101
|
Lin Q, Shi Y, Liu Z, Mehrpour M, Hamaï A, Gong C. Non-coding RNAs as new autophagy regulators in cancer progression. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166293. [PMID: 34688868 DOI: 10.1016/j.bbadis.2021.166293] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 09/17/2021] [Accepted: 10/10/2021] [Indexed: 12/09/2022]
Abstract
Recent advances highlight that non-coding RNAs (ncRNAs) are emerging as fundamental regulators in various physiological as well as pathological processes by regulating macro-autophagy. Studies have disclosed that macro-autophagy, which is a highly conserved process involving cellular nutrients, components, and recycling of organelles, can be either selective or non-selective and ncRNAs show their regulation on selective autophagy as well as non-selective autophagy. The abnormal expression of ncRNAs will result in the impairment of autophagy and contribute to carcinogenesis and cancer progression by regulating both selective autophagy as well as non-selective autophagy. This review focuses on the regulatory roles of ncRNAs in autophagy and their involvement in cancer which may provide valuable therapeutic targets for cancer management.
Collapse
Affiliation(s)
- Qun Lin
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Bioland Laboratory, 510005 Guangzhou, China
| | - Yu Shi
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Bioland Laboratory, 510005 Guangzhou, China
| | - Zihao Liu
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Bioland Laboratory, 510005 Guangzhou, China
| | - Maryam Mehrpour
- Institut Necker-Enfants Malades (INEM), Inserm U1151-CNRS UMR 8253, 75993, Paris, France; Université Paris Descartes-Sorbonne Paris Cité, 75993 Paris, France
| | - Ahmed Hamaï
- Institut Necker-Enfants Malades (INEM), Inserm U1151-CNRS UMR 8253, 75993, Paris, France; Université Paris Descartes-Sorbonne Paris Cité, 75993 Paris, France
| | - Chang Gong
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Bioland Laboratory, 510005 Guangzhou, China.
| |
Collapse
|
102
|
Xu P, Xu X, Wu X, Zhang L, Meng L, Chen Z, Han W, Yao J, Xu AM. CircTMC5 promotes gastric cancer progression and metastasis by targeting miR-361-3p/RABL6. Gastric Cancer 2022; 25:64-82. [PMID: 34296378 DOI: 10.1007/s10120-021-01220-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/15/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Gastric cancer (GC) is common in East Asia, yet its molecular and pathogenic mechanisms remain unclear. Circular RNAs (circRNAs) are differentially expressed in GC and may be promising biomarkers. Here, we investigated the role and regulatory mechanism of circTMC5 in GC. METHODS CircTMC5 expression was detected in human GC and adjacent tissues using microarray assays and qRT-PCR, while the clinicopathological characteristics of patients with GC were used to assess its diagnostic and prognostic value. The circTMC5/miR-361-3p/RABL6 axis was examined in vitro and vivo, and the immune roles of RABL6 were evaluated using bioinformatics analyses and immunohistochemistry (IHC). RESULTS CircTMC5 was highly expressed in GC tissues, plasma, and cell lines, and was closely related to histological grade, pathological stage, and T classification in patients with GC. CircTMC5 expression was also an independent prognostic factor for GC and its combined detection with carcinoembryonic antigen may improve GC diagnosis. Low circTMC5 expression correlated with good prognosis, inhibited GC cell proliferation, and promoted apoptosis. Mechanistically, circTMC5 overexpression promoted GC cell proliferation, invasion, and metastasis but inhibited apoptosis by sponging miR-361-3p and up-regulating RABL6 in vitro and vivo, whereas miR-361-3p up-regulation had the opposite effects. RABL6 was highly expressed in GC and was involved in immune regulation and infiltration in GC. CONCLUSIONS CircTMC5 promotes GC and sponges miR-361-3p to up-regulate RABL6 expression, thus may have diagnostic and prognostic value in GC. RABL6 also displays therapeutic promise due to its role in the immune regulation of GC.
Collapse
Affiliation(s)
- Peng Xu
- Department of General Surgery, The Fourth Affiliated Hospital of Anhui Medical University, No. 100 Huaihai Avenue, Xinzhan District, Hefei City, 230000, Anhui Province, China.,Department of Hepatobiliary and Pancreatic Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, No. 98, Nantong West Road, Yangzhou City, 225001, Jiangsu Province, China
| | - XiaoLan Xu
- Department of Critical Care Medicine, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225001, China
| | - Xiao Wu
- Department of Pathophysiology, Basic Medical College of Anhui Medical University, Anhui Provincial Key Laboratory of Pathophysiology, Hefei, 230022, China
| | - LiXiang Zhang
- Department of General Surgery, The First Affiliated Hospital of Anhui, Medical University, Hefei, 230022, China
| | - Lei Meng
- Department of General Surgery, The First Affiliated Hospital of Anhui, Medical University, Hefei, 230022, China
| | - ZhangMing Chen
- Department of General Surgery, The First Affiliated Hospital of Anhui, Medical University, Hefei, 230022, China
| | - WenXiu Han
- Department of General Surgery, The First Affiliated Hospital of Anhui, Medical University, Hefei, 230022, China
| | - Jie Yao
- Department of Hepatobiliary and Pancreatic Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, No. 98, Nantong West Road, Yangzhou City, 225001, Jiangsu Province, China.
| | - AMan Xu
- Department of General Surgery, The Fourth Affiliated Hospital of Anhui Medical University, No. 100 Huaihai Avenue, Xinzhan District, Hefei City, 230000, Anhui Province, China. .,Department of General Surgery, The First Affiliated Hospital of Anhui, Medical University, Hefei, 230022, China.
| |
Collapse
|
103
|
Unveiling the tumour-regulatory roles of miR-1275 in cancer. Pathol Res Pract 2021; 230:153745. [PMID: 34953353 DOI: 10.1016/j.prp.2021.153745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 12/10/2021] [Accepted: 12/16/2021] [Indexed: 12/13/2022]
Abstract
The rapid development of small RNA and molecular biology research in the past 20 years has enabled scientists to discover many new miRNAs that are proven to play essential roles in regulating the development of different cancer types. Among these miRNAs, miR-1275 is one of the well-studied miRNAs that has been described to act as a tumour-promoting or tumour-suppressing miRNA in various cancer types. Even though miR-1275 has been widely reported in different original research articles on its roles in modulating the progression of different cancer types, however, there is scarce an in-depth review that could constructively summarize the findings from different studies on the regulatory roles of miR-1275 in different cancer types. To fill up this literature gap, therefore, this review was aimed to provide an overview and summary of the roles of miR-1275 in modulating the development of different cancers and to unravel the mechanism of how miR-1275 regulates cancer progression. Based on the findings summarized from various sources, it was found that miR-1275 plays a vital role in regulating various cellular signaling pathways like the PI3K/AKT, ERK/JNK, MAPK, and Wnt signaling pathways, and the dysregulation of this miRNA has been shown to contribute to the development of multiple cancer types such as cancers of the liver, breast, lung, gastrointestinal tract and genitourinary tract. Therefore, miR-1275 has great potential to be employed as a biomarker to diagnose cancer and to predict the prognosis of cancer patients. In addition, by inhibiting the expression of its unique downstream targets that are involved in regulating the mentioned cellular pathways, this miRNA could also be utilized as a novel therapeutic agent to halt cancer development.
Collapse
|
104
|
Effect of Regorafenib on P2X7 Receptor Expression and Different Oncogenic Signaling Pathways in a Human Breast Cancer Cell Line: A Potential of New Insight of the Antitumor Effects of Regorafenib. Curr Issues Mol Biol 2021; 43:2199-2209. [PMID: 34940128 PMCID: PMC8929109 DOI: 10.3390/cimb43030154] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/29/2021] [Accepted: 12/07/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Breast cancer is the most common malignancy in women worldwide. P2X7 is a transmembrane receptor expressed in breast cancer and activated by the ATP tumor microenvironment, driving cell proliferation, angiogenesis, and metastasis via different signaling pathways. The role of the P2X7 receptor, hypoxia, and autophagy in regulating tumor progression is controversial. The multikinase inhibitor regorafenib prevents the activation of numerous kinases involved in angiogenesis, proliferation, and metastasis. The present study aimed to evaluate the modulatory effect of regorafenib on the hypoxia/angiogenesis/P2X7R/autophagy axis on the MCF7 breast cancer cell line and its impact on different signaling pathways involved in breast cancer pathogenesis. METHODS The levels of VEGF, VEGFR, PI3K, NF-κB, HIF-1α, and LC3-II were analyzed using ELISA, and caspase-3 activity was also assessed colorimetrically. Phosphorylated (p)-p38 MAPK and purinergic ligand-gated ion channel 7 (P2X7) receptor protein expression levels were analyzed via Western blotting. Reverse transcription-quantitative PCR was used to determine the mRNA expression levels of Beclin 1 (BECN1), LC3-II, and sequestosome 1 (p62). RESULTS Regorafenib reduced MCF7 cell viability in a dose-dependent manner. Furthermore, regorafenib significantly reduced levels of PI3K, NF-κB, VEGF, VEGFR, P2X7 receptor, and p-p38 MAPK protein expression, and markedly reduced p62 mRNA expression levels. However, regorafenib significantly increased caspase-3 activity, as well as BECN1 and LC3-II mRNA expression levels. CONCLUSIONS Regorafenib was demonstrated to possibly exhibit antitumor activity on the breast cancer cell line via modulation of the P2X7/HIF-1α/VEGF, P2X7/P38, P2X7/ERK/NF-κB, and P2X7/beclin 1 pathways.
Collapse
|
105
|
Wang J, Yang K, Cao J, Li L. Knockdown of circular RNA septin 9 inhibits the malignant progression of breast cancer by reducing the expression of solute carrier family 1 member 5 in a microRNA-149-5p-dependent manner. Bioengineered 2021; 12:10624-10637. [PMID: 34738502 PMCID: PMC8809977 DOI: 10.1080/21655979.2021.2000731] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 12/24/2022] Open
Abstract
Breast cancer (BC) is the most frequently diagnosed cancer in women. Increasing evidence suggests that circular RNA (circRNA) exerts critical functions in BC progression. However, the roles of circRNA septin 9 (circSEPT9) in BC development and the underneath mechanism remain largely unclear so far. In this work, the RNA levels of circSEPT9, microRNA-149-5p (miR-149-5p) and solute carrier family 1 member 5 (SLC1A5) were detected by quantitative real-time polymerase chain reaction. Western blot was performed to check protein expression. Glutamine uptake, cell proliferation and cell apoptosis were investigated by glutamine uptake, cell counting kit-8, cell colony formation, 5-Ethynyl-29-deoxyuridine, flow cytometry analysis or DNA content quantitation assay. The interactions of miR-149-5p with circSEPT9 and SLC1A5 were identified by a dual-luciferase reporter assay. Mouse model assay was carried out to analyze the effect of circSEPT9 on tumor formation in vivo. Results showed that circSEPT9 and SLC1A5 expression were significantly upregulated, while miR-149-5p was downregulated in BC tissues and cells as compared with paracancerous normal breast tissues and human normal breast cells. Knockdown of circSEPT9 or SLC1A5 inhibited glutamine uptake and cell proliferation, but induced cell apoptosis in BC cells. SLC1A5 overexpression relieved circSEPT9 silencing-induced repression of BC cell malignancy. In mechanism, circSEPT9 regulated SLC1A5 expression by sponging miR-149-5p. In support, circSEPT9 knockdown led to delayed tumor tumorigenesis in vivo. In summary, these results indicates that circSEPT9 may act an oncogenic role in BC malignant progression by regulating miR-149-5p/SLC1A5 pathway, providing a novel mechanism responsible for BC development.
Collapse
Affiliation(s)
- Jianjun Wang
- Department of Breast and Thyroid Tumors Surgery, The First People’s Hospital of Yunnan Province, Kunhua Hospital Affiliated to Kunming University of Science and Technology, Yunnan, China
| | - Kunxian Yang
- Department of Breast and Thyroid Tumors Surgery, The First People’s Hospital of Yunnan Province, Kunhua Hospital Affiliated to Kunming University of Science and Technology, Yunnan, China
| | - Junyu Cao
- Department of Breast and Thyroid Tumors Surgery, The First People’s Hospital of Yunnan Province, Kunhua Hospital Affiliated to Kunming University of Science and Technology, Yunnan, China
| | - Li Li
- Department of Breast and Thyroid Tumors Surgery, The First People’s Hospital of Yunnan Province, Kunhua Hospital Affiliated to Kunming University of Science and Technology, Yunnan, China
| |
Collapse
|
106
|
Lan W, Dong Y, Chen Q, Zheng R, Liu J, Pan Y, Chen YPP. KGANCDA: predicting circRNA-disease associations based on knowledge graph attention network. Brief Bioinform 2021; 23:6447436. [PMID: 34864877 DOI: 10.1093/bib/bbab494] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/12/2021] [Accepted: 10/26/2021] [Indexed: 12/31/2022] Open
Abstract
Increasing evidences have proved that circRNA plays a significant role in the development of many diseases. In addition, many researches have shown that circRNA can be considered as the potential biomarker for clinical diagnosis and treatment of disease. Some computational methods have been proposed to predict circRNA-disease associations. However, the performance of these methods is limited as the sparsity of low-order interaction information. In this paper, we propose a new computational method (KGANCDA) to predict circRNA-disease associations based on knowledge graph attention network. The circRNA-disease knowledge graphs are constructed by collecting multiple relationship data among circRNA, disease, miRNA and lncRNA. Then, the knowledge graph attention network is designed to obtain embeddings of each entity by distinguishing the importance of information from neighbors. Besides the low-order neighbor information, it can also capture high-order neighbor information from multisource associations, which alleviates the problem of data sparsity. Finally, the multilayer perceptron is applied to predict the affinity score of circRNA-disease associations based on the embeddings of circRNA and disease. The experiment results show that KGANCDA outperforms than other state-of-the-art methods in 5-fold cross validation. Furthermore, the case study demonstrates that KGANCDA is an effective tool to predict potential circRNA-disease associations.
