101
|
Zhao Y, Quan Y, Lei T, Fan L, Ge X, Hu S. The Role of Inflammasome NLPR3 in the Development and Therapy of Periodontitis. Int J Med Sci 2022; 19:1603-1614. [PMID: 36185327 PMCID: PMC9515687 DOI: 10.7150/ijms.74575] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 09/07/2022] [Indexed: 11/05/2022] Open
Abstract
Periodontitis is a chronic inflammatory disease that affects tooth-supporting tissues and even leads to tooth loss. NLRP3 inflammasomes play a critical role in periodontitis pathogenesis. Aberrant activation or overexpression of NLRP3 inflammasomes in cellular players, including osteoclasts, osteoblasts, periodontal ligament fibroblasts, and leukocytes often contributes to cellular dysfunction and environment abnormality, thus resulting in the disorganization of ligament and alveolar bone. In this review, we mainly focus on the negative regulation of NLRP3 inflammasome in periodontitis and highlight the importance of NLRP3 inflammasome as a candidate therapeutic target in periodontitis treatment. Then we elucidate the development status of NLRP3 inflammasome inhibitors and show their application potential for treating periodontitis. In summary, this review reveals the recent progress and perspectives of NLRP3 inflammasome and the therapeutic potential of NLRP3 inflammasome inhibitors in periodontitis.
Collapse
Affiliation(s)
- Ying Zhao
- Department of Anesthesiology & Perioperative Medicine, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, Shaanxi 710100, China
| | - Yue Quan
- Department of Stomatology, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, Shaanxi 710100, China
| | - Ting Lei
- Department of Anesthesiology & Perioperative Medicine, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, Shaanxi 710100, China
| | - Liumeizi Fan
- Department of Anesthesiology & Perioperative Medicine, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, Shaanxi 710100, China
| | - Xin Ge
- Department of Stomatology, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, Shaanxi 710100, China
| | - Sheng Hu
- Department of Anesthesiology & Perioperative Medicine, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, Shaanxi 710100, China
| |
Collapse
|
102
|
Gu Y, Zhou G, Zhou F, Li Y, Wu Q, He H, Zhang Y, Ma C, Ding J, Hua K. Gut and Vaginal Microbiomes in PCOS: Implications for Women's Health. Front Endocrinol (Lausanne) 2022; 13:808508. [PMID: 35282446 PMCID: PMC8905243 DOI: 10.3389/fendo.2022.808508] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 02/01/2022] [Indexed: 12/12/2022] Open
Abstract
PCOS is defined as a kind of endocrine and metabolic disorder which affects females at reproductive ages, is becoming much more common, nowadays. Microbiomes are known as microorganisms that inhabit the body to play a vital role in human health. In recent years, several basic and clinical studies have tried to investigate the correlation between the reproductive health/disorder and microbiomes (gut microbiomes and vaginal microbiomes). However, the mechanism is still unclear. In this review, we reviewed the relationship between PCOS and microbiomes, including gut/vaginal microbiomes compositions in PCOS, mechanism of microbiomes and PCOS, and then collectively focused on the recent findings on the influence of microbiomes on the novel insight regarding the therapeutic strategies for PCOS in the future clinical practice.
Collapse
Affiliation(s)
- Yuanyuan Gu
- Changning Maternity and Infant Health Hospital, East China Normal University, Shanghai, China
- Department of Gynecology, The Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Guannan Zhou
- Department of Gynecology, The Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Department of Gynecology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Fangyue Zhou
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yao Li
- Department of Urology, Gongli Hospital of Shanghai Pudong New Area, Shanghai, China
| | - Qiongwei Wu
- Changning Maternity and Infant Health Hospital, East China Normal University, Shanghai, China
| | - Hongyu He
- Department of Intensive Care Unit, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yi Zhang
- Changning Maternity and Infant Health Hospital, East China Normal University, Shanghai, China
| | - Chengbin Ma
- Changning Maternity and Infant Health Hospital, East China Normal University, Shanghai, China
- *Correspondence: Chengbin Ma, ; Jingxin Ding, ; Keqin Hua,
| | - Jingxin Ding
- Department of Gynecology, The Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Department of Gynecology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
- *Correspondence: Chengbin Ma, ; Jingxin Ding, ; Keqin Hua,
| | - Keqin Hua
- Department of Gynecology, The Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Department of Gynecology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
- *Correspondence: Chengbin Ma, ; Jingxin Ding, ; Keqin Hua,
| |
Collapse
|
103
|
Radisavljevic N, Cirstea M, Bauer K, Lo C, Metcalfe-Roach A, Bozorgmehr T, Bar-Yoseph H, Brett Finlay B. Effects of Gut Microbiota Alterations on Motor, Gastrointestinal, and Behavioral Phenotype in a Mouse Model of Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2022; 12:1479-1495. [PMID: 35599496 DOI: 10.3233/jpd-223165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
BACKGROUND Parkinson's disease (PD) is a multi-system disorder consisting of not only classic motor symptoms but also a variety of non-motor symptoms including gastrointestinal (GI) dysfunction and mood disorders. The gut microbiota has been suggested to play a role in modulating PD motor and non-motor features, although the causality and mechanisms behind these proposed interactions remains largely understudied. OBJECTIVE In this study, we aimed to provide in-depth characterization of an established mouse model of PD (transgenic (TG) SNCA A53T) and experimentally address how changes to the gut microbiota impact the PD-like phenotype. METHODS We profiled the PD-like phenotype of transgenic mice through a panel of motor, GI, and behavioral tests. We then investigated how antibiotic treatment or gut microbial community transfer (via cohousing with wild-type mice) impacted the PD-like phenotype. RESULTS We found that this mouse model demonstrated early (6 weeks of age) motor symptoms when compared to a wild-type control mouse strain. Transgenic mice also exhibited early GI dysfunction, as well as behavioral alterations, including reduced anxiety-like behavior, and increased depression-like and apathy-like behavior. Compared to wild-type mice, the transgenic fecal microbiota was less diverse and compositionally distinct. Interestingly, drastic alterations to the gut microbiota, through antibiotic treatment or cohousing with wild-type mice, had a minimal effect on the motor, GI, and behavioral phenotype of transgenic mice. CONCLUSION We concluded that this mouse model effectively recapitulates motor and non-motor features of PD; however, the gut microbiota appears to exhibit a minor impact on the pathophysiology of this PD model.
