101
|
Lin JC, Zhu NX, Wu LF. Research progress of circRNAs in chemotherapy resistance of digestive system neoplasms. Shijie Huaren Xiaohua Zazhi 2021; 29:1237-1247. [DOI: 10.11569/wcjd.v29.i21.1237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Circular RNAs (circRNAs) are a novel class of noncoding RNA molecules with a unique closed continuous loop structure. CircRNAs are abundant in eukaryotic cells, have unique stability and tissue specificity, and can play a biological regulatory role at various levels, such as transcriptional and posttranscriptional levels. Accumulating evidence indicates that circRNAs play critical roles in tumor genesis, development, and chemotherapy. Chemotherapy is a primary type of intervention for most cancers, but its therapeutic efficacy is usually retarded by intrinsic and acquired resistance. CircRNAs regulate tumor chemoresistance through various molecular mechanisms, such as affecting apoptosis, promoting drug transportation, promoting DNA repair, promoting epithelial-mesenchymal transformation, regulating the characteristics of tumor stem cells, and affecting autophagy. This review summarizes the recent progress and mechanisms of circRNAs in cancer cell resistance to chemotherapy.
Collapse
Affiliation(s)
- Jie-Chun Lin
- Department of Gastroenterology, the Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Nan-Xing Zhu
- Department of Gastroenterology, the Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Ling-Fei Wu
- Department of Gastroenterology, the Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| |
Collapse
|
102
|
Amuti A, Liu D, Maimaiti A, Yu Y, Yasen Y, Ma H, Li R, Deng S, Pang F, Tian Y. Doxorubicin inhibits osteosarcoma progression by regulating circ_0000006/miR-646/ BDNF axis. J Orthop Surg Res 2021; 16:645. [PMID: 34717683 PMCID: PMC8557021 DOI: 10.1186/s13018-021-02782-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 10/06/2021] [Indexed: 01/02/2023] Open
Abstract
Background Osteosarcoma (OS) is the most common aggressive bone tumor in children and teenagers. Doxorubicin (DOX) is a chemotherapeutic drug for OS. This study aims to reveal the effects and underneath mechanism of DOX treatment in OS progression. Methods The expression of circular_0000006 (circ_0000006), microRNA-646 (miR-646) and brain-derived neurotrophic factor (BDNF) was detected by quantitative real-time polymerase chain reaction (qRT-PCR). BDNF protein expression was determined by western blot. Cell proliferation was illustrated by cell counting kit-8 (CCK-8) and cell colony formation assays. Cell migration and invasion were revealed by transwell migration and wound-healing assays and transwell invasion assay, respectively. Cell apoptosis was demonstrated by flow cytometry analysis. The binding relationship of miR-646 and circ_0000006 or BDNF was predicted by circRNA interactome and targetscan online database, respectively, and verified by dual-luciferase reporter assay. The effects of circ_0000006 knockdown on tumor growth in vivo were manifested by in vivo tumor formation assay. Results Circ_0000006 expression and the mRNA and protein levels of BDNF were dramatically upregulated, and miR-646 expression was effectively downregulated in OS tissues or cells compared with control groups. Circ_0000006 expression and BDNF protein expression were lower, and miR-646 expression was higher in DOX treatment groups than in control groups in OS cells. Circ_0000006 knockdown repressed cell proliferation, migration and invasion, whereas promoted cell apoptosis under DOX treatment in OS cells; however, these effects were attenuated by miR-646 inhibitor. Additionally, circ_0000006 sponged miR-646 to bind to BDNF. Circ_0000006 silencing suppressed tumor growth in vivo. Conclusion Circ_0000006 knockdown promoted DOX-mediated effects on OS development by miR-646/BDNF pathway, which provided a theoretical basis in treating OS with DOX.
Collapse
Affiliation(s)
- Abulimiti Amuti
- Department of Orthopaedics, The Second Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Dehu Liu
- Department of Osteology, Tai'an Traditional Chinese Medicine Hospital, Taian, Shandong, China
| | - Ayiguli Maimaiti
- Department of Orthopaedics, The Second Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Yao Yu
- Six Subjects of Hand Surgery, Affiliated Central Hospital of Shenyang Medical College, Shenyang, Liaoning, China
| | - Yalikun Yasen
- Department of Orthopaedics, The Second Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Haoguang Ma
- Department of Surgery, Hot Spring Sanatorium of Linyi, Linyi Hedong Central Hospital, Linyi, Shandong, China
| | - Rui Li
- Department of Joint Surgery, The Fourth Hospital of Baotou, Baotou City, Mongolia, China
| | - Shurong Deng
- Department of Pharmacy, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Fei Pang
- Department of Orthopaedics, Shaoxing People's Hospital, No. 568 North Zhongxing Road, Yuecheng District, Shaoxing City, 312000, Zhejiang Province, China.
| | - Youliang Tian
- Department of Rehabilitation Medicine and Physiotherapy, PLA Strategic Support Force Characteristic Medical Center, No. 9 Anxiang North Lane, Chaoyang District, , Beijing, 100101, China.
| |
Collapse
|
103
|
Feng ZH, Zheng L, Yao T, Tao SY, Wei XA, Zheng ZY, Zheng BJ, Zhang XY, Huang B, Liu JH, Chen YL, Shan Z, Yuan PT, Wang CG, Chen J, Shen SY, Zhao FD. EIF4A3-induced circular RNA PRKAR1B promotes osteosarcoma progression by miR-361-3p-mediated induction of FZD4 expression. Cell Death Dis 2021; 12:1025. [PMID: 34716310 PMCID: PMC8556261 DOI: 10.1038/s41419-021-04339-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 10/08/2021] [Accepted: 10/18/2021] [Indexed: 12/13/2022]
Abstract
Emerging evidence indicates that circRNAs are broadly expressed in osteosarcoma (OS) cells and play a crucial role in OS progression. Recently, cancer-specific circRNA circPRKAR1B has been identified by high-throughput sequencing and is recorded in publicly available databases. Nevertheless, the detailed functions and underlying mechanisms of circPRKAR1B in OS remains poorly understood. By functional experiments, we found that circPRKAR1B enhanced OS cell proliferation, migration, and promotes OS epithelial–mesenchymal transition (EMT). Mechanistic investigations suggested that circPRKAR1B promotes OS progression through sponging miR-361-3p to modulate the expression of FZD4. Subsequently, we identified that EIF4A3 promoted cirPRKAR1B formation through binding to the downstream target of circPRKAR1B on PRKAR1B mRNA. Further rescue study revealed that overexpression of the Wnt signalling could impair the onco-suppressor activities of the silencing of circPRKAR1B. Interestingly, further experiments indicated that circPRKAR1B is involved in the sensitivity of chemoresistance in OS. On the whole, our results demonstrated that circPRKAR1B exerted oncogenic roles in OS and suggested the circPRKAR1B/miR-361-3p/FZD4 axis plays an important role in OS progression and might be a potential therapeutic target.
Collapse
Affiliation(s)
- Zhen-Hua Feng
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Lin Zheng
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Teng Yao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Si-Yue Tao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Xiao-An Wei
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Ze-Yu Zheng
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Bing-Jie Zheng
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Xu-Yang Zhang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Bao Huang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Jun-Hui Liu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Yi-Lei Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Zhi Shan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Pu-Tao Yuan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Cheng-Gui Wang
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jian Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Shu-Ying Shen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China. .,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China.
| | - Feng-Dong Zhao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China. .,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
104
|
Rong Z, Luo Z, Fu Z, Zhang P, Li T, Zhang J, Zhu Z, Yu Z, Li Q, Qiu Z, Huang C. The novel circSLC6A6/miR-1265/C2CD4A axis promotes colorectal cancer growth by suppressing p53 signaling pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:324. [PMID: 34656159 PMCID: PMC8520208 DOI: 10.1186/s13046-021-02126-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 10/04/2021] [Indexed: 01/21/2023]
Abstract
Background Colorectal cancer (CRC) is one of the most frequent malignancy and a leading cause of cancer-related deaths. Therefore, further researches are required to identify novel and more effective diagnoses and to identify molecular targets in treatment of CRC. Methods C2CD4A expression in CRC tissues and cell lines was detected by qRT-PCR and western blot. The biological functions of C2CD4A were performed both in vitro and in vivo. Western blot, cDNA array, IP-MS, Co-immunoprecipitation assay, and Ubiquitination assay were used to analyze the interaction between C2CD4A and p53. Bioinformatics analysis, FISH, RNA sequencing, luciferase reporter assay, RNA immunoprecipitation, RNA pull-down and rescue experiments, were deployed to detect upstream regulation mechanism of C2CD4A. Results C2CD4A was elevated in CRC tissues compared with adjacent normal colorectal tissues. C2CD4A knockdown significantly promoted cell apoptosis and with inhibited proliferation in vitro, and tumorigenicity in vivo, whereas C2CD4A overexpression led to opposite effects. Moreover, circSLC6A6 was upregulated and shown to positively regulate C2CD4A expression via sponging miR-1265. Fundamentally, C2CD4A inhibited p53 signaling pathway through interacting with p53 and increasing its ubiquitination and degradation. Conclusion Our results identified that circSLC6A6/miR-1265/C2CD4A axis, which was involved in CRC via the p53 signaling pathway, may serve as a therapeutic target for CRC. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-02126-y.
Collapse
Affiliation(s)
- Zeyin Rong
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 100 Hai Ning Road, Hongkou District, Shanghai, 200080, China
| | - Zai Luo
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 100 Hai Ning Road, Hongkou District, Shanghai, 200080, China
| | - Zhongmao Fu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 100 Hai Ning Road, Hongkou District, Shanghai, 200080, China
| | - Pengshan Zhang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 100 Hai Ning Road, Hongkou District, Shanghai, 200080, China
| | - Tengfei Li
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 100 Hai Ning Road, Hongkou District, Shanghai, 200080, China
| | - Jianming Zhang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 100 Hai Ning Road, Hongkou District, Shanghai, 200080, China
| | - Zhonglin Zhu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 100 Hai Ning Road, Hongkou District, Shanghai, 200080, China
| | - Zhilong Yu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 100 Hai Ning Road, Hongkou District, Shanghai, 200080, China
| | - Qi Li
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhengjun Qiu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 100 Hai Ning Road, Hongkou District, Shanghai, 200080, China
| | - Chen Huang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 100 Hai Ning Road, Hongkou District, Shanghai, 200080, China.
| |
Collapse
|
105
|
Exosome-transmitted circCOG2 promotes colorectal cancer progression via miR-1305/TGF-β2/SMAD3 pathway. Cell Death Discov 2021; 7:281. [PMID: 34635639 PMCID: PMC8505430 DOI: 10.1038/s41420-021-00680-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/16/2021] [Accepted: 09/27/2021] [Indexed: 01/10/2023] Open
Abstract
Circular RNAs (circRNA) are abundantly present in the exosome. Yet, the role of exosome-transmitted circRNA in colorectal cancer (CRC) remains unclear. In this study, we examined the function and mechanism of circCOG2 in CRC. We analyzed the expression of circCOG2 in CRC tissues, plasmas, and exosomes by qRT-PCR. The function of circCOG2 was evaluated by CCK-8, clone formation, transwell and wound healing assay, and using an in vivo study; while its mechanism was analyzed using a dual luciferase reporter assay, RNA pull-down assay, Western blot, and rescue experiments. We found that circCOG2 was increased in CRC tissues, plasmas, and exosomes. Upregulated circCOG2 promoted CRC proliferation, migration, and invasion through the miR-1305/TGF-β2/SMAD3 pathway, and this effect could be transmitted from CRC cells with the high metastatic potential to CRC cells with low metastatic potential by exosomes. Our results revealed that circCOG2 is correlated with poor prognosis and may be used as a therapeutic target for CRC.
Collapse
|
106
|
Yao F, Xiang X, Zhou C, Huang Q, Huang X, Xie Z, Wang Q, Wu Q. Identification of Circular RNAs Associated With Chemoresistance in Colorectal Cancer. Front Genet 2021; 12:696948. [PMID: 34603369 PMCID: PMC8484910 DOI: 10.3389/fgene.2021.696948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 08/16/2021] [Indexed: 01/14/2023] Open
Abstract
Chemoresistance is a major clinical obstacle for the treatment of colorectal cancer (CRC). Circular RNAs (circRNAs) are a new type of non-coding RNA that participated in the development of chemoresistance. However, the profiles and effects of circRNAs in 5-fluorouracil (5-Fu) and cisplatin resistance of CRC are still unclear and need to be elucidated. In the present study, the profiles of circRNAs in CRC chemoresistant (HCT8/5-Fu and HCT8/DDP) and chemosensitive (HCT8) cell lines were identified via RNA-sequencing. In total, 48 and 90 differentially expressed (DE)-circRNAs were detected in HCT8/5-Fu and HCT8/DDP cell lines, respectively. Gene Ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway analysis were conducted on the host genes of DE-circRNAs; the results showed that the most significant enrichment pathways in HCT8/5-Fu and HCT8/DDP cell lines were base excision repair and Hippo signaling pathway, respectively. In addition, 11 common DE-circRNAs in the two drug-resistant cell lines (two are upregulated and nine are downregulated) were screened and verified by quantitative real-time PCR; hsacirc_023607 and hsacirc_007420 were found to be the circRNAs with the highest upregulation and downregulation fold changes. However, functional studies showed hsacirc_023607 has no effect on CRC chemoresistance. Therefore, the regulatory networks of targeted miRNAs related to 5-Fu or cisplatin resistance were predicted and constructed, in which hsacirc_002482 was identified as a hub gene, and its overexpression could suppress HCT8/5-Fu and HCT8/DDP cell proliferation and promote cell apoptosis, and enhance cell chemosensitivity. Taken together, these results of the study suggested that hsacirc_002482 may play important roles in chemoresistance of CRC.
