapse
|
108
|
Vermehren-Schmaedick A, Joshi S, Wagoner W, Norgard MA, Packwood W, Diba P, Mendez H, Fedorov LM, Rakshe S, Park B, Marks DL, Grossberg A, Luoh SW. Grb7 Ablation in Mice Improved Glycemic Control, Enhanced Insulin Signaling, and Increased Abdominal fat Mass in Females. Endocrinology 2024; 165:bqae045. [PMID: 38578949 PMCID: PMC11491842 DOI: 10.1210/endocr/bqae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/23/2024] [Accepted: 04/04/2024] [Indexed: 04/07/2024]
Abstract
OBJECTIVES Growth factor receptor bound protein 7 (GRB7) is a multidomain signaling adaptor. Members of the Grb7/10/14 family, specifically Gbrb10/14, have important roles in metabolism. We ablated the Grb7 gene in mice to examine its metabolic function. METHODS Global ablation of Grb7 in FVB/NJ mice was generated. Growth, organ weight, food intake, and glucose homeostasis were measured. Insulin signaling was examined by Western blotting. Fat and lean body mass was measured by nuclear magnetic resonance, and body composition after fasting or high-fat diet was assessed. Energy expenditure was measured by indirect calorimetry. Expression of adiposity and lipid metabolism genes was measured by quantitative PCR. RESULTS Grb7-null mice were viable, fertile, and without obvious phenotype. Grb7 ablation improved glycemic control and displayed sensitization to insulin signaling in the liver. Grb7-null females but not males had increased gonadal white adipose tissue mass. Following a 12-week high-fat diet, Grb7-null female mice gained fat body mass and developed relative insulin resistance. With fasting, there was less decrease in fat body mass in Grb7-null female mice. Female mice with Grb7 ablation had increased baseline food intake, less energy expenditure, and displayed a decrease in the expression of lipolysis and adipose browning genes in gonadal white adipose tissue by transcript and protein analysis. CONCLUSION Our study suggests that Grb7 is a negative regulator of glycemic control. Our results reveal a role for Grb7 in female mice in the regulation of the visceral adipose tissue mass, a powerful predictor of metabolic dysfunction in obesity.
Collapse
Affiliation(s)
- Anke Vermehren-Schmaedick
- Veterans Administration Portland Health Care System, Division of Hospital and Specialty Medicine, Portland, OR 97239, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
- Division of Hematology and Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Sonali Joshi
- Veterans Administration Portland Health Care System, Division of Hospital and Specialty Medicine, Portland, OR 97239, USA
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Oregon Health & Science University and Knight Cancer Institute, Portland, OR 97239, USA
| | - Wendy Wagoner
- Veterans Administration Portland Health Care System, Division of Hospital and Specialty Medicine, Portland, OR 97239, USA
| | - Mason A Norgard
- Papé Family Pediatric Research Institute, Department of Pediatrics, Oregon Health &Science University, Portland, OR 97239, USA
| | - William Packwood
- Small Animal Research Imaging Core, USR Program, Oregon Health & Science University, Portland, OR 97239, USA
| | - Parham Diba
- Papé Family Pediatric Research Institute, Department of Pediatrics, Oregon Health &Science University, Portland, OR 97239, USA
- Medical Scientist Training Program, Oregon Health & Science University, Portland, OR 97239, USA
| | - Heike Mendez
- Brenden Colson Center for Pancreatic Care, Department of Radiation Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Lev M Fedorov
- Transgenic Mouse Models Shared Resource, USR Program, Oregon Health & Science University, Portland, OR 97239, USA
| | - Shauna Rakshe
- Biostatistics Shared Resource, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Byung Park
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
- Biostatistics Shared Resource, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
- OHSU-PSU School of Public Health, Oregon Health & Science University, Portland, OR 97239, USA
| | - Daniel L Marks
- Papé Family Pediatric Research Institute, Department of Pediatrics, Oregon Health &Science University, Portland, OR 97239, USA
| | - Aaron Grossberg
- Brenden Colson Center for Pancreatic Care, Department of Radiation Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Shiuh-Wen Luoh
- Veterans Administration Portland Health Care System, Division of Hospital and Specialty Medicine, Portland, OR 97239, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
- Division of Hematology and Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
109
|
Chen Y, Gu M, Patterson J, Zhang R, Statz JK, Reed E, Abutarboush R, Ahlers ST, Kawoos U. Temporal Alterations in Cerebrovascular Glycocalyx and Cerebral Blood Flow after Exposure to a High-Intensity Blast in Rats. Int J Mol Sci 2024; 25:3580. [PMID: 38612392 PMCID: PMC11011510 DOI: 10.3390/ijms25073580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/09/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
The glycocalyx is a proteoglycan-glycoprotein structure lining the luminal surface of the vascular endothelium and is susceptible to damage due to blast overpressure (BOP) exposure. The glycocalyx is essential in maintaining the structural and functional integrity of the vasculature and regulation of cerebral blood flow (CBF). Assessment of alterations in the density of the glycocalyx; its components (heparan sulphate proteoglycan (HSPG/syndecan-2), heparan sulphate (HS), and chondroitin sulphate (CS)); CBF; and the effect of hypercapnia on CBF was conducted at 2-3 h, 1, 3, 14, and 28 days after a high-intensity (18.9 PSI/131 kPa peak pressure, 10.95 ms duration, and 70.26 PSI·ms/484.42 kPa·ms impulse) BOP exposure in rats. A significant reduction in the density of the glycocalyx was observed 2-3 h, 1-, and 3 days after the blast exposure. The glycocalyx recovered by 28 days after exposure and was associated with an increase in HS (14 and 28 days) and in HSPG/syndecan-2 and CS (28 days) in the frontal cortex. In separate experiments, we observed significant decreases in CBF and a diminished response to hypercapnia at all time points with some recovery at 3 days. Given the role of the glycocalyx in regulating physiological function of the cerebral vasculature, damage to the glycocalyx after BOP exposure may result in the onset of pathogenesis and progression of cerebrovascular dysfunction leading to neuropathology.
Collapse
Affiliation(s)
- Ye Chen
- Naval Medical Research Command, Silver Spring, MD 20910, USA; (Y.C.); (M.G.)
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Ming Gu
- Naval Medical Research Command, Silver Spring, MD 20910, USA; (Y.C.); (M.G.)
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Jacob Patterson
- Naval Medical Research Command, Silver Spring, MD 20910, USA; (Y.C.); (M.G.)
- Parsons Corporation, Columbia, MD 21046, USA
| | - Ruixuan Zhang
- Naval Medical Research Command, Silver Spring, MD 20910, USA; (Y.C.); (M.G.)
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Jonathan K. Statz
- Naval Medical Research Command, Silver Spring, MD 20910, USA; (Y.C.); (M.G.)
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Eileen Reed
- Naval Medical Research Command, Silver Spring, MD 20910, USA; (Y.C.); (M.G.)
- Parsons Corporation, Columbia, MD 21046, USA
| | - Rania Abutarboush
- Naval Medical Research Command, Silver Spring, MD 20910, USA; (Y.C.); (M.G.)
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Stephen T. Ahlers
- Naval Medical Research Command, Silver Spring, MD 20910, USA; (Y.C.); (M.G.)
| | - Usmah Kawoos
- Naval Medical Research Command, Silver Spring, MD 20910, USA; (Y.C.); (M.G.)
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| |
Collapse
|
110
|
Abd-Elhakim YM, Mohamed AAR, Noreldin AE, Khamis T, Eskandrani AA, Shamlan G, Alansari WS, Alotaibi BS, Alosaimi ME, Hakami MA, Abuzahrah SS. Fenpropathrin provoked kidney damage via controlling the NLRP3/Caspase-1/GSDMD-mediated pyroptosis: The palliative role of curcumin-loaded chitosan nanoparticles. Toxicol Appl Pharmacol 2024; 484:116869. [PMID: 38382713 DOI: 10.1016/j.taap.2024.116869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/05/2024] [Accepted: 02/18/2024] [Indexed: 02/23/2024]
Abstract
This study assessed the ability of formulated curcumin-loaded chitosan nanoparticles (CU-CS-NPs) to reduce the kidney damage resulting from fenpropathrin (FPN) in rats compared to curcumin (CU) in rats. Sixty male Sprague Dawley rats were separated into six groups and orally administered 1 mL/kg b.wt corn oil, 50 mg CU/kg b.wt, 50 mg CU-CS-NPs /kg b.wt., 15 mg FPN /kg b.wt, CU+ FPN or CU-CS-NPs + FPN for 60 days. Then, serum renal damage products were assessed. Total antioxidant capacity, reactive oxygen species, interleukin 1β (IL-1β), malondialdehyde, NF-κB P65, cleaved-Caspase-1, and Caspase-8 were estimated in kidney homogenates. The cleaved Caspase-3 and TNF-α immunoexpression and pyroptosis-related genes were determined in renal tissues. The results showed that CU-CS-NPS significantly repressed the FPN-induced increment in kidney damage products (urea, uric acid, and creatinine). Moreover, the FPN-associated hypo-proteinemia, renal oxidative stress and apoptotic reactions, and impaired renal histology were considerably repaired by CU and CU-CS-NPs. Additionally, compared to FPN-exposed rats, CU, and CU-CS-NPs-treated rats had considerably lower immunoexpression of cleaved Caspase-3 and TNF-α in renal tissue. The pyroptosis-related genes NLRP3, GSDMD, IL-18, Caspase-3, Caspase-1, IL-1β, Caspase-8, TNF-α, and NF-κB dramatically upregulated by FPN exposure in the renal tissues. Yet, in CU and CU-CS-NPs-treated rats, the gene above expression deviations were corrected. Notably, CU-CS-NPs were superior to CU in preventing oxidative damage and inflammation and regulating pyroptosis in the renal tissues of the FPN-exposed group. The results of the present study conclusively showed the superior favorable effect of CU-CS-NPs in counteracting renal impairment linked to environmental pollutants.
Collapse
Affiliation(s)
- Yasmina M Abd-Elhakim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, 44511 Zagazig, Egypt
| | - Amany Abdel-Rahman Mohamed
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, 44511 Zagazig, Egypt
| | - Ahmed E Noreldin
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt
| | - Tarek Khamis
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, 44511 Zagazig, Egypt; Laboratory of Biotechnology, Faculty of Veterinary Medicine, Zagazig University, 44519 Zagazig, Egypt
| | - Areej A Eskandrani
- Chemistry Department, College of Science, Taibah University, Medina 30002, Saudi Arabia
| | - Ghalia Shamlan
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, P.O. Box 11451, Riyadh 11362, Saudi Arabia
| | - Wafa S Alansari
- Biochemistry Department, Faculty of Science, University of Jeddah, Jeddah 21577, Saudi Arabia
| | - Badriyah S Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
| | - Manal E Alosaimi
- Department of Basic Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Mohammed Ageeli Hakami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Al-Quwayiyah, Riyadh, Saudi Arabia
| | - Samah S Abuzahrah
- Department of Biological Sciences, College of Science, University of Jeddah, P.O. Box 34, 21959, Saudi Arabia
| |
Collapse
|
111
|
Fröhlich E. Animals in Respiratory Research. Int J Mol Sci 2024; 25:2903. [PMID: 38474149 DOI: 10.3390/ijms25052903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/20/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
The respiratory barrier, a thin epithelial barrier that separates the interior of the human body from the environment, is easily damaged by toxicants, and chronic respiratory diseases are common. It also allows the permeation of drugs for topical treatment. Animal experimentation is used to train medical technicians, evaluate toxicants, and develop inhaled formulations. Species differences in the architecture of the respiratory tract explain why some species are better at predicting human toxicity than others. Some species are useful as disease models. This review describes the anatomical differences between the human and mammalian lungs and lists the characteristics of currently used mammalian models for the most relevant chronic respiratory diseases (asthma, chronic obstructive pulmonary disease, cystic fibrosis, pulmonary hypertension, pulmonary fibrosis, and tuberculosis). The generation of animal models is not easy because they do not develop these diseases spontaneously. Mouse models are common, but other species are more appropriate for some diseases. Zebrafish and fruit flies can help study immunological aspects. It is expected that combinations of in silico, in vitro, and in vivo (mammalian and invertebrate) models will be used in the future for drug development.
Collapse
Affiliation(s)
- Eleonore Fröhlich
- Center for Medical Research, Medical University of Graz, 8010 Graz, Austria
- Research Center Pharmaceutical Engineering GmbH, 8010 Graz, Austria
| |
Collapse
|
112
|
Langan LM, Paparella M, Burden N, Constantine L, Margiotta-Casaluci L, Miller TH, Moe SJ, Owen SF, Schaffert A, Sikanen T. Big Question to Developing Solutions: A Decade of Progress in the Development of Aquatic New Approach Methodologies from 2012 to 2022. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:559-574. [PMID: 36722131 PMCID: PMC10390655 DOI: 10.1002/etc.5578] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/26/2022] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
In 2012, 20 key questions related to hazard and exposure assessment and environmental and health risks of pharmaceuticals and personal care products in the natural environment were identified. A decade later, this article examines the current level of knowledge around one of the lowest-ranking questions at that time, number 19: "Can nonanimal testing methods be developed that will provide equivalent or better hazard data compared with current in vivo methods?" The inclusion of alternative methods that replace, reduce, or refine animal testing within the regulatory context of risk and hazard assessment of chemicals generally faces many hurdles, although this varies both by organism (human-centric vs. other), sector, and geographical region or country. Focusing on the past 10 years, only works that might reasonably be considered to contribute to advancements in the field of aquatic environmental risk assessment are highlighted. Particular attention is paid to methods of contemporary interest and importance, representing progress in (1) the development of methods which provide equivalent or better data compared with current in vivo methods such as bioaccumulation, (2) weight of evidence, or (3) -omic-based applications. Evolution and convergence of these risk assessment areas offer the basis for fundamental frameshifts in how data are collated and used for the protection of taxa across the breadth of the aquatic environment. Looking to the future, we are at a tipping point, with a need for a global and inclusive approach to establish consensus. Bringing together these methods (both new and old) for regulatory assessment and decision-making will require a concerted effort and orchestration. Environ Toxicol Chem 2024;43:559-574. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Laura M Langan
- Department of Environmental Science, Baylor University, One Bear Place #97266, Waco, TX, 76798, USA
| | - Martin Paparella
- Department of Medical Biochemistry, Medical University of Innsbruck, Innrain 80, 6020 Innsbruck, Austria
| | - Natalie Burden
- National Centre for the 3Rs (NC3Rs), Gibbs Building, 215 Euston Road, London NW1 2BE, UK
| | | | - Luigi Margiotta-Casaluci
- Department of Analytical, Environmental and Forensic Sciences, School of Cancer and Pharmaceutical Sciences, King’s College London, London SE1 9NQ, UK
| | - Thomas H. Miller
- Centre for Pollution Research & Policy, Environmental Sciences, Brunel University London, London, UK
| | - S. Jannicke Moe
- Norwegian Institute for Water Research, Økernveien 94, 0579 Oslo, Norway
| | - Stewart F. Owen
- AstraZeneca, Global Sustainability, Macclesfield, Cheshire SK10 2NA, UK
| | - Alexandra Schaffert
- Department of Medical Biochemistry, Medical University of Innsbruck, Innrain 80, 6020 Innsbruck, Austria
| | - Tiina Sikanen
- Faculty of Pharmacy and Helsinki Institute of Sustainability Science, University of Helsinki, Yliopistonkatu 3, Helsinki, 00100, Finland
| |
Collapse
|
113
|
Mokin M, Pionessa D, Koenigsknecht C, Gutierrez L, Setlur Nagesh SV, Meess Tuttle KM, Spengler M, Akkad Y, Vakharia K, Shapiro M, Gounis MJ, Levy EI, Siddiqui AH. A novel swine model of selective middle meningeal artery catheterization and embolization. J Neurointerv Surg 2024:jnis-2024-021481. [PMID: 38388479 DOI: 10.1136/jnis-2024-021481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/12/2024] [Indexed: 02/24/2024]
Abstract
BACKGROUND Middle meningeal artery (MMA) embolization is a promising intervention as a stand-alone or adjunct treatment to surgery in patients with chronic subdural hematomas. There are currently no large animal models for selective access and embolization of the MMA for preclinical evaluation of this endovascular modality. Our objective was to introduce a novel in vivo model of selective MMA embolization in swine. METHODS Diagnostic cerebral angiography with selective microcatheter catheterization into the MMA was performed under general anesthesia in five swine. Anatomical variants in arterial meningeal supply were examined. In two animals, subsequent embolization of the MMA with a liquid embolic agent (Onyx-18) was performed, followed by brain tissue harvest and histological analysis. RESULTS The MMA was consistently localized as a branch of the internal maxillary artery just distal to the origin of the ascending pharyngeal artery. Additional meningeal supply was observed from the external ophthalmic artery, although not present consistently. MMA embolization with Onyx was technically successful and feasible. Histological analysis showed Onyx material within the MMA lumen. CONCLUSIONS Microcatheter access into the MMA in swine with liquid embolic agent delivery represents a reproducible model of MMA embolization. Anatomical variations in the distribution of arterial supply to the meninges exist. This model has a potential application for comparing therapeutic effects of various embolic agents in a preclinical setting that closely resembles the MMA embolization procedure in humans.