Collapse
Affiliation(s)
- Nina Radisavljevic
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Mihai Cirstea
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Kylynda Bauer
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Christine Lo
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Avril Metcalfe-Roach
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Tahereh Bozorgmehr
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Haggai Bar-Yoseph
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - B Brett Finlay
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
104
|
Yang YY, Zhang D, Ma LY, Hou YF, Bi YF, Xu Y, Xu M, Zhao HY, Sun LH, Tao B, Liu JM. Association of famine exposure and the serum calcium level in healthy Chinese adults. Front Endocrinol (Lausanne) 2022; 13:937380. [PMID: 36017320 PMCID: PMC9395633 DOI: 10.3389/fendo.2022.937380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE Famine exposure and higher serum calcium levels are related with increased risk of many disorders, including Alzheimer's disease, atherosclerosis, diabetes, and osteoporosis. Whether famine exposure has any effect on serum calcium level is unclear. Besides, the normal reference range of serum calcium is variable among different populations. Our aims are 1) determining the reference interval of calcium in Chinese adults; 2) exploring its relationship with famine exposure. METHODS Data in this study was from a cross-sectional study of the epidemiologic investigation carried out during March-August 2010 in Jiading district, Shanghai, China. Nine thousand and two hundred eleven participants with estimated glomerular filtration rate (eGFR) ≥60ml/min/1.73m2 were involved to calculate reference interval of total calcium from 10569 participants aged 40 years or older. The analysis of famine exposure was conducted in 9315 participants with complete serum biochemical data and birth year information. RESULTS After rejecting outliers, the 95% reference interval of total serum calcium was 2.122~2.518 mmol/L. The equation of albumin-adjusted calcium was: Total calcium + 0.019* (49-Albumin), with a 95% reference interval of 2.151~2.500 mmol/L. Compared to the age-balanced control group, there was an increased risk of being at the upper quartile of total serum calcium (OR=1.350, 95%CI=1.199-1.521) and albumin-adjusted calcium (OR=1.381, 95%CI=1.234-1.544) in subjects experienced famine exposure in childhood. Females were more vulnerable to this impact (OR= 1.621, 95%CI= 1.396-1.883 for total serum calcium; OR=1.722, 95%CI= 1.497-1.980 for albumin-adjusted calcium). CONCLUSIONS Famine exposure is an important environmental factor associated with the changes in circulating calcium concentrations, the newly established serum calcium normal range and albumin-adjusted calcium equation, together with the history of childhood famine exposure, might be useful in identifying subjects with abnormal calcium homeostasis and related diseases, especially in females.
Collapse
Affiliation(s)
- Yu-ying Yang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Deng Zhang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ling-ying Ma
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan-fang Hou
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu-fang Bi
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Xu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Xu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong-yan Zhao
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li-hao Sun
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Li-hao Sun, ; Bei Tao, ; Jian-min Liu,
| | - Bei Tao
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Li-hao Sun, ; Bei Tao, ; Jian-min Liu,
| | - Jian-min Liu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Li-hao Sun, ; Bei Tao, ; Jian-min Liu,
| |
Collapse
|
105
|
Komanduri M, Savage K, Lea A, McPhee G, Nolidin K, Deleuil S, Stough C, Gondalia S. The Relationship between Gut Microbiome and Cognition in Older Australians. Nutrients 2021; 14:nu14010064. [PMID: 35010939 PMCID: PMC8746300 DOI: 10.3390/nu14010064] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 12/20/2022] Open
Abstract
Ageing is associated with changes in biological processes, including reductions in cognitive functions and gut microbiome diversity. However, not much is known about the relationship between cognition and the microbiome with increasing age. Therefore, we examined the relationship between the gut microbiome and cognition in 69 healthy participants aged 60–75 years. The gut microbiome was analysed with the 16S rRNA sequencing method. The cognitive assessment included the Cognitive Drug Research computerised assessment battery, which produced five cognitive factors corresponding to ‘Quality of Episodic Secondary Memory’, ‘Quality of Working Memory’, ‘Continuity of Attention, ‘Speed of Memory’ and ‘Power of Concentration’. Multiple linear regression showed that the bacterial family Carnobacteriaceae explained 9% of the variance in predicting Quality of Episodic Secondary Memory. Alcaligenaceae and Clostridiaceae explained 15% of the variance in predicting Quality of Working Memory; Bacteroidaceae, Barnesiellaceae, Rikenellaceae and Gemellaceae explained 11% of the variance in Power of Concentration. The present study provides specific evidence of a relationship between specific families of bacteria and different domains of cognition.