Collapse
Affiliation(s)
- Fei Yao
- Institute of Infection, Immunology and Tumor Microenvironment, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Xiaochen Xiang
- Institute of Infection, Immunology and Tumor Microenvironment, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Chuanren Zhou
- Institute of Infection, Immunology and Tumor Microenvironment, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Qiyou Huang
- Institute of Infection, Immunology and Tumor Microenvironment, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Xiaoying Huang
- Institute of Infection, Immunology and Tumor Microenvironment, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Zhufu Xie
- Institute of Infection, Immunology and Tumor Microenvironment, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Qiang Wang
- Institute of Infection, Immunology and Tumor Microenvironment, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Qingming Wu
- Institute of Infection, Immunology and Tumor Microenvironment, School of Medicine, Wuhan University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
107
|
Zhong AN, Yin Y, Tang BJ, Chen L, Shen HW, Tan ZP, Li WQ, He Q, Sun B, Zhu Y, Xiao J, Jiang ZP, Xu P. CircRNA Microarray Profiling Reveals hsa_circ_0058493 as a Novel Biomarker for Imatinib-Resistant CML. Front Pharmacol 2021; 12:728916. [PMID: 34588984 PMCID: PMC8473700 DOI: 10.3389/fphar.2021.728916] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/31/2021] [Indexed: 01/22/2023] Open
Abstract
Background: CircRNA has appeared as a critical molecular in the development of various cancers. However, the cellular function of circRNAs and exosomal circRNAs has not been well explored in Chronic myeloid leukemia (CML). Methods: Differentially expressed circRNAs were identified by a human circRNA microarray analysis. The expression of hsa_circ_0058493 in peripheral blood mononuclear cells (PBMCs) and exosomes was verified using quantitative real-time PCR. Short hairpin RNAs against hsa_circ_0058493 were constructed to silence the expression of circ_0058493. CCK8, flow cytometry and EdU assay were performed to investigate the biological functions of circ_0058493. Results: Hsa_circ_0058493 was significantly overexpressed in the PBMCs of CML patients and high level of circ_0058493 was associated with the poor clinical efficacy of imatinib. Silencing the expression of circ_0058493 significantly inhibited the development of imatinib-resistant CML cells. miR-548b-3p was overexpressed in circ_0058493-downregulated CML cells. Bioinformatic analysis revealed that circ_0058493 might exert its regulatory function acting as a "sponge" of miR-548b-3p. Moreover, hsa_circ_0058493 was significantly enriched in the exosomes derived from imatinib-resistant CML cells. Conclusion: Hsa_circ_0058493 in PBMCs could be a promising prognostic biomarker and might provide a therapeutic target for CML treatment.
Collapse
Affiliation(s)
- An-Ni Zhong
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China.,Department of Pharmacy, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yi Yin
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Bing-Jie Tang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Lei Chen
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Hong-Wei Shen
- Medical Experiment Research Centre, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhi-Ping Tan
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wen-Qun Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Qun He
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
| | - Bao Sun
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Yan Zhu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China.,Department of Pharmacy, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jie Xiao
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Zhi-Ping Jiang
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
| | - Ping Xu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| |
Collapse
|
108
|
Liu F, Xiao XL, Liu YJ, Xu RH, Zhou WJ, Xu HC, Zhao AG, Xu YX, Dang YQ, Ji G. CircRNA_0084927 promotes colorectal cancer progression by regulating miRNA-20b-3p/glutathione S-transferase mu 5 axis. World J Gastroenterol 2021; 27:6064-6078. [PMID: 34629820 PMCID: PMC8476332 DOI: 10.3748/wjg.v27.i36.6064] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/04/2021] [Accepted: 08/09/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is the third most common cancer and the second most common cause of cancer-related death worldwide. The 5-year survival rate of patients with early-stage CRC could reach 90%, but it is very low in patients with advanced-stage CRC. Recent studies have shown that circular RNAs play important roles in regulating the migration and invasion of CRC cells. AIM To elucidate the role of circRNA_0084927 (circ_0084927) in the migration and invasion of CRC cells and its underlying mechanism. METHODS Clinical tissue samples and cells were collected, and the expression of circ_0084927 was detected by quantitative polymerase chain reaction (qPCR). The diagnostic performance of circ_0084927 was assessed by receiver operating characteristic curve analysis. The role of circ_0084927 in CRC cell proliferation, migration, and invasion was determined using cell counting kit-8 assay, wound healing assay, and transwell assay, respectively. The regulatory relationship among circ_0084927, miRNA-20b-3p (miR-20b-3p), and glutathione S-transferase mu 5 (GSTM5) was identified using databases, luciferase reporter assay, qPCR, and Western blot analysis. AKT-mTOR signaling was also verified after circ_0084927 knockdown or miR-20b-3p mimic treatment. RESULTS The expression of circ_0084927 was significantly increased in CRC tissues and cells, and it was higher in advanced-stage CRC compared with early-stage CRC. The area under the curve (AUC) of circ_0084927 was 0.806 [95% confidence interval (CI): 0.683-0.896]. In addition, the AUC was 0.874 (95%CI: 0.738-0.956) in patients with advanced-stage CRC and 0.713 (95%CI: 0.555-0.840) in those with early-stage CRC. Knockdown of circ_0084927 inhibited the migration and invasion of HCT116 cells. Moreover, circ_0084927 was found to act as a sponge of miR-20b-3p. MiR-20b-3p activation reduced the circ_0084927 level, whereas miR-20b-3p inhibition increased the circ_0084927 level. But the effect was not found after circ_0084927 mutation. In addition, miR-20b-3p expression in CRC patients was also reduced and negatively correlated with circ_0084927 expression. The function of circ_0084927 in HCT116 cells with circ_0084927 knockdown was rescued by miR-20b-3p. Moreover, GSTM5 expression was significantly decreased after overexpressing miR-20b-3p or inhibiting circ_0084927, but its expression was rescued when circ_0084927 and miR-20b-3p were both inhibited. Finally, AKT-mTOR signaling was markedly regulated by circ_0084927 and miR-20b-3p. CONCLUSION The expression of circ_0084927 is significantly increased in CRC and higher in advanced-stage CRC than in early-stage CRC. Moreover, circ_0084927 potentially regulates CRC cell migration and invasion via the miR-20b-3p/GSTM5/ AKT/mTOR pathway.
Collapse
Affiliation(s)
- Feng Liu
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases (ccCRDD), Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Xiao-Li Xiao
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases (ccCRDD), Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Yu-Jing Liu
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases (ccCRDD), Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Ruo-Hui Xu
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases (ccCRDD), Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Wen-Jun Zhou
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases (ccCRDD), Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Han-Chen Xu
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases (ccCRDD), Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Ai-Guang Zhao
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Yang-Xian Xu
- Department of General Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Yan-Qi Dang
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases (ccCRDD), Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Guang Ji
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases (ccCRDD), Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| |
Collapse
|
109
|
Ameli-Mojarad M, Ameli-Mojarad M, Hadizadeh M, Young C, Babini H, Nazemalhosseini-Mojarad E, Bonab MA. The effective function of circular RNA in colorectal cancer. Cancer Cell Int 2021; 21:496. [PMID: 34535136 PMCID: PMC8447721 DOI: 10.1186/s12935-021-02196-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/03/2021] [Indexed: 01/04/2023] Open
Abstract
Colorectal cancer (CRC) is the 3rd most common type of cancer worldwide. Late detection plays role in one-third of annual mortality due to CRC. Therefore, it is essential to find a precise and optimal diagnostic and prognostic biomarker for the identification and treatment of colorectal tumorigenesis. Covalently closed, circular RNAs (circRNAs) are a class of non-coding RNAs, which can have the same function as microRNA (miRNA) sponges, as regulators of splicing and transcription, and as interactors with RNA-binding proteins (RBPs). Therefore, circRNAs have been investigated as specific targets for diagnostic and prognostic detection of CRC. These non-coding RNAs are also linked to metastasis, proliferation, differentiation, migration, angiogenesis, apoptosis, and drug resistance, illustrating the importance of understanding their involvement in the molecular mechanisms of development and progression of CRC. In this review, we present a detailed summary of recent findings relating to the dysregulation of circRNAs and their potential role in CRC.
Collapse
Affiliation(s)
| | - Melika Ameli-Mojarad
- Department of Biology, Faculty of Basic Science, Kharrazi University, Tehran, Iran
| | - Mahrooyeh Hadizadeh
- School of Medicine, University of Sunderland, City Campus, Chester Road, Sunderland, SR1 3SD UK
| | - Chris Young
- Institute of Health & Life Sciences, De Montfort University, Leicester, UK
| | - Hosna Babini
- Department of Cell & Molecular Biology, Faculty of Science, Tehran University of Medical Science, Tehran, Iran
| | - Ehsan Nazemalhosseini-Mojarad
- Gastroenterology and Liver Disease Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maziar Ashrafian Bonab
- School of Medicine, University of Sunderland, City Campus, Chester Road, Sunderland, SR1 3SD UK
| |
Collapse
|
110
|
Luo M, Yang X, Chen HN, Nice EC, Huang C. Drug resistance in colorectal cancer: An epigenetic overview. Biochim Biophys Acta Rev Cancer 2021; 1876:188623. [PMID: 34481016 DOI: 10.1016/j.bbcan.2021.188623] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 02/08/2023]
Abstract
Colorectal cancer (CRC) is a leading cause of cancer-related deaths worldwide. Despite significant progress that has been made in therapies against CRC over the past decades, drug resistance is still a major limitation in CRC treatment. Numerous investigations have unequivocally shown that epigenetic regulation plays an important role in CRC drug resistance because of the high rate of epigenetic alterations in multiple genes during cancer development or drug treatment. Furthermore, the reversibility of epigenetic alterations provides novel therapeutic strategies to overcome drug resistance using small molecules, which can target non-coding RNAs or reverse histone modification and DNA methylation. In this review, we discuss epigenetic regulation in CRC drug resistance and the possible role of preventing or reversing CRC drug resistance using epigenetic therapy in CRC treatment.
Collapse
Affiliation(s)
- Maochao Luo
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang 315020, China; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Xingyue Yang
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang 315020, China; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Hai-Ning Chen
- Department of Gastrointestinal Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia.
| | - Canhua Huang
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang 315020, China; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China.
| |
Collapse
|
111
|
Crudele F, Bianchi N, Astolfi A, Grassilli S, Brugnoli F, Terrazzan A, Bertagnolo V, Negrini M, Frassoldati A, Volinia S. The Molecular Networks of microRNAs and Their Targets in the Drug Resistance of Colon Carcinoma. Cancers (Basel) 2021; 13:cancers13174355. [PMID: 34503164 PMCID: PMC8431668 DOI: 10.3390/cancers13174355] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/19/2021] [Accepted: 08/22/2021] [Indexed: 12/25/2022] Open
Abstract
Simple Summary We systematically reviewed the recent scientific publications describing the role of microRNAs in the regulation of drug resistance in colon cancer. To clarify the intricate web of resulting genetic and biochemical interactions, we used a machine learning approach aimed at creating: (i) networks of validated miRNA/target interactions involved in drug resistances and (ii) drug-centric networks, from which we identified the major clusters of proteins affected by drugs used in the treatment of colon cancer. Finally, to facilitate a high-level interpretation of these molecular interactions, we determined the cellular pathways related with drug resistance and regulated by the miRNAs in colon cancer. Abstract Drug resistance is one of the major forces driving a poor prognosis during the treatment and progression of human colon carcinomas. The molecular mechanisms that regulate the diverse processes underlying drug resistance are still under debate. MicroRNAs (miRNAs) are a subgroup of non-coding RNAs increasingly found to be associated with the regulation of tumorigenesis and drug resistance. We performed a systematic review of the articles concerning miRNAs and drug resistance in human colon cancer published from 2013 onwards in journals with an impact factor of 5 or higher. First, we built a network with the most studied miRNAs and targets (as nodes) while the drug resistance/s are indicated by the connections (edges); then, we discussed the most relevant miRNA/targets interactions regulated by drugs according to the network topology and statistics. Finally, we considered the drugs as nodes in the network, to allow an alternative point of view that could flow through the treatment options and the associated molecular pathways. A small number of microRNAs and proteins appeared as critically involved in the most common drugs used for the treatment of patients with colon cancer. In particular, the family of miR-200, miR34a, miR-155 and miR-17 appear as the most relevant microRNAs. Thus, regulating these miRNAs could be useful for interfering with some drug resistance mechanisms in colorectal carcinoma.
Collapse
Affiliation(s)
- Francesca Crudele
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (F.C.); (N.B.); (A.A.); (S.G.); (F.B.); (A.T.); (V.B.); (M.N.)
- Laboratory for Advanced Therapy Technologies (LTTA), Via Fossato di Mortara 70, 44121 Ferrara, Italy
| | - Nicoletta Bianchi
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (F.C.); (N.B.); (A.A.); (S.G.); (F.B.); (A.T.); (V.B.); (M.N.)
| | - Annalisa Astolfi
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (F.C.); (N.B.); (A.A.); (S.G.); (F.B.); (A.T.); (V.B.); (M.N.)
| | - Silvia Grassilli
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (F.C.); (N.B.); (A.A.); (S.G.); (F.B.); (A.T.); (V.B.); (M.N.)
- Laboratory for Advanced Therapy Technologies (LTTA), Via Fossato di Mortara 70, 44121 Ferrara, Italy
| | - Federica Brugnoli
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (F.C.); (N.B.); (A.A.); (S.G.); (F.B.); (A.T.); (V.B.); (M.N.)
| | - Anna Terrazzan
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (F.C.); (N.B.); (A.A.); (S.G.); (F.B.); (A.T.); (V.B.); (M.N.)
| | - Valeria Bertagnolo
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (F.C.); (N.B.); (A.A.); (S.G.); (F.B.); (A.T.); (V.B.); (M.N.)
| | - Massimo Negrini
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (F.C.); (N.B.); (A.A.); (S.G.); (F.B.); (A.T.); (V.B.); (M.N.)
- Laboratory for Advanced Therapy Technologies (LTTA), Via Fossato di Mortara 70, 44121 Ferrara, Italy
| | - Antonio Frassoldati
- Department of Oncology, Azienda Ospedaliero-Universitaria St. Anna di Ferrara, Via A. Moro 8, 44124 Ferrara, Italy;
| | - Stefano Volinia
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (F.C.); (N.B.); (A.A.); (S.G.); (F.B.); (A.T.); (V.B.); (M.N.)
