101
|
Nan F, Sun Y, Liang H, Zhou J, Ma X, Zhang D. Mannose: A Sweet Option in the Treatment of Cancer and Inflammation. Front Pharmacol 2022; 13:877543. [PMID: 35645798 PMCID: PMC9136145 DOI: 10.3389/fphar.2022.877543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/29/2022] [Indexed: 11/13/2022] Open
Abstract
As a natural sugar, mannose is a type of hexose that is abundant in many different types of fruits. Since mannose is rarely used for glycolysis in mammals, studies on the role of mannose have not attracted much attention. Glycosylation of specific proteins was thought to be the major function of mannose. Surprisingly, during the past few years, mannose was found to be effective in promoting immune tolerance and suppressing inflammatory diseases related to autoimmunity and allergy. Moreover importantly, mannose was also found to be efficient in suppressing tumors by suppressing glycolysis and enhancing chemotherapeutic agents. In this review, we summarize the recent studies of mannose on antitumor properties and anti-inflammatory characteristics. We emphasize that mannose could play a beneficial role in the treatment of a variety of diseases, including cancers and inflammatory diseases, and could be a novel therapeutic strategy that deserves continued evaluation.
Collapse
|
102
|
Alghamian Y, Soukkarieh C, Abbady AQ, Murad H. Investigation of role of CpG methylation in some epithelial mesenchymal transition gene in a chemoresistant ovarian cancer cell line. Sci Rep 2022; 12:7494. [PMID: 35523936 PMCID: PMC9076839 DOI: 10.1038/s41598-022-11634-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 04/20/2022] [Indexed: 11/24/2022] Open
Abstract
Ovarian cancer is one of the lethal gynecologic cancers. Chemoresistance is an essential reason for treatment failure and high mortality. Emerging evidence connects epithelial-mesenchymal transition (EMT) like changes and acquisition of chemoresistance in cancers. Including EMT, DNA methylation influences cellular processes. Here, EMT-like changes were investigated in cisplatin-resistant A2780 ovarian cancer cells (A2780cis), wherein role of DNA methylation in some EMT genes regulations was studied. Cell viability assay was carried out to test the sensitivity of A2780, and A2780cis human cancer cell lines to cisplatin. Differential mRNA expression of EMT markers using qPCR was conducted to investigate EMT like changes. CpG methylation role in gene expression regulation was investigated by 5-azacytidine (5-aza) treatment. DNA methylation changes in EMT genes were identified using Methylscreen assay between A2780 and A2780cis cells. In order to evaluate if DNA methylation changes are causally underlying EMT, treatment with 5-aza followed by Cisplatin was done on A2780cis cells. Accordingly, morphological changes were studied under the microscope, whereas EMT marker's gene expression changes were investigated using qPCR. In this respect, A2780cis cell line has maintained its cisplatin tolerance ability and exhibits phenotypic changes congruent with EMT. Methylscreen assay and qPCR study have revealed DNA hypermethylation in promoters of epithelial adhesion molecules CDH1 and EPCAM in A2780cis compared to the cisplatin-sensitive parental cells. These changes were concomitant with gene expression down-regulation. DNA hypomethylation associated with transcription up-regulation of the mesenchymal marker TWIST2 was observed in the resistant cells. Azacytidine treatment confirmed DNA methylation role in regulating gene expression of CDH1, EPCAM and TWIST2 genes. A2780cis cell line undergoes EMT like changes, and EMT genes are regulated by DNA methylation. To that end, a better understanding of the molecular alterations that correlate with chemoresistance may lead to therapeutic benefits such as chemosensitivity restoration.