Collapse
Affiliation(s)
- Mrudhula Komanduri
- Centre for Human Psychopharmacology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia; (K.S.); (A.L.); (G.M.); (K.N.); (S.D.); (C.S.); (S.G.)
- Correspondence:
| | - Karen Savage
- Centre for Human Psychopharmacology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia; (K.S.); (A.L.); (G.M.); (K.N.); (S.D.); (C.S.); (S.G.)
| | - Ana Lea
- Centre for Human Psychopharmacology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia; (K.S.); (A.L.); (G.M.); (K.N.); (S.D.); (C.S.); (S.G.)
| | - Grace McPhee
- Centre for Human Psychopharmacology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia; (K.S.); (A.L.); (G.M.); (K.N.); (S.D.); (C.S.); (S.G.)
| | - Karen Nolidin
- Centre for Human Psychopharmacology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia; (K.S.); (A.L.); (G.M.); (K.N.); (S.D.); (C.S.); (S.G.)
| | - Saurenne Deleuil
- Centre for Human Psychopharmacology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia; (K.S.); (A.L.); (G.M.); (K.N.); (S.D.); (C.S.); (S.G.)
| | - Con Stough
- Centre for Human Psychopharmacology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia; (K.S.); (A.L.); (G.M.); (K.N.); (S.D.); (C.S.); (S.G.)
| | - Shakuntla Gondalia
- Centre for Human Psychopharmacology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia; (K.S.); (A.L.); (G.M.); (K.N.); (S.D.); (C.S.); (S.G.)
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organization, Adelaide, SA 5000, Australia
- Precision Health Future Science Platform, Commonwealth Scientific and Industrial Research Organisation, Adelaide, SA 5000, Australia
| |
Collapse
|
106
|
Berger JM, Karsenty G. Osteocalcin and the Physiology of Danger. FEBS Lett 2021; 596:665-680. [PMID: 34913486 PMCID: PMC9020278 DOI: 10.1002/1873-3468.14259] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/29/2021] [Accepted: 12/07/2021] [Indexed: 12/02/2022]
Abstract
Bone biology has long been driven by the question as to what molecules affect cell differentiation or the functions of bone. Exploring this issue has been an extraordinarily powerful way to improve our knowledge of bone development and physiology. More recently, a second question has emerged: does bone have other functions besides making bone? Addressing this conundrum revealed that the bone-derived hormone osteocalcin affects a surprisingly large number of organs and physiological processes, including acute stress response. This review will focus on this emerging aspect of bone biology taking osteocalcin as a case study and will show how classical and endocrine functions of bone help to define a new functional identity for this tissue.
Collapse
Affiliation(s)
- Julian Meyer Berger
- Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University, NY, 10032, USA
| | - Gerard Karsenty
- Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University, NY, 10032, USA
| |
Collapse
|
107
|
Zhang Y, Xu S, Qian Y, He X, Mo C, Yang X, Xiao Q. Sodium butyrate attenuates rotenone-induced toxicity by activation of autophagy through epigenetically regulating PGC-1α expression in PC12 cells. Brain Res 2021; 1776:147749. [PMID: 34896331 DOI: 10.1016/j.brainres.2021.147749] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/06/2021] [Accepted: 12/06/2021] [Indexed: 02/06/2023]
Abstract
Short-chain fatty acids (SCFAs) are considered the key molecular link between gut microbiota and pathogenesis of Parkinson's disease (PD). However, the role of SCFAs in PD pathogenesis is controversial. Autophagy is important for the degradation of α-synuclein, which is critical to the development of PD. However, whether SCFAs can regulate autophagy in PD remains unknown. We aimed to investigate the role of SCFAs and explore the potential mechanisms in rat dopaminergic PC12 cells treated with rotenone. Expression levels of α-synuclein, peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) and microtubule-associated protein 1 light chain 3 beta (LC3B)-II were detected by Western blot. Histone acetylation levels at PGC-1α promoter region were measured using chromatin immunoprecipitation-quantitative polymerase chain reaction (ChIP-qPCR). Among the three SCFAs, sodium butyrate (NaB) protected against rotenone-induced toxicity. NaB activated autophagy pathway and reduced rotenone-induced α-synuclein expression through the activation of autophagy. Notably, NaB activated autophagy pathway through upregulating PGC-1α expression. More importantly, NaB promoted the levels of histone 3 lysine 9 acetylation (H3K9Ac) and histone 3 lysine 27 acetylation (H3K27Ac) at PGC-1α promoter region, indicating that NaB promotes PGC-1α expression via histone acetylation modification. In conclusion, NaB can protect against rotenone-induced toxicity through activation of the autophagy pathway by upregulating PGC-1α expression via epigenetic modification.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Er Road, Shanghai 200025, China.