- Laboratory for Advanced Therapy Technologies (LTTA), Via Fossato di Mortara 70, 44121 Ferrara, Italy
- Correspondence:
| |
Collapse
|
112
|
Peng C, Tan Y, Yang P, Jin K, Zhang C, Peng W, Wang L, Zhou J, Chen R, Wang T, Jin C, Ji J, Feng Y, Tang J, Sun Y. Circ-GALNT16 restrains colorectal cancer progression by enhancing the SUMOylation of hnRNPK. J Exp Clin Cancer Res 2021; 40:272. [PMID: 34452628 PMCID: PMC8400830 DOI: 10.1186/s13046-021-02074-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/14/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Recent studies have investigated the role of circular RNAs (circRNAs) as significant regulatory factors in multiple cancer progression. Nevertheless, the biological functions of circRNAs and the underlying mechanisms by which they regulate colorectal cancer (CRC) progression remain unclear. METHODS A novel circRNA (circ-GALNT16) was identified by microarray and qRT-PCR. A series of in vitro and in vivo phenotype experiments were performed to investigate the role of circ-GALNT16 in CRC. The FISH, RNA pulldown assay, RIP assay, RNA sequencing, coimmunoprecipitation, and ChIP were performed to investigate the molecular mechanisms of circ-GALNT16 in CRC progression. RESULTS Circ-GALNT16 was downregulated in CRC and was negatively correlated with poor prognosis. Circ-GALNT16 suppressed the proliferation and metastatic ability of CRC cells in vitro and in vivo. Mechanistically, circ-GALNT16 could bind to the KH3 domain of heterogeneous nuclear ribonucleoprotein K (hnRNPK), which promoted the SUMOylation of hnRNPK. Additionally, circ-GALNT16 could enhance the formation of the hnRNPK-p53 complex by facilitating the SUMOylation of hnRNPK. RNA sequencing assay identified serpin family E member 1 as the target gene of circ-GALNT16 at the transcriptional level. Rescue assays revealed that circ-GALNT16 regulated the expression of Serpine1 by inhibiting the deSUMOylation of hnRNPK mediated by SUMO-specific peptidase 2 and then regulating the sequence-specific DNA binding ability of the hnRNPK-p53 transcriptional complex. CONCLUSIONS Circ-GALNT16 suppressed CRC progression by inhibiting Serpine1 expression through regulating the sequence-specific DNA binding ability of the SENP2-mediated hnRNPK-p53 transcriptional complex and might function as a biomarker and therapeutic target for CRC.
Collapse
Affiliation(s)
- Chaofan Peng
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Jiangsu, 210029, Nanjing, People's Republic of China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China
- Nanjing Medical University, Nanjing, China
| | - Yuqian Tan
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Jiangsu, 210029, Nanjing, People's Republic of China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China
- Nanjing Medical University, Nanjing, China
| | - Peng Yang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Jiangsu, 210029, Nanjing, People's Republic of China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China
- Nanjing Medical University, Nanjing, China
| | - Kangpeng Jin
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Jiangsu, 210029, Nanjing, People's Republic of China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China
- Nanjing Medical University, Nanjing, China
| | - Chuan Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Jiangsu, 210029, Nanjing, People's Republic of China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China
- Nanjing Medical University, Nanjing, China
| | - Wen Peng
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Jiangsu, 210029, Nanjing, People's Republic of China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China
- Nanjing Medical University, Nanjing, China
| | - Lu Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Jiangsu, 210029, Nanjing, People's Republic of China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China
- Nanjing Medical University, Nanjing, China
| | - Jiahui Zhou
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Jiangsu, 210029, Nanjing, People's Republic of China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China
- Nanjing Medical University, Nanjing, China
| | - Ranran Chen
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Jiangsu, 210029, Nanjing, People's Republic of China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China
- Nanjing Medical University, Nanjing, China
| | - Tuo Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Jiangsu, 210029, Nanjing, People's Republic of China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China
- Nanjing Medical University, Nanjing, China
| | - Chi Jin
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Jiangsu, 210029, Nanjing, People's Republic of China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China
- Nanjing Medical University, Nanjing, China
| | - Jiangzhou Ji
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Jiangsu, 210029, Nanjing, People's Republic of China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China
- Nanjing Medical University, Nanjing, China
| | - Yifei Feng
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Jiangsu, 210029, Nanjing, People's Republic of China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China
- Nanjing Medical University, Nanjing, China
| | - Junwei Tang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Jiangsu, 210029, Nanjing, People's Republic of China.
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China.
- Nanjing Medical University, Nanjing, China.
| | - Yueming Sun
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Jiangsu, 210029, Nanjing, People's Republic of China.
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China.
- Nanjing Medical University, Nanjing, China.
| |
Collapse
|
113
|
Rong Z, Shi S, Tan Z, Xu J, Meng Q, Hua J, Liu J, Zhang B, Wang W, Yu X, Liang C. Circular RNA CircEYA3 induces energy production to promote pancreatic ductal adenocarcinoma progression through the miR-1294/c-Myc axis. Mol Cancer 2021; 20:106. [PMID: 34419070 PMCID: PMC8379744 DOI: 10.1186/s12943-021-01400-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/03/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Extensive studies have demonstrated the pivotal roles of circular RNAs (circRNAs) in the occurrence and development of different human cancers. However, the expression and regulatory roles of circRNAs in pancreatic ductal adenocarcinoma (PDAC) are unclear. METHODS CircEYA3 was explored based on Gene Expression Omnibus (GEO) dataset analysis. qRT-PCR was applied to determine the expression of circRNAs, miRNAs and mRNAs in PDAC cells and tissues. The biological roles of circEYA3 in vitro and in vivo were determined by performing a series of functional experiments. Further, dual luciferase reporter, fluorescence in situ hybridization (FISH), RNA pull-down assays, and RNA immunoprecipitation (RIP) assays were used to confirm the interaction of circEYA3 with miR-1294. RESULTS CircEYA3 was elevated in PDAC tissues and cells, and a higher level of circEYA3 was significantly associated with a poorer prognosis in patients with PDAC. Functionally, circEYA3 increased energy production via ATP synthesis to promote PDAC progression in vitro and in vivo. Mechanistically, circEYA3 functions as an endogenous miR-1294 sponge to elevate c-Myc expression, thus exerting its oncogenic functions. CONCLUSION CircEYA3 promotes the progression of PDAC through the miR-1294/c-Myc signalling axis, and circEYA3 may be an efficient molecular therapeutic target in PDAC.
Collapse
Affiliation(s)
- Zeyin Rong
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong'An Road, Shanghai, 200032, PR China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
| | - Si Shi
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong'An Road, Shanghai, 200032, PR China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
| | - Zhen Tan
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong'An Road, Shanghai, 200032, PR China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
| | - Jin Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong'An Road, Shanghai, 200032, PR China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
| | - Qingcai Meng
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong'An Road, Shanghai, 200032, PR China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
| | - Jie Hua
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong'An Road, Shanghai, 200032, PR China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
| | - Jiang Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong'An Road, Shanghai, 200032, PR China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
| | - Bo Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong'An Road, Shanghai, 200032, PR China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
| | - Wei Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong'An Road, Shanghai, 200032, PR China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong'An Road, Shanghai, 200032, PR China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
| | - Chen Liang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong'An Road, Shanghai, 200032, PR China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
| |
Collapse
|
114
|
He X, Ma J, Zhang M, Cui J, Yang H. Circ_0007031 enhances tumor progression and promotes 5-fluorouracil resistance in colorectal cancer through regulating miR-133b/ABCC5 axis. Cancer Biomark 2021; 29:531-542. [PMID: 32865180 DOI: 10.3233/cbm-200023] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Colorectal cancer (CRC) remains one of the most commonly diagnosed malignancies worldwide. Circular RNAs (circRNAs) are being found to play crucial roles in human cancer, including CRC. The purpose of this study was to explore the function and mechanism of circ_0007031 on CRC progression and 5-fluorouracil (5-FU) resistance. The levels of circ_0007031, ATP-binding cassette subfamily C member 5 (ABCC5) and miR-133b were assessed by quantitative real-time polymerase chain reaction (qRT-PCR) or western blot. Cell survival and proliferation were detected by the 3-(4,5-dimethylthiazol-2yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay. Cell colony formation was evaluated using a standard colony formation assay. Transwell assays were performed to determine cell migration and invasion. Targeted correlations among circ_0007031, miR-133b and ABCC5 were verified by dual-luciferase reporter, RNA immunoprecipitation (RIP) and RNA pulldown assays. Animal experiments were performed to observe the role of circ_0007031 in vivo. Our data indicated that circ_0007031 up-regulation was associated with CRC resistance to 5-FU. Circ_0007031 knockdown repressed CRC cell proliferation, migration and invasion and enhanced 5-FU sensitivity. Circ_0007031 directly interacted with miR-133b. Moreover, circ_0007031 knockdown regulated CRC cell progression and 5-FU sensitivity by miR-133b. ABCC5 was a direct target of miR-133b, and circ_0007031 mediated ABCC5 expression via acting as a miR-133b sponge. Furthermore, miR-133b overexpression regulated CRC cell progression and sensitivity to 5-FU by down-regulating ABCC5. Additionally, circ_0007031 knockdown suppressed tumor growth in vivo. Our current work had led to the identification of circ_0007031 knockdown that repressed CRC cell malignant progression and enhanced 5-FU sensitivity via regulating ABCC5 expression by sponging miR-133b.
Collapse
|
115
|
Zhang M, Wang S. Roles of circular RNAs in colorectal cancer. Oncol Lett 2021; 22:602. [PMID: 34188704 PMCID: PMC8227629 DOI: 10.3892/ol.2021.12863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/12/2021] [Indexed: 02/05/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common types of malignant cancer worldwide and poses a significant burden on both the individual and healthcare systems. Despite advances in treatment options, advanced-stage CRC has a high mortality rate due to its heterogeneity, metastatic potential and/or delay in diagnosis. In recent years, an increasing number of studies have indicated that circular RNAs (circRNAs) serve important roles in several types of cancer, including CRC. Recent studies have revealed that circRNAs are aberrantly expressed in CRC tissues and function as oncogenic or tumor suppressive regulators of CRC carcinogenesis and development. Numerous circRNAs have been associated with the clinicopathological features of patients with CRC and have been considered as potential biomarkers for the diagnosis and prognosis of CRC, as well as targets for treatment. However, a deeper understanding of their potential function is required. In the present review, the current body of knowledge on the biogenesis and functions of CRC-associated circRNAs, and their potential value in clinical applications, such as in CRC diagnosis, prognosis and treatment, is discussed and summarized.
Collapse
Affiliation(s)
- Mingying Zhang
- Department of Oncology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
- Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Cancer Institute of Shenzhen-PKU-HKUST Medical Center, Shenzhen, Guangdong 518036, P.R. China
- Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Shubin Wang
- Department of Oncology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
- Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Cancer Institute of Shenzhen-PKU-HKUST Medical Center, Shenzhen, Guangdong 518036, P.R. China
- Correspondence to: Professor Shubin Wang, Department of Oncology, Peking University Shenzhen Hospital, 1120 Lianhua Road, Futian, Shenzhen, Guangdong 518036, P.R. China, E-mail:
| |
Collapse
|
116
|
Hou Y, Lin J, Wang D, Zhang Y, Liang Q, Chen N, Wu J, Wu W, Liu X, Ni P. The circular RNA circ_GRHPR promotes NSCLC cell proliferation and invasion via interactions with the RNA-binding protein PCBP2. Clin Exp Pharmacol Physiol 2021; 48:1171-1181. [PMID: 33987874 PMCID: PMC8362189 DOI: 10.1111/1440-1681.13523] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/05/2021] [Accepted: 05/09/2021] [Indexed: 01/22/2023]
Abstract
As the most common malignancy, lung cancer is characterised by high rates of occurrence and mortality. Although circular RNAs (circRNAs) are known to act as important regulators in cancer, their role in lung cancer remains poorly understood. In this study, circ_GRHPR expression was found to be significantly upregulated in the serum of five patients with non-small cell lung cancer (NSCLC), compared to that in healthy controls. It is expressed at high levels in NSCLC cell lines, as revealed by qRT-PCR analysis. Functionally, we demonstrated that circ_GRHPR promotes NSCLC proliferation and invasion in vitro and in vivo by cell proliferation, transwell, cell cycle, and tumour-forming assays. Mechanistically, RNA pull-down and RNA immunoprecipitation assays showed that circ_GRHPR interacts with the RNA-binding protein poly(rC)-binding protein 2 (PCBP2) and regulates its subcellular localisation by forming the circ_GRHPR/PCBP2 complex, localizing PCBP2 mainly in the cytoplasm and reducing the proportion found in the nucleus. Furthermore, we demonstrated that four-and-a-half LIM-only protein 3 (FHL3) is a tumour-stimulating factor in NSCLC that interacts with and is influenced by PCBP2. Circ_GRHPR increased FHL3 expression in the nucleus of NSCLC cells by decreasing PCBP2 expression therein and promoting the proliferation and invasion of NSCLC cells. Therefore, our study identified that circ_GRHPR promotes NSCLC proliferation and invasion, providing a possible explanation for its mechanism of action.
Collapse
Affiliation(s)
- Yanyan Hou
- Department of Laboratory MedicineRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jiafei Lin
- Department of Clinical Laboratory MedicineRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Danyang Wang
- Department of Laboratory MedicineRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yingwei Zhang
- Nanjing Drum Tower Hospital Affiliated to Medical School of Nanjing UniversityNanjingChina
| | - Qiuli Liang
- Department of Laboratory MedicineRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Ning Chen
- Department of Laboratory MedicineRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jiemin Wu
- Department of Laboratory MedicineRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Weiqi Wu
- Department of OncologyTongren HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xiangfan Liu
- Department of Laboratory MedicineRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Peihua Ni
- Department of Laboratory MedicineRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
117
|
Radanova M, Mihaylova G, Nazifova-Tasinova N, Levkova M, Tasinov O, Ivanova D, Mihaylova Z, Donev I. Oncogenic Functions and Clinical Significance of Circular RNAs in Colorectal Cancer. Cancers (Basel) 2021; 13:3395. [PMID: 34298612 PMCID: PMC8303601 DOI: 10.3390/cancers13143395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/13/2021] [Accepted: 07/02/2021] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer (CRC) is ranked as the second most commonly diagnosed disease in females and the third in males worldwide. Therefore, the finding of new more reliable biomarkers for early diagnosis, for prediction of metastasis, and resistance to conventional therapies is an important challenge in overcoming the disease. The current review presents circular RNAs (circRNAs) with their unique features as potential prognostic and diagnostic biomarkers in CRC. The review highlights the mechanism of action and the role of circRNAs with oncogenic functions in the CRC as well as the association between their expression and clinicopathological characteristics of CRC patients. The comprehension of the role of oncogenic circRNAs in CRC pathogenesis is growing rapidly and the next step is using them as suitable new drug targets in the personalized treatment of CRC patients.