Collapse
Affiliation(s)
- Yaman Alghamian
- Department of Animal Biology, Faculty of Sciences, Damascus University, Damascus, Syria
| | - Chadi Soukkarieh
- Department of Animal Biology, Faculty of Sciences, Damascus University, Damascus, Syria
| | - Abdul Qader Abbady
- Human Genetics Division, Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria (AECS), P.O. Box 6091, Damascus, Syria
| | - Hossam Murad
- Human Genetics Division, Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria (AECS), P.O. Box 6091, Damascus, Syria.
| |
Collapse
|
103
|
Toma T, Tateishi H, Kawakami K, Ali TFS, Kamo M, Monde K, Nakashima Y, Fujita M, Otsuka M. Novel Inhibitor for Downstream Targeting of Transforming Growth Factor-β Signaling to Suppress Epithelial to Mesenchymal Transition and Cell Migration. Int J Mol Sci 2022; 23:ijms23095047. [PMID: 35563439 PMCID: PMC9102712 DOI: 10.3390/ijms23095047] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/24/2022] [Accepted: 04/28/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer metastasis accounts for most of the mortality associated with solid tumors. However, antimetastatic drugs are not available on the market. One of the important biological events leading to metastasis is the epithelial to mesenchymal transition (EMT) induced by cytokines, namely transforming growth-factor-β (TGF-β). Although several classes of inhibitors targeting TGF-β and its receptor have been developed, they have shown profound clinical side effects. We focused on our synthetic compound, HPH-15, which has shown anti-fibrotic activity via the blockade of the TGF-β Smad-dependent signaling. In this study, 10 μM of HPH-15 was found to exhibit anti-cell migration and anti-EMT activities in non-small-cell lung cancer (NSCLC) cells. Although higher concentrations are required, the anti-EMT activity of HPH-15 has also been observed in 3D-cultured NSCLC cells. A mechanistic study showed that HPH-15 inhibits downstream TGF-β signaling. This downstream inhibition blocks the expression of cytokines such as TGF-β, leading to the next cycle of Smad-dependent and -independent signaling. HPH-15 has AMPK-activation activity, but a relationship between AMPK activation and anti-EMT/cell migration was not observed. Taken together, HPH-15 may lead to the development of antimetastatic drugs with a new mechanism of action.
Collapse
Affiliation(s)
- Tsugumasa Toma
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan; (T.T.); (T.F.S.A.); (M.K.); (M.O.)
| | - Hiroshi Tateishi
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan; (T.T.); (T.F.S.A.); (M.K.); (M.O.)
- Correspondence: (H.T.); (M.F.); Tel.: +81-96-371-4624 (H.T.); +81-96-371-4622 (M.F.)
| | - Kensaku Kawakami
- Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan;
| | - Taha F. S. Ali
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan; (T.T.); (T.F.S.A.); (M.K.); (M.O.)
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Masahiro Kamo
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan; (T.T.); (T.F.S.A.); (M.K.); (M.O.)
| | - Kazuaki Monde
- Department of Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan;
| | - Yuta Nakashima
- Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan;
- International Research Organization for Advanced Science & Technology, Kumamoto University, Kumamoto 860-8555, Japan
- Institute of Industrial Nanomaterials, Kumamoto University, Kumamoto 860-8555, Japan
| | - Mikako Fujita
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan; (T.T.); (T.F.S.A.); (M.K.); (M.O.)
- Correspondence: (H.T.); (M.F.); Tel.: +81-96-371-4624 (H.T.); +81-96-371-4622 (M.F.)
| | - Masami Otsuka
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan; (T.T.); (T.F.S.A.); (M.K.); (M.O.)