| | - Shaoqing Xu
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Er Road, Shanghai 200025, China.
| | - Yiwei Qian
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Er Road, Shanghai 200025, China.
| | - Xiaoqin He
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Er Road, Shanghai 200025, China.
| | - Chengjun Mo
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Er Road, Shanghai 200025, China.
| | - Xiaodong Yang
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Er Road, Shanghai 200025, China.
| | - Qin Xiao
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Er Road, Shanghai 200025, China.
| |
Collapse
|
108
|
Park J, Kim CH. Regulation of common neurological disorders by gut microbial metabolites. Exp Mol Med 2021; 53:1821-1833. [PMID: 34857900 PMCID: PMC8741890 DOI: 10.1038/s12276-021-00703-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 09/06/2021] [Accepted: 09/23/2021] [Indexed: 12/13/2022] Open
Abstract
The gut is connected to the CNS by immunological mediators, lymphocytes, neurotransmitters, microbes and microbial metabolites. A mounting body of evidence indicates that the microbiome exerts significant effects on immune cells and CNS cells. These effects frequently result in the suppression or exacerbation of inflammatory responses, the latter of which can lead to severe tissue damage, altered synapse formation and disrupted maintenance of the CNS. Herein, we review recent progress in research on the microbial regulation of CNS diseases with a focus on major gut microbial metabolites, such as short-chain fatty acids, tryptophan metabolites, and secondary bile acids. Pathological changes in the CNS are associated with dysbiosis and altered levels of microbial metabolites, which can further exacerbate various neurological disorders. The cellular and molecular mechanisms by which these gut microbial metabolites regulate inflammatory diseases in the CNS are discussed. We highlight the similarities and differences in the impact on four major CNS diseases, i.e., multiple sclerosis, Parkinson's disease, Alzheimer's disease, and autism spectrum disorder, to identify common cellular and molecular networks governing the regulation of cellular constituents and pathogenesis in the CNS by microbial metabolites.
Collapse
Affiliation(s)
- Jeongho Park
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Chang H Kim
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI, 48109, USA.
- Mary H. Weiser Food Allergy Center, Center for Gastrointestinal Research, and Rogel Center for Cancer Research, University of Michigan School of Medicine, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
109
|
Zhao Z, Ning J, Bao XQ, Shang M, Ma J, Li G, Zhang D. Fecal microbiota transplantation protects rotenone-induced Parkinson's disease mice via suppressing inflammation mediated by the lipopolysaccharide-TLR4 signaling pathway through the microbiota-gut-brain axis. MICROBIOME 2021; 9:226. [PMID: 34784980 PMCID: PMC8597301 DOI: 10.1186/s40168-021-01107-9] [Citation(s) in RCA: 248] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/02/2021] [Indexed: 05/10/2023]
Abstract
BACKGROUND Parkinson's disease (PD) is a prevalent neurodegenerative disorder, displaying not only well-known motor deficits but also gastrointestinal dysfunctions. Consistently, it has been increasingly evident that gut microbiota affects the communication between the gut and the brain in PD pathogenesis, known as the microbiota-gut-brain axis. As an approach to re-establishing a normal microbiota community, fecal microbiota transplantation (FMT) has exerted beneficial effects on PD in recent studies. Here, in this study, we established a chronic rotenone-induced PD mouse model to evaluate the protective effects of FMT treatment on PD and to explore the underlying mechanisms, which also proves the involvement of gut microbiota dysbiosis in PD pathogenesis via the microbiota-gut-brain axis. RESULTS We demonstrated that gut microbiota dysbiosis induced by rotenone administration caused gastrointestinal function impairment and poor behavioral performances in the PD mice. Moreover, 16S RNA sequencing identified the increase of bacterial genera Akkermansia and Desulfovibrio in fecal samples of rotenone-induced mice. By contrast, FMT treatment remarkably restored the gut microbial community, thus ameliorating the gastrointestinal dysfunctions and the motor deficits of the PD mice. Further experiments revealed that FMT administration alleviated intestinal inflammation and barrier destruction, thus reducing the levels of systemic inflammation. Subsequently, FMT treatment attenuated blood-brain barrier (BBB) impairment and suppressed neuroinflammation in the substantia nigra (SN), which further decreased the damage of dopaminergic neurons. Additional mechanistic investigation discovered that FMT treatment reduced lipopolysaccharide (LPS) levels in the colon, the serum, and the SN, thereafter suppressing the TLR4/MyD88/NF-κB signaling pathway and its downstream pro-inflammatory products both in the SN and the colon. CONCLUSIONS Our current study demonstrates that FMT treatment can correct the gut microbiota dysbiosis and ameliorate the rotenone-induced PD mouse model, in which suppression of the inflammation mediated by the LPS-TLR4 signaling pathway both in the gut and the brain possibly plays a significant role. Further, we prove that rotenone-induced microbiota dysbiosis is involved in the genesis of PD via the microbiota-gut-brain axis. Video abstract.