Collapse
Affiliation(s)
- Maria Radanova
- Department of Biochemistry, Molecular Medicine and Nutrigenomics, Medical University of Varna, 9000 Varna, Bulgaria; (M.R.); (G.M.); (N.N.-T.); (O.T.); (D.I.)
- Laboratory of Molecular Pathology, University Hospital “St. Marina”, 9000 Varna, Bulgaria
| | - Galya Mihaylova
- Department of Biochemistry, Molecular Medicine and Nutrigenomics, Medical University of Varna, 9000 Varna, Bulgaria; (M.R.); (G.M.); (N.N.-T.); (O.T.); (D.I.)
| | - Neshe Nazifova-Tasinova
- Department of Biochemistry, Molecular Medicine and Nutrigenomics, Medical University of Varna, 9000 Varna, Bulgaria; (M.R.); (G.M.); (N.N.-T.); (O.T.); (D.I.)
| | - Mariya Levkova
- Department of Medical Genetics, Molecular Medicine and Nutrigenomics, Medical University of Varna, 9000 Varna, Bulgaria;
| | - Oskan Tasinov
- Department of Biochemistry, Molecular Medicine and Nutrigenomics, Medical University of Varna, 9000 Varna, Bulgaria; (M.R.); (G.M.); (N.N.-T.); (O.T.); (D.I.)
| | - Desislava Ivanova
- Department of Biochemistry, Molecular Medicine and Nutrigenomics, Medical University of Varna, 9000 Varna, Bulgaria; (M.R.); (G.M.); (N.N.-T.); (O.T.); (D.I.)
| | - Zhasmina Mihaylova
- Clinic of Medical Oncology, Military Medical Academy, 1000 Sofia, Bulgaria;
| | - Ivan Donev
- Clinic of Medical Oncology, Hospital Nadezhda, 1000 Sofia, Bulgaria
| |
Collapse
|
118
|
Yu J, Chen X, Li J, Wang F. CircRUNX1 functions as an oncogene in colorectal cancer by regulating circRUNX1/miR-485-5p/SLC38A1 axis. Eur J Clin Invest 2021; 51:e13540. [PMID: 33769559 DOI: 10.1111/eci.13540] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 03/09/2021] [Accepted: 03/09/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Circular RNAs (circRNAs) have emerged as vital regulators in human cancers, including colorectal cancer (CRC). In this study, we aimed to explore the roles of circRUNX1 in CRC. METHODS The levels of circRUNX1, RUNX1 mRNA, solute carrier family 38 member 1 (SLC38A1) mRNA and microRNA-485-5p (miR-485-5p) were determined by quantitative real-time polymerase chain reaction (qRT-PCR) analysis. The protein level of SLC38A1 was measured by Western blot assay. Cell colony formation, migration, invasion and apoptosis were assessed by colony formation assay, wound-healing assay, Transwell assay and flow cytometry analysis, respectively. The interaction between miR-485-5p and circRUNX1 or SLC38A1 was verified by dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay. The levels of extracellular glutamine, intracellular glutamate and α-ketoglutarate (α-KG) were measured with specific kits. The functional role of circRUNX1 in CRC development in vivo was explored by murine xenograft model assay. RESULTS CircRUNX1 was upregulated in CRC tissues and cells compared with normal tissues and cells. CircRUNX1 deficiency restrained CRC cell colony formation, migration, invasion and glutaminolysis and induced apoptosis in vitro as well as blocked tumour growth in vivo. CircRUNX1 directly sponged miR-485-5p, which negatively modulated SLC38A1 expression in CRC cells. The effects of circRUNX1 knockdown on CRC cell colony formation, migration, invasion, apoptosis and glutaminolysis were reversed by miR-485-5p inhibition. Moreover, miR-485-5p overexpression repressed the malignant behaviours of CRC cells, with SLC38A1 elevation overturned the impacts. CONCLUSION CircRUNX1 promoted CRC cell growth, metastasis and glutamine metabolism and repressed apoptosis by elevating SLC38A1 through sponging miR-485-5p, which might provide a novel target for CRC treatment.
Collapse
Affiliation(s)
- Juan Yu
- Department of Endoscopic Diagnosis and Treatment Center, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaoguang Chen
- Department of Endoscopic Diagnosis and Treatment Center, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Jing Li
- Department of Endoscopic Diagnosis and Treatment Center, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Furang Wang
- Department of Endoscopic Diagnosis and Treatment Center, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
119
|
Wang J, Li S, Zhang G, Han H. Sevoflurane inhibits malignant progression of colorectal cancer via hsa_circ_0000231-mediated miR-622. ACTA ACUST UNITED AC 2021; 28:14. [PMID: 34183076 PMCID: PMC8237491 DOI: 10.1186/s40709-021-00145-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/14/2021] [Indexed: 12/30/2022]
Abstract
Background Sevoflurane (Sev), a commonly used volatile anesthetic, has been reported to inhibit the process of colorectal cancer (CRC). Circular RNAs (circRNAs) are revealed to participate in the pathogenesis of CRC. This study aims to reveal the mechanism of hsa_circ_0000231 in Sev-mediated CRC progression. Methods The expression of hsa_circ_0000231 and microRNA-622 (miR-622) was detected by quantitative real-time polymerase chain reaction (qRT-PCR). Protein level was determined by western blot analysis. Cell proliferation was investigated by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), cell colony formation and DNA content quantitation assays. Cell apoptosis was detected by Annexin V-fluorescein isothiocyanate and propidium iodide double staining and caspase 3 activity assays. Cell migration and invasion were investigated by wound-healing and transwell invasion assays, respectively. The putative relationship between hsa_circ_0000231 and miR-622 was predicted by circular RNA Interactome online database, and identified by dual-luciferase reporter and RNA immunoprecipitation assays. The impacts of hsa_circ_0000231 on Sev-mediated tumor formation in vivo were presented by in vivo assay. Results Hsa_circ_0000231 expression was upregulated, while miR-622 was downregulated in CRC tissues and cells compared with control groups. Sev treatment decreased hsa_circ_0000231 expression, but increased miR-622 expression in CRC cells. Sev treatment suppressed cell proliferation, migration and invasion, and induced cell apoptosis. Hsa_circ_0000231 overexpression restored Sev-mediated CRC progression in vitro. Additionally, hsa_circ_0000231 acted as a sponge of miR-622, and miR-622 inhibitors reversed the impacts of hsa_circ_0000231 silencing on CRC process. Furthermore, Sev treatment inhibited tumor growth by regulating hsa_circ_0000231 in vivo. Conclusion Hsa_circ_0000231 attenuated Sev-aroused repression impacts on CRC development by sponging miR-622. This findings may provide an appropriate anesthetic protocol for CRC sufferers undergoing surgery. Supplementary Information The online version contains supplementary material available at 10.1186/s40709-021-00145-6.
Collapse
Affiliation(s)
- Jingpeng Wang
- Department of Anaesthesiology, The Chengyang People's Hospital, No.76 Zhengyang Road, Chengyang District, Qingdao, 266109, Shandong Province, China.
| | - Shuyuan Li
- Fever Clinic, The Chengyang People's Hospital, Qingdao, Shandong Province, China
| | - Gaofeng Zhang
- Department of Anaesthesiology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Huihua Han
- Department of Anaesthesiology, The Chengyang People's Hospital, No.76 Zhengyang Road, Chengyang District, Qingdao, 266109, Shandong Province, China
| |
Collapse
|
120
|
Fang G, Wu Y, Zhang X. CircASXL1 knockdown represses the progression of colorectal cancer by downregulating GRIK3 expression by sponging miR-1205. World J Surg Oncol 2021; 19:176. [PMID: 34127015 PMCID: PMC8204566 DOI: 10.1186/s12957-021-02275-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 05/25/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is a common aggressive tumor that poses a heavy burden to human health. An increasing number of studies have reported that circular RNA (circRNA) is involved in the progression of CRC. In this study, the special profiles of circASXL1 (circ_0001136) in CRC progression were revealed. METHODS The expression of circASXL1, microRNA-1205 (miR-1205), and glutamate ionotropic receptor kainate type subunit 3 (GRIK3) mRNA was detected by quantitative real-time polymerase chain reaction (qRT-PCR). The protein expression was determined by Western blot or immunohistochemistry. Cell colony-forming ability was investigated by colony formation assay. Cell cycle and apoptosis were demonstrated using cell-cycle and cell-apoptosis analysis assays, respectively. Cell migration and invasion were detected by wound-healing and transwell migration and invasion assays, respectively. The binding sites between miR-1205 and circASXL1 or GRIK3 were predicted by circBank or miRDB online database, and identified by dual-luciferase reporter assay. The impact of circASXL1 on tumor formation in vivo was investigated by in vivo tumor formation assay. RESULTS CircASXL1 and GRIK3 expression were apparently upregulated, and miR-1205 expression was downregulated in CRC tissues and cells relative to control groups. CircASXL1 knockdown inhibited cell colony-forming ability, migration and invasion, whereas induced cell arrest at G0/G1 phase and cell apoptosis in CRC cells; however, these effects were attenuated by miR-1205 inhibitor. Additionally, circASXL1 acted as a sponge for miR-1205, and miR-1205 was associated with GRIK3. Furthermore, circASXL1 silencing hindered tumor formation by upregulating miR-1205 and downregulating GRIK3 expression. CONCLUSION CircASXL1 acted an oncogenic role in CRC malignant progression via inducing GRIK3 through sponging miR-1205. Our findings provide a theoretical basis for studying circASXL1-directed therapy for CRC.
Collapse
Affiliation(s)
- Guojiu Fang
- Department of General Surgery, Shanghai Fengxian Central Hospital, No. 6600, Nanfeng Road, Nanqiao New Town, Fengxian District, Shanghai, 201400, China
| | - Yibin Wu
- Department of Liver Surgery, Shanghai Cancer Center, Fudan University, Shanghai, 200032, China
| | - Xueli Zhang
- Department of General Surgery, Shanghai Fengxian Central Hospital, No. 6600, Nanfeng Road, Nanqiao New Town, Fengxian District, Shanghai, 201400, China.
| |
Collapse
|
121
|
Yoshida K, Yamamoto Y, Ochiya T. miRNA signaling networks in cancer stem cells. Regen Ther 2021; 17:1-7. [PMID: 33598508 PMCID: PMC7848775 DOI: 10.1016/j.reth.2021.01.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 01/06/2021] [Indexed: 12/20/2022] Open
Abstract
Cancer stem cells (CSCs) are a small cell subpopulation in many cancer types and are involved in various processes of tumor progression, such as initiation, metastasis and recurrence. The distinguished features of CSCs include a variety of biological properties, including self-renewal, multidifferentiation, stemness marker expression, and resistance to chemotherapy and radiotherapy. Despite their great potential of clinical importance, the CSC signaling pathways are not well understood at the molecular level. MicroRNAs (miRNAs) are a class of endogenous noncoding RNAs that play an important role in the regulation of several cellular, physiological, and developmental processes. Aberrant miRNA expression is associated with many human diseases, including cancer. miRNAs have been implicated in the regulation of CSC properties; therefore, a better understanding of miRNA-induced modulation of CSC gene expression could aid in the identification of promising biomarkers and therapeutic targets. In the present review, we summarize the major findings of the impacts of miRNAs on CSC signaling networks; we then discuss the recent advances that have improved our understanding of CSC regulation by miRNA-mediated signaling networks and that may lead to the development of miRNA therapeutics specifically targeting CSCs.
Collapse
Affiliation(s)
- Kosuke Yoshida
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yusuke Yamamoto
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Takahiro Ochiya
- Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
122
|
Ghafouri-Fard S, Taheri M, Hussen BM, Vafaeimanesh J, Abak A, Vafaee R. Function of circular RNAs in the pathogenesis of colorectal cancer. Biomed Pharmacother 2021; 140:111721. [PMID: 34015582 DOI: 10.1016/j.biopha.2021.111721] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/20/2021] [Accepted: 05/07/2021] [Indexed: 02/07/2023] Open
Abstract
Circular RNAs (circRNAs) comprise a group of noncoding RNAs with a circular conformation being constructed by either classic spliceosome-mediated or lariat-kind of splicing. They have tissue and temporal specificity and are involved in different biological functions. A vast body of literature has demonstrated critical roles of circRNAs in the formation or progression of neoplasms. Hsa_circ_0066631, hsa_circ_0082096, ciRS-7, circMAT2B, circ_052666, circMBOAT2, circPACRGL and circ_0128846 are among up-regulated circRNAs in CRC. Instead, expression levels of circTADA2A, circ_022743, circ_004452, circ-FBXW7, circ0106714, circFNDC3B and circ_cse1 have been decreased in CRC samples. Finally, expression levels of circRNA-100876, hsa_circ_0002320, circNOL10, circ_0056618, circ_0060745, circ-0004277, hsa_circRNA_102958, circPPP1R12A, hsa_circ_0007534, circ_0079993 and hsa_circ_0005075 can be used for prediction of clinical outcome of patients CRC.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | | | - Atefe Abak
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Vafaee
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
123
|
Fang N, Ding GW, Ding H, Li J, Liu C, Lv L, Shi YJ. Research Progress of Circular RNA in Gastrointestinal Tumors. Front Oncol 2021; 11:665246. [PMID: 33937077 PMCID: PMC8082141 DOI: 10.3389/fonc.2021.665246] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 03/15/2021] [Indexed: 01/17/2023] Open
Abstract
circular RNA (circRNA) is a closed ring structure formed by cyclic covalent bonds connecting the 5’-end and 3’-end of pre-mRNA. circRNA is widely distributed in eukaryotic cells. Recent studies have shown that circRNA is involved in the pathogenesis and development of multiple types of diseases, including tumors. circRNA is specifically expressed in tissues. And the stability of circRNA is higher than that of linear RNA, which can play biological roles through sponge adsorption of miRNA, interaction with RNA binding protein, regulation of gene transcription, the mRNA and protein translation brake, and translation of protein and peptides. These characteristics render circRNAs as biomarkers and therapeutic targets of tumors. Gastrointestinal tumors are common malignancies worldwide, which seriously threaten human health. In this review, we summarize the generation and biological characteristics of circRNA, molecular regulation mechanism and related effects of circRNA in gastrointestinal tumors.