Collapse
Affiliation(s)
- Wei Lan
- School of Computer, Electronic and Information, Guangxi University, Nanning, China
| | - Yi Dong
- School of Computer, Electronic and Information, Guangxi University, Nanning, China
| | - Qingfeng Chen
- School of Computer, Electronic and Information, Guangxi University, Nanning, China
| | - Ruiqing Zheng
- School of Computer, Electronic and Information, Guangxi University, Nanning, China
| | - Jin Liu
- School of Computer, Electronic and Information, Guangxi University, Nanning, China
| | - Yi Pan
- School of Computer, Electronic and Information, Guangxi University, Nanning, China
| | - Yi-Ping Phoebe Chen
- School of Computer, Electronic and Information, Guangxi University, Nanning, China
| |
Collapse
|
107
|
Xie F, Xiong Y, Yan J, Wang L, Yan W. Circular RNA circ_0048764 promotes the development of breast cancer by regulating microRNA-1296-5p/tripartite motif containing 14 axis. Bioengineered 2021; 13:1963-1974. [PMID: 34787066 PMCID: PMC8973759 DOI: 10.1080/21655979.2021.1995990] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Breast cancer (BC) is one of the leading causes of cancer-related deaths in female. Circular RNA (circRNA), as reported, is involved in the progression of BC. This work focuses on clarifying the biological function of circ_0048764 in BC and its hidden mechanism. Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to detect the expressions of circ_0048764, microRNA-1296-5p (miR-1296-5p), and tripartite motif containing 14 (TRIM14) in BC tissues and cell lines. Besides, the status of proliferation, migration, invasion and apoptosis of BC cells was probed by cell counting kit-8 (CCK-8), EdU, transwell and flow cytometry assays. Western blot was adopted to examine the level of TRIM14 protein in BC cells. In addition, dual-luciferase reporter gene assay and RNA immunoprecipitation (RIP) assay were conducted to corroborate the targeting relationships between miR-1296-5p and circ_0048764 or TRIM14. It was revealed that circ_0048764 expression was remarkably up-regulated in BC tissues and cells, and circ_0048764 expression was associated with TNM stage and tumor size. Functionally, overexpression of circ_0048764 significantly promoted BC cell proliferative, migrative and invasive abilities and inhibited apoptosis, while circ_0048764 knockdown exerted the opposite effects. Mechanistically, circ_0048764 directly targeted miR-1296-5p and could negatively modulate its expression in BC cells. Besides, miR-1296-5p could reverse the influence of circ_0048764 on BC viability, migration, invasion and apoptosis. Moreover, TRIM14 was confirmed to be a downstream target of miR-1296-5p. Circ_0048764 positively regulated TRIM14 expression in BC cells via targeting miR-1296-5p. Collectively, it is concluded that circ_0048764 promotes the development of BC via modulating the miR-1296-5p/TRIM14 axis.
Collapse
Affiliation(s)
- Fei Xie
- Department of General Surgery, Xiangyang Central Hospital, Xiangyang 441021, Hubei Province, People's Republic of China
| | - Yuyuan Xiong
- Department of General Surgery, Xiangyang Central Hospital, Xiangyang 441021, Hubei Province, People's Republic of China
| | - Jiayin Yan
- Department of General Surgery, Xiangyang Central Hospital, Xiangyang 441021, Hubei Province, People's Republic of China
| | - Ling Wang
- Department of General Surgery, Xiangyang Central Hospital, Xiangyang 441021, Hubei Province, People's Republic of China
| | - Wei Yan
- Department of General Surgery, Xiangyang Central Hospital, Xiangyang 441021, Hubei Province, People's Republic of China
| |
Collapse
|
108
|
Liu F, Wu X, Zhu H, Wang F. Influence of dysregulated expression of circular RNA on the diagnosis and prognosis of breast cancer in Asia: a meta-analysis study. BMJ Open 2021; 11:e044267. [PMID: 34728436 PMCID: PMC8565556 DOI: 10.1136/bmjopen-2020-044267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE Recent studies have reported a correlation between non-coding RNAs such as circular RNAs (circRNAs) and clinical value of various cancers. However, the diagnostic and prognostic role of circRNA in breast cancer remains controversial. DESIGN Systematic review and meta-analysis. METHODS Diagnostic efficacy was estimated by sensitivity, specificity and area under the curve (AUC). Pooled HRs with 95% CIs estimated overall survival (OS), and ORs with 95% CIs investigated clinical features. RESULTS By searching PubMed, Embase, Web of Science, CNKI and Cochrane Library, we obtained a total of 29 studies with 4405 patients. A shorter survival time was associated with high expression levels of tumour-promoter circRNAs (OS: HR=2.43, 95% CI 2.20 to 2.92, p<0.001), and tumour-suppressor circRNAs were related to a favourable prognosis (OS: HR=0.32, 95% CI 0.23 to 0.44, p<0.001). Furthermore, high expression levels of oncogenic circRNAs were associated with poor clinical outcomes; tumour-suppressor circRNAs showed the opposite result. As for the diagnostic role, the outcome indicated an AUC of 0.82 (95% CI 0.78 to 0.85), with 85% sensitivity and 86% specificity to distinguish patients with breast cancer from healthy controls. CONCLUSION Dysregulated expression of circRNA was related to diagnosis and prognosis in breast cancer, which indicated it might be a novel biomarker and a target of therapy for breast cancer. PROSPERO REGISTRATION NUMBER CRD42020207912.
Collapse
Affiliation(s)
- Fengyuan Liu
- Department of Clinical Medicine, Medical School of Nantong University, Nantong University, Nantong, China
| | - Xinrui Wu
- Department of Clinical Medicine, Medical School of Nantong University, Nantong University, Nantong, China
| | - Huixia Zhu
- Department of Clinical Medicine, Medical School of Nantong University, Nantong University, Nantong, China
| | - Feng Wang
- Department of Laboratory Medicine, Nantong University Affiliated Hospital, Nantong, China
- Department of Laboratory Medicine, Public Health School of Nantong University, Nantong University, Nantong, China
| |
Collapse
|
109
|
Non-coding RNA-mediated autophagy in cancer: A protumor or antitumor factor? Biochim Biophys Acta Rev Cancer 2021; 1876:188642. [PMID: 34715268 DOI: 10.1016/j.bbcan.2021.188642] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/21/2021] [Accepted: 10/23/2021] [Indexed: 12/17/2022]
Abstract
Autophagy, usually referred to as macroautophagy, is a cytoprotective behavior that helps cells, especially cancer cells, escape crises. However, the role of autophagy in cancer remains controversial. The induction of autophagy is favorable for tumor growth, as it can degrade damaged cell components accumulated during nutrient deficiency, chemotherapy, or other stresses in a timely manner. Whereas the antitumor effect of autophagy might be closely related to its crosstalk with metabolism, immunomodulation, and other pathways. Recent studies have verified that lncRNAs and circRNAs modulate autophagy in carcinogenesis, cancer cells proliferation, apoptosis, metastasis, and chemoresistance via multiple mechanisms. A comprehensive understanding of the regulatory relationships between ncRNAs and autophagy in cancer might resolve chemoresistance and also offer intervention strategies for cancer therapy. This review systematically displays the regulatory effects of lncRNAs and circRNAs on autophagy in the contexts of cancer initiation, progression, and resistance to chemo- or radiotherapy and provides a novel insight into cancer therapy.
Collapse
|
110
|
Liu X, Liu X, Cai M, Luo A, He Y, Liu S, Zhang X, Yang X, Xu L, Jiang H. CircRNF220, not its linear cognate gene RNF220, regulates cell growth and is associated with relapse in pediatric acute myeloid leukemia. Mol Cancer 2021; 20:139. [PMID: 34702297 PMCID: PMC8549339 DOI: 10.1186/s12943-021-01395-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 07/17/2021] [Indexed: 02/08/2023] Open
Abstract
Background Circular RNAs (circRNAs) constitute a family of transcripts with unique structures and have been confirmed to be critical in tumorigenesis and to be potential biomarkers or therapeutic targets. However, only a few circRNAs have been functionally characterized in pediatric acute myeloid leukemia (AML). Methods Here, we investigated the expression pattern of circRNAs in pediatric AML using a circRNA microarray. The characteristics, potential diagnostic value, and prognostic significance of circRNF220 were evaluated. A series of functional experiments were performed to investigate the role of circRNF220 in primary pediatric AML cells. Then we investigated the aberrant transcriptional networks regulated by circRNF220 in primary AML cells by RNA-seq. Furthermore, biotin RNA pulldown assays were implemented to verify the relationship between circRNF220 and miR-30a. Results We identified a circRNA, circRNF220, which was specifically abundant in and accumulated in the peripheral blood and bone marrow of pediatric patients with AML. It could distinguish AML from ALL and other hematological malignancies with high sensitivity and specificity. Significantly, circRNF220 expression independently predicted prognosis, while high expression of circRNF220 was an unfavorable prognostic marker for relapse. Furthermore, we characterized the function of circRNF220 and found that circRNF220 knockdown specifically inhibited proliferation and promoted apoptosis in AML cell lines and primary cells. Mechanistically, circRNF220 may act as an endogenous sponge of miR-30a to sequester miR-30a and inhibit its activity, which increases the expression of its targets MYSM1 and IER2 and implicated in AML relapse. Conclusions Collectively, these findings demonstrated that circRNF220 could be highly efficient and specific for the accurate diagnosis of pediatric AML, with implications for relapse prediction. Supplementary Information The online version contains supplementary material available at 10.1186/s12943-021-01395-7.
Collapse
Affiliation(s)
- Xiaodan Liu
- Division of Birth Cohort Study, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.,Department of Hematology/Oncology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Zhujiang Newtown, Tianhe District, Guangzhou, 510623, Guangdong, China
| | - Xiaoping Liu
- Department of Hematology/Oncology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Zhujiang Newtown, Tianhe District, Guangzhou, 510623, Guangdong, China.,Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Mansi Cai
- Department of Hematology/Oncology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Zhujiang Newtown, Tianhe District, Guangzhou, 510623, Guangdong, China.,Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Ailing Luo
- Department of Hematology/Oncology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Zhujiang Newtown, Tianhe District, Guangzhou, 510623, Guangdong, China.,Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yingyi He
- Department of Hematology/Oncology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Zhujiang Newtown, Tianhe District, Guangzhou, 510623, Guangdong, China
| | - Sha Liu
- Department of Hematology/Oncology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Zhujiang Newtown, Tianhe District, Guangzhou, 510623, Guangdong, China
| | - Xiaohong Zhang
- Department of Hematology/Oncology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Zhujiang Newtown, Tianhe District, Guangzhou, 510623, Guangdong, China
| | - Xu Yang
- Department of Hematology/Oncology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Zhujiang Newtown, Tianhe District, Guangzhou, 510623, Guangdong, China.,Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Ling Xu
- Department of Hematology/Oncology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Zhujiang Newtown, Tianhe District, Guangzhou, 510623, Guangdong, China.
| | - Hua Jiang
- Department of Hematology/Oncology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Zhujiang Newtown, Tianhe District, Guangzhou, 510623, Guangdong, China.
| |
Collapse
|
111
|
Zhang M, Bai X, Zeng X, Liu J, Liu F, Zhang Z. circRNA-miRNA-mRNA in breast cancer. Clin Chim Acta 2021; 523:120-130. [PMID: 34537217 DOI: 10.1016/j.cca.2021.09.013] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/07/2021] [Accepted: 09/14/2021] [Indexed: 12/24/2022]
Abstract
Among cancers, breast cancer has the highest incidence rate among women and poses a tremendous threat to women's health. Messenger RNA (mRNA), microRNA (miRNA) and circular RNA (circRNA) play vital roles in the progression of breast cancer through a variety of biological effects and mechanisms. Recently, the regulatory network formed by circRNAs, miRNAs and mRNAs has piqued attention and garnered interest. CircRNAs bind to miRNAs through a regulatory mechanism in which endogenous RNAs compete to indirectly regulate the expression of mRNA corresponding to downstream target genes of miRNAs, contributing to the progression of breast cancer. The circRNA-miRNA-mRNA axis may be a marker for the early diagnosis and prognosis of breast cancer and a potential breast cancer treatment target, providing unlimited possibilities for the development of breast cancer biomarkers and therapeutic strategies. This article reviews recent research progress on the circRNA-miRNA-mRNA axis as a regulatory network of competing endogenous RNAs in breast cancer. Herein, we focus on the mechanism and function of the circRNA-miRNA-mRNA axis in the occurrence and metastasis of breast cancer, and resistance to chemotherapy.