Collapse
Affiliation(s)
- Maxim Mokin
- Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa, Florida, USA
| | - Donald Pionessa
- Canon Stroke and Vascular Research Center, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York, USA
| | - Carmon Koenigsknecht
- Canon Stroke and Vascular Research Center, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York, USA
| | - Liza Gutierrez
- Canon Stroke and Vascular Research Center, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York, USA
| | - Swetadri Vasan Setlur Nagesh
- Canon Stroke and Vascular Research Center and Department of Neurosurgery, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York, USA
| | | | | | | | - Kunal Vakharia
- Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa, Florida, USA
| | - Maksim Shapiro
- Radiology, NYU Langone Medical Center, New York, New York, USA
| | - Matthew J Gounis
- New England Center for Stroke Research, Department of Radiology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Elad I Levy
- Neurosurgery and Radiology and Canon Stroke and Vascular Research Center, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York, USA
- Neurosurgery, Gates Vascular Institute, Buffalo, New York, USA
| | - Adnan H Siddiqui
- Neurosurgery and Radiology and Canon Stroke and Vascular Research Center, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York, USA
- Neurosurgery, Gates Vascular Institute, Buffalo, New York, USA
| |
Collapse
|
114
|
Lentilhas-Graça J, Santos DJ, Afonso J, Monteiro A, Pinho AG, Mendes VM, Dias MS, Gomes ED, Lima R, Fernandes LS, Fernandes-Amorim F, Pereira IM, de Sousa N, Cibrão JR, Fernandes AM, Serra SC, Rocha LA, Campos J, Pinho TS, Monteiro S, Manadas B, Salgado AJ, Almeida RD, Silva NA. The secretome of macrophages has a differential impact on spinal cord injury recovery according to the polarization protocol. Front Immunol 2024; 15:1354479. [PMID: 38444856 PMCID: PMC10912310 DOI: 10.3389/fimmu.2024.1354479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/07/2024] [Indexed: 03/07/2024] Open
Abstract
Introduction The inflammatory response after spinal cord injury (SCI) is an important contributor to secondary damage. Infiltrating macrophages can acquire a spectrum of activation states, however, the microenvironment at the SCI site favors macrophage polarization into a pro-inflammatory phenotype, which is one of the reasons why macrophage transplantation has failed. Methods In this study, we investigated the therapeutic potential of the macrophage secretome for SCI recovery. We investigated the effect of the secretome in vitro using peripheral and CNS-derived neurons and human neural stem cells. Moreover, we perform a pre-clinical trial using a SCI compression mice model and analyzed the recovery of motor, sensory and autonomic functions. Instead of transplanting the cells, we injected the paracrine factors and extracellular vesicles that they secrete, avoiding the loss of the phenotype of the transplanted cells due to local environmental cues. Results We demonstrated that different macrophage phenotypes have a distinct effect on neuronal growth and survival, namely, the alternative activation with IL-10 and TGF-β1 (M(IL-10+TGF-β1)) promotes significant axonal regeneration. We also observed that systemic injection of soluble factors and extracellular vesicles derived from M(IL-10+TGF-β1) macrophages promotes significant functional recovery after compressive SCI and leads to higher survival of spinal cord neurons. Additionally, the M(IL-10+TGF-β1) secretome supported the recovery of bladder function and decreased microglial activation, astrogliosis and fibrotic scar in the spinal cord. Proteomic analysis of the M(IL-10+TGF-β1)-derived secretome identified clusters of proteins involved in axon extension, dendritic spine maintenance, cell polarity establishment, and regulation of astrocytic activation. Discussion Overall, our results demonstrated that macrophages-derived soluble factors and extracellular vesicles might be a promising therapy for SCI with possible clinical applications.
Collapse
Affiliation(s)
- José Lentilhas-Graça
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s Associate Lab, PT Government Associated Lab, Braga, Portugal
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Diogo J. Santos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s Associate Lab, PT Government Associated Lab, Braga, Portugal
| | - João Afonso
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s Associate Lab, PT Government Associated Lab, Braga, Portugal
| | - Andreia Monteiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s Associate Lab, PT Government Associated Lab, Braga, Portugal
| | - Andreia G. Pinho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s Associate Lab, PT Government Associated Lab, Braga, Portugal
| | - Vera M. Mendes
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Marta S. Dias
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- iBiMED- Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Eduardo D. Gomes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s Associate Lab, PT Government Associated Lab, Braga, Portugal
| | - Rui Lima
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s Associate Lab, PT Government Associated Lab, Braga, Portugal
| | - Luís S. Fernandes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s Associate Lab, PT Government Associated Lab, Braga, Portugal
| | - Fernando Fernandes-Amorim
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s Associate Lab, PT Government Associated Lab, Braga, Portugal
| | - Inês M. Pereira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s Associate Lab, PT Government Associated Lab, Braga, Portugal
| | - Nídia de Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s Associate Lab, PT Government Associated Lab, Braga, Portugal
| | - Jorge R. Cibrão
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s Associate Lab, PT Government Associated Lab, Braga, Portugal
| | - Aline M. Fernandes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s Associate Lab, PT Government Associated Lab, Braga, Portugal
| | - Sofia C. Serra
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s Associate Lab, PT Government Associated Lab, Braga, Portugal
| | - Luís A. Rocha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s Associate Lab, PT Government Associated Lab, Braga, Portugal
| | - Jonas Campos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s Associate Lab, PT Government Associated Lab, Braga, Portugal
| | - Tiffany S. Pinho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s Associate Lab, PT Government Associated Lab, Braga, Portugal
| | - Susana Monteiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s Associate Lab, PT Government Associated Lab, Braga, Portugal
| | - Bruno Manadas
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - António J. Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s Associate Lab, PT Government Associated Lab, Braga, Portugal
| | - Ramiro D. Almeida
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- iBiMED- Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Nuno A. Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s Associate Lab, PT Government Associated Lab, Braga, Portugal
| |
Collapse
|
115
|
Mohamed AAR, Abd-Elhakim YM, Noreldin AE, Khamis T, Elhamouly M, Akela MA, Alotaibi BS, Alosaimi ME, Khalil SS, El-Gamal M, Dahran N, El-Shetry ES. Understanding fenpropathrin-induced pulmonary toxicity: What apoptosis, inflammation, and pyreptosis reveal analyzing cross-links at the molecular, immunohistochemical, and immunofluorescent levels. Food Chem Toxicol 2024; 186:114520. [PMID: 38369055 DOI: 10.1016/j.fct.2024.114520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/07/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
Fenpropathrin (FN), a pyrethroid has been linked to potential pulmonary toxic effects to humans via incident direct or indirect ingestion. Thus, we aimed to the investigate the underlying mechanisms of lung toxicity upon exposure to FN in the rat model, besides studying whether curcumin (CCM) and curcumin-loaded chitosan nanoformulation (CCM-Chs) can mitigate FN-induced lung damage. Six distinct groups, namely, control, CCM, CCM-Chs, FN, and CCM + FN, CCM-Chs + FN were assigned separately. The inflammatory, apoptotic, and oxidative stress states, histological, immunohistochemical, and immunofluorescence examination of different markers within the pulmonary tissue were applied. The results revealed that the FN-induced tissue damage might be caused by the oxidative stress induction and depressed antioxidant glutathione system in the lungs of rats. Furthermore, FN upregulated the expression of genes related to inflammation, and pyroptosis, and elevated the immunoreactivity of Caspase-3, tumor necrosis factor-α, vimentin, and 4-Hydroxynonenal in pulmonary tissues of FN-exposed rats compared to the control. CCM and CCM-Chs mitigated the FN-induced disturbances, while remarkably, CCM-Chs showed better potency than CCM in mitigating the FN-induced toxicity. In conclusion, this study shows the prominent preventive ability of CCM-Chs more than CCM in combatting the pulmonary toxicity induced by FN. This may be beneficial in developing therapeutic and preventive strategies against FN-induced pulmonary toxicity.
Collapse
Affiliation(s)
- Amany Abdel-Rahman Mohamed
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Yasmina M Abd-Elhakim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Ahmed E Noreldin
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt
| | - Tarek Khamis
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, 44511, Zagazig, Egypt; Laboratory of Biotechnology, Faculty of Veterinary Medicine, Zagazig University, 44519, Zagazig, Egypt
| | - Moustafa Elhamouly
- Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Mohamed A Akela
- Department of Biology, College of Sciences and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Badriyah S Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, PO Box 84428, Riyadh 1671, Saudi Arabia.
| | - Manal E Alosaimi
- Department of Basic Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Samah S Khalil
- Department of Biochemistry, Drug Information Centre, Zagazig University Hospitals, Zagazig University, Egypt
| | - Mohamed El-Gamal
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt; Medical Experimental Research Center (MERC), Faculty of Medicine, Mansoura University, Mansoura, Egypt; Department of Biological Sciences, Faculty of Science, New Mansoura University, New Mansoura City, Egypt
| | - Naief Dahran
- Department of Anatomy, Faculty of Medicine, University of Jeddah, Jeddah, Saudi Arabia
| | - Eman S El-Shetry
- Department of Anatomy, College of Medicine, University of Hail, Hail, Kingdom of Saudi Arabia; Department of Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig, 44511, Egypt
| |
Collapse
|
116
|
Tian C, Yang Y, Wang R, Li Y, Sun F, Chen J, Zha D. Norepinephrine protects against cochlear outer hair cell damage and noise-induced hearing loss via α 2A-adrenergic receptor. BMC Neurosci 2024; 25:5. [PMID: 38291397 PMCID: PMC10829207 DOI: 10.1186/s12868-024-00845-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 01/16/2024] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND The cochlear sympathetic system plays a key role in auditory function and susceptibility to noise-induced hearing loss (NIHL). The formation of reactive oxygen species (ROS) is a well-documented process in NIHL. In this study, we aimed at investigating the effects of a superior cervical ganglionectomy (SCGx) on NIHL in Sprague-Dawley rats. METHODS We explored the effects of unilateral and bilateral Superior Cervical Ganglion (SCG) ablation in the eight-ten weeks old Sprague-Dawley rats of both sexes on NIHL. Auditory function was evaluated by auditory brainstem response (ABR) testing and Distortion product otoacoustic emissions (DPOAEs). Outer hair cells (OHCs) counts and the expression of α2A-adrenergic receptor (AR) in the rat cochlea using immunofluorescence analysis. Cells culture and treatment, CCK-8 assay, Flow cytometry staining and analysis, and western blotting were to explore the mechanisms of SCG fibers may have a protective role in NIHL. RESULTS We found that neither bilateral nor unilateral SCGx protected the cochlea against noise exposure. In HEI-OC1 cells, H2O2-induced oxidative damage and cell death were inhibited by the application of norepinephrine (NE). NE may prevent ROS-induced oxidative stress in OHCs and NIHL through the α2A-AR. CONCLUSION These results demonstrated that sympathetic innervation mildly affected cochlear susceptibility to acoustic trauma by reducing oxidative damage in OHCs through the α2A-AR. NE may be a potential therapeutic strategy for NIHL prevention.
Collapse
Affiliation(s)
- Chaoyong Tian
- Department of Otolaryngology Head and Neck Surgery, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, 710032, China
| | - Yang Yang
- Department of Otolaryngology Head and Neck Surgery, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, 710032, China
| | - Renfeng Wang
- Department of Otolaryngology Head and Neck Surgery, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, 710032, China
| | - Yao Li
- Department of Otolaryngology Head and Neck Surgery, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, 710032, China
| | - Fei Sun
- Department of Otolaryngology Head and Neck Surgery, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, 710032, China
| | - Jun Chen
- Department of Otolaryngology Head and Neck Surgery, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, 710032, China
| | - Dingjun Zha
- Department of Otolaryngology Head and Neck Surgery, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, 710032, China.
| |
Collapse
|
117
|
Behrens KA, Zimmermann H, Blažek R, Reichard M, Koblmüller S, Kocher TD. Turnover of sex chromosomes in the Lake Tanganyika cichlid tribe Tropheini (Teleostei: Cichlidae). Sci Rep 2024; 14:2471. [PMID: 38291228 PMCID: PMC10828463 DOI: 10.1038/s41598-024-53021-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 01/25/2024] [Indexed: 02/01/2024] Open
Abstract
Sex chromosome replacement is frequent in many vertebrate clades, including fish, frogs, and lizards. In order to understand the mechanisms responsible for sex chromosome turnover and the early stages of sex chromosome divergence, it is necessary to study lineages with recently evolved sex chromosomes. Here we examine sex chromosome evolution in a group of African cichlid fishes (tribe Tropheini) which began to diverge from one another less than 4 MYA. We have evidence for a previously unknown sex chromosome system, and preliminary indications of several additional systems not previously reported in this group. We find a high frequency of sex chromosome turnover and estimate a minimum of 14 turnovers in this tribe. We date the origin of the most common sex determining system in this tribe (XY-LG5/19) near the base of one of two major sub-clades of this tribe, about 3.4 MY ago. Finally, we observe variation in the size of one sex-determining region that suggests independent evolution of evolutionary strata in species with a shared sex-determination system. Our results illuminate the rapid rate of sex chromosome turnover in the tribe Tropheini and set the stage for further studies of the dynamics of sex chromosome evolution in this group.
Collapse
Affiliation(s)
- Kristen A Behrens
- Department of Biology, University of Maryland, College Park, MD, 20742, USA.
| | - Holger Zimmermann
- Institute of Vertebrate Biology, Czech Academy of Sciences, Květná 8, 603 00, Brno, Czech Republic
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010, Graz, Austria
| | - Radim Blažek
- Institute of Vertebrate Biology, Czech Academy of Sciences, Květná 8, 603 00, Brno, Czech Republic
| | - Martin Reichard
- Institute of Vertebrate Biology, Czech Academy of Sciences, Květná 8, 603 00, Brno, Czech Republic
- Department of Ecology and Vertebrate Zoology, University of Łódź, Łódź, Poland
| | - Stephan Koblmüller
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010, Graz, Austria
| | - Thomas D Kocher
- Department of Biology, University of Maryland, College Park, MD, 20742, USA
| |
Collapse
|
118
|
Sword J, Fomitcheva IV, Kirov SA. Spreading depolarization causes reversible neuronal mitochondria fragmentation and swelling in healthy, normally perfused neocortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.22.576364. [PMID: 38328069 PMCID: PMC10849532 DOI: 10.1101/2024.01.22.576364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Mitochondrial function is tightly linked to their morphology, and fragmentation of dendritic mitochondria during noxious conditions suggests loss of function. In the normoxic cortex, spreading depolarization (SD) is a phenomenon underlying migraine aura. It is unknown whether mitochondria structure is affected by normoxic SD. In vivo two-photon imaging followed by quantitative serial section electron microscopy (ssEM) was used to monitor dendritic mitochondria in the normoxic cortex of urethane-anesthetized mature male and female mice during and after SD initiated by focal KCl microinjection. Structural dynamics of dendrites and their mitochondria were visualized by transfecting excitatory, glutamatergic neurons of the somatosensory cortex with bicistronic AAV, which induced tdTomoto labeling in neuronal cytoplasm and mitochondria labeling with roGFP. Normoxic SD triggered a rapid fragmentation of dendritic mitochondria alongside dendritic beading, both reversible; however, mitochondria took significantly longer to recover. Several rounds of SD resulted in transient mitochondrial fragmentation and dendritic beading without accumulating injury, as both recovered. SsEM corroborated normoxic SD-elicited dendritic and mitochondrial swelling and transformation of the filamentous mitochondrial network into shorter, swollen tubular and globular structures. Our results revealed normoxic SD-induced disruption of the dendritic mitochondrial structure that might impact mitochondrial bioenergetics during migraine with aura.