Collapse
Affiliation(s)
- Na Fang
- Department of Oncology, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China
| | - Guo-Wen Ding
- Department of Thoracic and Cardiovascular Surgery, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China
| | - Hao Ding
- Department of Respiratory, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China
| | - Juan Li
- Department of Oncology, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China
| | - Chao Liu
- Department of Thoracic and Cardiovascular Surgery, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China
| | - Lu Lv
- Department of Thoracic and Cardiovascular Surgery, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China
| | - Yi-Jun Shi
- Department of Thoracic and Cardiovascular Surgery, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China
| |
Collapse
|
124
|
Ma T, Ma Y, Du Y, Wei Z, Wang J, Jun Y, Xiao F. Circular RNA hsa_circ_0013958 Functions as an Oncogenic Gene Through Modulating miR-532-3p/WEE1 Axis in Hepatocellular Carcinoma. Front Oncol 2021; 11:585172. [PMID: 33937016 PMCID: PMC8082454 DOI: 10.3389/fonc.2021.585172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 03/10/2021] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND circ0013958 was identified as a biomarker, which can be used for the diagnosis and screening of lung cancer. However, the role of circ0013958 in hepatocellular carcinoma (HCC) remains unclear. METHODS In our study, quantitative real-time polymerase chain reaction was performed to determine the levels of circ0013958 in HCC tissues and cell lines. EdU, CCK-8, transwell, flow cytometry and tumorigenesis assays were applied to assess the functions of circ0013958 in HCC in vitro and in vivo. Western blot assay was to detect the expression of WEE1. Luciferase reporter assay, bioinformatics analysis and rescue experiments were used to examine the interaction among circ0013958, miR-532-3p and WEE1. RESULTS It revealed that circ0013958 was significantly up-regulated in HCC, which was positively correlated with poor prognosis of HCC patients. Circ0013958 promoted HCC cell proliferation and invasion, inhibited cell apoptosis in vitro, and promoted tumorigenesis in vivo. Circ0013958 acted as a miR-532-3p sponge to regulate WEE1 expression, thus promoting the progression of HCC. CONCLUSIONS Circ0013958 promotes HCC progression through miR-532-3p/WEE1 axis. Circ0013958 may serve as a potential diagnostic biomarker and therapeutic target of HCC.
Collapse
Affiliation(s)
- Tao Ma
- Department of Clinical Laboratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yue Ma
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yongjun Du
- Department of Proctology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhongheng Wei
- Department of Oncology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Jianchu Wang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Yufu Jun
- Department of Gastroenterology, Shanghai Songjiang District Central Hospital, Shanghai, China
| | - Fenqiang Xiao
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
125
|
Wang J, Zhang Y, Liu L, Yang T, Song J. Circular RNAs: new biomarkers of chemoresistance in cancer. Cancer Biol Med 2021; 18:j.issn.2095-3941.2020.0312. [PMID: 33738995 PMCID: PMC8185855 DOI: 10.20892/j.issn.2095-3941.2020.0312] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 11/27/2020] [Indexed: 12/17/2022] Open
Abstract
Chemotherapeutics are validated conventional treatments for patients with advanced cancer. However, with continual application of chemotherapeutics, chemoresistance, which is often predictive of poor prognosis, has gradually become a concern in recent years. Circular RNAs (circRNAs), a class of endogenous noncoding RNAs (ncRNAs) with a closed-loop structure, have been reported to be notable targets and markers for the prognosis, diagnosis, and treatment of many diseases, particularly cancer. Although dozens of studies have shown that circRNAs play major roles in drug-resistance activity in tumors, the mechanisms by which circRNAs affect chemoresistance have yet to be explored. In this review, we describe the detailed mechanisms of circRNAs and chemotherapeutics in various cancers and summarize potential therapeutic targets for drug-resistant tumors.
Collapse
Affiliation(s)
- Jiaqi Wang
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
- Institute of Digestive Diseases of Xuzhou Medical University, Xuzhou 221002, China
| | - Yi Zhang
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Lianyu Liu
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
- Institute of Digestive Diseases of Xuzhou Medical University, Xuzhou 221002, China
| | - Ting Yang
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Jun Song
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
- Institute of Digestive Diseases of Xuzhou Medical University, Xuzhou 221002, China
| |
Collapse
|
126
|
Yu C, Li D, Yan Q, Wang Y, Yang X, Zhang S, Zhang Y, Zhang Z. Circ_0005927 Inhibits the Progression of Colorectal Cancer by Regulating miR-942-5p/BATF2 Axis. Cancer Manag Res 2021; 13:2295-2306. [PMID: 33732022 PMCID: PMC7959203 DOI: 10.2147/cmar.s281377] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 01/16/2021] [Indexed: 12/30/2022] Open
Abstract
Background Colorectal cancer (CRC) is one of the most common aggressive neoplasms worldwide. Circular RNAs (circRNAs) have been involved in the biological process of CRC. This study aimed to explore the effects of circ_0005927 on CRC progression and underneath mechanism. Materials and Methods The expression of circ_0005927, microRNA-942-5p (miR-942-5p) and basic leucine zipper ATF-like transcription factor 2 (BATF2) was detected by quantitative real time polymerase chain reaction (qRT-PCR). The protein expression of BATF2 was determined by Western blot. The effects among circ_0005927, miR-942-5p and BATF2 on cell colony-forming ability, apoptosis and migratory and invasive abilities were revealed by cell colony formation, flow apoptosis and transwell assays, respectively. The associated relationship between miR-942-5p and circ_0005927 or BATF2 was predicted by Circinteractome or TargetScan online database, and identified by dual-luciferase reporter or RNA immunoprecipitation (RIP) assay. The impacts of circ_0005927 overexpression on tumor growth in vivo were investigated by in vivo tumor formation assay. Results Circ_0005927 expression and the mRNA and protein expression of BATF2 were dramatically downregulated, while miR-942-5p expression was obviously upregulated in CRC tissues or cells compared with control groups. Circ_0005927 overexpression repressed cell colony-forming ability, migration and invasion, whereas induced cell apoptosis in CRC; however, these impacts were hindered by miR-942-5p mimic or BATF2 knockdown. Furthermore, circ_0005927 was a sponge of miR-942-5p, and miR-942-5p bound to BATF2. In addition, circ_0005927 overexpression repressed tumor growth in vivo. Conclusion Circ_0005927 suppressed cell colony-forming ability, migration and invasion, and promoted cell apoptosis by sponging miR-942-5p to induce BATF2 in CRC. The possible mechanism provides a theoretical basis for the study of circRNA-directed therapy for CRC.
Collapse
Affiliation(s)
- Chao Yu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, People's Republic of China
| | - Deguan Li
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, People's Republic of China
| | - Qiang Yan
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, People's Republic of China
| | - Yigao Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, People's Republic of China
| | - Xiaodong Yang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, People's Republic of China
| | - Shangxin Zhang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, People's Republic of China
| | - Yonghong Zhang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, People's Republic of China
| | - Zhen Zhang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, People's Republic of China
| |
Collapse
|
127
|
Zhou HM, Zhang JG, Zhang X, Li Q. Targeting cancer stem cells for reversing therapy resistance: mechanism, signaling, and prospective agents. Signal Transduct Target Ther 2021; 6:62. [PMID: 33589595 PMCID: PMC7884707 DOI: 10.1038/s41392-020-00430-1] [Citation(s) in RCA: 250] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/26/2020] [Accepted: 10/08/2020] [Indexed: 02/06/2023] Open
Abstract
Cancer stem cells (CSCs) show a self-renewal capacity and differentiation potential that contribute to tumor progression and therapy resistance. However, the underlying processes are still unclear. Elucidation of the key hallmarks and resistance mechanisms of CSCs may help improve patient outcomes and reduce relapse by altering therapeutic regimens. Here, we reviewed the identification of CSCs, the intrinsic and extrinsic mechanisms of therapy resistance in CSCs, the signaling pathways of CSCs that mediate treatment failure, and potential CSC-targeting agents in various tumors from the clinical perspective. Targeting the mechanisms and pathways described here might contribute to further drug discovery and therapy.
Collapse
Affiliation(s)
- He-Ming Zhou
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of medicine, No.100 Haining Road, 200080, Shanghai, People's Republic of China
| | - Ji-Gang Zhang
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of medicine, No.100 Haining Road, 200080, Shanghai, People's Republic of China
| | - Xue Zhang
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of medicine, No.100 Haining Road, 200080, Shanghai, People's Republic of China
| | - Qin Li
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of medicine, No.100 Haining Road, 200080, Shanghai, People's Republic of China.
| |
Collapse
|
128
|
Viralippurath Ashraf J, Sasidharan Nair V, Saleh R, Elkord E. Role of circular RNAs in colorectal tumor microenvironment. Biomed Pharmacother 2021; 137:111351. [PMID: 33550046 DOI: 10.1016/j.biopha.2021.111351] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 02/06/2023] Open
Abstract
Circular RNAs (circRNAs) are a class of endogenous noncoding RNA, which were previously considered as a byproduct of RNA splicing error. Numerous studies have demonstrated the altered expression of circRNAs in organ tissues during pathological conditions and their involvements in disease pathogenesis and progression, including cancers. In colorectal cancer (CRC), multiple circRNAs have been identified and characterized as "oncogenic", given their involvements in the downregulation of tumor suppressor genes and induction of tumor initiation, progression, invasion, and metastasis. Additionally, other circRNAs have been identified in CRC and characterized as "tumor suppressive" based on their ability of inhibiting the expression of oncogenic genes and suppressing tumor growth and proliferation. circRNAs could serve as potential diagnostic and prognostic biomarkers, and therapeutic targets or vectors to be utilized in cancer therapies. This review briefly describes the dynamic changes of the tumor microenvironment inducing immunosuppression and tumorigenesis, and outlines the biogenesis and characteristics of circRNAs and recent findings indicating their roles and functions in the CRC tumor microenvironment. It also discusses strategies and technologies, which could be employed in the future to overcome current cancer therapy challenges associated with circRNAs.
Collapse
Affiliation(s)
| | - Varun Sasidharan Nair
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Reem Saleh
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Eyad Elkord
- College of Health & Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar; Biomedical Research Centre, School of Science, Engineering and Environment, University of Salford, Manchester, UK.
| |
Collapse
|
129
|
Long F, Lin Z, Li L, Ma M, Lu Z, Jing L, Li X, Lin C. Comprehensive landscape and future perspectives of circular RNAs in colorectal cancer. Mol Cancer 2021; 20:26. [PMID: 33536039 PMCID: PMC7856739 DOI: 10.1186/s12943-021-01318-6] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 01/19/2021] [Indexed: 12/14/2022] Open
Abstract
Colorectal cancer (CRC) is a common hereditary tumor that is often fatal. Its pathogenesis involves multiple genes, including circular RNAs (circRNAs). Notably, circRNAs constitute a new class of noncoding RNAs (ncRNAs) with a covalently closed loop structure and have been characterized as stable, conserved molecules that are abundantly expressed in tissue/development-specific patterns in eukaryotes. Based on accumulating evidence, circRNAs are aberrantly expressed in CRC tissues, cells, exosomes, and blood from patients with CRC. Moreover, numerous circRNAs have been identified as either oncogenes or tumor suppressors that mediate tumorigenesis, metastasis and chemoradiation resistance in CRC. Although the regulatory mechanisms of circRNA biogenesis and functions remain fairly elusive, interesting results have been obtained in studies investigating CRC. In particular, the expression of circRNAs in CRC is comprehensively modulated by multiple factors, such as splicing factors, transcription factors, specific enzymes and cis-acting elements. More importantly, circRNAs exert pivotal effects on CRC through various mechanisms, including acting as miRNA sponges or decoys, interacting with RNA binding proteins, and even translating functional peptides. Finally, circRNAs may serve as promising diagnostic and prognostic biomarkers and potential therapeutic targets in the clinical practice of CRC. In this review, we discuss the dysregulation, functions and clinical significance of circRNAs in CRC and further discuss the molecular mechanisms by which circRNAs exert their functions and how their expression is regulated. Based on this review, we hope to reveal the functions of circRNAs in the initiation and progression of cancer and highlight the future perspectives on strategies targeting circRNAs in cancer research.
Collapse
Affiliation(s)
- Fei Long
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, P.R. China
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of The University of South China, Hengyang, Hunan, 421001, P.R. China
| | - Zhi Lin
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
| | - Liang Li
- Class 25 Grade 2016, The Five-Year Program in Clinical Medicine, School of Medicine, University of South China, Hengyang, Hunan, 421001, P.R. China
| | - Min Ma
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, P.R. China
| | - Zhixing Lu
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, P.R. China
| | - Liang Jing
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, P.R. China
| | - Xiaorong Li
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, P.R. China.
| | - Changwei Lin
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, P.R. China.