Collapse
Affiliation(s)
- Meilan Zhang
- Cancer Research Institute of Hengyang Medical College, University of South China, Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Hunan, Hengyang 421001, China
| | - Xue Bai
- Cancer Research Institute of Hengyang Medical College, University of South China, Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Hunan, Hengyang 421001, China
| | - Xuemei Zeng
- Cancer Research Institute of Hengyang Medical College, University of South China, Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Hunan, Hengyang 421001, China
| | - Jiangrong Liu
- Cancer Research Institute of Hengyang Medical College, University of South China, Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Hunan, Hengyang 421001, China
| | - Feng Liu
- Cancer Research Institute of Hengyang Medical College, University of South China, Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Hunan, Hengyang 421001, China
| | - Zhiwei Zhang
- Cancer Research Institute of Hengyang Medical College, University of South China, Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Hunan, Hengyang 421001, China
| |
Collapse
|
112
|
Zhou R, Jia W, Gao X, Deng F, Fu K, Zhao T, Li Z, Fu W, Liu G. CircCDYL Acts as a Tumor Suppressor in Wilms' Tumor by Targeting miR-145-5p. Front Cell Dev Biol 2021; 9:668947. [PMID: 34485273 PMCID: PMC8415843 DOI: 10.3389/fcell.2021.668947] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 06/03/2021] [Indexed: 11/13/2022] Open
Abstract
Circular RNAs (circRNA) have been reported to exert evident functions in many human carcinomas. However, the possible mechanisms concerning the circRNA in various tumors are still elusive. In this research, we analyzed the expression profile and biological functions of circular RNA CDYL (circCDYL, circBase ID: hsa_circ_0008285) in Wilms' tumor. Here, miRNA and gene expression were examined by real-time PCR in Wilms' tumor tissues and cell lines. The functions of circCDYL and its potential targets to influence cell proliferation, migration, and invasion in Wilms' tumor cells were determined by biological functional experiments in vitro and in vivo. We predicted and analyzed potential miRNA targets through online bioinformatic tools. To validate the interactions between circCDYL and its targets, we performed RNA fluorescence in situ hybridization, biotin-coupled miRNA capture assay, and biotin-coupled probe pull-down assay. Tight junction protein l (TJP1) was proved to be the target gene of the predicted miRNA by dual-luciferase reporter assay. The expression level of TJP1 in Wilms' tumor cells was identified via Western blot. We showed that circCDYL was downregulated in WT tissue compared with adjacent non-tumor tissue. Upregulation of circCDYL could reduce cell proliferation, migration, and invasion. Mechanically, circCDYL, functioning as a miRNA sponge, decreased the expression level of miR-145-5p and TJP1 3'UTR was validated as the target of miR-145-5p, facilitating the circCDYL/miR-145-5p/TJP1 axis. In conclusion, our study suggested circCDYL as a novel biomarker and therapeutic target for WT treatment.
Collapse
Affiliation(s)
- Rui Zhou
- Department of Pediatric Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Wei Jia
- Department of Pediatric Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xiaofeng Gao
- Department of Pediatric Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Fuming Deng
- Department of Pediatric Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Kai Fu
- Department of Pediatric Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Tianxin Zhao
- Department of Pediatric Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Zhongmin Li
- Department of Pediatric Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Wen Fu
- Department of Pediatric Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Guochang Liu
- Department of Pediatric Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
113
|
Xu L, Xu K, Xiang L, Yan J. Circular RNA OMA1 regulates the progression of breast cancer via modulation of the miR‑1276/SIRT4 axis. Mol Med Rep 2021; 24:728. [PMID: 34414449 PMCID: PMC8383036 DOI: 10.3892/mmr.2021.12367] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 09/25/2020] [Indexed: 12/24/2022] Open
Abstract
Mounting evidence has indicated that circular RNAs (circRNAs) serve essential roles in the tumorigenesis and development of various types of cancer. However, the biological functions and the underlying mechanisms of circRNAs in breast cancer (BC) remain largely elusive. In the present study, the expression pattern of circRNAs in three pairs of BC tissues and adjacent normal tissues was determined using a circRNA microarray. The expression and prognostic value of circOMA1 were evaluated by reverse transcription‑quantitative PCR in 64 pairs of BC tissues and adjacent normal tissues. Survival curves were generated by the Kaplan‑Meier method, and statistical significance was estimated using the log‑rank test. A series of in vitro functional experiments were then performed to investigate the role of circOMA1 in the tumorigenesis of BC. The results revealed that the expression levels of circOMA1 were upregulated in BC tissues, and its expression was markedly associated with tumor size and lymph node metastasis. Receiver operating characteristic analysis demonstrated that the expression of circOMA1 could be used to discriminate between BC tissues and adjacent normal tissues. Functionally, overexpression of circOMA1 promoted the viability, migration and invasion of BC cells, whereas circOMA1 knockdown had the opposite effect. Mechanistic investigations showed that circOMA1 promoted the progression of BC by sponging microRNA (miR)‑1276 and upregulating sirtuin 4 (SIRT4) expression. In conclusion, circOMA1 may act as an oncogenic circRNA in BC via regulation of the miR‑1276/SIRT4 axis.
Collapse
Affiliation(s)
- Lingli Xu
- Department of Ultrasound, Ningbo Zhenghai Longsai Hospital, Ningbo, Zhejiang 315200, P.R. China
| | - Ke Xu
- Department of Radiology, Ningbo Zhenghai Traditional Chinese Medicine Hospital, Ningbo, Zhejiang 315200, P.R. China
| | - Lijun Xiang
- Department of Ultrasound, Ningbo Zhenghai Longsai Hospital, Ningbo, Zhejiang 315200, P.R. China
| | - Jiamei Yan
- Department of Ultrasound, Ningbo Medical Center Lihuili Eastern Hospital, Ningbo, Zhejiang 315040, P.R. China
| |
Collapse
|
114
|
Chen F, Guo L, Di J, Li M, Dong D, Pei D. Circular RNA ubiquitin-associated protein 2 enhances autophagy and promotes colorectal cancer progression and metastasis via miR-582-5p/FOXO1 signaling. J Genet Genomics 2021; 48:1091-1103. [PMID: 34416339 DOI: 10.1016/j.jgg.2021.07.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 12/27/2022]
Abstract
Numerous circular RNAs (circRNAs) have been identified as vital regulators in various cancers. The newly reported circular RNA ubiquitin-associated protein 2 (circUBAP2) is a critical player in cell growth and metastasis in various types of cancers, although its role in colorectal cancer (CRC) has yet to be fully elucidated. We find that circUBAP2 is upregulated in CRC tissues and cell lines to induce autophagy both in vitro and in vivo. The effects of circUBAP2 on migration, invasion, and proliferation may be partially related to autophagy. Mechanistically, we uncover that circUBAP2 can directly interact with miR-582-5p and subsequently act as a microRNA sponge to regulate the expression of the miR-582-5p target gene forkhead box protein O1 (FOXO1) and downstream signaling molecules, which collectively advance the progression and metastasis of CRC. These results suggest that circUBAP2 acts as an oncogene via a novel circUBAP2/miR-582-5p/FOXO1 axis, providing a potential biomarker and therapeutic target for CRC management.
Collapse
Affiliation(s)
- Feifei Chen
- Department of Cell Biology, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China; Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Lei Guo
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Jiehui Di
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Man Li
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Dong Dong
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Dongsheng Pei
- Department of Cell Biology, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China; Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China.
| |
Collapse
|
115
|
Zhang Z, Mou Z, Xu C, Wu S, Dai X, Chen X, Ou Y, Chen Y, Yang C, Jiang H. Autophagy-associated circular RNA hsa_circ_0007813 modulates human bladder cancer progression via hsa-miR-361-3p/IGF2R regulation. Cell Death Dis 2021; 12:778. [PMID: 34365465 PMCID: PMC8349354 DOI: 10.1038/s41419-021-04053-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 01/07/2023]
Abstract
Circular RNAs (circRNAs) drive several cellular processes including proliferation, survival, and differentiation. Here, we identified a circRNA hsa_circ_0007813, whose expression was upregulated in bladder cancer. High hsa_circ_0007813 expression was associated with larger tumor size, higher primary tumor T stage, and higher pathologic grade. Survival analysis showed that patients with high hsa_circ_0007813 expression levels had a poorer prognosis. Based on these findings from clinical tissue samples and cell lines, we assumed that hsa_circ_0007813 functioned a vital role in bladder cancer progression. Next, functional experiments revealed that knockdown of hsa_circ_0007813 inhibited proliferation, migration, and invasiveness of bladder cancer cells both in vitro and in vivo. Through extensive bioinformatic prediction and RNA pull-down assays, we identified hsa-miR-361-3p as a competing endogenous RNA of hsa_circ_0007813. Further bioinformatic studies narrowed targets to 35 possible downstream genes. We then found that knockdown of hsa_circ_0007813 led to altered cell autophagy, bringing our attention to IGF2R, one of the possible downstream genes. IGF2R was also known as cation-independent mannose-6-phosphate receptor (CI-M6PR), was discovered to participate in both autophagy and tumor biology. Regarding autophagy has a dominant role in the survival of tumor cells overcoming cellular stress and correlates with tumor progression, investigations were made to prove that hsa_circ_0007813 could regulate IGF2R expression via hsa-miR-361-3p sponging. The potential of hsa_circ_0007813 in regulating IGF2R expression explained its influence on cell behavior and clinical outcomes. Collectively, our data could offer new insight into the biology of circRNA in bladder cancer.
Collapse
Affiliation(s)
- Zheyu Zhang
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Zezhong Mou
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Chenyang Xu
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Siqi Wu
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiyu Dai
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xinan Chen
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuxi Ou
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yiling Chen
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Chen Yang
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China.
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China.
- National Clinical Research Center for Aging and Medicine, Fudan University, Shanghai, China.
| | - Haowen Jiang
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China.
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China.
- National Clinical Research Center for Aging and Medicine, Fudan University, Shanghai, China.
| |
Collapse
|
116
|
Xu Y, Zhang S, Liao X, Li M, Chen S, Li X, Wu X, Yang M, Tang M, Hu Y, Li Z, Yu R, Huang M, Song L, Li J. Circular RNA circIKBKB promotes breast cancer bone metastasis through sustaining NF-κB/bone remodeling factors signaling. Mol Cancer 2021; 20:98. [PMID: 34325714 PMCID: PMC8320207 DOI: 10.1186/s12943-021-01394-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/17/2021] [Indexed: 12/28/2022] Open
Abstract
Background Breast cancer (BC) has a marked tendency to spread to the bone, resulting in significant skeletal complications and mortality. Recently, circular RNAs (circRNAs) have been reported to contribute to cancer initiation and progression. However, the function and mechanism of circRNAs in BC bone metastasis (BC-BM) remain largely unknown. Methods Bone-metastatic circRNAs were screened using circRNAs deep sequencing and validated using in situ hybridization in BC tissues with or without bone metastasis. The role of circIKBKB in inducing bone pre-metastatic niche formation and bone metastasis was determined using osteoclastogenesis, immunofluorescence and bone resorption pit assays. The mechanism underlying circIKBKB-mediated activation of NF-κB/bone remodeling factors signaling and EIF4A3-induced circIKBKB were investigated using RNA pull-down, luciferase reporter, chromatin isolation by RNA purification and enzyme-linked immunosorbent assays. Results We identified that a novel circRNA, circIKBKB, was upregulated significantly in bone-metastatic BC tissues. Overexpressing circIKBKB enhanced the capability of BC cells to induce formation of bone pre-metastatic niche dramatically by promoting osteoclastogenesis in vivo and in vitro. Mechanically, circIKBKB activated NF-κB pathway via promoting IKKβ-mediated IκBα phosphorylation, inhibiting IκBα feedback loop and facilitating NF-κB to the promoters of multiple bone remodeling factors. Moreover, EIF4A3, acted acting as a pre-mRNA splicing factor, promoted cyclization of circIKBKB by directly binding to the circIKBKB flanking region. Importantly, treatment with inhibitor eIF4A3-IN-2 reduced circIKBKB expression and inhibited breast cancer bone metastasis effectively. Conclusion We revealed a plausible mechanism for circIKBKB-mediated NF-κB hyperactivation in bone-metastatic BC, which might represent a potential strategy to treat breast cancer bone metastasis. Supplementary Information The online version contains supplementary material available at 10.1186/s12943-021-01394-8.
Collapse
Affiliation(s)
- Yingru Xu
- Program of Cancer Research, Key Laboratory of Protein Modification and Degradation and Guangzhou Institute of Oncology, Affiliated Guangzhou Women and Children's Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 510623, China.,Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Shuxia Zhang
- Program of Cancer Research, Key Laboratory of Protein Modification and Degradation and Guangzhou Institute of Oncology, Affiliated Guangzhou Women and Children's Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 510623, China.,Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Xinyi Liao
- Program of Cancer Research, Key Laboratory of Protein Modification and Degradation and Guangzhou Institute of Oncology, Affiliated Guangzhou Women and Children's Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 510623, China.,Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Man Li
- Program of Cancer Research, Key Laboratory of Protein Modification and Degradation and Guangzhou Institute of Oncology, Affiliated Guangzhou Women and Children's Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 510623, China.,Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Suwen Chen
- Program of Cancer Research, Key Laboratory of Protein Modification and Degradation and Guangzhou Institute of Oncology, Affiliated Guangzhou Women and Children's Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 510623, China.,Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Xincheng Li
- Program of Cancer Research, Key Laboratory of Protein Modification and Degradation and Guangzhou Institute of Oncology, Affiliated Guangzhou Women and Children's Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 510623, China.,Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Xingui Wu
- Program of Cancer Research, Key Laboratory of Protein Modification and Degradation and Guangzhou Institute of Oncology, Affiliated Guangzhou Women and Children's Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 510623, China.,Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Meisongzhu Yang
- Program of Cancer Research, Key Laboratory of Protein Modification and Degradation and Guangzhou Institute of Oncology, Affiliated Guangzhou Women and Children's Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 510623, China.,Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Miaoling Tang
- Program of Cancer Research, Key Laboratory of Protein Modification and Degradation and Guangzhou Institute of Oncology, Affiliated Guangzhou Women and Children's Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 510623, China.,Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Yameng Hu
- Program of Cancer Research, Key Laboratory of Protein Modification and Degradation and Guangzhou Institute of Oncology, Affiliated Guangzhou Women and Children's Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 510623, China.,Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Ziwen Li
- Program of Cancer Research, Key Laboratory of Protein Modification and Degradation and Guangzhou Institute of Oncology, Affiliated Guangzhou Women and Children's Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 510623, China.,Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Ruyuan Yu
- Program of Cancer Research, Key Laboratory of Protein Modification and Degradation and Guangzhou Institute of Oncology, Affiliated Guangzhou Women and Children's Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 510623, China.,Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Mudan Huang
- Program of Cancer Research, Key Laboratory of Protein Modification and Degradation and Guangzhou Institute of Oncology, Affiliated Guangzhou Women and Children's Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 510623, China.,Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Libing Song
- Program of Cancer Research, Key Laboratory of Protein Modification and Degradation and Guangzhou Institute of Oncology, Affiliated Guangzhou Women and Children's Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 510623, China.,State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510080, China
| | - Jun Li
- Program of Cancer Research, Key Laboratory of Protein Modification and Degradation and Guangzhou Institute of Oncology, Affiliated Guangzhou Women and Children's Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 510623, China. .,Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China.