Collapse
|
119
|
Selvakumar D, Barry MA, Pouliopoulos J, Lu J, Tran V, Kovoor P. Intra-cardiac motion detection catheter for the early identification of acute pericardial tamponade during invasive cardiac procedures. Front Cardiovasc Med 2024; 11:1341202. [PMID: 38283830 PMCID: PMC10810984 DOI: 10.3389/fcvm.2024.1341202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/03/2024] [Indexed: 01/30/2024] Open
Abstract
Objectives To develop and test an intra-cardiac catheter fitted with accelerometers to detect acute pericardial effusion prior to the onset of hemodynamic compromise. Background Early detection of an evolving pericardial effusion is critical in ensuring timely treatment. We hypothesized that the reduction in movement of the lateral heart border present in developing pericardial effusions could be quantified by positioning an accelerometer in a lateral cardiac structure. Methods A "motion detection" catheter was created by implanting a 3-axis accelerometer at the distal tip of a cardiac catheter. The pericardial space of 5 adult sheep was percutaneously accessed, and pericardial tamponade was created by infusion of normal saline. The motion detection catheter was positioned in the coronary sinus. Intracardiac echocardiography was used to confirm successful creation of pericardial effusion and hemodynamic parameters were collected. Results Statistically significant reduction in acceleration from baseline was detected after infusion of only 40 ml of normal saline (p < 0.05, ANOVA). In comparison, clinically significant change in systolic blood pressure (defined as >10% drop in baseline systolic blood pressure) occurred after infusion of 80 ml of normal saline (107 ± 22 mmHg vs. 90 ± 12 mmHg p = 0.97, ANOVA), and statistically significant change was recorded only after infusion of 200 ml (107 ± 22 mmHg vs. 64 ± 5 mmHg, p < 0.05, ANOVA). Conclusions An intra-cardiac motion detection catheter is highly sensitive in identifying acute cardiac tamponade prior to clinically and statistically significant changes in systolic blood pressure, allowing for early detection and treatment of this potentially life-threatening complication of all modern percutaneous cardiac interventions.
Collapse
Affiliation(s)
- Dinesh Selvakumar
- Department of Cardiology, Westmead Hospital, Westmead, NSW, Australia
- Westmead Clinical School, University of Sydney, Sydney, NSW, Australia
| | - Michael A. Barry
- Department of Cardiology, Westmead Hospital, Westmead, NSW, Australia
- Faculty of Engineering and IT, University of Sydney, Sydney, NSW, Australia
| | - Jim Pouliopoulos
- Innovation Centre & Clinical Imaging Facility, Victor Chang Cardiac Research Institute, Sydney, NSW, Australia
- School of Clinical Medicine, UNSW, Sydney, NSW, Australia
| | - Juntang Lu
- Department of Cardiology, Westmead Hospital, Westmead, NSW, Australia
| | - Vu Tran
- Department of Cardiology, Westmead Hospital, Westmead, NSW, Australia
| | - Pramesh Kovoor
- Department of Cardiology, Westmead Hospital, Westmead, NSW, Australia
- Westmead Clinical School, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
120
|
Eluu SC, Obayemi JD, Salifu AA, Yiporo D, Oko AO, Aina T, Oparah JC, Ezeala CC, Etinosa PO, Ugwu CM, Esimone CO, Soboyejo WO. In-vivo studies of targeted and localized cancer drug release from microporous poly-di-methyl-siloxane (PDMS) devices for the treatment of triple negative breast cancer. Sci Rep 2024; 14:31. [PMID: 38167999 PMCID: PMC10761815 DOI: 10.1038/s41598-023-50656-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2024] Open
Abstract
Triple-negative breast cancer (TNBC) treatment is challenging and frequently characterized by an aggressive phenotype and low prognosis in comparison to other subtypes. This paper presents fabricated implantable drug-loaded microporous poly-di-methyl-siloxane (PDMS) devices for the delivery of targeted therapeutic agents [Luteinizing Hormone-Releasing Hormone conjugated paclitaxel (PTX-LHRH) and Luteinizing Hormone-Releasing Hormone conjugated prodigiosin (PG-LHRH)] for the treatment and possible prevention of triple-negative cancer recurrence. In vitro assessment using the Alamar blue assay demonstrated a significant reduction (p < 0.05) in percentage of cell growth in a time-dependent manner in the groups treated with PG, PG-LHRH, PTX, and PTX-LHRH. Subcutaneous triple-negative xenograft breast tumors were then induced in athymic female nude mice that were four weeks old. Two weeks later, the tumors were surgically but partially removed, and the device implanted. Mice were observed for tumor regrowth and organ toxicity. The animal study revealed that there was no tumor regrowth, six weeks post-treatment, when the LHRH targeted drugs (LHRH-PTX and LHRH-PGS) were used for the treatment. The possible cytotoxic effects of the released drugs on the liver, kidney, and lung are assessed using quantitative biochemical assay from blood samples of the treatment groups. Ex vivo histopathological results from organ tissues showed that the targeted cancer drugs released from the implantable drug-loaded device did not induce any adverse effect on the liver, kidneys, or lungs, based on the results of qualitative toxicity studies. The implications of the results are discussed for the targeted and localized treatment of triple negative breast cancer.
Collapse
Affiliation(s)
- S C Eluu
- Department of Pharmaceutical Microbiology and Biotechnology, Nnamdi Azikiwe University, Ifite Awka, 420110, Anambra State, Nigeria
| | - J D Obayemi
- Department of Mechanical Engineering, Higgins Lab, Worcester Polytechnic Institute (WPI), 100 Institute Road, Worcester, MA, 01609, USA
- Department of Biomedical Engineering, Gateway Park Life Sciences and Bioengineering Centre, Worcester Polytechnic Institute, 60 Prescott Street, Worcester, MA, 01609, USA
| | - A A Salifu
- Department of Engineering, Morrissey College of Arts and Science, Boston College, Boston, USA
| | - D Yiporo
- Department of Mechanical Engineering, Ashesi University, Berekuso, Ghana
| | - A O Oko
- Department of Biology and Biotechnology, David Umahi Federal, University of Health Sciences, Uburu, Nigeria
| | - T Aina
- Department of Material Science, African University of Science and Technology, Km 10 Airport Road, Abuja, Nigeria
| | - J C Oparah
- Department of Material Science, African University of Science and Technology, Km 10 Airport Road, Abuja, Nigeria
| | - C C Ezeala
- Department of Material Science, African University of Science and Technology, Km 10 Airport Road, Abuja, Nigeria
| | - P O Etinosa
- Department of Mechanical Engineering, Higgins Lab, Worcester Polytechnic Institute (WPI), 100 Institute Road, Worcester, MA, 01609, USA
| | - C M Ugwu
- Department of Pharmaceutical Microbiology and Biotechnology, Nnamdi Azikiwe University, Ifite Awka, 420110, Anambra State, Nigeria
| | - C O Esimone
- Department of Pharmaceutical Microbiology and Biotechnology, Nnamdi Azikiwe University, Ifite Awka, 420110, Anambra State, Nigeria
| | - W O Soboyejo
- Department of Mechanical Engineering, Higgins Lab, Worcester Polytechnic Institute (WPI), 100 Institute Road, Worcester, MA, 01609, USA.
- Department of Biomedical Engineering, Gateway Park Life Sciences and Bioengineering Centre, Worcester Polytechnic Institute, 60 Prescott Street, Worcester, MA, 01609, USA.
- Department of Engineering, SUNY Polytechnic Institute, 100 Seymour Rd, Utica, NY, 13502, USA.
| |
Collapse
|
121
|
Cho KH, Kim JE, Nam HS, Baek SH, Bahuguna A. Consumption of Policosanol (Raydel ®) Improves Hepatic, Renal, and Reproductive Functions in Zebrafish: In Vivo Comparison Study among Cuban, Chinese, and American Policosanol. Pharmaceuticals (Basel) 2023; 17:66. [PMID: 38256899 PMCID: PMC10818973 DOI: 10.3390/ph17010066] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/19/2023] [Accepted: 12/28/2023] [Indexed: 01/24/2024] Open
Abstract
The current study compared three policosanols from Cuba (sugarcane, Raydel®, policosanol (1), China (rice bran, Shaanxi, policosanol (2), and the USA (sugarcane, Lesstanol®, policosanol (3) in the treatment of dyslipidemia and protection of the liver, ovary, and testis in hypercholesterolemic zebrafish. After twelve weeks of supplementation of each policosanol (PCO, final 0.1% in diet, w/w) with a high cholesterol diet (HCD, final 4%, w/w), the Raydel policosanol (PCO1) group showed the highest survivability, approximately 89%. In contrast, Shaanxi policosanol (PCO2) and Lesstanol policosanol (PCO3) produced 73% and 87% survivability, respectively, while the HCD alone group showed 75% survivability. In the 12th week, the PCO1 group demonstrated the most modest increase in body weight along with significantly lower levels of total cholesterol (TC) and triglycerides (TG) in comparison to the HCD control group. Additionally, the PCO1 group exhibited the highest proportion of high-density lipoprotein (HDL)-cholesterol within TC. Notably, the PCO1 group displayed the lowest level of aspartate aminotransferase and alanine aminotransferase, minimal infiltration of inflammatory cells, reduced interleukin (IL)-6 production in the liver, a notable decline in reactive oxygen species (ROS) generation and mitigated fatty liver changes. HCD supplementation induced impairment of kidney morphology with the greatest extent of ROS production and apoptosis. On the other hand, the PCO 1 group showed a remarkably improved morphology with the least ROS generation and apoptosis. Within the ovarian context, the PCO1 group exhibited the most substantial presence of mature vitellogenic oocytes, accompanied by minimal levels of ROS and apoptosis. Similarly, in the testicular domain, the PCO1 group showcased optimal morphology for spermatogenesis, characterized by the least interstitial area and diminished production of ROS in testicular cells. At week 8, the PCO1 group showed the highest egg-laying ability, with around 244 eggs produced per mating. In contrast, the HCD alone, PCO2, and PCO3 groups showed significantly lower egg-laying ability (49, 59, and 86 eggs, respectively). The embryos from the PCO1 group exhibited the highest survivability with the fastest swimming ability and developmental speed. These results suggest that PCO1 consumption significantly enhanced the reproduction system, egg-laying ability, and embryo survivability. In conclusion, among the three policosanols, Cuban (Raydel®) policosanol had the strongest effect on survivability, improving dyslipidemia, liver protection, kidney, ovary, and testis with a restoration of the cell morphology, and the least ROS production and apoptosis-induced by HCD supplementation.
Collapse
Affiliation(s)
- Kyung-Hyun Cho
- Raydel Research Institute, Medical Innovation Complex, Dong-gu, Daegu 41061, Republic of Korea; (J.-E.K.); (H.-S.N.); (S.-H.B.); (A.B.)
| | | | | | | | | |
Collapse
|
122
|
Abd-Elhakim YM, Hashem MMM, Abo-El-Sooud K, Mousa MR, Soliman AM, Mouneir SM, Ismail SH, Hassan BA, El-Nour HHM. Interactive effects of cadmium and titanium dioxide nanoparticles on hepatic tissue in rats: Ameliorative role of coenzyme 10 via modulation of the NF-κB and TNFα pathway. Food Chem Toxicol 2023; 182:114191. [PMID: 37980978 DOI: 10.1016/j.fct.2023.114191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 11/06/2023] [Accepted: 11/11/2023] [Indexed: 11/21/2023]
Abstract
This study investigated the effect of oral dosing of titanium dioxide nanoparticles (TNPs) and cadmium (Cd2+) on rat liver and the potential protective role of coenzyme Q10 (CQ10) against TNPs and Cd2+-induced hepatic injury. Seventy male Sprague Dawley rats were divided into seven groups and orally given distilled water, corn oil, CQ10 (10 mg/kg b.wt), TNPs (50 mg/kg b.wt), Cd2+ (5 mg/kg b.wt), TNPs + Cd2+, or TNPs + Cd2++CQ10 by gastric gavage for 60 successive days. The results showed that individual or mutual exposure to TNPs and Cd2+ significantly increased the serum levels of various hepatic enzymes and lipids, depleted the hepatic content of antioxidant enzymes, and increased malondialdehyde. Moreover, the hepatic titanium and Cd2+ content were increased considerably in TNPs and/or Cd2+-exposed rats. Furthermore, marked histopathological perturbations with increased immunoexpression of tumor necrosis factor-alpha and nuclear factor kappa B were evident in TNPs and/or Cd2+-exposed rats. However, CQ10 significantly counteracted the damaging effect of combined exposure of TNPs and Cd2+ on the liver. The study concluded that TNPs and Cd2+ exposure harm hepatic function and its architecture, particularly at their mutual exposure, but CQ10 could be a candidate protective agent against TNPs and Cd2+ hepatotoxic impacts.
Collapse
Affiliation(s)
- Yasmina M Abd-Elhakim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt.
| | - Mohamed M M Hashem
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Khaled Abo-El-Sooud
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Mohamed R Mousa
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Ahmed M Soliman
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Samar M Mouneir
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Sameh H Ismail
- Faculty of Nanotechnology for Postgraduate Studies, Cairo University, Sheikh Zayed Campus, 6th October City, Giza, 12588, Egypt
| | - Bayan A Hassan
- Pharmacology Department, Faculty of Pharmacy, Future University, Cairo 11835, Egypt
| | - Hayat H M El-Nour
- Biology of Reproduction Department, Animal Reproduction Research Institute, Giza 3514805, Egypt
| |
Collapse
|
123
|
Peterson C, Lu Y, Santiago CP, Price AC, McNally MM, Schubert W, Nassar K, Zollner T, Blackshaw S, Eberhart CG, Singh MS. Transition to Chronic Fibrosis in an Animal Model of Retinal Detachment With Features of Proliferative Vitreoretinopathy. Invest Ophthalmol Vis Sci 2023; 64:39. [PMID: 38153753 PMCID: PMC10756252 DOI: 10.1167/iovs.64.15.39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 09/18/2023] [Indexed: 12/29/2023] Open
Abstract
Purpose Proliferative vitreoretinopathy (PVR) is the most common cause of failure of surgically repaired rhegmatogenous retinal detachment (RRD). Chemically induced and cell injection PVR models do not fully simulate the clinical characteristics of PVR in the post-RRD context. There is an unmet need for translational models in which to study mechanisms and treatments specific to RRD-PVR. Methods RRD was induced in adult Dutch Belted rabbits. Posterior segments were fixed or processed for RNA sequencing at 6 hours and 2, 7, 14, and 35 days after induction. Histochemical staining and immunolabeling for glial fibrillary acidic protein, alpha smooth muscle actin, vascular endothelial growth factor receptor 2, CD68, and RPE 65 kDa protein were performed, and labeling intensity was scored. Single cell RNA sequencing was performed. Results Acute histopathological changes included intravitreal and intraretinal hemorrhage, leukocytic vitritis, chorioretinitis, and retinal rarefaction. Chronic lesions showed retinal atrophy, gliosis, fibrotic subretinal membranes, and epiretinal fibrovascular proliferation. Fibrillar collagen was present in the fibrocellular and fibrovascular membranes in chronic lesions. Moderate to strong labeling of glia and vasculature was detected in chronic lesions. At day 14, most cells profiled by single cell sequencing were identified as Mϋller glia and microglia, consistent with immunolabeling. Expression of several fibrillar collagen genes was upregulated in chronic lesions. Conclusions Histological and transcriptional features of this rabbit model simulate important features of human RRD-PVR, including the transition to chronic intraretinal and periretinal fibrosis. This animal model of RRD with features of PVR will enable further research on targeted treatment interventions.