Collapse
Affiliation(s)
- Zhe Zhao
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050 China
| | - Jingwen Ning
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050 China
| | - Xiu-qi Bao
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050 China
| | - Meiyu Shang
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050 China
| | - Jingwei Ma
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050 China
| | - Gen Li
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050 China
| | - Dan Zhang
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050 China
| |
Collapse
|
110
|
Takahashi E, Ono E. Differential effects of different diets on depressive-like phenotypes in C57BL/JJmsSLc mice. Physiol Behav 2021; 243:113623. [PMID: 34653499 DOI: 10.1016/j.physbeh.2021.113623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/22/2021] [Accepted: 10/11/2021] [Indexed: 11/29/2022]
Abstract
Identical mouse models tested using the same protocols in different laboratories can produce inconsistent results. Indeed, little information is available regarding suitable diets for mouse models of disease in the field of neuroscience. Thus, neuroscientists often select experimental diets based on personal judgment. Recent studies have reported a strong interaction between depression and gut microbiota. Furthermore, diets can impact the composition of the microbiota. To confirm whether diet influences the phenotype and gut microbiota of depressive mice, we examined the effects of two widely used commercial diets, non-purified (CRF-1) and semi-purified (AIN-93 G) commercial diets on behavior, plasma levels of corticosterone, and cecum microbiota at 1 and 5 weeks after restraint in repeatedly restrained mice. Exposure to repeated stress induced similar depression-like phenotypes 1 week after stress in CRF-1 and AIN-93 G fed mice. However, mice fed the AIN-93 G diet showed greater vulnerability than the others 5 weeks after restraint. The Firmicutes to Bacteroidetes ratio and α-diversity were lower in the cecum at 5 weeks after stress in mice fed the AIN-93 G diet compared to 1 week after stress in mice fed the AIN-93 G diet. These data suggest that diet type affects stress sensitivity via different gut microbiota and that diet selection is important in neuroscience research and data reproducibility.
Collapse
Affiliation(s)
- Eiki Takahashi
- Department of Biomedicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | - Etsuro Ono
- Department of Biomedicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
111
|
Shan J, Qu Y, Wang S, Wei Y, Chang L, Ma L, Hashimoto K. Regulation of neurotoxicity in the striatum and colon of MPTP-induced Parkinson's disease mice by gut microbiome. Brain Res Bull 2021; 177:103-110. [PMID: 34560239 DOI: 10.1016/j.brainresbull.2021.09.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/03/2021] [Accepted: 09/11/2021] [Indexed: 12/21/2022]
Abstract
Increasing evidence suggests the role of gut-microbiota-brain axis in the pathogenesis of Parkinson's disease (PD). The objective of this study was to examine whether repeated administration of MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) can influence the neurotoxicity in the striatum and colon, and the composition of gut microbiota and short-chain fatty acids (SCFAs) in feces of adult mice. MPTP caused the reduction of dopamine transporter (DAT) and tyrosine hydroxylase (TH) in the striatum, and increases in phosphorylated α-synuclein (p-α-Syn) in the striatum and colon. There was a negative correlation between the expression of TH in the striatum and the expression of p-α-Syn in the colon, suggesting a role of gut-brain communication. MPTP caused abnormalities in the α- and β-diversity of gut microbiota in the mice. Furthermore, the relative abundance of the genus Faecalicatena in the MPTP-treated group was significantly lower than that of control group. Interestingly, there was a positive correlation between the genus Faecalicatena and the expression of TH in the striatum. Moreover, MPTP did not alter the levels of SCFAs in feces samples. However, there was a positive correlation between the relative abundance of the genus Faecalicatena and propionic acid. The data suggest that MPTP-induced increases in colonic p-α-Syn expression might be associated with dopaminergic neurotoxicity in the striatum via gut-microbiota-brain axis.
Collapse
Affiliation(s)
- Jiajing Shan
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Youge Qu
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Siming Wang
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Yan Wei
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Lijia Chang
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Li Ma
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan.
| |
Collapse
|
112
|
Fonseca Cabral G, Schaan AP, Cavalcante GC, Sena-dos-Santos C, de Souza TP, Souza Port’s NM, dos Santos Pinheiro JA, Ribeiro-dos-Santos Â, Vidal AF. Nuclear and Mitochondrial Genome, Epigenome and Gut Microbiome: Emerging Molecular Biomarkers for Parkinson's Disease. Int J Mol Sci 2021; 22:9839. [PMID: 34576000 PMCID: PMC8471599 DOI: 10.3390/ijms22189839] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/23/2021] [Accepted: 06/28/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Parkinson's disease (PD) is currently the second most common neurodegenerative disorder, burdening about 10 million elderly individuals worldwide. The multifactorial nature of PD poses a difficult obstacle for understanding the mechanisms involved in its onset and progression. Currently, diagnosis depends on the appearance of clinical signs, some of which are shared among various neurologic disorders, hindering early diagnosis. There are no effective tools to prevent PD onset, detect the disease in early stages or accurately report the risk of disease progression. Hence, there is an increasing demand for biomarkers that may identify disease onset and progression, as treatment-based medicine may not be the best approach for PD. Over the last few decades, the search for molecular markers to predict susceptibility, aid in accurate diagnosis and evaluate the progress of PD have intensified, but strategies aimed to improve individualized patient care have not yet been established. CONCLUSIONS Genomic variation, regulation by epigenomic mechanisms, as well as the influence of the host gut microbiome seem to have a crucial role in the onset and progress of PD, thus are considered potential biomarkers. As such, the human nuclear and mitochondrial genome, epigenome, and the host gut microbiome might be the key elements to the rise of personalized medicine for PD patients.