| |
Collapse
|
117
|
Liang G, Ling Y, Lin Q, Shi Y, Luo Q, Cen Y, Mehrpour M, Hamai A, Li J, Gong C. MiR-92b-3p Inhibits Proliferation of HER2-Positive Breast Cancer Cell by Targeting circCDYL. Front Cell Dev Biol 2021; 9:707049. [PMID: 34395434 PMCID: PMC8358302 DOI: 10.3389/fcell.2021.707049] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 07/02/2021] [Indexed: 12/24/2022] Open
Abstract
Objectives Circular RNA (circRNA) is a novel class of RNA, which exhibits powerful biological function in regulating cellular fate of various tumors. Previously, we had demonstrated that over-expression of circRNA circCDYL promoted progression of HER2-negative (HER2–) breast cancer via miR-1275-ULK1/ATG7-autophagic axis. However, the role of circCDYL in HER2-positive (HER2+) breast cancer, in particular its role in modulating cell proliferation, one of the most important characteristics of cellular fate, is unclear. Materials and methods qRT-PCR and in situ hybridization analyses were performed to examine the expression of circCDYL and miR-92b-3p in breast cancer tissues or cell lines. The biological function of circCDYL and miR-92b-3p were assessed by plate colony formation and cell viability assays and orthotopic animal models. In mechanistic study, circRNAs pull-down, RNA immunoprecipitation, dual luciferase report, western blot, immunohistochemical and immunofluorescence staining assays were performed. Results CircCDYL was high-expressed in HER2+ breast cancer tissue, similar with that in HER2– breast cancer tissue. Silencing HER2 gene had no effect on expression of circCDYL in HER2+ breast cancer cells. Over-expression of circCDYL promoted proliferation of HER2+ breast cancer cells but not through miR-1275-ULK1/ATG7-autophagic axis. CircRNA pull down and miRNA deep-sequencing demonstrated the binding of miR-92b-3p and circCDYL. Interestingly, circCDYL did not act as miR-92b-3p sponge, but was degraded in miR-92b-3p-dependent silencing manner. Clinically, expression of circCDYL and miR-92b-3p was associated with clinical outcome of HER2+ breast cancer patients. Conclusion MiR-92b-3p-dependent cleavage of circCDYL was an essential mechanism in regulating cell proliferation of HER2+ breast cancer cells. CircCDYL was proved to be a potential therapeutic target for HER2+ breast cancer, and both circCDYL and miR-92b-3p might be potential biomarkers in predicting clinical outcome of HER2+ breast cancer patients.
Collapse
Affiliation(s)
- Gehao Liang
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Breast Oncology, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Yun Ling
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Breast Surgery, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Qun Lin
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yu Shi
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qing Luo
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yinghuan Cen
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Maryam Mehrpour
- Institut Necker-Enfants Malades (INEM), Inserm U1151-CNRS UMR 8253, Paris, France
| | - Ahmed Hamai
- Institut Necker-Enfants Malades (INEM), Inserm U1151-CNRS UMR 8253, Paris, France
| | - Jun Li
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Chang Gong
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
118
|
Xu J, Chen X, Sun Y, Shi Y, Teng F, Lv M, Liu C, Jia X. The Regulation Network and Clinical Significance of Circular RNAs in Breast Cancer. Front Oncol 2021; 11:691317. [PMID: 34307155 PMCID: PMC8299466 DOI: 10.3389/fonc.2021.691317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/23/2021] [Indexed: 12/31/2022] Open
Abstract
Breast cancer is one of the most common malignant tumors in women worldwide. Circular RNA (circRNA) is a class of structurally stable non-coding RNA with a covalently closed circular structure. In recent years, with the development of high-throughput RNA sequencing, many circRNAs have been discovered and have proven to be clinically significant in the development and progression of breast cancer. Importantly, several regulators of circRNA biogenesis have been discovered. Here, we systematically summarize recent progress regarding the network of regulation governing the biogenesis, degradation, and distribution of circRNAs, and we comprehensively analyze the functions, mechanisms, and clinical significance of circRNA in breast cancer.
Collapse
Affiliation(s)
- Juan Xu
- Deparment of Gynecology, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Xiyi Chen
- Deparment of Gynecology, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Yu Sun
- Deparment of Gynecology, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Yaqian Shi
- Deparment of Gynecology, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Fang Teng
- Deparment of Gynecology, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Mingming Lv
- Department of Breast, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Chen Liu
- Department of Medical Genetics, Nanjing Medical University, Nanjing, China
| | - Xuemei Jia
- Deparment of Gynecology, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
119
|
Min X, Liu DL, Xiong XD. Circular RNAs as Competing Endogenous RNAs in Cardiovascular and Cerebrovascular Diseases: Molecular Mechanisms and Clinical Implications. Front Cardiovasc Med 2021; 8:682357. [PMID: 34307497 PMCID: PMC8292644 DOI: 10.3389/fcvm.2021.682357] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/15/2021] [Indexed: 12/28/2022] Open
Abstract
Circular RNAs (circRNAs) represent a novel class of widespread and diverse endogenous RNA molecules. This unusual class of RNA species is generated by a back-splicing event of exons or introns, resulting in a covalently closed circRNA molecule. Accumulating evidence indicates that circRNA plays an important role in the biological functions of a network of competing endogenous RNA (ceRNA). CircRNAs can competitively bind to miRNAs and abolish the suppressive effect of miRNAs on target RNAs, thus regulating gene expression at the posttranscriptional level. The role of circRNAs as ceRNAs in the pathogenesis of cardiovascular and cerebrovascular diseases (CVDs) has been recently reported and highlighted. Understanding the underlying molecular mechanism could aid the discovery of therapeutic targets or strategies against CVDs. Here, we review the progress in studying the role of circRNAs as ceRNAs in CVDs, with emphasis on the molecular mechanism, and discuss future directions and possible clinical implications.
Collapse
Affiliation(s)
- Xue Min
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, Guangdong Medical University, Dongguan, China
| | - Dong-Liang Liu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, Guangdong Medical University, Dongguan, China
| | - Xing-Dong Xiong
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, Guangdong Medical University, Dongguan, China.,Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
120
|
Wang X, Xing L, Yang R, Chen H, Wang M, Jiang R, Zhang L, Chen J. The circACTN4 interacts with FUBP1 to promote tumorigenesis and progression of breast cancer by regulating the expression of proto-oncogene MYC. Mol Cancer 2021; 20:91. [PMID: 34116677 PMCID: PMC8194204 DOI: 10.1186/s12943-021-01383-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 05/31/2021] [Indexed: 01/17/2023] Open
Abstract
Background Recent studies have revealed that circular RNAs (circRNAs) play significant roles in the occurrence and development of many kinds of cancers including breast cancer (BC). However, the potential functions of most circRNAs and the molecular mechanisms underlying progression of BC remain elusive. Method Here, Circular RNA microarray was executed in 4 pairs of breast cancer tissues and para-cancer tissues. The expression and prognostic significance of circACTN4 in BC cells and tissues were determined by qRT-PCR and in situ hybridization. Gain-and loss-of-function experiments were implemented to observe the impacts of circACTN4 on the growth, invasion, and metastasis of BC cells in vitro and in vivo. Mechanistically, chromatin immunoprecipitation, luciferase reporter, RNA pulldown, mass spectrum, RNA immunoprecipitation, fluorescence in situ hybridization and co-immunoprecipitation assays were executed. Results CircACTN4 was significantly upregulated in breast cancer tissues and cells, its expression was correlated with clinical stage and poor prognosis of patients with BC. Ectopic expression of circACTN4 strikingly facilitated the growth, invasion, and metastasis of breast cancer cells in vitro and in vivo. Whereas knockdown of circACTN4 revealed opposite roles. CircACTN4 was mainly distributed in the nucleus. Further mechanistic research proved that circACTN4 could competitively bind to far upstream element binding protein 1 (FUBP1) to prevent the combination between FUBP1 and FIR, thereby activating MYC transcription and facilitating tumor progression of breast cancer. Furthermore, we found that upstream transcription factor 2 (USF2) might promote the biogenesis of circACTN4. Conclusion Our findings uncover a pivotal mechanism that circACTN4 mediated by USF2 might interact with FUBP1 to promote the occurrence and development of breast cancer via enhancing the expression of MYC. CircACTN4 could be a novel potential target for diagnosis and treatment of breast cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s12943-021-01383-x.
Collapse
Affiliation(s)
- Xiaosong Wang
- Department of Cell Biology and Genetics, Chongqing Medical University, #1 Yixueyuan Road, Chongqing, 400016, China
| | - Lei Xing
- Department of Endocrine and breast surgery, The First Affiliated Hospital of Chongqing Medical University, #1 Yixueyuan Road, Chongqing, 400016, China
| | - Rui Yang
- Department of Cell Biology and Genetics, Chongqing Medical University, #1 Yixueyuan Road, Chongqing, 400016, China
| | - Hang Chen
- Department of Cell Biology and Genetics, Chongqing Medical University, #1 Yixueyuan Road, Chongqing, 400016, China
| | - Min Wang
- Department of Cell Biology and Genetics, Chongqing Medical University, #1 Yixueyuan Road, Chongqing, 400016, China
| | - Rong Jiang
- Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, #1 Yixueyuan Road, Chongqing, 400016, China
| | - Luyu Zhang
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, #1 Yixueyuan Road, Chongqing, 400016, China
| | - Junxia Chen
- Department of Cell Biology and Genetics, Chongqing Medical University, #1 Yixueyuan Road, Chongqing, 400016, China.
| |
Collapse
|
121
|
Zeng Y, Zou Y, Gao G, Zheng S, Wu S, Xie X, Tang H. The biogenesis, function and clinical significance of circular RNAs in breast cancer. Cancer Biol Med 2021; 19:j.issn.2095-3941.2020.0485. [PMID: 34110722 PMCID: PMC8763001 DOI: 10.20892/j.issn.2095-3941.2020.0485] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 01/13/2021] [Indexed: 11/11/2022] Open
Abstract
Circular RNAs (circRNAs) are noncoding RNAs that form covalently closed loop structures. CircRNAs are dysregulated in cancer and play key roles in tumorigenesis, diagnosis, and tumor therapy. CircRNAs function as competing endogenous RNAs or microRNA sponges that regulate transcription and splicing, binding to proteins, and translation. CircRNAs may serve as novel biomarkers for cancer diagnosis, and they show potential as therapeutic targets in cancers including breast cancer (BC). In women, BC is the most common malignant tumor worldwide and the second leading cause of cancer death. Although evidence indicates that circRNAs play a critical role in BC, the mechanisms regulating the function of circRNAs in BC remain poorly understood. Here, we provide literature review aiming to clarify the role of circRNAs in BC and summarize the latest research. We provide a systematic overview of the biogenesis and biological functions of circRNAs, elaborate on the functional roles of circRNAs in BC, and highlight the value of circRNAs as diagnostic and therapeutic targets in BC.
Collapse
Affiliation(s)
- Yan Zeng
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Yutian Zou
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Guanfeng Gao
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Shaoquan Zheng
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Song Wu
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Xiaoming Xie
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Hailin Tang
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| |
Collapse
|
122
|
Liao M, Wang C, Yang B, Huang D, Zheng Y, Wang S, Wang X, Zhang J, Tang C, Xu Z, He Y, Huang R, Zhang F, Wang Z, Wang N. Autophagy Blockade by Ai Du Qing Formula Promotes Chemosensitivity of Breast Cancer Stem Cells Via GRP78/β-Catenin/ABCG2 Axis. Front Pharmacol 2021; 12:659297. [PMID: 34149413 PMCID: PMC8210424 DOI: 10.3389/fphar.2021.659297] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/17/2021] [Indexed: 12/24/2022] Open
Abstract
Accumulating evidence suggests that the root of drug chemoresistance in breast cancer is tightly associated with subpopulations of cancer stem cells (CSCs), whose activation is largely dependent on taxol-promoting autophagy. Our pilot study identified GRP78 as a specific marker for chemoresistance potential of breast CSCs by regulating Wnt/β-catenin signaling. Ai Du Qing (ADQ) is a traditional Chinese medicine formula that has been utilized in the treatment cancer, particularly during the consolidation phase. In the present study, we investigated the regulatory effects and molecular mechanisms of ADQ in promoting autophagy-related breast cancer chemosensitivity. ADQ with taxol decreasing the cell proliferation and colony formation of breast cancer cells, which was accompanied by suppressed breast CSC ratio, limited self-renewal capability, as well as attenuated multi-differentiation. Furthermore, autophagy in ADQ-treated breast CSCs was blocked by taxol via regulation of β-catenin/ABCG2 signaling. We also validated that autophagy suppression and chemosensitizing activity of this formula was GRP78-dependent. In addition, GRP78 overexpression promoted autophagy-inducing chemoresistance in breast cancer cells by stabilizing β-catenin, while ADQ treatment downregulated GRP78, activated the Akt/GSK3β-mediated proteasome degradation of β-catenin via ubiquitination activation, and consequently attenuated the chemoresistance-promoted effect of GRP78. In addition, both mouse breast cancer xenograft and zebrafish xenotransplantation models demonstrated that ADQ inhibited mammary tumor growth, and the breast CSC subpopulation showed obscure adverse effects. Collectively, this study not only reveals the chemosensitizating mechanism of ADQ in breast CSCs, but also highlights the importance of GRP78 in mediating autophagy-promoting drug resistance via β-catenin/ABCG2 signaling.