- Department of Drug Discovery, Science Farm Ltd., Kumamoto 862-0976, Japan
| |
Collapse
|
104
|
Teo T, Kasirzadeh S, Albrecht H, Sykes MJ, Yang Y, Wang S. An Overview of CDK3 in Cancer: Clinical Significance and Pharmacological Implications. Pharmacol Res 2022; 180:106249. [DOI: 10.1016/j.phrs.2022.106249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 11/29/2022]
|
105
|
Zeng X, Chen K, Li L, Tian J, Ruan W, Hu Z, Peng D, Chen Z. Epigenetic activation of RBM15 promotes clear cell renal cell carcinoma growth, metastasis and macrophage infiltration by regulating the m6A modification of CXCL11. Free Radic Biol Med 2022; 184:135-147. [PMID: 35381326 DOI: 10.1016/j.freeradbiomed.2022.03.031] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 12/09/2022]
Abstract
Clear cell renal cell carcinoma (ccRCC) is a common kidney malignancy that is characterized by poor prognosis. RNA-binding motif protein 15 (RBM15) has been identified as an oncogene in multiple tumors. Nevertheless, the function and mechanism of RBM15 in ccRCC are not clear. In this study, RBM15 was found to be upregulated in ccRCC cells and tissues. RBM15 enhanced the proliferation, clone formation, migration, invasion and epithelial-interstitial transition of ccRCC cells. Enhanced RBM15 was caused by the abundant histone 3 acetylation modification of the RBM15 promoter induced by EP300/CBP. RBM15 enhanced the stability of CXCL11 mRNA in an m6A-dependent manner. Moreover, RBM15 was found to promote macrophage infiltration and M2 polarization by promoting the secretion of CXCL11 in ccRCC cells in vitro and in vivo. Our findings highlight the function of RBM15 in ccRCC and reveal a novel identified EP300/CBP-RBM15-CXCL11 signaling axis, which promotes ccRCC progression and provides new insight into ccRCC therapy.
Collapse
Affiliation(s)
- Xing Zeng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Ke Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Le Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Jihua Tian
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Weiqiang Ruan
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Zhiquan Hu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Dan Peng
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Zhi Chen
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| |
Collapse
|
106
|
Sittiju P, Chaiyawat P, Pruksakorn D, Klangjorhor J, Wongrin W, Phinyo P, Kamolphiwong R, Phanphaisarn A, Teeyakasem P, Kongtawelert P, Pothacharoen P. Osteosarcoma-Specific Genes as a Diagnostic Tool and Clinical Predictor of Tumor Progression. BIOLOGY 2022; 11:biology11050698. [PMID: 35625426 PMCID: PMC9138411 DOI: 10.3390/biology11050698] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/12/2022] [Accepted: 04/28/2022] [Indexed: 01/15/2023]
Abstract
Simple Summary The standard method for the diagnosis and monitoring of osteosarcoma is biopsy and tumor imaging, which causes discomfort to patients and is difficult to repeat. A blood sample can be used as a non-invasive method for monitoring tumor material. Vimentin and ezrin show clinical significance in samples obtained from OS patients but need circulating tumor cell purification, since they are expressed in leukocytes. Due to the low-temperature storage of the samples, it proved impossible to perform purification to remove the contamination. We propose that novel or OS-specific biomarkers using differential gene expression from the Gene Expression Omnibus (GEO) database is a promising approach for developing diagnostic and tumor progression strategies. Seven genes from the database showed significant expression in OS cell lines/primary cells compared to a normal blood donor, together with ezrin and VIM. The expression of the five candidate genes together with ezrin and vimentin were quantified by qRT-PCR and analyzed using a mathematical model with high efficiency to discriminate between OS patients and normal samples, resulting in the selection of three candidate genes: COL5A2 (one of the five from the database) as well as ezrin and VIM. Our study demonstrates that these genes in retrospective samples could serve as tools of OS detection and predictors of disease progression. Abstract A liquid biopsy is currently an interesting tool for measuring tumor material with the advantage of being non-invasive. The overexpression of vimentin and ezrin genes was associated with epithelial-mesenchymal transition (EMT), a key process in metastasis and progression in osteosarcoma (OS). In this study, we identified other OS-specific genes by calculating differential gene expression using the Gene Expression Omnibus (GEO) database, confirmed by using quantitative reverse transcription-PCR (qRT-PCR) to detect OS-specific genes, including VIM and ezrin in the buffy coat, which were obtained from the whole blood of OS patients and healthy donors. Furthermore, the diagnostic model for OS detection was generated by utilizing binary logistic regression with a multivariable fractional polynomial (MFP) algorithm. The model incorporating VIM, ezrin, and COL5A2 genes exhibited outstanding discriminative ability, as determined by the receiver operating characteristic curve (AUC = 0.9805, 95% CI 0.9603, 1.000). At the probability cut-off value of 0.3366, the sensitivity and the specificity of the model for detecting OS were 98.63% (95% CI 90.5, 99.7) and 94.94% (95% CI 87.5, 98.6), respectively. Bioinformatic analysis and qRT-PCR, in our study, identified three candidate genes that are potential diagnostic and prognostic genes for OS.