Collapse
Affiliation(s)
- Gleyce Fonseca Cabral
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, R. Augusto Correa, Belém 66075-110, Brazil; (G.F.C.); (A.P.S.); (G.C.C.); (C.S.-d.-S.); (T.P.d.S.); (J.A.d.S.P.)
| | - Ana Paula Schaan
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, R. Augusto Correa, Belém 66075-110, Brazil; (G.F.C.); (A.P.S.); (G.C.C.); (C.S.-d.-S.); (T.P.d.S.); (J.A.d.S.P.)
| | - Giovanna C. Cavalcante
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, R. Augusto Correa, Belém 66075-110, Brazil; (G.F.C.); (A.P.S.); (G.C.C.); (C.S.-d.-S.); (T.P.d.S.); (J.A.d.S.P.)
| | - Camille Sena-dos-Santos
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, R. Augusto Correa, Belém 66075-110, Brazil; (G.F.C.); (A.P.S.); (G.C.C.); (C.S.-d.-S.); (T.P.d.S.); (J.A.d.S.P.)
| | - Tatiane Piedade de Souza
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, R. Augusto Correa, Belém 66075-110, Brazil; (G.F.C.); (A.P.S.); (G.C.C.); (C.S.-d.-S.); (T.P.d.S.); (J.A.d.S.P.)
| | - Natacha M. Souza Port’s
- Laboratório de Neurofarmacologia Molecular, Universidade de São Paulo, São Paulo 05508-000, Brazil;
| | - Jhully Azevedo dos Santos Pinheiro
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, R. Augusto Correa, Belém 66075-110, Brazil; (G.F.C.); (A.P.S.); (G.C.C.); (C.S.-d.-S.); (T.P.d.S.); (J.A.d.S.P.)
| | - Ândrea Ribeiro-dos-Santos
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, R. Augusto Correa, Belém 66075-110, Brazil; (G.F.C.); (A.P.S.); (G.C.C.); (C.S.-d.-S.); (T.P.d.S.); (J.A.d.S.P.)
- Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará–R. dos Mundurucus, Belém 66073-000, Brazil
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Pará, R. Augusto Correa, Belém 66075-110, Brazil
| | - Amanda F. Vidal
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, R. Augusto Correa, Belém 66075-110, Brazil; (G.F.C.); (A.P.S.); (G.C.C.); (C.S.-d.-S.); (T.P.d.S.); (J.A.d.S.P.)
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Pará, R. Augusto Correa, Belém 66075-110, Brazil
- ITVDS—Instituto Tecnológico Vale Desenvolvimento Sustentável–R. Boaventura da Silva, Belém 66055-090, Brazil
| |
Collapse
|
113
|
Lei Q, Wu T, Wu J, Hu X, Guan Y, Wang Y, Yan J, Shi G. Roles of α‑synuclein in gastrointestinal microbiome dysbiosis‑related Parkinson's disease progression (Review). Mol Med Rep 2021; 24:734. [PMID: 34414447 PMCID: PMC8404091 DOI: 10.3892/mmr.2021.12374] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 07/16/2021] [Indexed: 02/07/2023] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease amongst the middle-aged and elderly populations. Several studies have confirmed that the microbiota-gut-brain axis (MGBA) serves a key role in the pathogenesis of PD. Changes to the gastrointestinal microbiome (GM) cause misfolding and abnormal aggregation of α-synuclein (α-syn) in the intestine. Abnormal α-syn is not eliminated via physiological mechanisms and is transported into the central nervous system (CNS) via the vagus nerve. The abnormal levels of α-syn aggregate in the substantia nigra pars compacta, not only leading to the formation of eosinophilic Lewis Bodies in the cytoplasm and mitochondrial dysfunction in dopaminergic (DA) neurons, but also leading to the stimulation of an inflammatory response in the microglia. These pathological changes result in an increase in oxidative stress (OS), which triggers nerve cell apoptosis, a characteristic of PD. This increase in OS further oxidizes and intensifies abnormal aggregation of α-syn, eventually forming a positive feedback loop. The present review discusses the abnormal accumulation of α-syn in the intestine caused by the GM changes and the increased levels of α-syn transport to the CNS via the MGBA, resulting in the loss of DA neurons and an increase in the inflammatory response of microglial cells in the brain of patients with PD. In addition, relevant clinical therapeutic strategies for improving the GM and reducing α-syn accumulation to relieve the symptoms and progression of PD are described.