Collapse
Affiliation(s)
- Cornelia Peterson
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
- Department of Comparative Pathobiology, Tufts University, Cummings School of Veterinary Medicine, North Grafton, Massachusetts, United States
| | - Yuchen Lu
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Clayton P. Santiago
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Antoinette C. Price
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Minda M. McNally
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | | | | | | | - Seth Blackshaw
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Charles G. Eberhart
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Mandeep S. Singh
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
124
|
Rawat M, Mani S, Gugino SF, Koenigsknecht C, Helman J, Nielsen L, Nair J, Munshi U, Chandrasekharan P, Lakshminrusimha S. Femoral Occlusion during Neonatal Cardiopulmonary Resuscitation Improves Outcomes in an Ovine Model of Perinatal Cardiac Arrest. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1804. [PMID: 38002895 PMCID: PMC10670492 DOI: 10.3390/children10111804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023]
Abstract
BACKGROUND The goal of chest compressions during neonatal resuscitation is to increase cerebral and coronary blood flow leading to the return of spontaneous circulation (ROSC). During chest compressions, bilateral femoral occlusion may increase afterload and promote carotid and coronary flow, an effect similar to epinephrine. Our objectives were to determine the impact of bilateral femoral occlusion during chest compressions on the incidence and timing of ROSC and hemodynamics. METHODOLOGY In this randomized study, 19 term fetal lambs in cardiac arrest were resuscitated based on the Neonatal Resuscitation Program guidelines and randomized into two groups: femoral occlusion or controls. Bilateral femoral arteries were occluded by applying pressure using two fingers during chest compressions. RESULTS Seventy percent (7/10) of the lambs in the femoral occlusion group achieved ROSC in 5 ± 2 min and three lambs (30%) did not receive epinephrine. ROSC was achieved in 44% (4/9) of the controls in 13 ± 6 min and all lambs received epinephrine. The femoral occlusion group had higher diastolic blood pressures, carotid and coronary blood flow. CONCLUSION Femoral occlusion resulted in faster and higher incidence of ROSC, most likely due to attaining increased diastolic pressures, coronary and carotid flow. This is a low-tech intervention that can be easily adapted in resource limited settings, with the potential to improve survival and neurodevelopmental outcomes.
Collapse
Affiliation(s)
- Munmun Rawat
- Department of Pediatrics, University at Buffalo, Buffalo, NY 14203, USA; (S.F.G.); (P.C.)
| | - Srinivasan Mani
- Department of Pediatrics, University of Toledo, Toledo, OH 43606, USA
| | - Sylvia F. Gugino
- Department of Pediatrics, University at Buffalo, Buffalo, NY 14203, USA; (S.F.G.); (P.C.)
| | - Carmon Koenigsknecht
- Department of Pediatrics, University at Buffalo, Buffalo, NY 14203, USA; (S.F.G.); (P.C.)
| | - Justin Helman
- Department of Pediatrics, University at Buffalo, Buffalo, NY 14203, USA; (S.F.G.); (P.C.)
| | - Lori Nielsen
- Department of Pediatrics, University at Buffalo, Buffalo, NY 14203, USA; (S.F.G.); (P.C.)
| | - Jayasree Nair
- Department of Pediatrics, Weill Cornell Medicine, New York, NY 10065, USA
| | - Upender Munshi
- Department of Pediatrics, Albany Medical College, Albany, NY 12208, USA;
| | | | | |
Collapse
|
125
|
Putra RS, Widyastiti NS, Budijitno S, Muniroh M, Novriansyah R, Alwi L, Adiputra PAT. Application of green mussel ( Perna viridis) shells hydroxyapatite on osteocalcin levels and osteoblast cells in rabbit femur bone defect. Ann Med Surg (Lond) 2023; 85:5464-5468. [PMID: 37915659 PMCID: PMC10617923 DOI: 10.1097/ms9.0000000000001302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/05/2023] [Indexed: 11/03/2023] Open
Abstract
Background Bovine hydroxyapatite (HA) used for bone grafts is relatively expensive, necessitating the development of alternative sources. Alternative HA materials derived from green mussel shells with smaller molecular sizes are inexpensive and abundantly available throughout Indonesian waters. The purpose of this study is to investigate the effect of green mussel shells HA on bone healing. Methods This post-test-only experimental research used male rabbits with femoral defects divided into three groups randomly: K (no treatment), P1 (bovine HA treatment), and P2 (green mussel shell HA treatment). The osteocalcin level was assessed biochemically while osteoblast cells were histopathologically at the second, fourth, and sixth weeks. Statistic tests were used to assess differences between groups and periods with statistical significance P<0.05. Results Nine rabbits in each group showed significant differences between groups K, P1, and P2 in term osteocalcin levels at week 2 (2.60, 4.53±0.12, 4.47±0.23; P=0.046), week 4 (5.13±0.12, 8.53±0.12, 7.47±0.12; P=0.025), and week 6 (8.20, 11.93±0.23, 10.93±0.31, P=0.023), while in term osteoblast cells only at week 6 (16.33±3.46, 26.10±3.52, 30.40±3.29; P=0.006). The osteocalcin level and osteoblast increased significantly between groups K and P1/P2 from the initial trial until the last week. Osteoblast cells in the groups P1/P2 increased significantly, especially at week 6. Conclusion Green mussel shell HA has the biochemical effectiveness of osteocalcin and can increase osteoblast cells comparable to bovine HA, which can enhance bone healing.
Collapse
Affiliation(s)
| | | | | | | | - Robin Novriansyah
- Orthopedic and Traumatology, Faculty of Medicine, Diponegoro University
| | - Luqman Alwi
- Surgical Department, Faculty of Medicine, State University of Semarang, Semarang
| | | |
Collapse
|
126
|
Almeida-Junior LAD, Araujo LDC, Lamarque GCC, Arnez MFM, Kapila YL, Silva LABD, Paula-Silva FWGD. Reparative Dentin Formation Following Dental Pulp Capping is Mediated by TNFR1 In Vivo. J Endod 2023; 49:1329-1336. [PMID: 37423584 DOI: 10.1016/j.joen.2023.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/20/2023] [Accepted: 06/25/2023] [Indexed: 07/11/2023]
Abstract
INTRODUCTION Tumor necrosis factor (TNF)-α is a pro-inflammatory cytokine that promotes biomineralization in vitro in dental pulp cells. However, the role of TNF-α-TNF receptor 1 (TNFR1) signaling in reparative dentin formation and related inflammatory pathways is not known. Therefore, the aim of this study was to evaluate the role of the TNF-α-TNFR1 axis in dental pulp repair following pulp capping in vivo. METHODS Dental pulp repair response of genetically deficient TNF-α receptor-1 mice (TNFR1-/-; n = 20) was compared with that of C57Bl6 mice (wild type [WT]; n = 20). Pulp capping was performed with mineral trioxide aggregate on the mandibular first molars of mice. After 7 and 70 days, tissues were collected and stained with hematoxylin and eosin for histopathological and histometric evaluation, and assessed by the Brown and Brenn methods for histomicrobiological analysis and by immunohistochemistry to localize TNF-α, Runt-related transcription factor 2, Dentin Sialoprotein (DSP) and Osteopontin (OPN) expression. RESULTS Compared with WT mice, TNFR1-/- mice showed significantly decreased reparative dentin formation with a lower mineralized tissue area (P < .0001). Unlike WT mice, TNFR1-/- mice also exhibited significant dental pulp necrosis, neutrophil recruitment, and apical periodontitis formation (P < .0001) without bacterial tissue invasion. TNFR1-/- animals further exhibited decreased TNF-α, DSP, and OPN expression (P < .0001), whereas Runt-related transcription factor 2 expression was unchanged (P > .05). CONCLUSION The TNF-α-TNFR1 axis is involved in reparative dentin formation following dental pulp capping in vivo. Genetic ablation of TNFR1 modified the inflammatory process and inhibited the expression of the DSP and OPN mineralization proteins, which culminated in dental pulp necrosis and development of apical periodontitis.
Collapse
Affiliation(s)
| | - Lisa Danielly Curcino Araujo
- Department of Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Giuliana Campos Chaves Lamarque
- Department of Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Maya Fernanda Manfrin Arnez
- Department of Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Yvonne Lorraine Kapila
- Department of Biosystems and Function, Section of Periodontics, School of Dentistry, University of California Los Angeles, Los Angeles, California
| | - Léa Assed Bezerra da Silva
- Department of Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | |
Collapse
|
127
|
Matos FG, Stremel ACA, Lipinski LC, Cirelli JA, Dos Santos FA. Dental implants in large animal models with experimental systemic diseases: A systematic review. Lab Anim 2023; 57:489-503. [PMID: 37021606 DOI: 10.1177/00236772221124972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
This systematic review aims to identify and discuss the most used methodologies in pre-clinical studies for the evaluation of the implementation of dental implants in systemically compromised pigs and sheep. This study provides support and guidance for future research, as well as for the prevention of unnecessary animal wastage and sacrifice. Preferred Reporting for Systematic Reviews and Meta-Analyses (PRISMA) was used as a guideline; electronic searches were performed in PubMed, Scopus, Scielo, Web of Science, Embase, Science Direct, Brazilian Bibliography of Dentistry, Latin American and Caribbean Literature in Health Sciences, Directory of Open Access Journals, Database of Abstracts of Reviews of Effects, and gray literature until January 2022 (PROSPERO/CRD42021270119). Sixty-eight articles were chosen from the 2439 results. Most studies were conducted in pigs, mainly the Göttinger and Domesticus breeds. Healthy animals with implants installed in the jaws were predominant among the pig studies. Of the studies evaluating the effect of systemic diseases on osseointegration, 42% were performed in osteoporotic sheep, 32% in diabetic sheep, and 26% in diabetic pigs. Osteoporosis was primarily induced by bilateral ovariectomy and mainly assessed by X-ray densitometry. Diabetes was induced predominantly by intravenous streptozotocin and was confirmed by blood glucose analysis. Histological and histomorphometric analyses were the most frequently employed in the evaluation of osseointegration. The animal models presented unique methodologies for each species in the studies that evaluated dental implants in the context of systemic diseases. Understanding the most commonly used techniques will help methodological choices and the performance of future studies in implantology.
Collapse
Affiliation(s)
| | | | | | - Joni Augusto Cirelli
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, State University of São Paulo (Unesp), Brazil
| | | |
Collapse
|
128
|
Singleton S, Sneddon C, Bakina A, Lambert JJ, Hales TG. Early-life adversity increases morphine tolerance and persistent inflammatory hypersensitivity through upregulation of δ opioid receptors in mice. Pain 2023; 164:2253-2264. [PMID: 37171192 PMCID: PMC10502877 DOI: 10.1097/j.pain.0000000000002925] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/03/2023] [Accepted: 03/17/2023] [Indexed: 05/13/2023]
Abstract
ABSTRACT Exposure to severely stressful events during childhood is associated with poor health outcomes in later life, including chronic pain and substance use disorder. However, the mediators and mechanisms are unclear. We investigated the impact of a well-characterized mouse model of early-life adversity, fragmented maternal care (FC) between postnatal day 2 and 9, on nociception, inflammatory hypersensitivity, and responses to morphine. Male and female mice exposed to FC exhibited prolonged basal thermal withdrawal latencies and decreased mechanical sensitivity. In addition, morphine had reduced potency in mice exposed to FC and their development of tolerance to morphine was accelerated. Quantitative PCR analysis in several brain regions and the spinal cords of juvenile and adult mice revealed an impact of FC on the expression of genes encoding opioid peptide precursors and their receptors. These changes included enhanced abundance of δ opioid receptor transcript in the spinal cord. Acute inflammatory hypersensitivity (induced by hind paw administration of complete Freund's adjuvant) was unaffected by exposure to FC. However, after an initial recovery of mechanical hypersensitivity, there was a reappearance in mice exposed to FC by day 15, which was not seen in control mice. Changes in nociception, morphine responses, and hypersensitivity associated with FC were apparent in males and females but were absent from mice lacking δ receptors or β-arrestin2. These findings suggest that exposure to early-life adversity in mice enhances δ receptor expression leading to decreased basal sensitivity to noxious stimuli coupled with accelerated morphine tolerance and enhanced vulnerability to persistent inflammatory hypersensitivity.
Collapse
Affiliation(s)
- Sam Singleton
- The Institute of Academic Anaesthesia, Division of Cellular and Systems Medicine, School of Medicine, Ninewells Hospital, University of Dundee, Dundee, United Kingdom
| | - Claire Sneddon
- The Institute of Academic Anaesthesia, Division of Cellular and Systems Medicine, School of Medicine, Ninewells Hospital, University of Dundee, Dundee, United Kingdom
| | - Alice Bakina
- The Institute of Academic Anaesthesia, Division of Cellular and Systems Medicine, School of Medicine, Ninewells Hospital, University of Dundee, Dundee, United Kingdom
| | - Jeremy J. Lambert
- The Institute of Academic Anaesthesia, Division of Cellular and Systems Medicine, School of Medicine, Ninewells Hospital, University of Dundee, Dundee, United Kingdom
| | - Tim G. Hales
- The Institute of Academic Anaesthesia, Division of Cellular and Systems Medicine, School of Medicine, Ninewells Hospital, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
129
|
McLeod GA, Cowie A, Sadler A, Watson F, Wasik P, Reina MA. Accuracy of injection pressure measurement at peripheral nerves using high-resolution 40 MHz ultrasound in an anesthetized porcine model. Reg Anesth Pain Med 2023; 48:501-507. [PMID: 36822816 DOI: 10.1136/rapm-2022-104282] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 02/14/2023] [Indexed: 02/25/2023]
Abstract
BACKGROUND Fluid injection pressure measurement is promoted as a marker of needle tip position that discriminates between tissue layers. However, clinical ultrasound has insufficient resolution to identify the exact position of the needle tip. Our primary objective was to use 40 MHz ultrasound in anesthetized pigs in order to precisely locate the tip of the needle and measure opening injection pressure in muscle, at epineurium and in subepineurium. METHODS We surgically exposed the axillae of four anesthetized pigs. Two operators placed a 40 MHz ultrasound transducer over the pectoral muscle and imaged axillary, median and radial nerves. Injections (0.5 mL) were randomized to in-plane and out-of-plane needle trajectories and flow rates of 1, 6 and 12 mL/min. RESULTS We identified 541 fascicles in 23 nerves. The ratio of fascicle area to nerve area remained constant at ~0.30 for all nerves. Axillary nerves were smaller than median and radial nerves, difference in diameter (95% CI) 1.61 (0.87 to 2.36) mm, p<0.001 and 1.59 (0.82 to 2.36) mm, p=0.001, respectively. Axillary nerves had less fascicles per nerve than median nerves, difference 7.63 (2.43 to 12.83) and radial nerves, difference 9.02 (3.64 to 14.40). We visualized the circumneurium and injection within the subcircumneural compartment. Intraneural injection increased nerve area (SD) from 5.7 (2.2) mm2 to 13.7 (5.5) mm2, difference 8.0 (5.4-10.6) mm2, p<0.001. Mean injection pressure was greater in subepineurium compared with muscle, geometric ratio 2.29 (1.30 to 4.10), p<0.001; and greater on epineurium compared with muscle, geometric ratio 1.73 (1.03 to 3.00), p=0.01. Twenty-two out of 23 injections in muscle, 14 out of 23 injections at epineurium and 11 out of 22 injections in subepineurium were <138 kPa (20 psi). CONCLUSION Needle tip position was not discernible using pressure monitoring. The circumneurium and subcircumneural injection compartment were observed but not intrafascicular injection.
Collapse
Affiliation(s)
- Graeme A McLeod
- Department of Anaesthesia, Ninewells Hospital, Dundee, UK
- Institute of Academic Anaesthesia, University of Dundee, Dundee, UK
| | | | - Amy Sadler
- Department of Anaesthesia, NHS Tayside, Dundee, UK
| | - Fiona Watson
- Department of Anaesthesia, NHS Tayside, Dundee, UK
| | - Paul Wasik
- Department of Anaesthesia, NHS Tayside, Dundee, UK
| | - Miguel Angel Reina
- Department of Anesthesiology, CEU San Pablo University Faculty of Medicine, Madrid, Spain
| |
Collapse
|
130
|
Alqahtani LS, Abd-Elhakim YM, Mohamed AAR, Khalifa NE, Khamis T, Alotaibi BS, Alosaimi M, El-Kholy SS, Abuzahrah SS, ElAshmouny N, Eskandrani AA, Gaber RA. Curcumin-loaded chitosan nanoparticles alleviate fenpropathrin-induced hepatotoxicity by regulating lipogenesis and pyroptosis in rats. Food Chem Toxicol 2023; 180:114036. [PMID: 37714448 DOI: 10.1016/j.fct.2023.114036] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/31/2023] [Accepted: 09/11/2023] [Indexed: 09/17/2023]
Abstract
In this study, the probable alleviative role of curcumin (CMN) (50 mg/kg b.wt) or curcumin-loaded chitosan nanoparticle (CLC-NP) (50 mg/kg b.wt) was assessed against the hepatotoxic effect of a widely used pyrethroid insecticide, fenpropathrin (FEN) (15 mg/kg b.wt) in rats in a 60-day experiment. The results revealed that CMN and CLC-NP significantly suppressed the FEN-induced increment in serum hepatic enzyme activities (ALT, AST, and ALP) and hyperbilirubinemia. Moreover, FEN-associated dyslipidemia, hepatic oxidative stress, and altered hepatic histology were significantly rescued by CMN and CLC-NP. Furthermore, the increased TNF-α and Caspase-3 immunoexpression in hepatic tissues of FEN-exposed rats was significantly reduced in CMN and CLC-NP-treated ones. FEN exposure significantly upregulated the pyroptosis-related genes, including GSDMD, Casp-1, Casp-3, Casp-8, IL-18, TNF-α, IL-1β, and NF-κB and altered the expression of lipogenesis-related genes including SREBP-1c, PPAR-α, MCP1, and FAS in the hepatic tissues. Nevertheless, the earlier disturbances in gene expression were corrected in CMN and CLC-NP-treated groups. Of note, compared to CMN, CLC-NP was more effective at inhibiting oxidative damage and controlling lipogenesis and pyroptosis in the hepatic tissues of FEN-exposed rats. Conclusively, the current study findings proved the superior and useful role of CLC-NP in combating pollutants associated with hepatic dysfunction.