Collapse
Affiliation(s)
- Mianmian Liao
- The Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Caiwei Wang
- The Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bowen Yang
- The Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.,Integrative Research Laboratory of Breast Cancer, The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Danping Huang
- Shenzhen Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yifeng Zheng
- Integrative Research Laboratory of Breast Cancer, The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Shengqi Wang
- Integrative Research Laboratory of Breast Cancer, The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Xuan Wang
- Integrative Research Laboratory of Breast Cancer, The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Juping Zhang
- Integrative Research Laboratory of Breast Cancer, The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Chunbian Tang
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Zheng Xu
- The Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yu He
- The Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ruolin Huang
- The Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fengxue Zhang
- The Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhiyu Wang
- Integrative Research Laboratory of Breast Cancer, The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Neng Wang
- The Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
123
|
Ghafouri-Fard S, Hussen BM, Taheri M, Ayatollahi SA. Emerging role of circular RNAs in breast cancer. Pathol Res Pract 2021; 223:153496. [PMID: 34052769 DOI: 10.1016/j.prp.2021.153496] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/20/2021] [Accepted: 05/20/2021] [Indexed: 01/17/2023]
Abstract
Circular RNAs (cirRNAs) are generally considered as non-coding RNAs which can act as molecular sponges for miRNAs, exert regulatory roles in transcription or splicing, and interplay with RNA binding proteins. These single-stranded transcripts can affect tumor growth, the metastatic ability of cancer cells, stemness properties, and resistance to therapeutic options. Recent investigations have shown the crucial effects of circrNAs in the evolution of breast cancer. Signature of circRNAs in breast cancer samples has been mostly assessed through microarray-based methods revealing up-regulation of some circRNAs such as circ-TFF1, circACAP2, circ-TFCP2L1, hsa_circ_0000519, circDENND4C, circPLK1 and circRNA_069718, while down-regulation of other circRNAs such as hsa_circ_0000375, circYap, hsa_circ_0025202, circTADA2A-E6, circASS1 and circRNA_BARD1 in breast cancer samples. Mechanistically, these transcripts mainly affect breast cancer tumorigenesis via serving as sponges for miRNAs. In the current manuscript, we explore the results of researches that appraised the role of circRNAs in breast cancer.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Mohammad Taheri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | |
Collapse
|
124
|
Wang X, Wang C, Guan J, Chen B, Xu L, Chen C. Progress of Breast Cancer basic research in China. Int J Biol Sci 2021; 17:2069-2079. [PMID: 34131406 PMCID: PMC8193257 DOI: 10.7150/ijbs.60631] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 04/28/2021] [Indexed: 12/15/2022] Open
Abstract
Breast cancer is the most commonly diagnosed and the most lethal cancer in females both in China and worldwide. Currently, the origin of cancer stem cells, the heterogeneity of cancer cells, the mechanism of cancer metastasis and drug resistance are the most important issues that need to be addressed. Chinese investigators have recently made new discoveries in basic breast cancer researches, especially regarding cancer stem cells, cancer metabolism, and microenvironments. These efforts have led to a deeper understanding of drug resistance and metastasis and have also indicated new biomarkers and therapeutic targets. These findings emphasized the importance of the cancer stem cells for targeted therapy. In this review, we summarized the latest important findings in this field in China.
Collapse
Affiliation(s)
- Xuerong Wang
- Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Chao Wang
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu 210009, China
| | - Jiaheng Guan
- Department of Hematology and Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Baoan Chen
- Department of Hematology and Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Lin Xu
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu 210009, China
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| |
Collapse
|
125
|
Wang Y, Mo Y, Peng M, Zhang S, Gong Z, Yan Q, Tang Y, He Y, Liao Q, Li X, Wu X, Xiang B, Zhou M, Li Y, Li G, Li X, Zeng Z, Guo C, Xiong W. The influence of circular RNAs on autophagy and disease progression. Autophagy 2021; 18:240-253. [PMID: 33904341 DOI: 10.1080/15548627.2021.1917131] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Circular RNAs (circRNAs) are non-coding RNAs that have attracted considerable attention in recent years. Owing to their distinct circular structure, circRNAs are stable in cells. Autophagy is a catabolic process that helps in the degradation and recycling of harmful or inessential biological macromolecules in cells and enables cells to adapt to stress and changes in the internal and external environments. Evidence has shown that circRNAs influence the course of a disease by regulating autophagy, which indicates that autophagy is involved in the onset and development of various diseases and can affect drug resistance (for example, it affects cisplatin resistance in tumors). In this review, we summarized the role of circRNAs in autophagy and their influence on disease onset and progression as well as drug resistance. The review will expand our understanding of tumors as well as cardiovascular and neurological diseases and also suggest novel therapeutic strategies.Abbreviations: ACR: autophagy-related circRNA; ADSCs: adipogenic mesenchymal stem cells; AMPK: AMP-activated protein kinase; ATG: autophagy related; BCL2: BCL2 apoptosis regulator; BECN1: beclin 1; ceRNA: competing endogenous RNA; circRNA: circular RNA; CMA: chaperone-mediated autophagy; EPCs: endothelial progenitor cells; LE/MVBs: late endosomes/multivesicular bodies; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MTOR: mechanistic target of rapamycin kinase; NSCLC: non-small cell lung cancer; PDLSCs: periodontal ligament stem cells; PE: phosphatidylethanolamine; PtdIns: phosphatidylinositol; PtdIns3K: phosphatidylinositol 3-kinase; PtdIns3P: phosphatidylinositol-3-phosphate 1,2-dipalmitoyl; PTEN: phosphatase and tensin homolog; RBPs: RNA-binding proteins; SiO2: silicon dioxide; TFEB: transcription factor EB; ULK: unc-51 like autophagy activating kinase 1.
Collapse
Affiliation(s)
- Yian Wang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yongzhen Mo
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Miao Peng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Shanshan Zhang
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhaojian Gong
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qijia Yan
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yanyan Tang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yi He
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Qianjin Liao
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Xiayu Li
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xu Wu
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Bo Xiang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Ming Zhou
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yong Li
- Department of Medicine, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Guiyuan Li
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Xiaoling Li
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Can Guo
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| |
Collapse
|
126
|
Aishanjiang K, Wei XD, Fu Y, Lin X, Ma Y, Le J, Han Q, Wang X, Kong X, Gu J, Wu H. Circular RNAs and Hepatocellular Carcinoma: New Epigenetic Players With Diagnostic and Prognostic Roles. Front Oncol 2021; 11:653717. [PMID: 33959506 PMCID: PMC8093866 DOI: 10.3389/fonc.2021.653717] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/22/2021] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death worldwide. Due to the lack of potent diagnosis and prognosis biomarkers and effective therapeutic targets, the overall prognosis of survival is poor in HCC patients. Circular RNAs (circRNAs) are a class of novel endogenous non-coding RNAs with covalently closed loop structures and implicated in diverse physiological processes and pathological diseases. Recent studies have demonstrated the involvement of circRNAs in HCC diagnosis, prognosis, development, and drug resistance, suggesting that circRNAs may be a class of novel targets for improving HCC diagnosis, prognosis, and treatments. In fact, some artificial circRNAs have been engineered and showed their therapeutic potential in treating HCV infection and gastric cancer. In this review, we introduce the potential of circRNAs as biomarkers for HCC diagnosis and prognosis, as therapeutic targets for HCC treatments and discuss the challenges in circRNA research and chances of circRNA application.
Collapse
Affiliation(s)
- Kedeerya Aishanjiang
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Department of Collaborative Innovation Center for Biomedicine, Shanghai, China.,Department of Transplantation, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin-Dong Wei
- Department of General Surgery, The 81st Hospital Affiliated to Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | - Yi Fu
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Department of Collaborative Innovation Center for Biomedicine, Shanghai, China
| | - Xinjie Lin
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Department of Collaborative Innovation Center for Biomedicine, Shanghai, China
| | - Yujie Ma
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Department of Collaborative Innovation Center for Biomedicine, Shanghai, China
| | - Jiamei Le
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Department of Collaborative Innovation Center for Biomedicine, Shanghai, China
| | - Qiuqin Han
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Department of Collaborative Innovation Center for Biomedicine, Shanghai, China
| | - Xuan Wang
- Department of General Surgery, The 81st Hospital Affiliated to Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | - Xiaoni Kong
- Institute of Clinical Immunology, Department of Liver Diseases, Central Laboratory, ShuGuang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jinyang Gu
- Department of Transplantation, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hailong Wu
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Department of Collaborative Innovation Center for Biomedicine, Shanghai, China.,Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China.,Collaborative Innovation Center for Biomedicine, Shanghai University of Medicine & Health Sciences, Shanghai, China
| |
Collapse
|
127
|
Zhou Z, Zhang Y, Gao J, Hao X, Shan C, Li J, Liu C, Wang Y, Li P. Circular RNAs act as regulators of autophagy in cancer. MOLECULAR THERAPY-ONCOLYTICS 2021; 21:242-254. [PMID: 34095462 PMCID: PMC8142048 DOI: 10.1016/j.omto.2021.04.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Circular RNAs (circRNAs) are a large class of noncoding RNAs that are emerging as critical regulators of various cellular processes that are involved in the physiopathological mechanism of many human diseases, such as cardiovascular disease, atherosclerosis, diabetes mellitus, and carcinogenesis. Autophagy is a conserved and catabolic cellular process that degrades unfolded, misfolded, or damaged protein aggregates or organelles to maintain cellular homeostasis under physiological and pathological conditions. Increasing evidence has shown a link between circRNAs and autophagy that is closely related to the occurrence and development of human diseases, including cancer. In this review, we highlight recent advances in understanding the functions and mechanisms of circRNAs in the regulation of autophagy in cancer. These autophagy-related circRNAs contribute to cancer development and progression in various types of human cancer by activating or inhibiting autophagy. Cumulative research on the relationship between circRNAs and autophagy regulation provides critical insight into the essential role that circRNAs play in carcinogenesis and suggests new targets for tumor therapy.
Collapse
Affiliation(s)
- Zhixia Zhou
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, People's Republic of China
| | - Yinfeng Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, People's Republic of China
| | - Jinning Gao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, People's Republic of China
| | - Xiaodan Hao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, People's Republic of China
| | - Chan Shan
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, People's Republic of China
| | - Jing Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, People's Republic of China
| | - Cuiyun Liu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, People's Republic of China
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, People's Republic of China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, People's Republic of China
| |
Collapse
|
128
|
Chen H, Zhang S, Wu Y, Li Z, Wang D, Cai S, Wang Z. The role of circular RNA circ_0008285 in gestational diabetes mellitus by regulating the biological functions of trophoblasts. Biol Res 2021; 54:14. [PMID: 33879262 PMCID: PMC8056579 DOI: 10.1186/s40659-021-00337-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/08/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) has emerged as vital regulator involved in various diseases. In this study, we identified and investigated the potential circRNAs involved in gestational diabetes mellitus (GDM). METHODS High-throughput sequencing was used to collect the plasma circRNAs expression profiles of GDM patients. Quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR) was used to measure the expressions of circ_0008285 and circ_0001173 in the plasma specimens. The Pearson's correlation test was employed to assess the correlation between 2 circRNAs expression and the clinicopathologic data. Two circRNAs expression was verified in high glucose (HG)-induced HTR-8/SVneo cells. MTS, transwell assay was used to evaluate the effects of circ_0008285 expression on HG-induced HTR-8/SVneo cells. The network of circ_0008285 was constructed using cytocape. RESULTS In GDM patients, the expression of circ_0008285 was significantly upregulated, while that of circ_0001173 was decreased. Circ_0008285 was significantly correlated with the total cholesterol and LDL-C levels. Circ_0001173 was significantly correlated with glycated hemoglobin. HG promoted the proliferation, invasion, and migration in HTR-8/SVneo cells, while the knockdown of circ_0008285 exerted reverse effects. In addition, network construction exhibited that circ_0008285 had 45 miRNA binding sites, which correlated with 444 mRNA. CONCLUSIONS circ_0008285 plays an important role and provides a clue for the usage of therapeutic targets in the development of GDM.
Collapse
Affiliation(s)
- Haitian Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Shaofeng Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Yanxin Wu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Zhuyu Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Dongyu Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Shiqin Cai
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Zilian Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China.
| |
Collapse
|
129
|
Circ_03955 promotes pancreatic cancer tumorigenesis and Warburg effect by targeting the miR-3662/HIF-1α axis. Clin Transl Oncol 2021; 23:1905-1914. [PMID: 33864618 DOI: 10.1007/s12094-021-02599-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/15/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVES Former studies found that circRNAs play an important part in the occurrence of a variety of malignant biological characteristics that are critical for cancer progression. It has been shown that circ_03955 is highly expressed and implicated with quantities of biological processes in solid tumor. However, whether circ_03955 regulates the tumorigenesis and Warburg effect of pancreatic cancer (PC) remains largely unknown. MATERIALS AND METHODS The level of circ_03955 in PC tissues and cell lines was determined by real-time qPCR (RT-qPCR). Loss-of-function and gain-of-function assays were employed to investigate the biological role of circ_03955 in cell proliferation, apoptosis, and glycolysis. RT-qPCR, western blotting, bioinformatics analysis, luciferase reporter assay, and in vivo tumorigenicity assay were employed to determine the underlying mechanisms. RESULTS In this study, it was investigated that circ_03955 was up-regulated in PC clinical samples as well as PC cell lines and associated with poor clinical outcomes of PC patients. Functional assays revealed that circ_03955 exerts a certain stimulative effect on the growth of PC cells in vitro and in vivo. Circ_03955 also inhibited apoptosis and promotes Warburg effect in PC cells. Mechanistically, bioinformatics analysis indicated that circ_03955 acts as a sponge for microRNA (miR)-3662, and hypoxia-inducible factor 1ɑ (HIF-1ɑ) was one of the transcriptional targets of miR-3662. Importantly, genetic promoting of HIF-1ɑ or downregulation of miR-3662 largely compromised circ_03955 depletion mediated tumor-inhibiting effects. CONCLUSIONS Taken together, circ_03955 functions as a tumor promoter through miR-3662/HIF-1α axis, which might provide a novel sight for PC treatment.