Collapse
Affiliation(s)
- Qingchun Lei
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Tingting Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Jin Wu
- Department of Neurosurgery, Puer People's Hospital, Pu'er, Yunnan 665000, P.R. China
| | - Xiaogang Hu
- Department of Neurosurgery, Puer People's Hospital, Pu'er, Yunnan 665000, P.R. China
| | - Yingxia Guan
- Department of Vasculocardiology, The Affiliated Hospital of Yunnan University, Kunming, Yunnan 650021, P.R. China
| | - Ying Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Jinyuan Yan
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Guolin Shi
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| |
Collapse
|
114
|
Li TT, Huang ZR, Jia RB, Lv XC, Zhao C, Liu B. Spirulina platensis polysaccharides attenuate lipid and carbohydrate metabolism disorder in high-sucrose and high-fat diet-fed rats in association with intestinal microbiota. Food Res Int 2021; 147:110530. [PMID: 34399508 DOI: 10.1016/j.foodres.2021.110530] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 06/07/2021] [Accepted: 06/15/2021] [Indexed: 02/08/2023]
Abstract
This study aimed to evaluate the possibility that Spirulina platensis crude polysaccharides may ameliorate the lipid and carbohydrate metabolism disorder, including obesity, hyperlipidemia, hyperglycemia, hepatic steatosis, and gut dysbiosis. The results showed Spirulina platensis crude polysaccharides could improve body weight, serum/liver lipid and carbohydrate indexes, and liver antioxidant parameters in high-sucrose and high-fat diet (HFD)-fed rats, which were accompanied by regulated liver mRNA expressions involved in lipid and carbohydrate metabolism disorder. In addition, SPLP intervention significantly decreased cecal level of propionic acid in HFD-fed rats. Notably, the SPLP could alter the relative abundance of Firmicutes, Bacteroides, Proteobacteria, and Actinobacteria at phylum levels. Based on Spearman's rank correlation coefficient, serum/liver lipid and carbohydrate profiles were found significantly positively correlated with genera Romboutsia, Allobaculum, Blautia, Phascolarctobacterium, Bifidobacterium, Coprococcus, Turicibacter, Erysipelotrichaceae_unclassified, Olsenella, Escherichia/Shigella, Coprobacillus, Lachnospiracea incertae, and Lactobacillus, but strongly negatively correlated with genera Atopostipes, Flavonifractor, Porphyromonadaceae_unclassified, Barnesiella, Oscillibacter, Paraprevotella, Jeotgalicoccus, Corynebacterium, Alloprevotella and Bacteroides. It was concluded that oral administration of SPLP could remarkably ameliorate the lipid and carbohydrate metabolism disorder and significantly modulate the intestinal microbiota in HFD-fed rats.
Collapse
Affiliation(s)
- Tian-Tian Li
- Engineering Research Centre of Fujian Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zi-Rui Huang
- Engineering Research Centre of Fujian Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Rui-Bo Jia
- Engineering Research Centre of Fujian Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xu-Cong Lv
- Engineering Research Centre of Fujian Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Institute of Food Science and Technology, College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian 350108, China.
| | - Chao Zhao
- Engineering Research Centre of Fujian Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Bin Liu
- Engineering Research Centre of Fujian Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
115
|
He X, Qian Y, Xu S, Zhang Y, Mo C, Guo W, Yang X, Xiao Q. Plasma Short-Chain Fatty Acids Differences in Multiple System Atrophy from Parkinson's Disease. JOURNAL OF PARKINSONS DISEASE 2021; 11:1167-1176. [PMID: 33935107 DOI: 10.3233/jpd-212604] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Multiple system atrophy (MSA) and Parkinson's disease (PD) have overlapping symptoms, making diagnosis challenging. Short-chain fatty acids (SCFAs) are produced exclusively by gut microbiota and were reduced in feces of MSA patients. However, plasma SCFA concentrations in MSA patients have not been investigated. OBJECTIVE We aimed to investigate the plasma SCFAs in MSA patients and to identify the potential differential diagnostic ability. METHODS Plasma SCFA were measured in 25 MSA patients, 46 healthy controls, and 46 PD patients using gas chromatography-mass spectrometry. Demographic and clinical characteristics of the participants were evaluated. RESULTS Acetic acid concentration was lower in MSA patients than in healthy controls. Acetic acid and propionic acid concentrations were lower in MSA and MSA with predominant parkinsonism (MSA-P) patients than in PD patients. A receiver operating characteristic curve (ROC) analysis revealed reduced acetic acid concentration discriminated MSA patients from healthy controls with 76% specificity but only 57% sensitivity and an area under the curve (AUC) of 0.68 (95% confidence interval (CI): 0.55-0.81). Combined acetic acid and propionic acid concentrations discriminated MSA patients from PD patients with an AUC of 0.82 (95% CI: 0.71-0.93), 84% specificity and 76% sensitivity. Especially, with combined acetic acid and propionic acid concentrations, MSA-P patients were separated from PD patients with an AUC of 0.89 (95% CI: 0.80-0.97), 91% specificity and 80% sensitivity. CONCLUSION Plasma SCFAs were decreased in MSA patients. The combined acetic acid and propionic acid concentrations may be a potential biomarker for differentiating MSA patients from PD patients.