Collapse
Affiliation(s)
- Pattaralawan Sittiju
- Thailand Excellence Center for Tissue Engineering and Stem Cells, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (P.S.); (P.K.)
| | - Parunya Chaiyawat
- Musculoskeletal Science and Translational Research Center, Department of Orthopedics, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (P.C.); (D.P.); (J.K.); (P.P.); (A.P.); (P.T.)
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Dumnoensun Pruksakorn
- Musculoskeletal Science and Translational Research Center, Department of Orthopedics, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (P.C.); (D.P.); (J.K.); (P.P.); (A.P.); (P.T.)
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jeerawan Klangjorhor
- Musculoskeletal Science and Translational Research Center, Department of Orthopedics, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (P.C.); (D.P.); (J.K.); (P.P.); (A.P.); (P.T.)
| | - Weerinrada Wongrin
- Department of Statistics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Phichayut Phinyo
- Musculoskeletal Science and Translational Research Center, Department of Orthopedics, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (P.C.); (D.P.); (J.K.); (P.P.); (A.P.); (P.T.)
- Center for Clinical Epidemiology and Clinical Statistics, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Family Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Rawikant Kamolphiwong
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand;
| | - Areerak Phanphaisarn
- Musculoskeletal Science and Translational Research Center, Department of Orthopedics, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (P.C.); (D.P.); (J.K.); (P.P.); (A.P.); (P.T.)
| | - Pimpisa Teeyakasem
- Musculoskeletal Science and Translational Research Center, Department of Orthopedics, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (P.C.); (D.P.); (J.K.); (P.P.); (A.P.); (P.T.)
| | - Prachya Kongtawelert
- Thailand Excellence Center for Tissue Engineering and Stem Cells, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (P.S.); (P.K.)
| | - Peraphan Pothacharoen
- Thailand Excellence Center for Tissue Engineering and Stem Cells, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (P.S.); (P.K.)
- Correspondence: ; Tel.: +66-53-94-5325 (ext. 206)
| |
Collapse
|
107
|
Feng B, Wu J, Shen B, Jiang F, Feng J. Cancer-associated fibroblasts and resistance to anticancer therapies: status, mechanisms, and countermeasures. Cancer Cell Int 2022; 22:166. [PMID: 35488263 PMCID: PMC9052457 DOI: 10.1186/s12935-022-02599-7] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/19/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer-associated fibroblasts (CAFs) are critical components of the tumor microenvironment (TME) with diverse functions such as extracellular matrix (ECM) remodeling, modulation of metabolism and angiogenesis, and crosstalk with both cancer cells and infiltrating immune cells by production of growth factors, cytokines, and chemokines. Within the TME milieu, CAFs exhibit morphological and functional transitions with relatively specific markers and hold tremendous potential to facilitate tumorigenesis, development, and resistance towards multiple therapeutic strategies including chemotherapy, radiotherapy, targeted therapy, anti-angiogenesis therapy, immunotherapy, and endocrine therapy. Accordingly, CAFs themselves and the downstream effectors and/or signaling pathways are potential targets for optimizing the sensitivity of anti-cancer therapies. This review aims to provide a detailed landscape of the role that CAFs play in conferring therapeutic resistance in different cancers and the underlying mechanisms. The translational and therapeutic perspectives of CAFs in the individualized treatment of malignant tumors are also discussed.