Collapse
|
130
|
Non-coding RNA in cancer. Essays Biochem 2021; 65:625-639. [PMID: 33860799 PMCID: PMC8564738 DOI: 10.1042/ebc20200032] [Citation(s) in RCA: 255] [Impact Index Per Article: 85.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 01/04/2021] [Accepted: 03/16/2021] [Indexed: 02/07/2023]
Abstract
Majority of the human genome is transcribed to RNAs that do not encode proteins. These non-coding RNAs (ncRNAs) play crucial roles in regulating the initiation and progression of various cancers. Given the importance of the ncRNAs, the roles of ncRNAs in cancers have been reviewed elsewhere. Thus, in this review, we mainly focus on the recent studies of the function, regulatory mechanism and therapeutic potential of the ncRNAs including microRNA (miRNA), long ncRNA (lncRNA), circular RNA (circRNA) and PIWI interacting RNA (piRNA), in different type of cancers.
Collapse
|
131
|
Regulation of Nuclear Factor-KappaB (NF-κB) signaling pathway by non-coding RNAs in cancer: Inhibiting or promoting carcinogenesis? Cancer Lett 2021; 509:63-80. [PMID: 33838282 DOI: 10.1016/j.canlet.2021.03.025] [Citation(s) in RCA: 167] [Impact Index Per Article: 55.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/18/2021] [Accepted: 03/24/2021] [Indexed: 12/12/2022]
Abstract
The nuclear factor-kappaB (NF-κB) signaling pathway is considered as a potential therapeutic target in cancer therapy. It has been well established that transcription factor NF-κB is involved in regulating physiological and pathological events including inflammation, immune response and differentiation. Increasing evidences suggest that deregulated NF-κB signaling can enhance cancer cell proliferation, metastasis and also mediate radio-as well as chemo-resistance. On the contrary, non-coding RNAs (ncRNAs) have been found to modulate NF-κB signaling pathway under different settings. MicroRNAs (miRNAs) can dually inhibit/induce NF-κB signaling thereby affecting the growth and migration of cancer cells. Furthermore, the response of cancer cells to radiotherapy and chemotherapy may also be regulated by miRNAs. Regulation of NF-κB by miRNAs may be mediated via binding to 3/-UTR region. Interestingly, anti-tumor compounds can increase the expression of tumor-suppressor miRNAs in inhibiting NF-κB activation and the progression of cancers. Long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) can also effectively modulate NF-κB signaling thus affecting tumorigenesis. It is noteworthy that several studies have demonstrated that lncRNAs and circRNAs can affect miRNAs in targeting NF-κB activation. They can act as competing endogenous RNA (ceRNA) thereby reducing miRNA expression to induce NF-κB activation that can in turn promote cancer progression and malignancy.
Collapse
|
132
|
Chong ZX, Yeap SK, Ho WY. Regulation of autophagy by microRNAs in human breast cancer. J Biomed Sci 2021; 28:21. [PMID: 33761957 PMCID: PMC7992789 DOI: 10.1186/s12929-021-00715-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/25/2021] [Indexed: 12/17/2022] Open
Abstract
Breast cancer is the most common solid cancer that affects female population globally. MicroRNAs (miRNAs) are short non-coding RNAs that can regulate post-transcriptional modification of multiple downstream genes. Autophagy is a conserved cellular catabolic activity that aims to provide nutrients and degrade un-usable macromolecules in mammalian cells. A number of in vitro, in vivo and clinical studies have reported that some miRNAs could modulate autophagy activity in human breast cancer cells, and these would influence human breast cancer progression and treatment response. Therefore, this review was aimed to discuss the roles of autophagy-regulating miRNAs in influencing breast cancer development and treatment response. The review would first introduce autophagy types and process, followed by the discussion of the roles of different miRNAs in modulating autophagy in human breast cancer, and to explore how would this miRNA-autophagy regulatory process affect the disease progression or treatment response. Lastly, the potential applications and challenges of utilizing autophagy-regulating miRNAs as breast cancer biomarkers and novel therapeutic agents would be discussed.
Collapse
Affiliation(s)
- Zhi Xiong Chong
- Faculty of Science and Engineering, University of Nottingham Malaysia, 43500, Semenyih, Selangor, Malaysia
| | - Swee Keong Yeap
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, 43900, Sepang, Selangor, Malaysia
| | - Wan Yong Ho
- Faculty of Science and Engineering, University of Nottingham Malaysia, 43500, Semenyih, Selangor, Malaysia.
| |
Collapse
|
133
|
He X, Xu T, Hu W, Tan Y, Wang D, Wang Y, Zhao C, Yi Y, Xiong M, Lv W, Wu M, Li X, Wu Y, Zhang Q. Circular RNAs: Their Role in the Pathogenesis and Orchestration of Breast Cancer. Front Cell Dev Biol 2021; 9:647736. [PMID: 33777954 PMCID: PMC7991790 DOI: 10.3389/fcell.2021.647736] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 02/11/2021] [Indexed: 12/12/2022] Open
Abstract
As one of the most frequently occurring malignancies in women, breast cancer (BC) is still an enormous threat to women all over the world. The high mortality rates in BC patients are associated with BC recurrence, metastatic progression to distant organs, and therapeutic resistance. Circular RNAs (circRNAs), belonging to the non-coding RNAs (ncRNAs), are connected end to end to form covalently closed single-chain circular molecules. CircRNAs are widely found in different species and a variety of human cells, with the features of diversity, evolutionary conservation, stability, and specificity. CircRNAs are emerging important participators in multiple diseases, including cardiovascular disease, inflammation, and cancer. Recent studies have shown that circRNAs are involved in BC progress by regulating gene expression at the transcriptional or post-transcriptional level via binding to miRNAs then inhibiting their function, suggesting that circRNAs may be potential targets for early diagnosis, treatment, and prognosis of BC. Herein, in this article, we have reviewed and summarized the current studies about the biogenesis, features, and functions of circRNAs. More importantly, we emphatically elucidate the pivotal functions and mechanisms of circRNAs in BC growth, metastasis, diagnosis, and drug resistance. Deciphering the complex networks, especially the circRNA-miRNA target gene axis, will endow huge potentials in developing therapeutic strategies for combating BC.
Collapse
Affiliation(s)
- Xiao He
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Xu
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weijie Hu
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yufang Tan
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dawei Wang
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yichen Wang
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chongru Zhao
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Yi
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mingchen Xiong
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenchang Lv
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Wu
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xingrui Li
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiping Wu
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Zhang
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
134
|
Tang L, Jiang B, Zhu H, Gao T, Zhou Y, Gong F, He R, Xie L, Li Y. The Biogenesis and Functions of circRNAs and Their Roles in Breast Cancer. Front Oncol 2021; 11:605988. [PMID: 33718157 PMCID: PMC7947672 DOI: 10.3389/fonc.2021.605988] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 01/14/2021] [Indexed: 12/12/2022] Open
Abstract
Recent statistics show that breast cancer is among the most frequent cancers in clinical practice. It is also the second-leading cause of cancer-related deaths among women worldwide. CircRNAs are a new class of endogenous regulatory RNA molecules whose 5’ end and 3’ end are connected together to form a covalently closed single-stranded loop by back-splicing. CircRNAs present the advantages of disease-specific expression and excellent expression stability, and they can modulate gene expression at posttranscriptional and transcriptional levels. CircRNAs are abnormally expressed in multiple cancers, such as breast cancer, and drive the initiation and progression of cancer. In this review, we describe current knowledge about the functions of circRNAs and generalize their roles in various aspects of breast cancer, including cell proliferation, cell cycle, apoptosis, invasion and metastasis, autophagy, angiogenesis, drug resistance, and tumor immunity, and their prognostic and diagnostic value. This may add to a better understanding of the functions and roles of circRNAs in breast cancer, which may become new diagnostic and predictive biomarkers of breast cancer.
Collapse
Affiliation(s)
- Liting Tang
- Department of Medical Oncology, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Baohong Jiang
- Department of Pharmacy, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Hongbo Zhu
- Department of Medical Oncology, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Ting Gao
- Department of Medical Oncology, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Yu Zhou
- Department of Medical Oncology, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Fuqiang Gong
- Department of Medical Oncology, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Rongfang He
- Department of Pathology The First Affiliated Hospital, University of South China, Hengyang, China
| | - Liming Xie
- Department of Medical Oncology, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Yuehua Li
- Department of Medical Oncology, The First Affiliated Hospital, University of South China, Hengyang, China.,Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Cancer Research Institute, Hengyang Medical College, University of South China, Hengyang, China
| |
Collapse
|
135
|
Li T, Zhang S, Chen F, Hu J, Yuan S, Li C, Wang X, Zhang W, Tang R. Formononetin ameliorates the drug resistance of Taxol resistant triple negative breast cancer by inhibiting autophagy. Am J Transl Res 2021; 13:497-514. [PMID: 33594306 PMCID: PMC7868832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 10/31/2020] [Indexed: 06/12/2023]
Abstract
Characterized by autophagy-associated protein disorders, autophagy participates in Taxol resistance in triple negative breast cancer (TNBC). As an evolutionarily conserved serine/threonine protein kinase with complex signaling pathway, mammalian target of rapamycin (mTOR) can regulate various cellular functions by phosphorylation of its downstream target proteins after activation. A large number of references have demonstrated that mTOR signaling pathway is related to autophagy and apoptosis. Formononetin (FMNT) has anticancer properties against breast, prostate and colon cancers. This study aimed to explore the regulatory effect of FMNT/miR-199a-3p/mTOR pathway on Taxol resistance and autophagy in breast cancer (BC). MiR-199a-3p, mTOR, LC3 and other autophagy related proteins were detected in Taxol sensitive and Taxol resistant TNBC cell lines, which were MDA-MB-231 and MDA-MB-231/Taxol, respectively. Cell viability and toxicity were determined by CCK-8 and MTT assay, respectively. The therapeutic effect of FMNT was evaluated in xenotransplantation model of nude mice. MiR-199a-3p was more highly expressed in MDA-MB-231/Taxol than in MDA-MB-231, while mTOR and p-mTOR decreased in MDA-MB-231/Taxol in comparison with MDA-MB-231, and autophagy activation and drug resistance were enhanced. In MDA-MB-231/Taxol cell line, the role of FMNT was verified to inhibit high miR-199a-3p expression. In addition, the combination therapy of FMNT and Taxol was found to be more effective in inhibiting autophagy and drug resistance. Moreover, mTOR was the target of miR-199a-3p, which was confirmed by dual luciferase reporter (DLR) gene assay. Oral administration of FMNT reduced tumor volume after MDA-MB-231/Taxol injection in vivo. Moreover, oral administration of FMNT and Taxol suppressed autophagy and Taxol resistance by restoring mTOR protein level to that of the parent MDA-MB-231, suggesting that miR-199a-3p can severe as a new target to overcome Taxol resistance in TNBC.
Collapse
Affiliation(s)
- Tian Li
- Breast Surgery Department, Baoshan Branch, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghai 201900, China
| | - Shiyi Zhang
- The Second School of Clinical Medicine of Guangdong Medical UniversityDongguan 523000, China
| | - Fengsong Chen
- Nantong Haimen People’s HospitalNantong 226100, China
| | - Jun Hu
- Shanghai University of Traditional Chinese MedicineShanghai 201900, China
| | - Shuai Yuan
- Breast Surgery Department, Baoshan Branch, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghai 201900, China
| | - Chaoran Li
- Breast Surgery Department, Baoshan Branch, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghai 201900, China
| | - Xiaoting Wang
- Breast Surgery Department, Baoshan Branch, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghai 201900, China
| | - Weihong Zhang
- Breast Surgery Department, Baoshan Branch, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghai 201900, China
| | - Runwei Tang
- Breast Surgery Department, Baoshan Branch, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghai 201900, China
| |
Collapse
|
136
|
Bian WX, Xue F, Wang LY, Xing XF. Circular RNA CircCDYL Regulates Proliferation and Apoptosis in Non-Small Cell Lung Cancer Cells by Sponging miR-185-5p and Upregulating TNRC6A. Cancer Manag Res 2021; 13:633-642. [PMID: 33531835 PMCID: PMC7846864 DOI: 10.2147/cmar.s280315] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 01/07/2021] [Indexed: 12/22/2022] Open
Abstract
Aim A series of research reveal that circular RNA (circRNA) plays a vital role in regulating the development of tumor cells. In this research, we would explore the role and mechanism of circCDYL in non-small cell lung cancer (NSCLC). Methods RT-PCR was performed to detect the expression of circCDYL in NSCLC tissues, plasma, and cell lines. The tumor cell proliferation ability was evaluated by clone formation assay, and cell cycle determination. Flow cytometry was used to detect apoptosis in NSCLC cell lines. Western blot and RT-PCR were used to assess the expression of proteins and genes. Luciferase assay was performed to confirm the relationship of circRNA-miRNA-mRNA. Results The decreased level of circCDYL was observed in NSCLC patients' tissues and plasma, which was also downregulated in NSCLC cell lines. Forced expression of circCDYL inhibited cell viability, proliferation and induced apoptosis in A549 cells. Luciferase assay verified that circCDYL could bind with miR-185-5p and confirmed that TNRC6A was a downstream target of miR-185-5p. Overexpression of miR-185-5p or silencing of TNRC6A could inhibit the anti-tumor effect of circCDYL in A549 cells via regulating the ERK1/2 signal. Conclusion Here, we revealed that circCDYL inhibited proliferation and induced apoptosis in NSCLC cell lines via regulating ERK1/2 signal, and the mechanism of this progression may target miR-185-5p/TNRC6A, which provided a theoretical basis for clinical therapy.