Collapse
Affiliation(s)
- Leena S Alqahtani
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, 23445, Saudi Arabia
| | - Yasmina M Abd-Elhakim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Amany Abdel-Rahman Mohamed
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Norhan E Khalifa
- Department of Physiology, Faculty of Veterinary Medicine, Matrouh University, Matrouh, 51511, Egypt
| | - Tarek Khamis
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, 44511, Zagazig, Egypt; Laboratory of Biotechnology, Faculty of Veterinary Medicine, Zagazig University, 44519, Zagazig, Egypt
| | - Badriyah S Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
| | - Manal Alosaimi
- Department of Basic Medical Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Sanad S El-Kholy
- Department of Physiology, Faculty of Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Samah S Abuzahrah
- Department of Biological Sciences, College of Science, University of Jeddah, 21959, Saudi Arabia
| | - Naira ElAshmouny
- Histology and Cell biology, Faculty of Medicine, Kafr Elsheikh University, Egypt
| | - Areej Adeeb Eskandrani
- Chemistry Department, College of Science, Taibah University, Medina, 30002, Saudi Arabia
| | - Rasha A Gaber
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Egypt
| |
Collapse
|
131
|
Zapletalova K, Valenzuela I, Greyling M, Regin Y, Frigolett C, Krofta L, Deprest J, van der Merwe J. The Effects of Prenatal Pravastatin Treatment in the Rabbit Fetal Growth Restriction Model. Biomedicines 2023; 11:2685. [PMID: 37893059 PMCID: PMC10604497 DOI: 10.3390/biomedicines11102685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/22/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Fetal growth restriction (FGR) remains without an effective prenatal treatment. Evidence from murine FGR models suggests a beneficial effect of prenatal pravastatin. Since the rabbit hemodichorial placenta more closely resembles the human condition, we investigated the effects of prenatal maternal pravastatin administration in the rabbit FGR model. At a gestational age of 25 days (term 31d), pregnant dams underwent partial uteroplacental vessel ligation (UPVL) in one uterine horn to induce FGR, leaving the other horn as a control. Dams were randomized to either receive 5 mg/kg/d pravastatin dissolved in their drinking water or normal drinking water until delivery. At GA 30d, the rabbits were delivered and were divided into four groups: control without pravastatin (C/NoPrav), FGR without pravastatin (FGR/NoPrav), FGR with pravastatin (FGR/Prav), and controls with pravastatin (C/Prav). The newborn rabbits underwent pulmonary functional assessment and neurobehavioral assessment, and they were harvested for alveolar morphometry or neuropathology. The placentas underwent histology examination and RNA expression. Birth weight was lower in the FGR groups (FGR/Prav, FGR/NoPrav), but there was no difference between FGR/Prav and C/NoPrav. No differences were noted in placental zone proportions, but eNOS in FGR/Prav placentas and VEGFR-2 in FGR/Prav and C/Prav were upregulated. There were no differences in pulmonary function assessment and alveolar morphometry. FGR/Prav kittens had increased neurosensory scores, but there were no differences in neuromotor tests, neuron density, apoptosis, and astrogliosis. In conclusion, in the rabbit FGR model, pravastatin upregulated the expression of VEGFR-2 and eNOS in FGR placentas and was associated with higher neurosensory scores, without measurable effects on birthweight, pulmonary function and morphology, and neuron density.
Collapse
Affiliation(s)
- Katerina Zapletalova
- Department of Development and Regeneration, Cluster Woman and Child, Group Biomedical Sciences, Katholieke Universiteit Leuven, 3000 Leuven, Belgium; (K.Z.); (I.V.)
- Institute for the Care of Mother and Child, Third Faculty of Medicine, Charles University, 147 10 Prague, Czech Republic
| | - Ignacio Valenzuela
- Department of Development and Regeneration, Cluster Woman and Child, Group Biomedical Sciences, Katholieke Universiteit Leuven, 3000 Leuven, Belgium; (K.Z.); (I.V.)
| | - Marnel Greyling
- Department of Development and Regeneration, Cluster Woman and Child, Group Biomedical Sciences, Katholieke Universiteit Leuven, 3000 Leuven, Belgium; (K.Z.); (I.V.)
| | - Yannick Regin
- Department of Development and Regeneration, Cluster Woman and Child, Group Biomedical Sciences, Katholieke Universiteit Leuven, 3000 Leuven, Belgium; (K.Z.); (I.V.)
| | - Cristian Frigolett
- Department of Public Health and Primary Care, Leuven Statistics Research Centre, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Ladislav Krofta
- Institute for the Care of Mother and Child, Third Faculty of Medicine, Charles University, 147 10 Prague, Czech Republic
| | - Jan Deprest
- Department of Development and Regeneration, Cluster Woman and Child, Group Biomedical Sciences, Katholieke Universiteit Leuven, 3000 Leuven, Belgium; (K.Z.); (I.V.)
- Department of Obstetrics and Gynecology, Division Woman and Child, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Johannes van der Merwe
- Department of Development and Regeneration, Cluster Woman and Child, Group Biomedical Sciences, Katholieke Universiteit Leuven, 3000 Leuven, Belgium; (K.Z.); (I.V.)
- Department of Obstetrics and Gynecology, Division Woman and Child, University Hospitals Leuven, 3000 Leuven, Belgium
| |
Collapse
|
132
|
Nizamoglu M, Joglekar MM, Almeida CR, Larsson Callerfelt AK, Dupin I, Guenat OT, Henrot P, van Os L, Otero J, Elowsson L, Farre R, Burgess JK. Innovative three-dimensional models for understanding mechanisms underlying lung diseases: powerful tools for translational research. Eur Respir Rev 2023; 32:230042. [PMID: 37495250 PMCID: PMC10369168 DOI: 10.1183/16000617.0042-2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/04/2023] [Indexed: 07/28/2023] Open
Abstract
Chronic lung diseases result from alteration and/or destruction of lung tissue, inevitably causing decreased breathing capacity and quality of life for patients. While animal models have paved the way for our understanding of pathobiology and the development of therapeutic strategies for disease management, their translational capacity is limited. There is, therefore, a well-recognised need for innovative in vitro models to reflect chronic lung diseases, which will facilitate mechanism investigation and the advancement of new treatment strategies. In the last decades, lungs have been modelled in healthy and diseased conditions using precision-cut lung slices, organoids, extracellular matrix-derived hydrogels and lung-on-chip systems. These three-dimensional models together provide a wide spectrum of applicability and mimicry of the lung microenvironment. While each system has its own limitations, their advantages over traditional two-dimensional culture systems, or even over animal models, increases the value of in vitro models. Generating new and advanced models with increased translational capacity will not only benefit our understanding of the pathobiology of lung diseases but should also shorten the timelines required for discovery and generation of new therapeutics. This article summarises and provides an outline of the European Respiratory Society research seminar "Innovative 3D models for understanding mechanisms underlying lung diseases: powerful tools for translational research", held in Lisbon, Portugal, in April 2022. Current in vitro models developed for recapitulating healthy and diseased lungs are outlined and discussed with respect to the challenges associated with them, efforts to develop best practices for model generation, characterisation and utilisation of models and state-of-the-art translational potential.
Collapse
Affiliation(s)
- Mehmet Nizamoglu
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands
- Both authors contributed equally
| | - Mugdha M Joglekar
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands
- Both authors contributed equally
| | - Catarina R Almeida
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | | | - Isabelle Dupin
- Centre de Recherche Cardio-thoracique de Bordeaux, Université de Bordeaux, Pessac, France
- INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, Pessac, France
| | - Olivier T Guenat
- Organs-on-Chip Technologies, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
- Department of Pulmonary Medicine, University Hospital of Bern, Bern, Switzerland
- Department of General Thoracic Surgery, University Hospital of Bern, Bern, Switzerland
| | - Pauline Henrot
- Centre de Recherche Cardio-thoracique de Bordeaux, Université de Bordeaux, Pessac, France
- INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, Pessac, France
- Service d'exploration fonctionnelle respiratoire, CHU de Bordeaux, Pessac, France
| | - Lisette van Os
- Organs-on-Chip Technologies, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Jorge Otero
- Unit of Biophysics and Bioengineering, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- CIBER de Enfermedades Respiratorias, Madrid, Spain
| | - Linda Elowsson
- Lung Biology, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Ramon Farre
- Unit of Biophysics and Bioengineering, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- CIBER de Enfermedades Respiratorias, Madrid, Spain
- Institut Investigacions Biomediques August Pi Sunyer, Barcelona, Spain
| | - Janette K Burgess
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, W.J. Kolff Institute for Biomedical Engineering and Materials Science-FB41, Groningen, The Netherlands
| |
Collapse
|
133
|
Kousholt BS, Præstegaard KF, Stone JC, Thomsen AF, Johansen TT, Ritskes-Hoitinga M, Wegener G. Reporting of 3Rs Approaches in Preclinical Animal Experimental Studies-A Nationwide Study. Animals (Basel) 2023; 13:3005. [PMID: 37835611 PMCID: PMC10571812 DOI: 10.3390/ani13193005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 10/15/2023] Open
Abstract
The 3Rs aim to refine animal welfare, reduce animal numbers, and replace animal experiments. Investigations disclose that researchers are positive towards 3Rs recommendations from peers. Communication of 3Rs approaches via primary preclinical animal experimental literature may become a fast-forward extension to learn relevant 3Rs approaches if such are reported. This study investigates 3Rs-reporting in peer-reviewed preclinical animal research with at least one author affiliated to a Danish university. Using a systematic search and random sampling, we included 500 studies from 2009 and 2018. Reporting was low and improvement over time limited. A word search for 3R retrieved zero results in 2009 and 3.2% in 2018. Reporting on 3Rs-related sentences increased from 6.4% in 2009 to 18.4% in 2018, "reduction" increased from 2.4% to 8.0%, and "refinement" from 5.2% to 14.4%. Replacement was not reported. Reporting of the methodology was missing. For "reduction", methodology was mentioned in one study in 2009 and 11 studies in 2018, and for "refinement" in 9 and 21, respectively. Twenty-one studies stated compliance with ARRIVE-guidelines or similar without disclosure of details. Reporting of 3Rs approaches in preclinical publications is currently insufficient to guide researchers. Other strategies, e.g., education, interdisciplinary collaboration, and 3Rs funding initiatives, are needed.
Collapse
Affiliation(s)
- Birgitte S. Kousholt
- Department of Clinical Medicine, AUGUST, Aarhus University, 8200 Aarhus, Denmark; (K.F.P.); (A.F.T.); (T.T.J.); (M.R.-H.); (G.W.)
| | - Kirstine F. Præstegaard
- Department of Clinical Medicine, AUGUST, Aarhus University, 8200 Aarhus, Denmark; (K.F.P.); (A.F.T.); (T.T.J.); (M.R.-H.); (G.W.)
| | - Jennifer C. Stone
- JBI, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5005, Australia;
- Department of Health Services Research and Policy, Research School of Population Health, Australian National University, Canberra, ACT 2600, Australia
| | - Anders F. Thomsen
- Department of Clinical Medicine, AUGUST, Aarhus University, 8200 Aarhus, Denmark; (K.F.P.); (A.F.T.); (T.T.J.); (M.R.-H.); (G.W.)
| | - Thea T. Johansen
- Department of Clinical Medicine, AUGUST, Aarhus University, 8200 Aarhus, Denmark; (K.F.P.); (A.F.T.); (T.T.J.); (M.R.-H.); (G.W.)
| | - Merel Ritskes-Hoitinga
- Department of Clinical Medicine, AUGUST, Aarhus University, 8200 Aarhus, Denmark; (K.F.P.); (A.F.T.); (T.T.J.); (M.R.-H.); (G.W.)
- Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands
| | - Gregers Wegener
- Department of Clinical Medicine, AUGUST, Aarhus University, 8200 Aarhus, Denmark; (K.F.P.); (A.F.T.); (T.T.J.); (M.R.-H.); (G.W.)
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark
| |
Collapse
|
134
|
McGraw M, Gilmer G, Bergmann J, Seshan V, Wang K, Pekker D, Modo M, Ambrosio F. Mapping the Landscape of Magnetic Field Effects on Neural Regeneration and Repair: A Combined Systematic Review, Mathematical Model, and Meta-Analysis. J Tissue Eng Regen Med 2023; 2023:5038317. [PMID: 40226417 PMCID: PMC11918650 DOI: 10.1155/2023/5038317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/14/2023] [Accepted: 08/02/2023] [Indexed: 04/15/2025]
Abstract
Magnetic field exposure is a well-established diagnostic tool. However, its use as a therapeutic in regenerative medicine is relatively new. To better understand how magnetic fields affect neural repair in vitro, we started by performing a systematic review of publications that studied neural repair responses to magnetic fields. The 38 included articles were highly heterogeneous, representing 13 cell types, magnetic field magnitudes of 0.0002-10,000 mT with frequencies of 0-150 Hz, and exposure times ranging from one hour to several weeks. Mathematical modeling based on data from the included manuscripts revealed higher magnetic field magnitudes enhance neural progenitor cell (NPC) viability. Finally, for those regenerative processes not influenced by magnitude, frequency, or time, we integrated the data by meta-analyses. Results revealed that magnetic field exposure increases NPC proliferation while decreasing astrocytic differentiation. Collectively, our approach identified neural repair processes that may be most responsive to magnetic field exposure.
Collapse
Affiliation(s)
- Meghan McGraw
- Discovery Center for Musculoskeletal Recovery, Schoen Adams Research Institute at Spaulding Rehabilitation Hospital, Boston, MA, USA
- Department of Physical Medicine & Rehabilitation, Spaulding Rehabilitation Hospital, Boston, MA, USA
| | - Gabrielle Gilmer
- Discovery Center for Musculoskeletal Recovery, Schoen Adams Research Institute at Spaulding Rehabilitation Hospital, Boston, MA, USA
- Department of Physical Medicine & Rehabilitation, Spaulding Rehabilitation Hospital, Boston, MA, USA
- Medical Scientist Training Program, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Cellular and Molecular Pathology Graduate Program, University of Pittsburgh, Pittsburgh, PA, USA
| | - Juliana Bergmann
- Discovery Center for Musculoskeletal Recovery, Schoen Adams Research Institute at Spaulding Rehabilitation Hospital, Boston, MA, USA
- Department of Physical Medicine & Rehabilitation, Spaulding Rehabilitation Hospital, Boston, MA, USA
- Department of Biological Sciences in the Dietrich School of Arts & Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Vishnu Seshan
- Institute of Quantum Science and Technology, Department of Physics and Astronomy, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Kai Wang
- Discovery Center for Musculoskeletal Recovery, Schoen Adams Research Institute at Spaulding Rehabilitation Hospital, Boston, MA, USA
- Department of Physical Medicine & Rehabilitation, Spaulding Rehabilitation Hospital, Boston, MA, USA
- Department of Physical Medicine & Rehabilitation, Harvard Medical School, Boston, MA, USA
| | - David Pekker
- Department of Physics & Astronomy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michel Modo
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Fabrisia Ambrosio
- Discovery Center for Musculoskeletal Recovery, Schoen Adams Research Institute at Spaulding Rehabilitation Hospital, Boston, MA, USA
- Department of Physical Medicine & Rehabilitation, Spaulding Rehabilitation Hospital, Boston, MA, USA
- Department of Physical Medicine & Rehabilitation, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
135
|
van Diemen PM, Byrne AMP, Ramsay AM, Watson S, Nunez A, V Moreno A, Chiapponi C, Foni E, Brown IH, Brookes SM, Everett HE. Interspecies Transmission of Swine Influenza A Viruses and Human Seasonal Vaccine-Mediated Protection Investigated in Ferret Model. Emerg Infect Dis 2023; 29:1798-1807. [PMID: 37610158 PMCID: PMC10461666 DOI: 10.3201/eid2909.230066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023] Open
Abstract
We investigated the infection dynamics of 2 influenza A(H1N1) virus isolates from the swine 1A.3.3.2 (pandemic 2009) and 1C (Eurasian, avian-like) lineages. The 1C-lineage virus, A/Pavia/65/2016, although phylogenetically related to swine-origin viruses, was isolated from a human clinical case. This strain infected ferrets, a human influenza model species, and could be transmitted by direct contact and, less efficiently, by airborne exposure. Infecting ferrets and pigs (the natural host) resulted in mild or inapparent clinical signs comparable to those observed with 1A.3.3.2-lineage swine-origin viruses. Both H1N1 viruses could infect pigs and were transmitted to cohoused ferrets. Ferrets vaccinated with a human 2016-17 seasonal influenza vaccine were protected against infection with the antigenically matched 1A pandemic 2009 virus but not against the swine-lineage 1C virus. Our results reaffirm the need for continuous influenza A virus surveillance in pigs and identification of candidate human vaccine viruses.