Collapse
Affiliation(s)
- Bing Feng
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, 42 Baiziting, Nanjing, 210009, China
| | - Jianzhong Wu
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, 42 Baiziting, Nanjing, 210009, China
| | - Bo Shen
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, 42 Baiziting, Nanjing, 210009, China
| | - Feng Jiang
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, 42 Baiziting, Nanjing, 210009, China.
| | - Jifeng Feng
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, 42 Baiziting, Nanjing, 210009, China.
| |
Collapse
|
108
|
Tang K, Toyozumi T, Murakami K, Sakata H, Kano M, Endo S, Matsumoto Y, Suito H, Takahashi M, Sekino N, Otsuka R, Kinoshita K, Hirasawa S, Hu J, Uesato M, Hayano K, Matsubara H. HIF-1α stimulates the progression of oesophageal squamous cell carcinoma by activating the Wnt/β-catenin signalling pathway. Br J Cancer 2022; 127:474-487. [PMID: 35484214 PMCID: PMC9345968 DOI: 10.1038/s41416-022-01825-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 04/03/2022] [Accepted: 04/07/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND This study aimed to clarify the significance of the crosstalk between hypoxia-inducible factor-1α (HIF-1α) and the Wnt/β-catenin pathway in oesophageal squamous cell carcinoma (ESCC). METHODS The oncogenic role of HIF-1α in ESCC was investigated using in vitro and in vivo assays. The clinicopathological significance of HIF-1α, β-catenin and TCF4/TCF7L2 in ESCC were evaluated using quantitative real-time PCR and immunohistochemistry. RESULTS The expression level of HIF-1α, β-catenin, and TCF4/TCF7L2 in T.Tn and TE1 cell lines were elevated under hypoxia in vitro. HIF-1α knockdown suppressed proliferation, migration/invasion and epithelial-mesenchymal transition (EMT) progression, induced G0/G1 cell cycle arrest, promoted apoptosis and inhibited 5-fluorouracil chemoresistance in vitro. In vivo assays showed that HIF-1α is essential in maintaining tumour growth, angiogenesis, and 5-fluorouracil chemoresistance. Mechanically, we identified the complex between HIF-1α and β-catenin, HIF-1α can directly bind to the promoter region of TCF4/TCF7L2. The mRNA level of HIF-1α, β-catenin and TCF4/TCF7L2 were increased in ESCC tumour tissues compared to the corresponding non-tumour tissues. High levels of HIF-1α and TCF4/TCF7L2 expression were correlated with aggressive phenotypes and poor prognosis in ESCC patients. CONCLUSIONS HIF-1α serves as an oncogenic transcriptional factor in ESCC, probably by directly targeting TCF4/TCF7L2 and activating the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Kang Tang
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Takeshi Toyozumi
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, Chiba, Japan.
| | - Kentaro Murakami
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Haruhito Sakata
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Masayuki Kano
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Satoshi Endo
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Yasunori Matsumoto
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Hiroshi Suito
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Masahiko Takahashi
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Nobufumi Sekino
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Ryota Otsuka
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Kazuya Kinoshita
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Soichiro Hirasawa
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Jie Hu
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Masaya Uesato
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Koichi Hayano
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Hisahiro Matsubara
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| |
Collapse
|
109
|
Chung YH, Cheng YT, Kao YH, Tsai WC, Huang GK, Chen YT, Shen YC, Tai MH, Chiang PH. MiR-26a-5p as a useful therapeutic target for upper tract urothelial carcinoma by regulating WNT5A/β-catenin signaling. Sci Rep 2022; 12:6955. [PMID: 35484165 PMCID: PMC9050734 DOI: 10.1038/s41598-022-08091-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 03/01/2022] [Indexed: 11/15/2022] Open
Abstract
The role of miRNAs in cancer and their possible function as therapeutic agents are interesting and needed further investigation. The miR-26a-5p had been demonstrated as a tumor suppressor in various cancers. However, the importance of miR-26a-5p regulation in upper tract urothelial carcinoma (UTUC) remains unclear. Here, we aimed to explore the miR-26a-5p expression in UTUC tissues and to identify its regulatory targets and signal network involved in UTUC tumorigenesis. The miR-26a-5p expression was validated by quantitative real-time polymerase chain reaction (qPCR) using renal pelvis tissue samples from 22 patients who were diagnosed with UTUC and 64 cases of renal pelvis tissue microarray using in situ hybridization staining. BFTC-909 UTUC cells were used to examine the effects of miR-26a-5p genetic delivery on proliferation, migration and expression of epithelial-to-mesenchymal transition (EMT) markers. MiR-26a-5p was significantly down-regulated in UTUC tumors compared to adjacent normal tissue and was decreased with histological grades. Moreover, restoration of miR-26a-5p showed inhibition effects on proliferation and migration of BFTC-909 cells. In addition, miR-26a-5p delivery regulated the EMT marker expression and inhibited WNT5A/β-catenin signaling and expression of downstream molecules including NF-κB and MMP-9 in BFTC-909 cells. This study demonstrated that miR-26a-5p restoration may reverse EMT process and regulate WNT5A/β-catenin signaling in UTUC cells. Further studies warranted to explore the potential roles in biomarkers for diagnostics and prognosis, as well as novel therapeutics targets for UTUC treatment.