- School of Life Sciences, Central South University, Changsha, 410078, Hunan, China.
| |
Collapse
|
130
|
Zhao X, Zeng H, Lei L, Tong X, Yang L, Yang Y, Li S, Zhou Y, Luo L, Huang J, Xiao R, Chen J, Zeng Q. Tight junctions and their regulation by non-coding RNAs. Int J Biol Sci 2021; 17:712-727. [PMID: 33767583 PMCID: PMC7975691 DOI: 10.7150/ijbs.45885] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 10/06/2020] [Indexed: 02/06/2023] Open
Abstract
Tight junction (TJ) is a “zippering up” junction structure located at the uppermost portion of adjacent epithelial/endothelial cells in organs and tissues. TJs maintain the relative stability of intracellular substances and functions by closing or opening intercellular pathways, coordinating the entry and exit of molecules of different sizes and charges, and regulating the permeability of paracellular barrier. TJs also prevent microbial invasion, maintain epithelial/endothelial cell polarity, and regulate cell proliferation. TJs are widely present in the skin and mucosal epithelial barriers, intestinal epithelial barrier, glomerular filtration barrier, bladder epithelial barrier, blood-brain barrier, brain-blood tumor barrier, and blood-testis barrier. TJ dysfunction in different organs can lead to a variety of diseases. In addition to signal pathways, transcription factors, DNA methylation, histone modification, TJ proteins can also be regulated by a variety of non-coding RNAs, such as micro-RNAs, long-noncoding RNAs, and circular RNAs, directly or indirectly. This review summarizes the structure of TJs and introduces the functions and regulatory mechanisms of TJs in different organs and tissues. The roles and mechanisms of non-coding RNAs in the regulation of TJs are also highlighted in this review.
Collapse
Affiliation(s)
- Xiaojiao Zhao
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, Hunan 410013, P.R. China
| | - Hongliang Zeng
- Institute of Chinese Materia Medica, Hunan Academy of Chinese Medicine, Yuehua Road, Changsha, Hunan 410013, P.R. China
| | - Li Lei
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, Hunan 410013, P.R. China
| | - Xiaoliang Tong
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, Hunan 410013, P.R. China
| | - Lun Yang
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, Hunan 410013, P.R. China
| | - Yan Yang
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, Hunan 410013, P.R. China
| | - Si Li
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, Hunan 410013, P.R. China
| | - Ying Zhou
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, Hunan 410013, P.R. China
| | - Liping Luo
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, Hunan 410013, P.R. China
| | - Jinhua Huang
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, Hunan 410013, P.R. China
| | - Rong Xiao
- Department of Dermatology, Second Xiangya Hospital, Central South University, 139 Renminzhong Road, Changsha, Hunan 410013, P.R. China
| | - Jing Chen
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, Hunan 410013, P.R. China.,Institute of Chinese Materia Medica, Hunan Academy of Chinese Medicine, Yuehua Road, Changsha, Hunan 410013, P.R. China.,Department of Dermatology, Second Xiangya Hospital, Central South University, 139 Renminzhong Road, Changsha, Hunan 410013, P.R. China
| | - Qinghai Zeng
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, Hunan 410013, P.R. China.,Institute of Chinese Materia Medica, Hunan Academy of Chinese Medicine, Yuehua Road, Changsha, Hunan 410013, P.R. China.,Department of Dermatology, Second Xiangya Hospital, Central South University, 139 Renminzhong Road, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
131
|
Zeng F, Luo L, Song M, Li D. Silencing of circular RNA PUM1 inhibits clear cell renal cell carcinoma progression through the miR-340-5p/FABP7 axis. J Recept Signal Transduct Res 2021; 42:141-150. [PMID: 33472512 DOI: 10.1080/10799893.2020.1870494] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Circular RNAs (circRNAs) monitor the development of clear cell renal cell carcinoma (ccRCC). However, the role of CircPUM1 in ccRCC malignancy is not studied. We estimated the mechanism of CircPUM1 in ccRCC progression in this study. CircPUM1 expression in ccRCC tissues and cells was detected. The expression of CircPUM1 was interfered in ccRCC cells, and its effects on the growth of ccRCC cells were studied. Nuclear/cytosol fractionation assay was performed for the location of CircPUM1, and the downstream miR, gene, and pathway involved in ccRCC progression were explored through gain- and loss-of-function experiments. CircPUM1 was highly expressed in ccRCC samples and cells. Inhibition of CircPUM1 prevented the growth ccRCC cells. CircPUM1 was localized in the cytoplasm and bound to miR-340-5p. Overexpression of miR-340-5p inhibited the growth of ccRCC cells. miR-340-5p targeted FABP7, and CircPUM1 induced FABP7 expression and the activation of MEK/ERK pathway through competitively binding to miR-340-5p. Overexpression of FABP7 attenuated the inhibitory effect of CircPUM1 silencing on the growth of ccRCC cells. Overall, CircPUM1 upregulates FABP7 expression by competitively binding to miR-340-5p, and then activates the MEK/ERK pathway, thus promoting ccRCC progression.
Collapse
Affiliation(s)
- Fanchang Zeng
- Department of Urology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Hainan, P.R. China
| | - Liumei Luo
- Division of Science and Education, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Hainan, P.R. China
| | - Mi Song
- Department of Urology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Hainan, P.R. China
| | - Daoyuan Li
- Department of Urology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Hainan, P.R. China
| |
Collapse
|
132
|
Zhi Q, Wan D, Ren R, Xu Z, Guo X, Han Y, Liu F, Xu Y, Qin L, Wang Y. Circular RNA profiling identifies circ102049 as a key regulator of colorectal liver metastasis. Mol Oncol 2020; 15:623-641. [PMID: 33131207 PMCID: PMC7858140 DOI: 10.1002/1878-0261.12840] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/03/2020] [Accepted: 10/30/2020] [Indexed: 12/24/2022] Open
Abstract
Circular RNA (circRNA) plays an essential role in the development and progression of various cancers. However, the functions and mechanisms of circRNA in colorectal liver metastasis have not been fully elucidated. We performed circRNA microarray analysis to screen differentially expressed circRNA in the pathology of colorectal liver metastasis. Quantitative real-time PCR was used to detect the expression of hsa_circ_102049 (circ102049) in colorectal cancer (CRC) samples. CRC cells were transfected with circ102049 overexpression vector or small interfering (si)RNA to assess the effects of circ102049 in vitro. Bioinformatics analysis, fluorescence in situ hybridization, RNA immunoprecipitation, RNA pull-down and luciferase reporter assays were conducted to confirm the relationship of circ102049, miR-761, miR-192-3p and FRAS1. The mechanism by which circ102049 recruits and distributes DGCR8 protein in the cytoplasm was also investigated. We found that circ102049 was highly expressed in primary CRC tumors with liver metastasis and closely correlated with the prognosis of patients with CRC. Circ102049 significantly enhanced the adhesion, migration and invasion abilities of CRC cells, and promoted CRC progression via a micro (mi)R-761/miR-192-3p-FRAS1-dependent mechanism. Notably, due to the distribution of DGCR8 protein, circ102049 may also indirectly reduce the levels of mature miR-761 and miR-192-3p in the cytoplasm. In addition, the role of circ102049 in promoting colorectal liver metastasis was confirmed in vivo. Our findings provide new evidence that circ102049 may be a potential prognostic factor in CRC, and that the circ102049-miR-761/miR-192-3p-FRAS1 axis may be an anti-metastatic target for CRC patients.
Collapse
Affiliation(s)
- Qiaoming Zhi
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, China.,Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Daiwei Wan
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Rui Ren
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhihua Xu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaobo Guo
- Department of Gastrointestinal Surgery, Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Ye Han
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Fei Liu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ye Xu
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, China
| | - Lei Qin
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yilin Wang
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, China
| |
Collapse
|
133
|
Ebahimzadeh K, Shoorei H, Mousavinejad SA, Anamag FT, Dinger ME, Taheri M, Ghafouri-Fard S. Emerging role of non-coding RNAs in response of cancer cells to radiotherapy. Pathol Res Pract 2020; 218:153327. [PMID: 33422780 DOI: 10.1016/j.prp.2020.153327] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 12/23/2020] [Accepted: 12/23/2020] [Indexed: 01/03/2023]
Abstract
Radiotherapy is an effective method for treatment of a large proportion of human cancers. Yet, the efficacy of this method is precluded by the induction of radioresistance in tumor cells and the radiation-associated injury of normal cells surrounding the field of radiation. These restrictions necessitate the introduction of modalities for either radiosensitization of cancer cells or protection of normal cells against adverse effects of radiation. Non-coding RNAs (ncRNAs) have essential roles in the determination of radiosensitivity. Moreover, ncRNAs can modulate radiation-induced side effects in normal cells. Several microRNAs (miRNAs) such as miR-620, miR-21 and miR-96-5p confer radioresistance, while other miRNAs including miR-340/ 429 confer radiosensitivity. The expression levels of a number of miRNAs are associated with radiation-induced complications such as lung fibrosis or oral mucositis. The expression patterns of several long non-coding RNAs (lncRNAs) such as MALAT1, LINC00630, HOTAIR, UCA1 and TINCR are associated with response to radiotherapy. Taken together, lncRNAs and miRNAs contribute both in modulation of response of cancer cells to radiotherapy and in protection of normal cells from the associated side effects. The current review provides an overview of the roles of these transcripts in these aspects.
Collapse
Affiliation(s)
- Kaveh Ebahimzadeh
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Seyed Ali Mousavinejad
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Marcel E Dinger
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Soudeh Ghafouri-Fard
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
134
|
Deng Y, Zhu H, Xiao L, Liu C, Meng X. Circ_0005198 enhances temozolomide resistance of glioma cells through miR-198/TRIM14 axis. Aging (Albany NY) 2020; 13:2198-2211. [PMID: 33316781 PMCID: PMC7880338 DOI: 10.18632/aging.202234] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 11/03/2020] [Indexed: 12/20/2022]
Abstract
Circular RNAs (circRNAs) are associated with chemoresistance in many cancers. However, the function of circ_0005198 in the temozolomide (TMZ) resistance of glioma has not been well elucidated. Here, we demonstrated that circ_0005198 was considerably up-regulated in glioma tissues, serum samples and TMZ-resistant glioma cells. Silencing of circ_0005198 restrained TMZ resistance, restricted the proliferation and facilitated the apoptosis of TMZ-resistant glioma cells. MiR-198 could be sponged by circ_0005198, and we demonstrated that the effect of circ_0005198 on the progression of TMZ-resistant glioma cells was attributed to the inhibition of miR-198 activity. Moreover, TRIM14 was a target of miR-198 and silencing of TRIM14 hindered TMZ resistance and suppressed the progression of TMZ-resistant glioma cells, while TRIM14 over-expression rescued the inhibiting effect of miR-198 over-expression. We conclude that circ_0005198-miR-198-TRIM14 regulatory pathway is critical to TMZ resistance of glioma.
Collapse
Affiliation(s)
- Yanyao Deng
- Department of Neurology, The First Hospital of Changsha, Changsha 410005, Hunan, China
| | - Hongwei Zhu
- Department of Hepatopancreatobiliary Surgery, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Le Xiao
- Department of Neurology, The First Hospital of Changsha, Changsha 410005, Hunan, China
| | - Chao Liu
- Department of Neurology, The First Hospital of Changsha, Changsha 410005, Hunan, China
| | - Xiangrui Meng
- Department of Hepatopancreatobiliary Surgery, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China.,Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| |
Collapse
|
135
|
Wang W, Feng J, Zhou H, Li Q. Circ_0123996 promotes cell proliferation and fibrosisin mouse mesangial cells through sponging miR-149-5p and inducing Bach1 expression. Gene 2020; 761:144971. [PMID: 32707301 DOI: 10.1016/j.gene.2020.144971] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/17/2020] [Accepted: 07/17/2020] [Indexed: 02/06/2023]
Abstract
Diabetic nephropathy (DN) is a serious microvascular complication of diabetes across the world. Recently, many circular RNAs (circRNAs) can exert a crucial role in DN progression. Our investigation was designed to study whether circ_0123996 was associated with DN and aimed to find out the underlying mechanisms. We observed that circ_0123996 expression was significantly increased in Type 2 diabetes (T2D) with DN in comparison to those patients without DN. Consistently, circ_0123996 was also obviously elevated in DN mice models and high glucose (HG)-incubated MMCs. Then, it was proved transfection of circ_0123996 siRNA in mice mesangial cells (MMCs) restrained MMCs proliferation greatly. In addition, it was demonstrated that decrease of circ_0123996 alleviated fibrosis-related protein expression including FN and Col-4 in MMCs. Next, it was confirmed by our study that circ_0123996 can serve as a sponge for miR-149-5p. miR-149-5p has been identified in several diseases including diabetes. At present, we observed that miR-149-5p was decreased in DN. Overexpression of miR-149-5p greatly repressed the effect of circ_0123996 on MMCs. BTB and CNC homology 1 (Bach1) is reported in various disease including some vascular diseases.Here, Bach1 was confirmed as a target of miR-149-5p. Circ_0123996 upregulated Bach1 expression and restrained MMCs proliferation and fibrosis through sponging miR-149-5p. Thus, it was revealed that circ_0123996 was involved in DN via sponging miR-149-5p and modulating Bach1 expression.
Collapse
Affiliation(s)
- Wenjin Wang
- Department of Nephrology, Xiangyang No.1 People's Hospital Affiliated of Hubei University of Medicine, Xiangyang, China.
| | - Jingfang Feng
- Department of Nephrology, Xiangyang No.1 People's Hospital Affiliated of Hubei University of Medicine, Xiangyang, China
| | - Hongying Zhou
- Department of Nephrology, Xiangyang No.1 People's Hospital Affiliated of Hubei University of Medicine, Xiangyang, China
| | - Qi Li
- Department of Nephrology, The Central Hospital of Jilin City, Jilin, China
| |
Collapse
|
136
|
Wei H, Yan S, Hui Y, Liu Y, Guo H, Li Q, Li J, Chang Z. CircFAT1 promotes hepatocellular carcinoma progression via miR-30a-5p/REEP3 pathway. J Cell Mol Med 2020; 24:14561-14570. [PMID: 33179443 PMCID: PMC7754024 DOI: 10.1111/jcmm.16085] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 10/22/2020] [Accepted: 10/27/2020] [Indexed: 12/24/2022] Open
Abstract
As newly found non‐coding RNAs, circular RNAs (circRNAs) are involved in multiple biological processes. Emerging evidence has illustrated the pivotal roles of circRNAs in various human cancers. However, the function of circFAT1 in hepatocellular carcinoma (HCC) remains largely unclear. In the present study, we found that circFAT1 expression is up‐regulated in HCC tissues and cells. In addition, circFAT1 level is positively correlated with TNM stage and tumour size. To further explore the function of circFAT1 in HCC, in vitro and in vivo experiments were performed. The results show that circFAT1 inhibition reduces the proliferation and invasion of HCC cells and tumorigenesis in vivo, whereas REEP3 overexpression reverses these processes. In conclusion, circFAT1 sponges miR‐30a‐5p to regulate the expression of REEP3, thus promoting hepatocarcinogenesis. New HCC diagnosis or treatment strategies may be developed from circFAT1 as a target.