Collapse
|
136
|
Faldaas BO, Nielsen EW, Storm BS, Lappegård KT, How OJ, Nilsen BA, Kiss G, Skogvoll E, Torp H, Ingul C. Hands-free continuous carotid Doppler ultrasound for detection of the pulse during cardiac arrest in a porcine model. Resusc Plus 2023; 15:100412. [PMID: 37448689 PMCID: PMC10336194 DOI: 10.1016/j.resplu.2023.100412] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/24/2023] [Accepted: 06/04/2023] [Indexed: 07/15/2023] Open
Abstract
Background/Purpose Pulse palpation is an unreliable method for diagnosing cardiac arrest. To address this limitation, continuous hemodynamic monitoring may be a viable solution. Therefore, we developed a novel, hands-free Doppler system, RescueDoppler, to detect the pulse continuously in the carotid artery. Methods In twelve pigs, we evaluated RescueDoppleŕs potential to measure blood flow velocity in three situations where pulse palpation of the carotid artery was insufficient: (1) systolic blood pressure below 60 mmHg, (2) ventricular fibrillation (VF) and (3) pulseless electrical activity (PEA). (1) Low blood pressure was induced using a Fogarty balloon catheter to occlude the inferior vena cava. (2) An implantable cardioverter-defibrillator induced VF. (3) Myocardial infarction after microembolization of the left coronary artery caused True-PEA. Invasive blood pressure was measured in the contralateral carotid artery. Time-averaged blood flow velocity (TAV) in the carotid artery was related to mean arterial pressure (MAP) in a linear mixed model. Results RescueDoppler identified pulsatile blood flow in 41/41 events with systolic blood pressure below 60 mmHg, with lowest blood pressure of 19 mmHg. In addition the absence of spontaneous circulation was identified in 21/21 VF events and true PEA in 2/2 events. The intraclass correlation coefficient within animals for TAV and MAP was 0.94 (95% CI. 0.85-0.98). Conclusions In a porcine model, RescueDoppler reliably identified pulsative blood flow with blood pressures below 60 mmHg. During VF and PEA, circulatory arrest was rapidly and accurately demonstrated. RescueDoppler could potentially replace unreliable pulse palpation during cardiac arrest and cardiopulmonary resuscitation.
Collapse
Affiliation(s)
- Bjørn Ove Faldaas
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Faculty of Nursing and Health Sciences, Nord University, Bodø, Norway
| | - Erik Waage Nielsen
- Faculty of Nursing and Health Sciences, Nord University, Bodø, Norway
- Department of Clinical Medicine, Faculty of Health Sciences, UiT the Arctic University of Norway, Tromsø, Norway
- Department of Anesthesia, Surgical Clinic, Nordland Hospital Trust, Bodø, Norway
- Department of Immunology, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Benjamin Stage Storm
- Faculty of Nursing and Health Sciences, Nord University, Bodø, Norway
- Department of Clinical Medicine, Faculty of Health Sciences, UiT the Arctic University of Norway, Tromsø, Norway
- Department of Anesthesia, Surgical Clinic, Nordland Hospital Trust, Bodø, Norway
- Research Laboratory, Nordland Hospital Trust, Bodø, Norway
| | - Knut Tore Lappegård
- Department of Clinical Medicine, Faculty of Health Sciences, UiT the Arctic University of Norway, Tromsø, Norway
- Department of Medicine, Nordland Hospital Trust, Bodø, Norway
| | - Ole-Jakob How
- Department of Medical Biology, Faculty of Health Sciences, UiT the Arctic University of Norway, Tromsø, Norway
| | - Bent Aksel Nilsen
- Faculty of Nursing and Health Sciences, Nord University, Bodø, Norway
- Department of Anesthesia, Surgical Clinic, Nordland Hospital Trust, Bodø, Norway
| | - Gabriel Kiss
- Department of Computer Science (IDI), Faculty of Information Technology and Electrical Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Eirik Skogvoll
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Clinic of Anesthesia and Intensive Care Medicine, St Olav University Hospital, Trondheim, Norway
| | - Hans Torp
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Charlotte Ingul
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Faculty of Nursing and Health Sciences, Nord University, Bodø, Norway
| |
Collapse
|
137
|
Omiya K, Nakadate Y, Sato H, Oguchi T, Matsuoka T, Kawakami A, Schricker T, Matsukawa T. Role of the protein kinase A signaling pathway and identification of mediators in the cardioprotective effects of enteral lactoferrin for ischemia-reperfusion injury in an isolated rat heart model. Nutrition 2023; 113:112088. [PMID: 37354654 DOI: 10.1016/j.nut.2023.112088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/04/2023] [Accepted: 05/19/2023] [Indexed: 06/26/2023]
Abstract
OBJECTIVE Lactoferrin is an iron-binding glycoprotein. Enteral lactoferrin attenuates myocardial ischemia-reperfusion (IR) injury, but the underlying mechanism remains unknown. The aim of this study was to investigate protein kinase A (PKA) signaling pathway activation and levels of serum glucagonlike peptide-1 (GLP-1), secreted by intestinal endocrine L cells, and adiponectin, secreted by adipose tissue, after enteral lactoferrin administration. METHODS Hearts (N = 32) were excised from Wistar rats and perfused using a Langendorff system. To assess the role of the PKA pathway in the cardioprotective effects of lactoferrin, an inhibitor of PKA (H89) was applied before no-flow ischemia. Rats were randomly divided into four groups: control, lactoferrin (LF), control+H89, and LF+H89. The control and control+H89 groups were administered normal saline by gavage, and the LF and L +H89 groups were administered bovine lactoferrin (1000 mg/kg) by gavage 15 min before intraperitoneal pentobarbital injection. Muscle sampling was performed at the end of reperfusion. When rats were sacrificed, blood was sampled to measure hormone levels. The primary outcome was maximum left ventricular pressure derivative (LV dP/dt max) 15 min after reperfusion. RESULTS LV dP/dt max at 10 and 15 min after reperfusion was significantly higher in the LF group than in the control group (P < 0.05), and the effect was diminished by H89. The PKA pathway was significantly activated in the LF group. Enteral lactoferrin increased serum GLP-1 but not serum adiponectin levels. CONCLUSIONS Enteral lactoferrin induces cardioprotective effects against myocardial IR injury via the PKA signaling pathway and increases serum GLP-1 levels.
Collapse
Affiliation(s)
- Keisuke Omiya
- Department of Anesthesiology, University of Yamanashi, Chuo, Yamanashi, Japan.
| | - Yosuke Nakadate
- Department of Anesthesiology, University of Yamanashi, Chuo, Yamanashi, Japan; Department of Anesthesiology, University of Tsukuba Hospital, Tsukuba-City, Ibaraki Japan
| | - Hiroaki Sato
- Department of Anesthesia, McGill University Health Centre Glen Site, Royal Victoria Hospital, Decarie, Montreal QC Canada
| | - Takeshi Oguchi
- Department of Anesthesiology, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Toru Matsuoka
- Department of Anesthesiology, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Akiko Kawakami
- Department of Anesthesiology, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Thomas Schricker
- Department of Anesthesia, McGill University Health Centre Glen Site, Royal Victoria Hospital, Decarie, Montreal QC Canada
| | - Takashi Matsukawa
- Department of Anesthesiology, University of Yamanashi, Chuo, Yamanashi, Japan
| |
Collapse
|
138
|
Kuzmenkov AI, Gigolaev AM, Pinheiro-Junior EL, Peigneur S, Tytgat J, Vassilevski AA. Methionine-isoleucine dichotomy at a key position in scorpion toxins inhibiting voltage-gated potassium channels. Toxicon 2023; 231:107181. [PMID: 37301298 DOI: 10.1016/j.toxicon.2023.107181] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/06/2023] [Accepted: 06/06/2023] [Indexed: 06/12/2023]
Abstract
Previous studies have identified some key amino acid residues in scorpion toxins blocking potassium channels. In particular, the most numerous toxins belonging to the α-KTx family and affecting voltage-gated potassium channels (KV) present a conserved K-C-X-N motif in the C-terminal half of their sequence. Here, we show that the X position of this motif is almost always occupied by either methionine or isoleucine. We compare the activity of three pairs of peptides that differ just by this residue on a panel of KV1 channels and find that toxins bearing methionine affect preferentially KV1.1 and 1.6 isoforms. The refined K-C-M/I-N motif stands out as the principal structural element of α-KTx conferring high affinity and selectivity to KV channels.
Collapse
Affiliation(s)
- Alexey I Kuzmenkov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.
| | - Andrei M Gigolaev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | | | - Steve Peigneur
- Toxicology and Pharmacology, KU Leuven, Leuven, 3000, Belgium
| | - Jan Tytgat
- Toxicology and Pharmacology, KU Leuven, Leuven, 3000, Belgium
| | - Alexander A Vassilevski
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.
| |
Collapse
|
139
|
Liu M, Jayaraman K, Norris AJ, Hussein A, Nelson JW, Mehla J, Diwan D, Vellimana A, Abu-Amer Y, Zipfel GJ, Athiraman U. Isoflurane Conditioning-Induced Delayed Cerebral Ischemia Protection in Subarachnoid Hemorrhage-Role of Inducible Nitric Oxide Synthase. J Am Heart Assoc 2023:e029975. [PMID: 37449587 PMCID: PMC10382105 DOI: 10.1161/jaha.123.029975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/20/2023] [Indexed: 07/18/2023]
Abstract
Background Recent evidence implicates inflammation as a key driver in delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage (SAH). Inducible nitric oxide synthase (iNOS) is one of the known major mediators of inflammation. We previously showed that an inhalational anesthetic, isoflurane, provides strong protection against delayed cerebral ischemia after SAH. Our current study aims to define the role of iNOS in isoflurane conditioning-induced protection against delayed cerebral ischemia in a mouse model of SAH. Methods and Results The experiments used 10- to 14-week-old male wild-type (C57BL/6) and iNOS global knockout mice. Anesthetic conditioning was initiated 1 hour after SAH with isoflurane 2% for 1 hour. Isoflurane-induced changes in iNOS expression were measured. N-(3-(aminomethyl) benzyl) acetamidine, a highly selective iNOS inhibitor, was injected intraperitoneally immediately after SAH and then daily. Vasospasm, microvessel thrombosis, and neurological assessment was performed. Data were analyzed by 1-way ANOVA and 2-way repeated measures ANOVA followed by Student Newman Keuls comparison test. Statistical significance was set at P<0.05. Isoflurane conditioning downregulated iNOS expression in naïve and SAH mice. N-(3-(aminomethyl) benzyl) acetamidine attenuated large artery vasospasm and microvessel thrombosis and improved neurological deficits in wild-type animals. iNOS knockout mice were significantly resistant to vasospasm, microvessel thrombosis, and neurological deficits induced by SAH. Combining isoflurane with N-(3-(aminomethyl) benzyl) acetamidine did not offer extra protection, nor did treating iNOS knockout mice with isoflurane. Conclusions Isoflurane conditioning-induced delayed cerebral ischemia protection appears to be mediated by downregulating iNOS. iNOS is a potential therapeutic target to improve outcomes after SAH.
Collapse
Affiliation(s)
- Meizi Liu
- Department of Anesthesiology Washington University St. Louis MO USA
| | - Keshav Jayaraman
- Department of Anesthesiology Washington University St. Louis MO USA
| | - Aaron J Norris
- Department of Anesthesiology Washington University St. Louis MO USA
| | - Ahmed Hussein
- Department of Neurological Surgery Washington University St. Louis MO USA
| | - James W Nelson
- Department of Neurological Surgery Washington University St. Louis MO USA
| | - Jogender Mehla
- Department of Neurological Surgery Washington University St. Louis MO USA
| | - Deepti Diwan
- Department of Neurological Surgery Washington University St. Louis MO USA
| | - Ananth Vellimana
- Department of Neurological Surgery Washington University St. Louis MO USA
- Department of Radiology Washington University St. Louis MO USA
- Department of Neurology Washington University St. Louis MO USA
| | - Yousef Abu-Amer
- Department of Orthopedics Washington University St. Louis MO USA
- Department of Cell Biology & Physiology Washington University St. Louis MO USA
| | - Gregory J Zipfel
- Department of Neurological Surgery Washington University St. Louis MO USA
- Department of Neurology Washington University St. Louis MO USA
| | | |
Collapse
|
140
|
Huang RY, Chang HY, Chih SM, Dyke TV, Cheng CD, Sung CE, Weng PW, Shieh YS, Cheng WC. Silibinin alleviates inflammation-induced bone loss by modulating biological interaction between human gingival fibroblasts and monocytes. J Periodontol 2023; 94:905-918. [PMID: 36716169 DOI: 10.1002/jper.22-0535] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 01/21/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023]
Abstract
BACKGROUND Silibinin has shown various pharmacological effects that could be attributed to its antioxidant, anti-inflammatory, and immunoregulatory properties. However, the therapeutic potential of silibinin for periodontitis has not been investigated. METHODS The therapeutic effects of silibinin in ligation-induced experimental periodontitis were investigated using biochemical, histological, and immunohistochemical methods. The effects of silibinin on the osteoclastogenesis of RAW264.7 cells were investigated using TRAP staining, quantitative polymerase chain reaction (qPCR), pit formation, and immunoblotting. Moreover, its effects on inflammatory cytokine production, RANKL expression, and oxidative stress in lipopolysaccharide (LPS)-stimulated human gingival fibroblasts (HGFs) were evaluated using qPCR and flow cytometry. A coculture system was established to elucidate the effects of silibinin on the crosstalk between LPS-stimulated HGFs and undifferentiated monocytes. RESULTS Silibinin significantly reduced the alveolar bone loss, decreased the gingival inflammation and RANKL expression, and decreased the RANKL/osteoprotegerin ratio in gingival tissues in experimental periodontitis. The in vitro results showed that silibinin inhibited RANKL-induced osteoclast differentiation and function of RAW264.7 cells and suppressed RANKL-induced nuclear factor of activated T cells 1 (NFATc1) induction and translocation through the nuclear factor-κB and mitogen-activated protein kinase signaling pathways. Silibinin decreased the inflammatory cytokine level and oxidative stress production in LPS-stimulated HGFs; significantly suppressed membrane-bound RANKL expression on LPS-stimulated HGFs; and significantly disrupted TRAP+ cell differentiation in the coculture system. CONCLUSIONS Silibinin effectively inhibits inflammation-induced bone loss in experimental periodontitis based on the regulation of stimulated HGFs by inhibiting the expression of inflammatory and osteoclastogenic mediators. Collectively, targeting the inflamed HGF resolution that mediates osteogenesis may use silibinin as a potential drug-repurposing candidate for modulating alveolar bone destruction in periodontitis. SUMMARY Silibinin effectively inhibits inflammation-induced bone loss in experimental periodontitis based on the regulation of stimulated HGFs by inhibiting the expression of inflammatory and osteoclastogenic mediators.