Collapse
Affiliation(s)
- Yueh-Hua Chung
- Department of Urology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan, ROC.,Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC.,Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan, ROC
| | - Yuan-Tso Cheng
- Department of Urology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan, ROC
| | - Ying-Hsien Kao
- Department of Medical Research, E-Da Hospital, Kaohsiung, 82445, Taiwan, ROC
| | - Wan-Chi Tsai
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC
| | - Gong-Kai Huang
- Department of Pathology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan, ROC
| | - Yen-Ta Chen
- Department of Urology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan, ROC
| | - Yuan-Chi Shen
- Department of Urology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan, ROC
| | - Ming-Hong Tai
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan, ROC.
| | - Po-Hui Chiang
- Department of Urology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan, ROC.
| |
Collapse
|
110
|
Takeda T, Tsubaki M, Matsuda T, Kimura A, Jinushi M, Obana T, Takegami M, Nishida S. EGFR inhibition reverses epithelial‑mesenchymal transition, and decreases tamoxifen resistance via Snail and Twist downregulation in breast cancer cells. Oncol Rep 2022; 47:109. [PMID: 35445730 DOI: 10.3892/or.2022.8320] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/30/2022] [Indexed: 11/05/2022] Open
Abstract
Tamoxifen resistance remains a major obstacle in the treatment of estrogen receptor (ER)‑positive breast cancer. In recent years, the crucial role of the epithelial‑mesenchymal transition (EMT) process in the development of drug resistance in breast cancer has been underlined. However, the central molecules inducing the EMT process during the development of tamoxifen resistance remain to be elucidated. In the present study, it was demonstrated that tamoxifen‑resistant breast cancer cells underwent EMT and exhibited an enhanced cell motility and invasive behavior. The inhibition of snail family transcriptional repressor 1 (Snail) and twist family BHLH transcription factor 1 (Twist) reversed the EMT phenotype and decreased the tamoxifen resistance, migration and invasion of tamoxifen‑resistant breast cancer cells. In addition, it was observed that the inhibition of epidermal growth factor receptor (EGFR) reversed the EMT phenotype in tamoxifen‑resistant MCF7 (MCF‑7/TR) cells via the downregulation of Snail and Twist. Notably, the EGFR inhibitor, gefitinib, decreased tamoxifen resistance, migration and invasion through the inhibition of Snail and Twist. On the whole, the results of the present study suggest that EGFR may be a promising therapeutic target for tamoxifen‑resistant breast cancer. Moreover, it was suggested that gefitinib may serve as a potent novel therapeutic strategy for breast cancer patients, who have developed tamoxifen resistance.