Collapse
Affiliation(s)
- Xiaoqin He
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Yiwei Qian
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Shaoqing Xu
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Yi Zhang
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Chengjun Mo
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Wentian Guo
- Clinical Research Unit, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Xiaodong Yang
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Qin Xiao
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| |
Collapse
|
116
|
Interactions between the microbiota and enteric nervous system during gut-brain disorders. Neuropharmacology 2021; 197:108721. [PMID: 34274348 DOI: 10.1016/j.neuropharm.2021.108721] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/13/2021] [Accepted: 07/13/2021] [Indexed: 02/08/2023]
Abstract
For the last 20 years, researchers have focused their intention on the impact of gut microbiota in healthy and pathological conditions. This year (2021), more than 25,000 articles can be retrieved from PubMed with the keywords "gut microbiota and physiology", showing the constant progress and impact of gut microbes in scientific life. As a result, numerous therapeutic perspectives have been proposed to modulate the gut microbiota composition and/or bioactive factors released from microbes to restore our body functions. Currently, the gut is considered a primary site for the development of pathologies that modify brain functions such as neurodegenerative (Parkinson's, Alzheimer's, etc.) and metabolic (type 2 diabetes, obesity, etc.) disorders. Deciphering the mode of interaction between microbiota and the brain is a real original option to prevent (and maybe treat in the future) the establishment of gut-brain pathologies. The objective of this review is to describe recent scientific elements that explore the communication between gut microbiota and the brain by focusing our interest on the enteric nervous system (ENS) as an intermediate partner. The ENS, which is known as the "second brain", could be under the direct or indirect influence of the gut microbiota and its released factors (short-chain fatty acids, neurotransmitters, gaseous factors, etc.). Thus, in addition to their actions on tissue (adipose tissue, liver, brain, etc.), microbes can have an impact on local ENS activity. This potential modification of ENS function has global repercussions in the whole body via the gut-brain axis and represents a new therapeutic strategy.
Collapse
|
117
|
Zhu X, Li B, Lou P, Dai T, Chen Y, Zhuge A, Yuan Y, Li L. The Relationship Between the Gut Microbiome and Neurodegenerative Diseases. Neurosci Bull 2021; 37:1510-1522. [PMID: 34216356 PMCID: PMC8490573 DOI: 10.1007/s12264-021-00730-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/25/2021] [Indexed: 02/07/2023] Open
Abstract
Many recent studies have shown that the gut microbiome plays important roles in human physiology and pathology. Also, microbiome-based therapies have been used to improve health status and treat diseases. In addition, aging and neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease, have become topics of intense interest in biomedical research. Several researchers have explored the links between these topics to study the potential pathogenic or therapeutic effects of intestinal microbiota in disease. But the exact relationship between neurodegenerative diseases and gut microbiota remains unclear. As technology advances, new techniques for studying the microbiome will be developed and refined, and the relationship between diseases and gut microbiota will be revealed. This article summarizes the known interactions between the gut microbiome and neurodegenerative diseases, highlighting assay techniques for the gut microbiome, and we also discuss the potential therapeutic role of microbiome-based therapies in diseases.
Collapse
Affiliation(s)
- Xueling Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.,Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Bo Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.,Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Pengcheng Lou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.,Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Tingting Dai
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.,Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yang Chen
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Aoxiang Zhuge
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.,Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yin Yuan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.,Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China. .,Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| |
Collapse
|
118
|
Chen Y, Xu J, Chen Y. Regulation of Neurotransmitters by the Gut Microbiota and Effects on Cognition in Neurological Disorders. Nutrients 2021; 13:nu13062099. [PMID: 34205336 PMCID: PMC8234057 DOI: 10.3390/nu13062099] [Citation(s) in RCA: 305] [Impact Index Per Article: 76.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 12/11/2022] Open
Abstract
Emerging evidence indicates that gut microbiota is important in the regulation of brain activity and cognitive functions. Microbes mediate communication among the metabolic, peripheral immune, and central nervous systems via the microbiota–gut–brain axis. However, it is not well understood how the gut microbiome and neurons in the brain mutually interact or how these interactions affect normal brain functioning and cognition. We summarize the mechanisms whereby the gut microbiota regulate the production, transportation, and functioning of neurotransmitters. We also discuss how microbiome dysbiosis affects cognitive function, especially in neurodegenerative diseases such as Alzheimer’s disease and Parkinson’s disease.
Collapse
Affiliation(s)
- Yijing Chen
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and Manipulation, Shenzhen Key Laboratory of Translational Research for Brain Diseases, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen–Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China; (Y.C.); (J.X.)
| | - Jinying Xu
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and Manipulation, Shenzhen Key Laboratory of Translational Research for Brain Diseases, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen–Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China; (Y.C.); (J.X.)
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Chen
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and Manipulation, Shenzhen Key Laboratory of Translational Research for Brain Diseases, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen–Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China; (Y.C.); (J.X.)
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen–Hong Kong Institute of Brain Science, Shenzhen Fundamental Research Institutions, Shenzhen 518057, China
- Correspondence: ; Tel.: +86-755-26925498
| |
Collapse
|