Collapse
Affiliation(s)
- Ren-Yeong Huang
- Department of Periodontology, School of Dentistry, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan
| | - Hua-Yang Chang
- Department of Periodontology, School of Dentistry, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan
- Graduate Institute of Dental Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Shu-Mi Chih
- Department of Periodontology, School of Dentistry, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan
- Graduate Institute of Dental Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Thomas Van Dyke
- Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
- Department of Applied Oral Sciences, The Forsyth Institute, Cambridge, Massachusetts, USA
| | - Chia-Dan Cheng
- Department of Periodontology, School of Dentistry, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan
- Graduate Institute of Dental Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Cheng-En Sung
- Department of Periodontology, School of Dentistry, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan
| | - Pei-Wei Weng
- Department of Orthopedics, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Department of Orthopedics, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yi-Shing Shieh
- Department of Operative Dentistry and Endodontics, School of Dentistry, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan
| | - Wan-Chien Cheng
- Department of Periodontology, School of Dentistry, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
141
|
Dongmo KJJ, Tali MBT, Fongang YSF, Taguimjeu PLKT, Kagho DUK, Bitchagno GT, Lenta BN, Boyom FF, Sewald N, Ngouela SA. In vitro antiplasmodial activity and toxicological profile of extracts, fractions and chemical constituents of leaves and stem bark from Dacryodes edulis (Burseraceae). BMC Complement Med Ther 2023; 23:211. [PMID: 37370061 DOI: 10.1186/s12906-023-03957-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 04/12/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Dacryodes edulis is a plant that belongs to the Burseraceae family. It is widely used traditionally alone or in association with other plants in Cameroonian folk medicine to cure wounds, fever, headaches, and malaria. The aim of this work was to investigate the leaves and stem bark of D. edulis with an emphasis on the antiplasmodial and cytotoxic effects of extracts, fractions, and isolated compounds. METHODS Extracts, fractions, and some isolated compounds were subjected to antiplasmodial activity screening in vitro against chloroquine-sensitive 3D7 and multidrug resistant Dd2 strains of Plasmodium falciparum using a SyBr Green fluorescence-based assay. The cytotoxicity of active extracts, fractions, and compounds was tested against mammalian Raw cell lines using an in vitro resazurin-based viability assay. The structures of the compounds were determined based on their NMR and MS data. The in vivo toxicity using female BALB/c mice was performed on the most active extract according to the protocol of OECD (2002), guideline 423. RESULTS The hydroethanolic extract from the leaves of D. edulis displayed good antiplasmodial activity with IC50 values of 3.10 and 3.56 μg/mL respectively on sensitive (3D7) and multiresistant (Dd2) strains of P. falciparum. Of the sixteen compounds isolated, 3,3',4-tri-O-methylellagic acid (4) exhibited the highest antiplasmodial activity against PfDd2 strains with an IC50 value of 0.63 μg/mL. All extracts, fractions, and isolated compounds demonstrated no cytotoxicity against Raw cell lines with CC50 > 250 μg/mL. In addition, the most active extract on both strains of P. falciparum was nontoxic in vivo, with a LD50 greater than 2000 and 5000 mg/kg. A phytochemical investigation of the stem bark and leaves of D. edulis afforded sixteen compounds, including two xanthones (1-2), three ellagic acid derivatives (3-5), one phenolic compound (6), one depside (7), one triglyceride (8), one auranthiamide acetate (9), one gallic acid derivative (10), four triterpenoids (11-14), and two steroids (15-16). Compounds 1, 2, 5, 7, 8, and 9 were herein reported for the first time from the Burseraceae family. CONCLUSION This work highlights the good in vitro antiplasmodial potency of the hydroethanolic extract of the leaves of this plant and that of two isolated constituents (3,3',4-tri-O-methylellagic acid and ethylgallate) from the plant. These biological results support the use of D. edulis in traditional medicine against malaria.
Collapse
Affiliation(s)
- Kevine Johane Jumeta Dongmo
- Department of Organic Chemistry, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
| | - Mariscal Brice Tchatat Tali
- Antimicrobial and Biocontrol Agents Unit, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
| | | | | | - Donald Ulrich Kenou Kagho
- Department of Organic Chemistry, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
| | | | - Bruno Ndjakou Lenta
- Department of Chemistry, Higher Teacher Training College, University of Yaoundé I, P.O. Box 47, Yaoundé, Cameroon
| | - Fabrice Fekam Boyom
- Antimicrobial and Biocontrol Agents Unit, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
| | - Norbert Sewald
- Department of Chemistry, Bielefeld University, P.O. Box 100131, 33501, Bielefeld, Germany
| | - Silvère Augustin Ngouela
- Department of Organic Chemistry, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon.
| |
Collapse
|
142
|
Nault R, Cave MC, Ludewig G, Moseley HN, Pennell KG, Zacharewski T. A Case for Accelerating Standards to Achieve the FAIR Principles of Environmental Health Research Experimental Data. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:65001. [PMID: 37352010 PMCID: PMC10289218 DOI: 10.1289/ehp11484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/25/2023]
Abstract
BACKGROUND Funding agencies, publishers, and other stakeholders are pushing environmental health science investigators to improve data sharing; to promote the findable, accessible, interoperable, and reusable (FAIR) principles; and to increase the rigor and reproducibility of the data collected. Accomplishing these goals will require significant cultural shifts surrounding data management and strategies to develop robust and reliable resources that bridge the technical challenges and gaps in expertise. OBJECTIVE In this commentary, we examine the current state of managing data and metadata-referred to collectively as (meta)data-in the experimental environmental health sciences. We introduce new tools and resources based on in vivo experiments to serve as examples for the broader field. METHODS We discuss previous and ongoing efforts to improve (meta)data collection and curation. These include global efforts by the Functional Genomics Data Society to develop metadata collection tools such as the Investigation, Study, Assay (ISA) framework, and the Center for Expanded Data Annotation and Retrieval. We also conduct a case study of in vivo data deposited in the Gene Expression Omnibus that demonstrates the current state of in vivo environmental health data and highlights the value of using the tools we propose to support data deposition. DISCUSSION The environmental health science community has played a key role in efforts to achieve the goals of the FAIR guiding principles and is well positioned to advance them further. We present a proposed framework to further promote these objectives and minimize the obstacles between data producers and data scientists to maximize the return on research investments. https://doi.org/10.1289/EHP11484.
Collapse
Affiliation(s)
- Rance Nault
- Biochemistry & Molecular Biology Department, Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan, USA
| | - Matthew C. Cave
- Division of Gastroenterology, Hepatology, and Nutrition, University of Louisville, Louisville, Kentucky, USA
| | - Gabriele Ludewig
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, Iowa, USA
| | - Hunter N.B. Moseley
- Molecular and Cellular Biochemistry Department, University of Kentucky, Lexington, Kentucky, USA
| | - Kelly G. Pennell
- Department of Civil Engineering, University of Kentucky, Lexington, Kentucky, USA
| | - Tim Zacharewski
- Biochemistry & Molecular Biology Department, Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
143
|
Inoue S, Takeuchi Y, Horiuchi Y, Murakami T, Odaka A. CD69 on Tumor-Infiltrating Cells Correlates With Neuroblastoma Suppression by Simultaneous PD-1 and PD-L1 Blockade. J Surg Res 2023; 289:190-201. [PMID: 37141702 DOI: 10.1016/j.jss.2023.03.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 03/15/2023] [Accepted: 03/26/2023] [Indexed: 05/06/2023]
Abstract
INTRODUCTION Tumor-infiltrating cells play an important role in tumor immunology, and tumor-infiltrating lymphocytes (TILs) are critical in antitumor reaction related to immune checkpoint inhibition targeting programmed cell death protein 1 (PD-1) and programmed cell death ligand 1 (PD-L1). METHODS In nude mice, which are immune deficient because they lack T cells, and inbred A/J mice, which are syngeneic to neuroblastoma cells (Neuro-2a) and have normal T cell function, we investigated the importance of T lymphocytes in immune checkpoint inhibition in mouse neuroblastoma and analyzed the immune cells in the tumor microenvironment. Then, we subcutaneously injected mouse Neuro-2ainto nude mice and A/J mice, administered anti-PD-1 and anti-PD-L1 antibodies by intraperitoneal injection, and evaluated tumor growth. At 16 d after Neuro-2a cells injection, mice were euthanized, tumors and spleens were harvested, and immune cells were analyzed by flow cytometry. RESULTS The antibodies suppressed tumor growth in A/J but not in nude mice. The co-administration of antibodies did not affect regulatory T cells (culster of differentiation [CD]4+CD25+FoxP3+ cells) or activated CD4+ lymphocytes (expressing CD69). No changes in activated CD8+ lymphocytes (expressing CD69) were observed in spleen tissue. However, increased infiltration of activated CD8+ TILs was seen in tumors weighing less than 300 mg, and the amount of activated CD8+ TILs was negatively correlated with tumor weight. CONCLUSIONS Our study confirms that lymphocytes are essential for the antitumor immune reaction induced by blocking PD-1/PD-L1 and raises the possibility that promoting the infiltration of activated CD8+ TIL into tumors may be an effective treatment for neuroblastoma.
Collapse
Affiliation(s)
- Seiichiro Inoue
- Department of Hepato-Biliary-Pancreatic and Pediatric Surgery, Saitama Medical Center, Saitama Medical University, Saitama, Japan.
| | - Yuta Takeuchi
- Department of Hepato-Biliary-Pancreatic and Pediatric Surgery, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Yutaka Horiuchi
- Department of Microbiology, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Takashi Murakami
- Department of Microbiology, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Akio Odaka
- Department of Hepato-Biliary-Pancreatic and Pediatric Surgery, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| |
Collapse
|
144
|
Célestine M, Jacquier-Sarlin M, Borel E, Petit F, Perot JB, Hérard AS, Bousset L, Buisson A, Dhenain M. Long term worsening of amyloid pathology, cerebral function, and cognition after a single inoculation of beta-amyloid seeds with Osaka mutation. Acta Neuropathol Commun 2023; 11:66. [PMID: 37087498 PMCID: PMC10122826 DOI: 10.1186/s40478-023-01559-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 03/25/2023] [Indexed: 04/24/2023] Open
Abstract
Alzheimer's disease (AD) is characterized by intracerebral deposition of abnormal proteinaceous assemblies made of amyloid-β (Aß) peptides or tau proteins. These peptides and proteins induce synaptic dysfunctions that are strongly correlated with cognitive decline. Intracerebral infusion of well-defined Aβ seeds from non-mutated Aβ1-40 or Aβ1-42 peptides can increase Aβ depositions several months after the infusion. Familial forms of AD are associated with mutations in the amyloid precursor protein (APP) that induce the production of Aβ peptides with different structures. The Aβ Osaka (Aβosa mutation (E693Δ)) is located within the Aβ sequence and thus the Aβosa peptides have different structures and properties as compared to non-mutated Aβ1-42 peptides (Aβwt). Here, we wondered if a single exposure to this mutated Aβ can worsen AD pathology as well as downstream events including cognition, cerebral connectivity and synaptic health several months after the inoculation. To answer this question we inoculated Aβ1-42-bearing Osaka mutation (Aβosa) in the dentate gyrus of APPswe/PS1dE9 mice at the age of two months. Their cognition and cerebral connectivity were analyzed at 4 months post-inoculation by behavioral evaluation and functional MRI. Aβ pathology as well as synaptic density were evaluated by histology. The impact of Aβosa peptides on synaptic health was also measured on primary cortical neurons. Remarkably, the intracerebral administration of Aβosa induced cognitive and synaptic impairments as well as a reduction of functional connectivity between different brain regions, 4 months post-inoculation. It increased Aβ plaque depositions and increased Aβ oligomers. This is the first study showing that a single, sporadic event as Aβosa inoculation can worsen the fate of the pathology and clinical outcome several months after the event. It suggests that a single inoculation of Aβ regulates a large cascade of events for a long time.
Collapse
Affiliation(s)
- Marina Célestine
- Laboratoire Des Maladies Neurodégénératives, Université Paris-Saclay, CEA, CNRS, 18 Route du Panorama, 92265, Fontenay-Aux-Roses, France
- Commissariat À L'Energie Atomique Et Aux Énergies Alternatives (CEA), Direction de La Recherche Fondamentale (DRF), Institut François Jacob, MIRCen, 18 Route du Panorama, 92265, Fontenay-aux-Roses, France
| | - Muriel Jacquier-Sarlin
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, GIN, 38000, Grenoble, France
| | - Eve Borel
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, GIN, 38000, Grenoble, France
| | - Fanny Petit
- Laboratoire Des Maladies Neurodégénératives, Université Paris-Saclay, CEA, CNRS, 18 Route du Panorama, 92265, Fontenay-Aux-Roses, France
- Commissariat À L'Energie Atomique Et Aux Énergies Alternatives (CEA), Direction de La Recherche Fondamentale (DRF), Institut François Jacob, MIRCen, 18 Route du Panorama, 92265, Fontenay-aux-Roses, France
| | - Jean-Baptiste Perot
- Laboratoire Des Maladies Neurodégénératives, Université Paris-Saclay, CEA, CNRS, 18 Route du Panorama, 92265, Fontenay-Aux-Roses, France
- Commissariat À L'Energie Atomique Et Aux Énergies Alternatives (CEA), Direction de La Recherche Fondamentale (DRF), Institut François Jacob, MIRCen, 18 Route du Panorama, 92265, Fontenay-aux-Roses, France
| | - Anne-Sophie Hérard
- Laboratoire Des Maladies Neurodégénératives, Université Paris-Saclay, CEA, CNRS, 18 Route du Panorama, 92265, Fontenay-Aux-Roses, France
- Commissariat À L'Energie Atomique Et Aux Énergies Alternatives (CEA), Direction de La Recherche Fondamentale (DRF), Institut François Jacob, MIRCen, 18 Route du Panorama, 92265, Fontenay-aux-Roses, France
| | - Luc Bousset
- Laboratoire Des Maladies Neurodégénératives, Université Paris-Saclay, CEA, CNRS, 18 Route du Panorama, 92265, Fontenay-Aux-Roses, France
- Commissariat À L'Energie Atomique Et Aux Énergies Alternatives (CEA), Direction de La Recherche Fondamentale (DRF), Institut François Jacob, MIRCen, 18 Route du Panorama, 92265, Fontenay-aux-Roses, France
| | - Alain Buisson
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, GIN, 38000, Grenoble, France
| | - Marc Dhenain
- Laboratoire Des Maladies Neurodégénératives, Université Paris-Saclay, CEA, CNRS, 18 Route du Panorama, 92265, Fontenay-Aux-Roses, France.
- Commissariat À L'Energie Atomique Et Aux Énergies Alternatives (CEA), Direction de La Recherche Fondamentale (DRF), Institut François Jacob, MIRCen, 18 Route du Panorama, 92265, Fontenay-aux-Roses, France.
| |
Collapse
|
145
|
Sargeant JM, Ruple A, Selmic LE, O'Connor AM. The standards of reporting trials in pets (PetSORT): Explanation and elaboration. Front Vet Sci 2023; 10:1137781. [PMID: 37065227 PMCID: PMC10103631 DOI: 10.3389/fvets.2023.1137781] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/01/2023] [Indexed: 04/03/2023] Open
Abstract
Well-designed randomized controlled trials (RCTs) provide the best evidence of the primary research designs for evaluating the effectiveness of interventions. However, if RCTs are incompletely reported, the methodological rigor with which they were conducted cannot be reliably evaluated and it may not be possible to replicate the intervention. Missing information also may limit the reader's ability to evaluate the external validity of a trial. Reporting guidelines are available for clinical trials in human healthcare (CONSORT), livestock populations (REFLECT), and preclinical experimental research involving animals (ARRIVE 2.0). The PetSORT guidelines complement these existing guidelines, providing recommendations for reporting controlled trials in pet dogs and cats. The rationale and scientific background are explained for each of the 25 items in the PetSORT reporting recommendations checklist, with examples from well-reported trials.
Collapse
Affiliation(s)
- Jan M. Sargeant
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Audrey Ruple
- Department of Population Health Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Laura E. Selmic
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| | - Annette M. O'Connor
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
146
|
Yu Y, Tham SK, Roslan FF, Shaharuddin B, Yong YK, Guo Z, Tan JJ. Large animal models for cardiac remuscularization studies: A methodological review. Front Cardiovasc Med 2023; 10:1011880. [PMID: 37008331 PMCID: PMC10050756 DOI: 10.3389/fcvm.2023.1011880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 02/20/2023] [Indexed: 03/17/2023] Open
Abstract
Myocardial infarction is the most common cause of heart failure, one of the most fatal non-communicable diseases worldwide. The disease could potentially be treated if the dead, ischemic heart tissues are regenerated and replaced with viable and functional cardiomyocytes. Pluripotent stem cells have proven the ability to derive specific and functional cardiomyocytes in large quantities for therapy. To test the remuscularization hypothesis, the strategy to model the disease in animals must resemble the pathophysiological conditions of myocardial infarction as in humans, to enable thorough testing of the safety and efficacy of the cardiomyocyte therapy before embarking on human trials. Rigorous experiments and in vivo findings using large mammals are increasingly important to simulate clinical reality and increase translatability into clinical practice. Hence, this review focus on large animal models which have been used in cardiac remuscularization studies using cardiomyocytes derived from human pluripotent stem cells. The commonly used methodologies in developing the myocardial infarction model, the choice of animal species, the pre-operative antiarrhythmics prophylaxis, the choice of perioperative sedative, anaesthesia and analgesia, the immunosuppressive strategies in allowing xenotransplantation, the source of cells, number and delivery method are discussed.