Collapse
Affiliation(s)
- Tomoya Takeda
- Department of Pharmacotherapy, Kindai University School of Pharmacy, Higashiosaka, Osaka 577‑8502, Japan
| | - Masanobu Tsubaki
- Department of Pharmacotherapy, Kindai University School of Pharmacy, Higashiosaka, Osaka 577‑8502, Japan
| | - Takuya Matsuda
- Department of Pharmacotherapy, Kindai University School of Pharmacy, Higashiosaka, Osaka 577‑8502, Japan
| | - Akihiro Kimura
- Department of Pharmacotherapy, Kindai University School of Pharmacy, Higashiosaka, Osaka 577‑8502, Japan
| | - Minami Jinushi
- Department of Pharmacotherapy, Kindai University School of Pharmacy, Higashiosaka, Osaka 577‑8502, Japan
| | - Teruki Obana
- Department of Pharmacy, Kindai University Hospital, Osakasayama, Osaka 589‑8511, Japan
| | - Manabu Takegami
- Department of Pharmacy, Kindai University Hospital, Osakasayama, Osaka 589‑8511, Japan
| | - Shozo Nishida
- Department of Pharmacotherapy, Kindai University School of Pharmacy, Higashiosaka, Osaka 577‑8502, Japan
| |
Collapse
|
111
|
Shah PP, Saurabh K, Kurlawala Z, Vega AA, Siskind LJ, Beverly LJ. Towards a molecular understanding of the overlapping and distinct roles of UBQLN1 and UBQLN2 in lung cancer progression and metastasis. Neoplasia 2022; 25:1-8. [PMID: 35063704 PMCID: PMC8864381 DOI: 10.1016/j.neo.2021.11.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/29/2021] [Accepted: 11/17/2021] [Indexed: 11/30/2022]
Abstract
The Ubiquilin family of proteins (UBQLN) consists of five related proteins (UBQLN1-4 and UBQLNL). Herein, we showed that loss of UBQLN1 and/or UBQLN2 induces cellular processes involved in tumor progression and metastasis, including proliferation, clonogenic potential and migration in lung adenocarcinoma cells. Molecular, biochemical and RNAseq analyses in multiple cellular systems, identified overlapping and distinct gene sets and pathways that were altered following loss of UBQLN1 and/or UBQLN2. The present study, provide evidence that UBQLN1 and UBQLN2 perform similar, but distinct molecular functions in a variety of cell types.
The Ubiquilin family of proteins (UBQLN) consists of five related proteins (UBQLN1-4 and UBQLNL) that all contain ubiquitin-like (UBL) and ubiquitin-associated (UBA) domains. UBQLN1 and UBQLN2 are the most closely related and have been the most well-studied, however their biochemical, biological and cellular functions are still not well understood. Previous studies from our lab reported that loss of UBQLN1 or UBQLN2 induces epithelial mesenchymal transition (EMT) in lung adenocarcinoma cells. Herein, we showed that loss of UBQLN1 and/or UBQLN2 induces cellular processes involved in tumor progression and metastasis, including proliferation, clonogenic potential and migration in lung adenocarcinoma cells. In fact, following simultaneous loss of both UBQLN1 and UBQLN2 many of these processes were further enhanced. To understand the molecular mechanisms by which UBQLN1 and UBQLN2 loss could be additive, we performed molecular, biochemical and RNAseq analyses in multiple cellular systems. We identified overlapping and distinct gene sets and pathways that were altered following loss of UBQLN1 and/or UBQLN2. We have also begun to define cell type specific gene regulation of UBQLN1 and UBQLN2, as well as understand how loss of either gene can alter differentiation of normal cells. The data presented here demonstrate that UBQLN1 and UBQLN2 perform similar, but distinct molecular functions in a variety of cell types.