Collapse
Affiliation(s)
- Hailiang Wei
- Department of General Surgery, The Hospital Affiliated to Shaanxi University of Chinese Medicine, Xianyang, China
| | - Shuguang Yan
- College of Basic Medicine, The Shaanxi University of Chinese Medicine, Xianyang, China
| | - Yi Hui
- College of Basic Medicine, The Shaanxi University of Chinese Medicine, Xianyang, China
| | - Yonggang Liu
- Department of Liver Diseases, The Hospital Affiliated to Shaanxi University of Chinese Medicine, Xianyang, China
| | - Hui Guo
- Department of General Surgery, The Hospital Affiliated to Shaanxi University of Chinese Medicine, Xianyang, China
| | - Qian Li
- Medical Experiment Center, The Shaanxi University of Chinese Medicine, Xianyang, China
| | - Jingtao Li
- Department of Liver Diseases, The Hospital Affiliated to Shaanxi University of Chinese Medicine, Xianyang, China
| | - Zhanjie Chang
- Department of Liver Diseases, The Hospital Affiliated to Shaanxi University of Chinese Medicine, Xianyang, China
| |
Collapse
|
137
|
Papatsirou M, Artemaki PI, Scorilas A, Kontos CK. The role of circular RNAs in therapy resistance of patients with solid tumors. Per Med 2020; 17:469-490. [PMID: 33052780 DOI: 10.2217/pme-2020-0103] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Circular RNAs (circRNAs) are a type of single-stranded RNA molecules forming a covalently closed, continuous structure, lacking 5'-3' polarity and polyadenylated tails. Recent advances in high-throughput sequencing technologies have revealed that these molecules are abundant, resistant to degradation and often expressed in a tissue- or developmental stage-specific manner. circRNAs are produced by back-splicing circularization of primary transcripts and exhibit a variety of functions, including regulation of transcription, translation and cellular localization. This review focuses on differentially expressed circRNAs conferring therapy resistance or sensitivity of solid tumors, such as carcinomas, sarcomas and lymphomas. Deregulated circRNAs can participate in the development of resistance to treatment by modulating regulatory pathways and cellular processes, including the mitogen-activated protein kinase pathway, epithelial-mesenchymal transition, apoptosis and autophagy.
Collapse
Affiliation(s)
- Maria Papatsirou
- Department of Biochemistry & Molecular Biology, Faculty of Biology, National & Kapodistrian University of Athens, Athens 15701, Greece
| | - Pinelopi I Artemaki
- Department of Biochemistry & Molecular Biology, Faculty of Biology, National & Kapodistrian University of Athens, Athens 15701, Greece
| | - Andreas Scorilas
- Department of Biochemistry & Molecular Biology, Faculty of Biology, National & Kapodistrian University of Athens, Athens 15701, Greece
| | - Christos K Kontos
- Department of Biochemistry & Molecular Biology, Faculty of Biology, National & Kapodistrian University of Athens, Athens 15701, Greece
| |
Collapse
|
138
|
Zhang H, Lu B. The Roles of ceRNAs-Mediated Autophagy in Cancer Chemoresistance and Metastasis. Cancers (Basel) 2020; 12:cancers12102926. [PMID: 33050642 PMCID: PMC7600306 DOI: 10.3390/cancers12102926] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 09/28/2020] [Accepted: 10/07/2020] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Chemoresistance and metastasis are the main causes of treatment failure in cancers. Autophagy contribute to the survival and metastasis of cancer cells. Competing endogenous RNA (ceRNA), particularly long non-coding RNAs and circular RNA (circRNA), can bridge the interplay between autophagy and chemoresistance or metastasis in cancers via sponging miRNAs. This review aims to discuss on the function of ceRNA-mediated autophagy in the process of metastasis and chemoresistance in cancers. ceRNA network can sequester the targeted miRNA expression to indirectly upregulate the expression of autophagy-related genes, and thereof participate in autophagy-mediated chemoresistance and metastasis. Our clarification of the mechanism of autophagy regulation in metastasis and chemoresistance may greatly improve the efficacy of chemotherapy and survival in cancer patients. The combination of the tissue-specific miRNA delivery and selective autophagy inhibitors, such as hydroxychloroquine, is attractive to treat cancer patients in the future. Abstract Chemoresistance and metastasis are the main causes of treatment failure and unfavorable outcome in cancers. There is a pressing need to reveal their mechanisms and to discover novel therapy targets. Autophagy is composed of a cascade of steps controlled by different autophagy-related genes (ATGs). Accumulating evidence suggests that dysregulated autophagy contributes to chemoresistance and metastasis via competing endogenous RNA (ceRNA) networks including lncRNAs and circRNAs. ceRNAs sequester the targeted miRNA expression to indirectly upregulate ATGs expression, and thereof participate in autophagy-mediated chemoresistance and metastasis. Here, we attempt to summarize the roles of ceRNAs in cancer chemoresistance and metastasis through autophagy regulation.
Collapse
Affiliation(s)
- Huilin Zhang
- Department of Surgical Pathology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou 310002, Zhejiang Province, China;
| | - Bingjian Lu
- Department of Surgical Pathology and Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou 310002, Zhejiang Province, China
- Correspondence: ; Tel.: +86-571-89991702
| |
Collapse
|
139
|
Zhou Z, Ma J, Lu J, Chen A, Zhu L. Circular RNA CircCDH13 contributes to the pathogenesis of osteoarthritis via CircCDH13/miR-296-3p/PTEN axis. J Cell Physiol 2020; 236:3521-3535. [PMID: 33037617 DOI: 10.1002/jcp.30091] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/17/2020] [Accepted: 09/19/2020] [Indexed: 12/13/2022]
Abstract
Circular RNAs (circRNAs) are involved in a variety of human diseases; however, the function of circRNAs in osteoarthritis (OA) remains largely unknown. In this study, we investigated the role of CircCDH13 in OA and its underlying mechanisms. CircRNA expression profiles in OA and normal cartilage tissues were detected by microarray. The expression pattern, functional role, and mechanisms of CircCDH13 in OA were studied in vitro and in vivo. Gain-of-function and loss-of-function approaches were used to demonstrate the participation of CircCDH13 in OA. The regulatory relationship between CircCDH13 and miR-296-3p and miR-296-3p and phosphatase and tensin homolog (PTEN) was predicted by bioinformatics and verified by RNA pulldown and luciferase assay. Adeno-associated virus was also used to reveal the role and mechanisms of CircCDH13 in destabilization of medial meniscus (DMM)-induced OA mice. The upregulation of CircCDH13 in OA cartilage tissues significantly induces chondrocyte apoptosis, promotes extracellular matrix (ECM) catabolism, and inhibits ECM anabolism. Mechanistically, CircCDH13 contributes to OA pathogenesis by functioning as a sponge of miR-296-3p and regulating the miR-296-3p-PTEN pathway. Silencing of CircCDH13 in vivo markedly alleviated DMM-induced OA in mice. Our study revealed an important role of CircCDH13 in OA pathogenesis. Silencing of CircCDH13 could reduce chondrocyte apoptosis, inhibit ECM catabolism, and promote ECM anabolism through the miR-296-3p-PTEN pathway. It provides a potential target for developing effective interventions in treating OA.
Collapse
Affiliation(s)
- Zhibin Zhou
- Department of Orthopaedics, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| | - Jun Ma
- Department of Orthopaedics, Changzheng Hospital, Navy Medical University, Shanghai, China
| | - Jiajia Lu
- Department of Orthopaedics, Changzheng Hospital, Navy Medical University, Shanghai, China
| | - Aimin Chen
- Department of Orthopaedics, Changzheng Hospital, Navy Medical University, Shanghai, China
| | - Lei Zhu
- Department of Orthopaedics, Changzheng Hospital, Navy Medical University, Shanghai, China
| |
Collapse
|
140
|
Zhao X, Wang Y, Yu Q, Yu P, Zheng Q, Yang X, Gao D. Circular RNAs in gastrointestinal cancer: Current knowledge, biomarkers and targeted therapy (Review). Int J Mol Med 2020; 46:1611-1632. [PMID: 33000182 PMCID: PMC7521476 DOI: 10.3892/ijmm.2020.4731] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 09/01/2020] [Indexed: 01/17/2023] Open
Abstract
Circular RNAs (circRNAs) are a type of endogenous non‑coding RNAs that are connected at the 3' and 5' ends by exon or intron cyclization, which forms a covalently closed loop. They are stable, well conserved, exhibit specific expression in mammalian cells and can function as microRNA (miRNA or miR) sponges to regulate the target genes of miRNAs, which influences biological processes. Such as tumor proliferation, invasion, metastasis, apoptosis and tumor stage. circRNAs represent promising candidates for clinical diagnosis and treatment. In the present review, the biogenesis, classification and functions of circRNAs in tumors are briefly summarized and discussed. In addition, the participation of circRNAs in signal transduction pathways regulating gastrointestinal cancer cellular functions is highlighted.
Collapse
Affiliation(s)
- Xiaorui Zhao
- Department of Pathogen Biology and Immunology, Medical College of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yue Wang
- Department of Pathogen Biology and Immunology, Medical College of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Qiongfang Yu
- Department of Gastroenterology and Hepatology, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Pei Yu
- Department of Pathogen Biology and Immunology, Medical College of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Qiaoyu Zheng
- Department of Pathogen Biology and Immunology, Medical College of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xue Yang
- Department of Pathogen Biology and Immunology, Medical College of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Dian Gao
- Department of Pathogen Biology and Immunology, Medical College of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
141
|
Jiang Y, Zhou J, Zhao J, Zhang H, Li L, Li H, Chen L, Hu J, Zheng W, Jing Z. The U2AF2 /circRNA ARF1/miR-342-3p/ISL2 feedback loop regulates angiogenesis in glioma stem cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:182. [PMID: 32894165 PMCID: PMC7487667 DOI: 10.1186/s13046-020-01691-y] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/27/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND Glioma is the most common and lethal primary brain tumor in adults, and angiogenesis is one of the key factors contributing to its proliferation, aggressiveness, and malignant transformation. However, the discovery of novel oncogenes and the study of its molecular regulating mechanism based on circular RNAs (circRNAs) may provide a promising treatment target in glioma. METHODS Bioinformatics analysis, qPCR, western blotting, and immunohistochemistry were used to detect the expression levels of ISL2, miR-342-3p, circRNA ARF1 (cARF1), U2AF2, and VEGFA. Patient-derived glioma stem cells (GSCs) were established for the molecular experiments. Lentiviral-based infection was used to regulate the expression of these molecules in GSCs. The MTS, EDU, Transwell, and tube formation assays were used to detect the proliferation, invasion, and angiogenesis of human brain microvessel endothelial cells (hBMECs). RNA-binding protein immunoprecipitation, RNA pull-down, dual-luciferase reporter, and chromatin immunoprecipitation assays were used to detect the direct regulation mechanisms among these molecules. RESULTS We first identified a novel transcription factor related to neural development. ISL2 was overexpressed in glioma and correlated with poor patient survival. ISL2 transcriptionally regulated VEGFA expression in GSCs and promoted the proliferation, invasion, and angiogenesis of hBMECs via VEGFA-mediated ERK signaling. Regarding its mechanism of action, cARF1 upregulated ISL2 expression in GSCs via miR-342-3p sponging. Furthermore, U2AF2 bound to and promoted the stability and expression of cARF1, while ISL2 induced the expression of U2AF2, which formed a feedback loop in GSCs. We also showed that both U2AF2 and cARF1 had an oncogenic effect, were overexpressed in glioma, and correlated with poor patient survival. CONCLUSIONS Our study identified a novel feedback loop among U2AF2, cARF1, miR-342-3p, and ISL2 in GSCs. This feedback loop promoted glioma angiogenesis, and could provide an effective biomarker for glioma diagnosis and prognostic evaluation, as well as possibly being used for targeted therapy.
Collapse
Affiliation(s)
- Yang Jiang
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, People's Republic of China.,Department of Neurosurgery, The First Hospital of China Medical University, No. 155 North Nanjing Street, Shenyang, 110001, China
| | - Jinpeng Zhou
- Department of Neurosurgery, The First Hospital of China Medical University, No. 155 North Nanjing Street, Shenyang, 110001, China
| | - Junshuang Zhao
- Department of Neurosurgery, The First Hospital of China Medical University, No. 155 North Nanjing Street, Shenyang, 110001, China
| | - Haiying Zhang
- International Education College, Liaoning University of Traditional Chinese Medicine, No. 79 Chongshan East Road, Shenyang, 110042, China
| | - Long Li
- Department of Neurosurgery, The First Hospital of China Medical University, No. 155 North Nanjing Street, Shenyang, 110001, China
| | - Hao Li
- Department of Neurosurgery, The First Hospital of China Medical University, No. 155 North Nanjing Street, Shenyang, 110001, China
| | - Lian Chen
- Department of Neurosurgery, The First Hospital of China Medical University, No. 155 North Nanjing Street, Shenyang, 110001, China
| | - Jiangfeng Hu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, No. 100 Haining Road, Shanghai, 20080, China
| | - Wei Zheng
- Department of Histology and Embryology, College of Basic Medical Science, China Medical University, No. 77 Puhe Road, Shenyang, 110122, China
| | - Zhitao Jing
- Department of Neurosurgery, The First Hospital of China Medical University, No. 155 North Nanjing Street, Shenyang, 110001, China.
| |
Collapse
|
142
|
Xu T, Wang M, Jiang L, Ma L, Wan L, Chen Q, Wei C, Wang Z. CircRNAs in anticancer drug resistance: recent advances and future potential. Mol Cancer 2020; 19:127. [PMID: 32799866 PMCID: PMC7429705 DOI: 10.1186/s12943-020-01240-3] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/31/2020] [Indexed: 12/13/2022] Open
Abstract
CircRNAs are a novel class of RNA molecules with a unique closed continuous loop structure. CircRNAs are abundant in eukaryotic cells, have unique stability and tissue specificity, and can play a biological regulatory role at various levels, such as transcriptional and posttranscriptional levels. Numerous studies have indicated that circRNAs serve a crucial purpose in cancer biology. CircRNAs regulate tumor behavioral phenotypes such as proliferation and migration through various molecular mechanisms, such as miRNA sponging, transcriptional regulation, and protein interaction. Recently, several reports have demonstrated that they are also deeply involved in resistance to anticancer drugs, from traditional chemotherapeutic drugs to targeted and immunotherapeutic drugs. This review is the first to summarize the latest research on circRNAs in anticancer drug resistance based on drug classification and to discuss their potential clinical applications.