Collapse
Affiliation(s)
- Yuexin Yu
- USM-ALPS Cardiac Research Laboratory, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang, Malaysia
- Henan Key Laboratory of Cardiac Remodeling and Transplantation, Zhengzhou Seventh People's Hospital, China
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, China
| | | | - Fatin Fazrina Roslan
- USM-ALPS Cardiac Research Laboratory, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang, Malaysia
| | - Bakiah Shaharuddin
- USM-ALPS Cardiac Research Laboratory, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang, Malaysia
| | - Yoke Keong Yong
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Zhikun Guo
- Henan Key Laboratory of Cardiac Remodeling and Transplantation, Zhengzhou Seventh People's Hospital, China
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, China
- Correspondence: Jun Jie Tan Zhikun Guo
| | - Jun Jie Tan
- USM-ALPS Cardiac Research Laboratory, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang, Malaysia
- Correspondence: Jun Jie Tan Zhikun Guo
| |
Collapse
|
147
|
Silva CM, Ornellas DS, Ornellas FM, Santos RS, Martini SV, Ferreira D, Muiler C, Cruz FF, Takiya CM, Rocco PRM, Morales MM, Silva PL. Early effects of bone marrow-derived mononuclear cells on lung and kidney in experimental sepsis. Respir Physiol Neurobiol 2023; 309:103999. [PMID: 36460253 DOI: 10.1016/j.resp.2022.103999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/11/2022] [Accepted: 11/20/2022] [Indexed: 12/03/2022]
Abstract
BACKGROUND In experimental sepsis, functional and morphological effects of bone marrow-derived mononuclear cell (BMDMC) administration in lung tissue have been evaluated 1 and 7 days after therapy. However, to date no study has evaluated the early effects of BMDMCs in both lung and kidney in experimental polymicrobial sepsis. MATERIAL AND METHODS Twenty-five female C57BL/6 mice were randomly divided into the following groups: 1) cecal ligation and puncture (CLP)-induced sepsis; and 2) Sham (surgical procedure without CLP). After 1 h, CLP animals received saline (NaCl 0.9%) (CLP-Saline) or 106 BMDMCs (CLP-Cell) via the jugular vein. At 6, 12, and 24 h after saline or BMDMC administration, lungs and kidneys were removed for histology and molecular biology analysis. RESULTS In lungs, CLP-Saline, compared to Sham, was associated with increased lung injury score (LIS) and keratinocyte chemoattractant (KC) mRNA expression at 6, 12, and 24 h. BMDMCs were associated with reduced LIS and KC mRNA expression regardless of the time point of analysis. Interleukin (IL)- 10 mRNA content was higher in CLP-Cell than CLP-Saline at 6 and 24 h. In kidney tissue, CLP-Saline, compared to Sham, was associated with tubular cell injury and increased neutrophil gelatinase-associated lipocalin (NGAL) levels, which were reduced after BMDMC therapy at all time points. Surface high-mobility-group-box (HMGB)- 1 levels were higher in CLP-Saline than Sham at 6, 12, and 24 h, whereas nuclear HMGB-1 levels were increased only at 24 h. BMDMCs were associated with decreased surface HMGB-1 and increased nuclear HMGB-1 levels. Kidney injury molecule (KIM)- 1 and IL-18 gene expressions were reduced in CLP-Cell compared to CLP-Saline at 12 and 24 h. CONCLUSION In the present experimental polymicrobial sepsis, early intravenous therapy with BMDMCs was able to reduce lung and kidney damage in a time-dependent manner. BMDMCs thus represent a potential therapy in well-known scenarios of sepsis induction. PURPOSE To evaluate early bone marrow-derived mononuclear cell (BMDMC) therapy on lung and kidney in experimental polymicrobial sepsis. METHODS Twenty-five female C57BL/6 mice were randomly divided into the following groups: cecal ligation and puncture (CLP)-induced sepsis; and sham (surgical procedure without CLP). After 1 h, CLP animals received saline (CLP-saline) or 106 BMDMCs (CLP-cell) via the jugular vein. Lungs and kidneys were evaluated for histology and molecular biology after 6, 12, and 24 h. RESULTS In lungs, BMDMCs reduced the lung injury score and keratinocyte chemoattractant mRNA expression regardless of the time point of analysis; interleukin-10 mRNA content was higher in CLP-cell than CLP-saline at 6 and 24 h. In kidneys, BMDMCs reduced neutrophil gelatinase-associated lipocalin levels at all time points. BMDMCs decreased surface high mobility group box (HMGB)- 1 but increased nuclear HMGB-1 levels. CONCLUSION Early BMDMC therapy reduced lung and kidney damage in a time-dependent manner.
Collapse
Affiliation(s)
- Carla M Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Laboratory of Cellular and Molecular Physiology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil; National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| | - Debora S Ornellas
- Laboratory of Cellular and Molecular Physiology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Felipe M Ornellas
- Laboratory of Cellular and Molecular Physiology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Laboratory of Cellular, Genetic and Molecular Nephrology, Renal Division, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Raquel S Santos
- Laboratory of Cellular and Molecular Physiology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Sabrina V Martini
- Laboratory of Cellular and Molecular Physiology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Debora Ferreira
- Laboratory of Cellular and Molecular Physiology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Caroline Muiler
- Laboratory of Cellular and Molecular Physiology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Fernanda F Cruz
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil; National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| | - Christina M Takiya
- Immunopathology Laboratory, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil; National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| | - Marcelo M Morales
- Laboratory of Cellular and Molecular Physiology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil; National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| | - Pedro L Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil; National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil.
| |
Collapse
|
148
|
Gaique TG, Boechat SK, Neto JGO, Bento-Bernardes T, Medeiros RF, Pazos-Moura CC, Oliveira KJ. Cinnamaldehyde supplementation acts as an insulin mimetic compound improving glucose metabolism during adolescence, but not during adulthood, in healthy male rats. Hormones (Athens) 2023; 22:295-304. [PMID: 36810755 DOI: 10.1007/s42000-023-00442-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 02/10/2023] [Indexed: 02/23/2023]
Abstract
PURPOSE Adolescence is a critical period of increased vulnerability to nutritional modifications, and adolescents may respond differently from adults to dietary intake and nutraceuticals. Cinnamaldehyde, a major bioactive compound of cinnamon, improves energy metabolism, as has been shown in studies conducted primarily in adult animals. We hypothesized that cinnamaldehyde treatment may have a higher impact on the glycemic homeostasis of healthy adolescent rats than on healthy adult rats. METHODS Male adolescent (30 days) or adult (90 days) Wistar rats received cinnamaldehyde (40 mg/kg) for 28 days by gavage. The oral glucose tolerance test (OGTT), liver glycogen content, serum insulin concentration, serum lipid profile, and hepatic insulin signaling marker expression were evaluated. RESULTS Cinnamaldehyde-treated adolescent rats showed less weight gain (P = 0.041), improved OGTT (P = 0.004), increased expression of phosphorylated IRS-1 (P = 0.015), and a trend to increase phosphorylated IRS-1 (P = 0.063) in the liver of adolescent rats in the basal state. None of these parameters was modified after treatment with cinnamaldehyde in the adult group. Cumulative food intake, visceral adiposity, liver weight, serum insulin, serum lipid profile, hepatic glycogen content, and liver protein expression of IRβ, phosphorylated IRβ, AKT, phosphorylated AKT, and PTP-1B in the basal state were similar between both age groups. CONCLUSION In a healthy metabolic condition, cinnamaldehyde supplementation affects glycemic metabolism in adolescent rats while promoting no changes in adult rats.
Collapse
Affiliation(s)
- Thaiane G Gaique
- Departamento de Fisiologia e Farmacologia, Universidade Federal Fluminense, Niterói, RJ, 24210-130, Brazil
| | - Silvia K Boechat
- Departamento de Fisiologia e Farmacologia, Universidade Federal Fluminense, Niterói, RJ, 24210-130, Brazil
| | - Jessika Geisebel O Neto
- Departamento de Fisiologia e Farmacologia, Universidade Federal Fluminense, Niterói, RJ, 24210-130, Brazil
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Thais Bento-Bernardes
- Departamento de Fisiologia e Farmacologia, Universidade Federal Fluminense, Niterói, RJ, 24210-130, Brazil
| | - Renata F Medeiros
- Departamento de Fisiologia e Farmacologia, Universidade Federal Fluminense, Niterói, RJ, 24210-130, Brazil
| | - Carmen C Pazos-Moura
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Karen J Oliveira
- Departamento de Fisiologia e Farmacologia, Universidade Federal Fluminense, Niterói, RJ, 24210-130, Brazil.
| |
Collapse
|
149
|
Pulido M, de Pedro MÁ, Álvarez V, Marchena AM, Blanco-Blázquez V, Báez-Díaz C, Crisóstomo V, Casado JG, Sánchez-Margallo FM, López E. Transcriptome Profile Reveals Differences between Remote and Ischemic Myocardium after Acute Myocardial Infarction in a Swine Model. BIOLOGY 2023; 12:340. [PMID: 36979032 PMCID: PMC10045039 DOI: 10.3390/biology12030340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023]
Abstract
Acute myocardial infarction (AMI) is the consequence of an acute interruption of myocardial blood flow delimiting an area with ischemic necrosis. The loss of cardiomyocytes initiates cardiac remodeling in the myocardium, leading to molecular changes in an attempt to recover myocardial function. The purpose of this study was to unravel the differences in the molecular profile between ischemic and remote myocardium after AMI in an experimental model. To mimic human myocardial infarction, healthy pigs were subjected to occlusion of the mid-left anterior descending coronary artery, and myocardial tissue was collected from ischemic and remote zones for omics techniques. Comparative transcriptome analysis of both areas was accurately validated by proteomic analysis, resulting in mitochondrion-related biological processes being the most impaired mechanisms in the infarcted area. Moreover, Immune system process-related genes were up-regulated in the remote tissue, mainly due to the increase of neutrophil migration in this area. These results provide valuable information regarding differentially expressed genes and their biological functions between ischemic and remote myocardium after AMI, which could be useful for establishing therapeutic targets for the development of new treatments.
Collapse
Affiliation(s)
- María Pulido
- Jesús Usón Minimally Invasive Surgery Centre, Carretera Nacional 521, Km 41.8, 10071 Cáceres, Spain
| | - María Ángeles de Pedro
- Jesús Usón Minimally Invasive Surgery Centre, Carretera Nacional 521, Km 41.8, 10071 Cáceres, Spain
- RICORS-TERAV Network, ISCIII, 28029 Madrid, Spain
| | - Verónica Álvarez
- Jesús Usón Minimally Invasive Surgery Centre, Carretera Nacional 521, Km 41.8, 10071 Cáceres, Spain
| | - Ana María Marchena
- Jesús Usón Minimally Invasive Surgery Centre, Carretera Nacional 521, Km 41.8, 10071 Cáceres, Spain
- RICORS-TERAV Network, ISCIII, 28029 Madrid, Spain
| | - Virginia Blanco-Blázquez
- Jesús Usón Minimally Invasive Surgery Centre, Carretera Nacional 521, Km 41.8, 10071 Cáceres, Spain
- RICORS-TERAV Network, ISCIII, 28029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), C. de Melchor Fernández Almagro, 3, 28029 Madrid, Spain
| | - Claudia Báez-Díaz
- Jesús Usón Minimally Invasive Surgery Centre, Carretera Nacional 521, Km 41.8, 10071 Cáceres, Spain
- RICORS-TERAV Network, ISCIII, 28029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), C. de Melchor Fernández Almagro, 3, 28029 Madrid, Spain
| | - Verónica Crisóstomo
- Jesús Usón Minimally Invasive Surgery Centre, Carretera Nacional 521, Km 41.8, 10071 Cáceres, Spain
- RICORS-TERAV Network, ISCIII, 28029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), C. de Melchor Fernández Almagro, 3, 28029 Madrid, Spain
| | - Javier G Casado
- RICORS-TERAV Network, ISCIII, 28029 Madrid, Spain
- Immunology Unit, University of Extremadura, Campus Universitario, Av. de la Universidad, s/n, 10003 Cáceres, Spain
- Institute of Molecular Pathology Biomarkers, University of Extremadura, 10003 Cáceres, Spain
| | - Francisco Miguel Sánchez-Margallo
- Jesús Usón Minimally Invasive Surgery Centre, Carretera Nacional 521, Km 41.8, 10071 Cáceres, Spain
- RICORS-TERAV Network, ISCIII, 28029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), C. de Melchor Fernández Almagro, 3, 28029 Madrid, Spain
| | - Esther López
- Jesús Usón Minimally Invasive Surgery Centre, Carretera Nacional 521, Km 41.8, 10071 Cáceres, Spain
- RICORS-TERAV Network, ISCIII, 28029 Madrid, Spain
| |
Collapse
|
150
|
La Y, Ma X, Bao P, Chu M, Guo X, Liang C, Yan P. Identification and profiling of microRNAs during yak's testicular development. BMC Vet Res 2023; 19:53. [PMID: 36803968 PMCID: PMC9940382 DOI: 10.1186/s12917-023-03602-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 02/01/2023] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND Normal testicular development is highly crucial for male reproduction and is a precondition for spermatogenesis that is the production of spermatozoa in the testes. MiRNAs have been implicated in several testicular biological processes, including cell proliferation, spermatogenesis, hormone secretion, metabolism and reproductive regulation. In the present study, we used deep sequencing data to study the functions of miRNAs during testicular development and spermatogenesis, by analyzing the expression patterns of small RNAs in 6-, 18- and 30-month-old yak testis tissues. RESULTS A total of 737 known and 359 novel miRNAs were obtained from 6-, 18- and 30-month-old yak testes. In all, we obtained 12, 142 and 139 differentially expressed (DE) miRNAs in 30- vs. 18-, 18- vs. 6-, and 30- vs. 6-month-old testes, respectively. Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of all DE miRNA target genes revealed BMP2, TGFB2, GDF6, SMAD6, TGFBR2 and other target genes as participants in different biological processes, including TGF-β, GnRH, Wnt, PI3K-Akt, MAPK signaling pathways and several other reproductive pathways. In addition, quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) was used to detect the expression of seven randomly selected miRNAs in 6-, 18- and 30-month-old testes, and the results were consistent with the sequencing data. CONCLUSIONS The differential expression of miRNAs in yak testes at different development stages was characterized and investigated using deep sequencing technology. We believe that the results will contribute to further understanding the functions of miRNAs in regulating the development of yak testes and improving the reproductive performance of male yaks.
Collapse
Affiliation(s)
- Yongfu La
- grid.464362.1Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China ,grid.410727.70000 0001 0526 1937Key Laboratory of Animal Genetics and Breeding On Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Lanzhou, China ,grid.410727.70000 0001 0526 1937Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiaoming Ma
- grid.464362.1Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China ,grid.410727.70000 0001 0526 1937Key Laboratory of Animal Genetics and Breeding On Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Lanzhou, China ,grid.410727.70000 0001 0526 1937Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Pengjia Bao
- grid.464362.1Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China ,grid.410727.70000 0001 0526 1937Key Laboratory of Animal Genetics and Breeding On Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Lanzhou, China ,grid.410727.70000 0001 0526 1937Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Min Chu
- grid.464362.1Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China ,grid.410727.70000 0001 0526 1937Key Laboratory of Animal Genetics and Breeding On Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Lanzhou, China ,grid.410727.70000 0001 0526 1937Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xian Guo
- grid.464362.1Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China ,grid.410727.70000 0001 0526 1937Key Laboratory of Animal Genetics and Breeding On Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Lanzhou, China ,grid.410727.70000 0001 0526 1937Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Chunnian Liang
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China. .,Key Laboratory of Animal Genetics and Breeding On Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Lanzhou, China. .,Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Chinese Academy of Agricultural Sciences, Lanzhou, China.
| | - Ping Yan
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China. .,Key Laboratory of Animal Genetics and Breeding On Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Lanzhou, China. .,Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Chinese Academy of Agricultural Sciences, Lanzhou, China.
| |
Collapse
|