Collapse
Affiliation(s)
- Wei-Xin Bian
- Department of Oncology, Heilongjiang Provincial Hospital, Harbin, Heilongjiang Province 150001, People's Republic of China
| | - Feng Xue
- Department of Oncology, Affiliated Hospital of Guilin Medical College, Guilin, Guangxi Province 541001, People's Republic of China
| | - Li-Yan Wang
- Department of Oncology, Heilongjiang Provincial Hospital, Harbin, Heilongjiang Province 150001, People's Republic of China
| | - Xiao-Fang Xing
- Department of Oncology, Heilongjiang Provincial Hospital, Harbin, Heilongjiang Province 150001, People's Republic of China
| |
Collapse
|
137
|
Wang X, Li H, Lu Y, Cheng L. Circular RNAs in Human Cancer. Front Oncol 2021; 10:577118. [PMID: 33537235 PMCID: PMC7848167 DOI: 10.3389/fonc.2020.577118] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 12/02/2020] [Indexed: 01/17/2023] Open
Abstract
Circular RNAs (circRNAs) are a class of endogenous single-stranded covalently closed RNAs, primarily produced from pre-mRNAs via non-canonical back-splicing. circRNAs are highly conserved, stable, and expressed in tissue- and development-specific pattern. circRNAs play essential roles in physiological process as well as cancer biology. By the advances of deep sequencing and bioinformatics, the number of circRNAs have increased explosively. circRNAs function as miRNA/protein sponge, protein scaffold, protein recruitment, enhancer of protein function, as well as templates for translation involved in the regulation of transcription/splicing, translation, protein degradation, and pri-miRNA processing in human cancers and contributed to the pathogenesis of cancer. Numerous circRNAs may function in diverse manners. In this review, we survey the current understanding of circRNA functions in human cancer including miRNA sponge, circRNA-protein interaction, and circRNA-encoded protein, and summarize available databases for circRNA annotation and functional prediction.
Collapse
Affiliation(s)
| | | | - Yanjun Lu
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Liming Cheng
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
138
|
Zhang W, Qi L, Chen R, He J, Liu Z, Wang W, Tu C, Li Z. Circular RNAs in osteoarthritis: indispensable regulators and novel strategies in clinical implications. Arthritis Res Ther 2021; 23:23. [PMID: 33436088 PMCID: PMC7802294 DOI: 10.1186/s13075-021-02420-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 01/05/2021] [Indexed: 12/14/2022] Open
Abstract
Over the past decades, circular RNAs (circRNAs) have emerged as a hot spot and sparked intensive interest. Initially considered as the transcriptional noises, further studies have indicated that circRNAs are crucial regulators in multiple cellular biological processes, and thus engage in the development and progression of many diseases including osteoarthritis (OA). OA is a prevalent disease that mainly affects those aging, obese and post-traumatic population, posing as a major source of socioeconomic burden. Recently, numerous circRNAs have been found aberrantly expressed in OA tissues compared with counterparts. More importantly, circRNAs have been demonstrated to interplay with components in OA microenvironments, such as chondrocytes, synoviocytes and macrophages, by regulation of their proliferation, apoptosis, autophagy, inflammation, or extracellular matrix reorganization. Herein, in this review, we extensively summarize the roles of circRNAs in OA microenvironment, progression, and putative treatment, as well as envision the future directions for circRNAs research in OA, with the aim to provide a novel insight into this field.
Collapse
Affiliation(s)
- Wenchao Zhang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, Hunan, 410011, P.R. China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, Hunan, 410011, P.R. China
| | - Lin Qi
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, Hunan, 410011, P.R. China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, Hunan, 410011, P.R. China
| | - Ruiqi Chen
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, Hunan, 410011, P.R. China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, Hunan, 410011, P.R. China
| | - Jieyu He
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, Hunan, 410011, P.R. China
| | - Zhongyue Liu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, Hunan, 410011, P.R. China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, Hunan, 410011, P.R. China
| | - Wanchun Wang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, Hunan, 410011, P.R. China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, Hunan, 410011, P.R. China
| | - Chao Tu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, Hunan, 410011, P.R. China. .,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, Hunan, 410011, P.R. China.
| | - Zhihong Li
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, Hunan, 410011, P.R. China. .,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, Hunan, 410011, P.R. China.
| |
Collapse
|
139
|
Cui W, Dang Q, Chen C, Yuan W, Sun Z. Roles of circRNAs on tumor autophagy. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 23:918-929. [PMID: 33614240 PMCID: PMC7868924 DOI: 10.1016/j.omtn.2021.01.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 01/05/2021] [Indexed: 02/07/2023]
Abstract
Circular RNAs (circRNAs) are a type of special noncoding RNA. circRNAs are highly stable and are found mainly in the cytoplasm. Most circRNAs are conserved and usually exhibit tissue specificity and timing specificity. In addition to the regulation mode of competitive endogenous RNA (ceRNA), circRNAs can also bind to RNA-binding proteins (RBPs), regulate alternative splicing, encode proteins or polypeptides, and regulate the expression of parent genes affecting biological pathways in which coded proteins are involved. Autophagy is an important cellular mechanism that plays an essential role in normal cell physiological processes and in diseases, especially tumors. Studies reported that circRNAs have an important effect on autophagic processes. What are the detailed biological functions and mechanisms of circRNAs in autophagy? In this article, we summarize the relationship between circRNAs and autophagy and the regulatory function and mechanism (especially as microRNA [miRNA] sponges and binding to RBPs) of circRNAs in autophagy. In addition, we discuss the dysregulation and functional and clinical applications of autophagy-associated circRNAs in a variety of diseases. Autophagy-associated circRNAs have the potential to be essential biomarkers of diagnosis and treatment and to be beneficial to the research and development of targeted drugs for tumor or non-tumor diseases.
Collapse
Affiliation(s)
- Wenming Cui
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Qin Dang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Chen Chen
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Weitang Yuan
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
- Corresponding author: Weitang Yuan, Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China.
| | - Zhenqiang Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, Henan, China
- Corresponding author: Zhenqiang Sun, Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China.
| |
Collapse
|
140
|
Fan S, Zhao S, Gao X, Qin Q, Guo Y, Yuan Z, Zhang M, Liu Q, Li H. Circular RNA circGSE1 Promotes Cervical Cancer Progression Through miR-138-5p/Vimentin. Onco Targets Ther 2021; 13:13371-13386. [PMID: 33408484 PMCID: PMC7781114 DOI: 10.2147/ott.s282425] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/04/2020] [Indexed: 01/01/2023] Open
Abstract
Background A growing number of studies have identified that circular RNAs (circRNAs) play a vital role in the progression of various tumors. However, the underlying functions and mechanisms of circRNAs in cervical cancer have not been clarified. Methods qRT-PCR was used to detect the level of circGSE1 in cervical cancer tissues and matched normal tissues. In vitro cell wound healing, transwell migration and invasion assays were employed to assess the effects of circGSE1 on cell mobility. The pull-down, luciferase reporter, RIP and rescue assays were performed to evaluate the interaction between circGSE1and miR-138-5p and the regulation of miR-138-5p on Vimentin. Results We found that circGSE1 was significantly higher in cervical cancer tissues than that in matched normal tissues. Further analyses revealed that the level of circGSE1 was positively correlated with tumor differentiation, FIGUREO stage, depth of stromal invasion, lymph node metastasis and infiltration of parauterine organ. Kaplan–Meier survival analysis showed that high circGSE1 predicted worse overall survival and disease-free survival. Down-regulated circGSE1 evidently inhibited cell migration and metastasis of cervical cancer, while up-regulated circGSE1 significantly promoted cell migration and metastasis. The pull-down, luciferase reporter and RIP assays revealed that circGSE1 directly bound to and sponge miR-138-5p. MiR-138-5p inhibited the expression of Vimentin through directly binding to 3ʹUTR of Vimentin mRNA. In addition, miR-138-5p suppressed cell migration and invasion through inhibiting Vimentin expression, and circGSE1 promoted cell migration and invasion through sponging miR-138-5p and enhancing Vimentin expression. Conclusion CircGSE1 promotes the progression and may act as a novel diagnostic biomarker for disease progression of cervical cancer.
Collapse
Affiliation(s)
- Suzhen Fan
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Shujun Zhao
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Xiang Gao
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Qiaohong Qin
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Yan Guo
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Zhongfu Yuan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Min Zhang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Qing Liu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Hongyu Li
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China
| |
Collapse
|
141
|
Sarkar D, Diermeier SD. Circular RNAs: Potential Applications as Therapeutic Targets and Biomarkers in Breast Cancer. Noncoding RNA 2021; 7:2. [PMID: 33466455 PMCID: PMC7838774 DOI: 10.3390/ncrna7010002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 12/26/2020] [Accepted: 12/31/2020] [Indexed: 12/24/2022] Open
Abstract
Circular RNAs (circRNAs) are a class of non-coding RNAs that form a covalently closed loop. A number of functions and mechanisms of action for circRNAs have been reported, including as miRNA sponge, exerting transcriptional and translational regulation, interacting with proteins, and coding for peptides. CircRNA dysregulation has also been implicated in many cancers, such as breast cancer. Their relatively high stability and presence in bodily fluids makes cancer-associated circRNAs promising candidates as a new biomarker. In this review, we summarize the research undertaken on circRNAs associated with breast cancer, discuss circRNAs as biomarkers, and present circRNA-based therapeutic approaches.
Collapse
Affiliation(s)
| | - Sarah D. Diermeier
- Department of Biochemistry, University of Otago, Dunedin 9016, New Zealand;
| |
Collapse
|
142
|
Yuan S, Kong X, Yu W, Geng J, Zeng L, Dang S. CircRNA_100920 enhanced oncolytic adenovirus therapy in colon cancer by suppressing IFN-γ expression. ALL LIFE 2021. [DOI: 10.1080/26895293.2021.1879279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Affiliation(s)
- Shaofeng Yuan
- Department of Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, People’s Republic of China
- Department of Surgery, Tinglin Hospital of Jinshan District, Shanghai, People’s Republic of China
| | - Xiangdong Kong
- Department of Surgery, Tinglin Hospital of Jinshan District, Shanghai, People’s Republic of China
| | - Wei Yu
- Department of Surgery, Tinglin Hospital of Jinshan District, Shanghai, People’s Republic of China
| | - Jinhong Geng
- Department of Surgery, Tinglin Hospital of Jinshan District, Shanghai, People’s Republic of China
| | - Linwen Zeng
- Department of Surgery, Tinglin Hospital of Jinshan District, Shanghai, People’s Republic of China
| | - Shengchun Dang
- Department of Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, People’s Republic of China
| |
Collapse
|
143
|
Jin Z, Gao B, Gong Y, Guan L. Depletion of circ-BIRC6, a circular RNA, suppresses non-small cell lung cancer progression by targeting miR-4491. Biosci Trends 2020; 14:399-407. [PMID: 33177288 DOI: 10.5582/bst.2020.03310] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Zhu Jin
- Institute of Respiratory Disease, China Three Gorges University, Yichang Central People's Hospital, Yichang, Hubei, China
| | - Baoan Gao
- Institute of Respiratory Disease, China Three Gorges University, Yichang Central People's Hospital, Yichang, Hubei, China
| | - Yuan Gong
- Institute of Respiratory Disease, China Three Gorges University, Yichang Central People's Hospital, Yichang, Hubei, China
| | - Li Guan
- Institute of Respiratory Disease, China Three Gorges University, Yichang Central People's Hospital, Yichang, Hubei, China
| |
Collapse
|
144
|
Lai Y, Huang H, Abudoureyimu M, Lin X, Tian C, Wang T, Chu X, Wang R. Non-coding RNAs: emerging regulators of glucose metabolism in hepatocellular carcinoma. Am J Cancer Res 2020; 10:4066-4084. [PMID: 33414986 PMCID: PMC7783776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/21/2020] [Indexed: 06/12/2023] Open
Abstract
Reprogramming of metabolism is one of the hallmarks of cancer, among which glucose metabolism dysfunction is the most prominent feature. The glucose metabolism of tumor cells is significantly different from that of normal cells. Glucose metabolism reprogramming of hepatocellular carcinoma (HCC) has become an important research hotspot in the field of HCC, a variety of tumor metabolic interventions have been applied clinically. Moreover, various Non-coding RNAs (ncRNAs) including microRNAs (miRNAs), long non-coding (lncRNAs) as well as circular RNAs (circRNAs), have recently been proved to play potential roles in glucose metabolism. This review summarizes the effects of ncRNAs on HCC that participate in glucose metabolism and discuss the related mechanisms to find potential and effective targeted treatments for HCC.