Collapse
Affiliation(s)
- Tianwei Xu
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Jiangjiayuan road 121#, Nanjing, 210011, Jiangsu, P.R. China
| | - Mengwei Wang
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Jiangjiayuan road 121#, Nanjing, 210011, Jiangsu, P.R. China
| | - Lihua Jiang
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Jiangjiayuan road 121#, Nanjing, 210011, Jiangsu, P.R. China
| | - Li Ma
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Jiangjiayuan road 121#, Nanjing, 210011, Jiangsu, P.R. China
| | - Li Wan
- Department of Oncology, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, 223300, Jiangsu, China
| | - Qinnan Chen
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Jiangjiayuan road 121#, Nanjing, 210011, Jiangsu, P.R. China
| | - Chenchen Wei
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Jiangjiayuan road 121#, Nanjing, 210011, Jiangsu, P.R. China.
| | - Zhaoxia Wang
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Jiangjiayuan road 121#, Nanjing, 210011, Jiangsu, P.R. China.
| |
Collapse
|
143
|
Zhong Y, Li X, Li C, Li Y, He Y, Li F, Ling L. Intracerebral hemorrhage alters circular RNA expression profiles in the rat brain. Am J Transl Res 2020; 12:4160-4174. [PMID: 32913495 PMCID: PMC7476132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 07/02/2020] [Indexed: 06/11/2023]
Abstract
Circular RNAs (circRNAs), formed from pre-messenger RNAs by back-splicing, are a novel class of evolutionarily-conserved endogenous non-coding RNAs. While circRNAs are involved in various diseases, the role of circRNAs in intracerebral hemorrhage (ICH) remains unknown. In the present study, we performed high-throughput sequencing to profile the expression of circRNAs in the rat brain at 24 and 48 hours after ICH onset, and utilized bioinformatics methods to make predictions about the function of dysregulated circRNAs. Compared with the sham group, 346 and 389 circRNAs changed significantly (|log2 (fold change)| > 1 and P < 0.05) at 24 and 48 hours after ICH, respectively. Bioinformatics analyses indicated that parent genes of dysregulated circRNAs were involved in biological processes, cellular component, and molecular function following ICH, and that they were enriched in the dopaminergic synapses, glutamatergic synapses, endocytosis, regulation of actin cytoskeleton, the mitogen-activated protein kinase signaling pathway, and the retrograde endocannabinoid signaling pathway. Enrichment analyses of target mRNAs showed that these mRNAs were enriched in synaptic plasticity, ion channel activity, and pathways including the phospholipase D signaling and the cGMP-PKG signaling. Our study indicates that the expression profile of circRNAs changes significantly after ICH in rat brains, and suggests that circRNAs may be crucial for the pathophysiological process following ICH.
Collapse
Affiliation(s)
- Yulan Zhong
- Department of Neurology, Shenzhen Hospital, Southern Medical UniversityShenzhen, Guangdong, China
- Department of Neurology, The First Affiliated Hospital, Jinan UniversityGuangzhou, Guangdong, China
| | - Xiaoqiang Li
- Department of Neurology, Affiliated Xiaolan Hospital, Southern Medical University (Xiaolan Peoples Hospital)Zhongshan, Guangdong, China
| | - Chuqiao Li
- Department of Neurology, Nanfang Hospital, Southern Medical UniversityGuangzhou, Guangdong, China
| | - Yudi Li
- Department of Neurology, Shenzhen Hospital, Southern Medical UniversityShenzhen, Guangdong, China
| | - Yuqi He
- Department of Neurology, Bao’an Central HospitalShenzhen, Guangdong, China
| | - Fangming Li
- Department of Neurology, Shenzhen University General Hospital, Shenzhen University Clinical Medical AcademyShenzhen, Guangdong, China
| | - Li Ling
- Department of Neurology, Shenzhen Hospital, Southern Medical UniversityShenzhen, Guangdong, China
| |
Collapse
|
144
|
Altered circular RNA expression profiles in the non-ischemic thalamus in focal cortical infarction mice. Aging (Albany NY) 2020; 12:13206-13219. [PMID: 32639948 PMCID: PMC7377861 DOI: 10.18632/aging.103424] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 05/19/2020] [Indexed: 12/16/2022]
Abstract
Focal cerebral infarction leads to secondary changes in non-ischemic areas remote from but connected to the infarct site. Circular RNAs (circRNAs) are involved in the pathophysiological processes of many diseases. However, the expression and roles of circRNAs in non-ischemic remote regions after ischemic stroke remain unknown. In this study, adult male C57BL/6J mice were subjected to permanent distal middle cerebral artery occlusion (MCAO) to establish focal cortical infarction. High-throughput sequencing was used to profile the circRNA expression in the mouse ipsilateral thalamus at 7 and 14 d after MCAO. Bioinformatics analyses were conducted to predict the function of the differential expressed circRNAs' host and target genes. Compared with sham group, a total of 2659 circRNAs were significantly altered in the ipsilateral thalamus at 7 or 14 d after MCAO in mice. Among them, 73 circRNAs were significantly altered at both two time points after stroke. GO and KEGG analyses indicated that circRNAs plays important roles in secondary thalamic neurodegeneration and remodeling after focal cortical infarction. This is the first study to profile the circRNA expression in non-ischemic region of ischemic stroke, suggesting that circRNAs may be therapeutic targets for reducing post-stroke secondary remote neurodegeneration.
Collapse
|
145
|
Hou Q, Lin JC, Wu LF. Role of circular RNAs in digestive system malignancies. Shijie Huaren Xiaohua Zazhi 2020; 28:417-427. [DOI: 10.11569/wcjd.v28.i11.417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Gastrointestinal malignancies have very high morbidity and mortality worldwide, seriously endangering human life and health. However, there are still many challenges in their early diagnosis and effective treatment. Circular RNAs (circRNAs) are a new class of endogenous long non-coding RNAs characterized by covalently closed loops. Because they do not have a 5' cap structure and a 3' poly(A) tail, circRNAs have higher stability, abundance, and evolutionary conservation than linear RNAs. CircRNAs are expressed in a tissue- or developmental stage-specific manner. These features produce various potential biological functions of circRNAs, such as acting as sponges of microRNAs (miRNAs; circRNAs bind to miRNAs to eliminate the inhibitory effect of miRNAs on their target genes and play a role of competing endogenous RNAs) or forming RNA protein complexes through RNA binding proteins, participating in the regulation of protein functions. In recent years, more and more studies have shown that circRNAs play a vital role in the occurrence and development of digestive system tumors. At the same time, their enormous potential as a biomarker and therapeutic target is also evolving. In this review, we summarize the latest research progress of circRNAs in digestive system malignancies.
Collapse
Affiliation(s)
- Qin Hou
- Department of Gastroenterology, the Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Jie-Chun Lin
- Department of Gastroenterology, the Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Ling-Fei Wu
- Department of Gastroenterology, the Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| |
Collapse
|
146
|
Xue C, Cheng Y, Wu J, Ke K, Miao C, Chen E, Zhang L. Circular RNA CircPRMT5 Accelerates Proliferation and Invasion of Papillary Thyroid Cancer Through Regulation of miR-30c/E2F3 Axis. Cancer Manag Res 2020; 12:3285-3291. [PMID: 32494192 PMCID: PMC7231777 DOI: 10.2147/cmar.s249237] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/21/2020] [Indexed: 12/11/2022] Open
Abstract
Background The role of circular RNA (circRNA) in papillary thyroid cancer (PTC) is largely unknown. This study aims to determine the function and mechanism of circPRMT5 in the regulation of PTC development. Methods PTC tissues and cell lines were used to determine circPRMT5 expression via quantitative real-time polymerase chain reaction. Small interfering RNA (siRNA) was utilized to knock down circPRMT5. Proliferation was analyzed through CCK8 and colony formation assays. Transwell assay was performed to determine cell migration and invasion. Luciferase assay and RIP assay were carried out to analyze the interaction between circPRMT5 and miR-30c. Results CircPRMT5 expression was upregulated in PTC tissues and cell lines. And circPRMT5 level was positively linked with advanced stage and lymph node metastasis. CircPRMT5 knockdown inhibited proliferation, migration and invasion while inducing apoptosis. CircPRMT5 worked as a competing endogenous RNA for miR-30c. By inhibiting miR-30c, circPRMT5 promoted the expression of E2F3. Conclusion Our findings demonstrate that circPRMT5 acts as an oncogenic circRNA to promote PTC progression via regulating miR-30c/E2F3 axis.
Collapse
Affiliation(s)
- Cheng Xue
- Department of Endocrinology, Wenling First People's Hospital, Wenling 317500, People's Republic of China
| | - Yi Cheng
- Department of Endocrinology, Wenling First People's Hospital, Wenling 317500, People's Republic of China
| | - Jinyou Wu
- Department of Endocrinology, Wenling First People's Hospital, Wenling 317500, People's Republic of China
| | - Kongliang Ke
- Department of Anorectal Surgery, Ningbo Hangzhou Bay Hospital, Ningbo 315000, People's Republic of China
| | - Chundi Miao
- Department of Anorectal Surgery, Ningbo Hangzhou Bay Hospital, Ningbo 315000, People's Republic of China
| | - Enfu Chen
- Department of Endocrinology, Wenling First People's Hospital, Wenling 317500, People's Republic of China
| | - Luqing Zhang
- Department of Anorectal Surgery, Ningbo Hangzhou Bay Hospital, Ningbo 315000, People's Republic of China
| |
Collapse
|
147
|
Chen Q, He Q, Xiu W, Chen Y, Guo Z. miR-340 affects sauchinone inhibition of Th17 cell differentiation and promotes intestinal inflammation in inflammatory bowel disease. Biochem Biophys Res Commun 2020; 526:1157-1163. [PMID: 32321642 DOI: 10.1016/j.bbrc.2020.04.038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 04/10/2020] [Indexed: 12/30/2022]
Abstract
The pathogenesis of inflammation bowel disease (IBD) involves exaggerated effector T cell responses and impaired regulatory T cell functions. We previously found that sauchinone (SAU) ameliorated experimental colitis via facilitating Th17 cell production of IL-10, but how SAU regulated Th17 cell differentiation remains unknown. MicroRNAs (miR) have been recognized as a crucial regulator of T cell biology and play a considerable role in IBD. Here, we demonstrated that SAU significantly suppressed miR-340 expression in Th17 cells, and enforced miR-340 expression abrogated SAU inhibition of Th17 differentiation. miR-340 itself was found to facilitate Th17 differentiation, especially the pathogenic "Th1-like" subset. In human IBD, miR-340 was intimately correlated with the disease severity. SAU markedly decreased miR-340 in the inflamed mucosa tissues from IBD patients. Scaffold/matrix-associated region-binding protein 1 (SMAR1) was identified as a target gene of miR-340. We revealed that blockade of miR-340 significantly reduced mucosal damage and Th17 responses in the lamina propria in a mouse colitis model. Our findings suggest that miR-340 negatively affects SAU inhibition of Th17 differentiation and might play a crucial role in the regulation of pathogenic "Th1-like" Th17 cell generation, which might serve as a novel therapeutic target of IBD.
Collapse
Affiliation(s)
- Qinyuan Chen
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Qinyu He
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Wenbo Xiu
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Department of Gastroenterology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yanxi Chen
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
| | - Zhenzhen Guo
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Department of Gastroenterology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
148
|
Cui C, Yang J, Li X, Liu D, Fu L, Wang X. Functions and mechanisms of circular RNAs in cancer radiotherapy and chemotherapy resistance. Mol Cancer 2020; 19:58. [PMID: 32171304 PMCID: PMC7071709 DOI: 10.1186/s12943-020-01180-y] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/05/2020] [Indexed: 12/16/2022] Open
Abstract
Circular RNAs (circRNAs), one type of non-coding RNA, were initially misinterpreted as nonfunctional products of pre-mRNA mis-splicing. Currently, circRNAs have been proven to manipulate the functions of diverse molecules, including non-coding RNAs, mRNAs, DNAs and proteins, to regulate cell activities in physiology and pathology. Accumulating evidence indicates that circRNAs play critical roles in tumor genesis, development, and sensitivity to radiation and chemotherapy. Radiotherapy and chemotherapy are two primary types of intervention for most cancers, but their therapeutic efficacies are usually retarded by intrinsic and acquired resistance. Thus, it is urgent to develop new strategies to improve therapeutic responses. To achieve this, clarification of the underlying mechanisms affecting therapeutic responses in cancer is needed. This review summarizes recent progress and mechanisms of circRNAs in cancer resistance to radiation and chemotherapy, and it discusses the limitations of available knowledge and potential future directions.
Collapse
Affiliation(s)
- Chaochu Cui
- Henan Key Laboratory of Medical Tissue Regeneration, College of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
| | - Jianbo Yang
- School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Xiao Li
- Henan Key Laboratory of Medical Tissue Regeneration, College of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
| | - Dongling Liu
- Henan Key Laboratory of Medical Tissue Regeneration, College of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
| | - Liwu Fu
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.
| | - Xianwei Wang
- Henan Key Laboratory of Medical Tissue Regeneration, College of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China.
| |
Collapse
|