Collapse
Affiliation(s)
- Yongting Lai
- Department of Medical Oncology, Jinling Hospital, The First School of Clinical Medicine, Southern Medical UniversityNanjing, China
| | - Hairong Huang
- Department of Cardiothoracic Surgery, Jinling HospitalNanjing, China
| | - Mubalake Abudoureyimu
- Department of Medical Oncology, School of Medicine, Jinling Hospital, Nanjing UniversityNanjing, China
| | - Xinrong Lin
- Department of Medical Oncology, School of Medicine, Jinling Hospital, Nanjing UniversityNanjing, China
| | - Chuan Tian
- Department of Medical Oncology, School of Medicine, Jinling Hospital, Nanjing UniversityNanjing, China
| | - Ting Wang
- Department of Medical Oncology, School of Medicine, Jinling Hospital, Nanjing UniversityNanjing, China
| | - Xiaoyuan Chu
- Department of Medical Oncology, Jinling Hospital, The First School of Clinical Medicine, Southern Medical UniversityNanjing, China
- Department of Medical Oncology, School of Medicine, Jinling Hospital, Nanjing UniversityNanjing, China
| | - Rui Wang
- Department of Medical Oncology, Jinling Hospital, The First School of Clinical Medicine, Southern Medical UniversityNanjing, China
- Department of Medical Oncology, School of Medicine, Jinling Hospital, Nanjing UniversityNanjing, China
| |
Collapse
|
145
|
Gao W, Guo H, Niu M, Zheng X, Zhang Y, Xue X, Bo Y, Guan X, Li Z, Guo Y, He L, Zhang Y, Li L, Cao J, Wu Y. circPARD3 drives malignant progression and chemoresistance of laryngeal squamous cell carcinoma by inhibiting autophagy through the PRKCI-Akt-mTOR pathway. Mol Cancer 2020; 19:166. [PMID: 33234130 PMCID: PMC7686732 DOI: 10.1186/s12943-020-01279-2] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 11/03/2020] [Indexed: 12/22/2022] Open
Abstract
Background Laryngeal squamous cell carcinoma (LSCC) is the second most common malignant tumor in head and neck. Autophagy and circular RNAs (circRNAs) play critical roles in cancer progression and chemoresistance. However, the function and mechanism of circRNA in autophagy regulation of LSCC remain unclear. Methods The autophagy-suppressive circRNA circPARD3 was identified via RNA sequencing of 107 LSCC tissues and paired adjacent normal mucosal (ANM) tissues and high-content screening. RT-PCR, Sanger sequencing, qPCR and fluorescence in situ hybridization were performed to detect circPARD3 expression and subcellular localization. Biological functions of circPARD3 were assessed by proliferation, migration, invasion, autophagic flux, and chemoresistance assays using in vitro and in vivo models. The mechanism of circPARD3 was investigated by RNA immunoprecipitation, RNA pulldown, luciferase reporter assays, western blotting and immunohistochemical staining. Results Autophagy was inhibited in LSCC, and circPARD3 was upregulated in the LSCC tissues (n = 100, p < 0.001). High circPARD3 level was associated with advanced T stages (p < 0.05), N stages (p = 0.001), clinical stages (p < 0.001), poor differentiation degree (p = 0.025), and poor prognosis (p = 0.002) of LSCC patients (n = 100). Functionally, circPARD3 inhibited autophagy and promoted LSCC cell proliferation, migration, invasion and chemoresistance. We further revealed that activation of the PRKCI-Akt-mTOR pathway through sponging miR-145-5p was the main mechanism of circPARD3 inhibited autophagy, promoting LSCC progression and chemoresistance. Conclusion Our study reveals that the novel autophagy-suppressive circPARD3 promotes LSCC progression and chemoresistance through the PRKCI-Akt-mTOR pathway, providing new insights into circRNA-mediated autophagy regulation and potential biomarker and target for LSCC treatment. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12943-020-01279-2.
Collapse
Affiliation(s)
- Wei Gao
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, China.,Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, China.,Department of Otolaryngology Head & Neck Surgery, First Hospital of Shanxi Medical University, Taiyuan, 030001, China.,Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, China.,Department of Cell Biology and Genetics, Basic Medical School of Shanxi Medical University, Taiyuan, 030001, China
| | - Huina Guo
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, China.,Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Min Niu
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, China.,Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Xiwang Zheng
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, China.,Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Yuliang Zhang
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, China.,Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Xuting Xue
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, China.,Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Yunfeng Bo
- Department of Pathology, Shanxi Cancer Hospital, Shanxi Medical University, Taiyuan, 030013, China
| | - Xiaoya Guan
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, China.,Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Zhongxun Li
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, China.,Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Yujia Guo
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, China.,Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Long He
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, China.,Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Yu Zhang
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, China.,Department of Physiology, Shanxi Medical University, Taiyuan, 030001, China
| | - Li Li
- Department of Cell Biology and Genetics, Basic Medical School of Shanxi Medical University, Taiyuan, 030001, China
| | - Jimin Cao
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, China.,Department of Physiology, Shanxi Medical University, Taiyuan, 030001, China
| | - Yongyan Wu
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, China. .,Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, China. .,Department of Otolaryngology Head & Neck Surgery, First Hospital of Shanxi Medical University, Taiyuan, 030001, China. .,Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, China. .,Department of Biochemistry & Molecular Biology, Shanxi Medical University, Taiyuan, 030001, China.
| |
Collapse
|
146
|
He H, Shen Z, Gu Q, Xie R. Construction of ceRNA network and identification of two differentially expressed circRNAs in hepatocellular carcinoma by bioinformatic analysis. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2020; 13:2727-2737. [PMID: 33284888 PMCID: PMC7716122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/23/2020] [Indexed: 06/12/2023]
Abstract
Covalently closed circular RNAs (circRNAs) display dysregulated expression in several types of cancer. However, their functions remain largely unclear. In this work, datasets GSE125469 and GSE128274 of hepatocellular carcinoma (HCC) were selected from Gene Expression Omnibus (GEO) database. To identify differentially expressed genes (DEGs) in HCC and adjacent tissues, we used R package DESeq for analysis. Then, 15 DEcircRNAs, 65 DEmiRNAs, and 2084 DEmRNAs were identified comparing HCC and normal tissues. Next, to predict the target relationship of circRNA-miRNA and miRNA-mRNA in DEGs, we use the databases CircInteractome and starBase v2.0 for analysis. Finally, the ceRNA network of circRNA-miRNA-mRNA was established by Cytoscape software based on 2 DEcircRNAs (hsa_circ_0007813 and hsa_circ_0089372), 2 DEmiRNAs, and 98 DEmRNAs. In addition, we conducted Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses of DEGs to explore the function of DEGs in HCC. Functional enrichment analyses indicated DEmRNAs might be associated with HCC occurrence and progression. In general, our research reveals an important role of ceRNA's molecular mechanism in HCC.
Collapse
Affiliation(s)
- Hongwei He
- Department of Hepatobiliary Surgery, Jinshan Branch of The Sixth People’s Hospital of ShanghaiChina
| | - Zhong Shen
- Department of General Surgery, Jinshan Branch of The Sixth People’s Hospital of ShanghaiChina
| | - Qiyun Gu
- Department of Hepatobiliary Surgery, Jinshan Branch of The Sixth People’s Hospital of ShanghaiChina
| | - Rong Xie
- Department of General Surgery, Jinshan Branch of The Sixth People’s Hospital of ShanghaiChina
| |
Collapse
|
147
|
Rajappa A, Banerjee S, Sharma V, Khandelia P. Circular RNAs: Emerging Role in Cancer Diagnostics and Therapeutics. Front Mol Biosci 2020; 7:577938. [PMID: 33195421 PMCID: PMC7655967 DOI: 10.3389/fmolb.2020.577938] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/26/2020] [Indexed: 12/17/2022] Open
Abstract
Circular RNAs (circRNAs) are rapidly coming to the fore as major regulators of gene expression and cellular functions. They elicit their influence via a plethora of diverse molecular mechanisms. It is not surprising that aberrant circRNA expression is common in cancers and they have been implicated in multiple aspects of cancer pathophysiology such as apoptosis, invasion, migration, and proliferation. We summarize the emerging role of circRNAs as biomarkers and therapeutic targets in cancer.
Collapse
Affiliation(s)
| | | | - Vivek Sharma
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani - Hyderabad Campus, Hyderabad, India
| | - Piyush Khandelia
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani - Hyderabad Campus, Hyderabad, India
| |
Collapse
|
148
|
Zhou X, Zhan L, Huang K, Wang X. The functions and clinical significance of circRNAs in hematological malignancies. J Hematol Oncol 2020; 13:138. [PMID: 33069241 PMCID: PMC7568356 DOI: 10.1186/s13045-020-00976-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/05/2020] [Indexed: 02/07/2023] Open
Abstract
With covalently closed circular structures, circular RNAs (circRNAs) were once misinterpreted as by-products of mRNA splicing. Being abundant, stable, highly conserved, and tissue-specific, circRNAs are recently identified as a type of regulatory RNAs. CircRNAs bind to certain miRNAs or proteins to participate in gene transcription and translation. Emerging evidence has indicated that the dysregulation of circRNAs is closely linked to the tumorigenesis and treatment response of hematological malignancies. CircRNAs play critical roles in various biological processes, including tumorigenesis, drug resistance, tumor metabolism, autophagy, pyroptosis, and ferroptosis. The N6-methyladenosine modification of circRNAs and discovery of fusion-circRNAs provide novel insights into the functions of circRNAs. Targeting circRNAs in hematological malignancies will be an attractive treatment strategy. In this review, we systematically summarize recent advances toward the novel functions and molecular mechanisms of circRNAs in hematological malignancies, and highlight the potential clinical applications of circRNAs as novel biomarkers and therapeutic targets for future exploration.
Collapse
Affiliation(s)
- Xiangxiang Zhou
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, People's Republic of China. .,Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, People's Republic of China. .,School of Medicine, Shandong University, Jinan, 250012, Shandong, People's Republic of China. .,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, 250021, Shandong, People's Republic of China. .,Branch of National Clinical Research Center for Hematologic Diseases, Jinan, 250021, Shandong, People's Republic of China. .,National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, 251006, People's Republic of China.
| | - Linquan Zhan
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, People's Republic of China
| | - Kai Huang
- Department of Chemotherapy, Cancer Center, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, People's Republic of China
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, People's Republic of China. .,Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, People's Republic of China. .,School of Medicine, Shandong University, Jinan, 250012, Shandong, People's Republic of China. .,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, 250021, Shandong, People's Republic of China. .,Branch of National Clinical Research Center for Hematologic Diseases, Jinan, 250021, Shandong, People's Republic of China. .,National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, 251006, People's Republic of China.
| |
Collapse
|
149
|
Zhang H, Lu B. The Roles of ceRNAs-Mediated Autophagy in Cancer Chemoresistance and Metastasis. Cancers (Basel) 2020; 12:cancers12102926. [PMID: 33050642 PMCID: PMC7600306 DOI: 10.3390/cancers12102926] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 09/28/2020] [Accepted: 10/07/2020] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Chemoresistance and metastasis are the main causes of treatment failure in cancers. Autophagy contribute to the survival and metastasis of cancer cells. Competing endogenous RNA (ceRNA), particularly long non-coding RNAs and circular RNA (circRNA), can bridge the interplay between autophagy and chemoresistance or metastasis in cancers via sponging miRNAs. This review aims to discuss on the function of ceRNA-mediated autophagy in the process of metastasis and chemoresistance in cancers. ceRNA network can sequester the targeted miRNA expression to indirectly upregulate the expression of autophagy-related genes, and thereof participate in autophagy-mediated chemoresistance and metastasis. Our clarification of the mechanism of autophagy regulation in metastasis and chemoresistance may greatly improve the efficacy of chemotherapy and survival in cancer patients. The combination of the tissue-specific miRNA delivery and selective autophagy inhibitors, such as hydroxychloroquine, is attractive to treat cancer patients in the future. Abstract Chemoresistance and metastasis are the main causes of treatment failure and unfavorable outcome in cancers. There is a pressing need to reveal their mechanisms and to discover novel therapy targets. Autophagy is composed of a cascade of steps controlled by different autophagy-related genes (ATGs). Accumulating evidence suggests that dysregulated autophagy contributes to chemoresistance and metastasis via competing endogenous RNA (ceRNA) networks including lncRNAs and circRNAs. ceRNAs sequester the targeted miRNA expression to indirectly upregulate ATGs expression, and thereof participate in autophagy-mediated chemoresistance and metastasis. Here, we attempt to summarize the roles of ceRNAs in cancer chemoresistance and metastasis through autophagy regulation.
Collapse
Affiliation(s)
- Huilin Zhang
- Department of Surgical Pathology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou 310002, Zhejiang Province, China;
| | - Bingjian Lu
- Department of Surgical Pathology and Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou 310002, Zhejiang Province, China
- Correspondence: ; Tel.: +86-571-89991702
| |
Collapse
|
150
|
Chen W, Wang H, Feng J, Chen L. Overexpression of circRNA circUCK2 Attenuates Cell Apoptosis in Cerebral Ischemia-Reperfusion Injury via miR-125b-5p/GDF11 Signaling. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 22:673-683. [PMID: 33230465 PMCID: PMC7585838 DOI: 10.1016/j.omtn.2020.09.032] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 09/25/2020] [Indexed: 12/14/2022]
Abstract
Circular RNAs (circRNAs) are expressed at high levels in the brain and are involved in various central nervous system diseases. However, the potential role of circRNAs in ischemic stroke-associated neuronal injury remains largely unknown. Herein, we uncovered the function and underlying mechanism of the circRNA UCK2 (circUCK2) in ischemia stroke. The oxygen-glucose deprivation model in HT-22 cells was used to mimic ischemia stroke in vitro. Neuronal viability and apoptosis were determined by Cell Counting Kit-8 (CCK-8) assays and TUNEL (terminal deoxynucleotidyltransferase-mediated deoxyuridine triphosphate nick end labeling) staining, respectively. Middle cerebral artery occlusion was conducted to evaluate the function of circUCK2 in mice. The levels of circUCK2 were significantly decreased in brain tissues from a mouse model of focal cerebral ischemia and reperfusion. Upregulated circUCK2 levels significantly decreased infarct volumes, attenuated neuronal injury, and improved neurological deficits. circUCK2 reduced oxygen glucose deprivation (OGD)-induced cell apoptosis by regulating transforming growth factor β (TGF-β)/mothers against decapentaplegic homolog 3 (Smad3) signaling. Furthermore, circUCK2 functioned as an endogenous miR-125b-5p sponge to inhibit miR-125b-5p activity, resulting in an increase in growth differentiation factor 11 (GDF11) expression and a subsequent amelioration of neuronal injury. Consequently, these findings showed that the circUCK2/miR-125b-5p/GDF11 axis is an essential signaling pathway during ischemia stroke. Thus, the circRNA circUCK2 may serve as a potential target for novel treatment in patients with ischemic stroke.
Collapse
Affiliation(s)
- Wanghao Chen
- Medical School of Southeast University, Nanjing 210009, P.R. China
| | - Hong Wang
- Medical School of Southeast University, Nanjing 210009, P.R. China
| | - Jia Feng
- Medical School of Southeast University, Nanjing 210009, P.R. China
| | - Lukui Chen
- Medical School of Southeast University, Nanjing 210009, P.R. China.,Department of Neurosurgery, Neuroscience Center, Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, P.R. China
| |
Collapse
|