Collapse
Affiliation(s)
- Parag P Shah
- James Graham Brown Cancer Center, University of Louisville, 505 S. Hancock Street, CTRB rm 204, Louisville, KY 40202, USA
| | - Kumar Saurabh
- James Graham Brown Cancer Center, University of Louisville, 505 S. Hancock Street, CTRB rm 204, Louisville, KY 40202, USA
| | - Zimple Kurlawala
- James Graham Brown Cancer Center, University of Louisville, 505 S. Hancock Street, CTRB rm 204, Louisville, KY 40202, USA
| | - Alexis A Vega
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY 40202, USA
| | - Leah J Siskind
- James Graham Brown Cancer Center, University of Louisville, 505 S. Hancock Street, CTRB rm 204, Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Levi J Beverly
- James Graham Brown Cancer Center, University of Louisville, 505 S. Hancock Street, CTRB rm 204, Louisville, KY 40202, USA; Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY 40202, USA; Department of Medicine, Division of Hematology and Oncology, University of Louisville School of Medicine, Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA.
| |
Collapse
|
112
|
Hirway SU, Weinberg SH. A review of computational modeling, machine learning and image analysis in cancer metastasis dynamics. COMPUTATIONAL AND SYSTEMS ONCOLOGY 2022. [DOI: 10.1002/cso2.1044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Shreyas U. Hirway
- Department of Biomedical Engineering The Ohio State University Columbus Ohio USA
| | - Seth H. Weinberg
- Department of Biomedical Engineering The Ohio State University Columbus Ohio USA
| |
Collapse
|
113
|
Abdalla A, Murali C, Amin A. Safranal Inhibits Angiogenesis via Targeting HIF-1α/VEGF Machinery: In Vitro and Ex Vivo Insights. Front Oncol 2022; 11:789172. [PMID: 35211395 PMCID: PMC8862147 DOI: 10.3389/fonc.2021.789172] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/30/2021] [Indexed: 12/27/2022] Open
Abstract
Nature has a nearly infinite inventory of unexplored phytochemicals and biomolecules that have the potential to treat a variety of diseases. Safranal exhibits anti-cancer property and the present study explores its antiangiogenic property. Hepatocellular carcinoma (HCC) ranks as the sixth deadliest among all cancer types. Targeting the non-tumor vasculature supporting system is very promising as it has less plasticity, unlike malignant cells that are often associated with issues like drug resistance, poor prognosis, and relapse. In this study, we successfully inhibited the proliferation of primary human umbilical vein endothelial cells (HUVEC) with an IC50 of 300μM and blocked VEGF secretion in HepG2 cells. Furthermore, safranal inhibited VEGF-induced angiogenesis in vitro and ex vivo via scratch wound assay, tube formation assay, transmembrane assay, and aortic ring assay. In addition, safranal downregulated the in vitro expression of HIF-1α, VEGF, VEGFR2, p-AKT, p-ERK1/2, MMP9, p-FAK, and p-STAT3. The present study is the first to reveal the antiangiogenic potential of safranal and propose its possible underlying mechanism in HCC.
Collapse
Affiliation(s)
- Ali Abdalla
- Weinberg Institute for Cognitive Science, University of Michigan, Ann Arbor, MI, United States
| | - Chandraprabha Murali
- Biology Department, College of Science, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Amr Amin
- Biology Department, College of Science, United Arab Emirates University, Al-Ain, United Arab Emirates.,The College, The University of Chicago, Chicago, IL, United States
| |
Collapse
|
114
|
Zang W, Liu J, Geng F, Liu D, Zhang S, Li Y, Pan Y. Butyrate promotes oral squamous cell carcinoma cells migration, invasion and epithelial-mesenchymal transition. PeerJ 2022; 10:e12991. [PMID: 35223210 PMCID: PMC8877342 DOI: 10.7717/peerj.12991] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 02/02/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC), the most common type of primary malignant tumor in the oral cavity, is a lethal disease with high recurrence and mortality rates. Butyrate, a metabolite produced by periodontal pathogens, has been linked to oral diseases. The purpose of this study was to evaluate the effect of sodium butyrate (NaB) on the proliferation, migration, and invasion of OSCC cells in vitro and to explore the potential mechanism. METHODS Two OSCC cell lines (HSC-4 and SCC-9) were treated with NaB at different concentrations. The cell proliferation was assayed by CCK-8, ethylene deoxyuridine (EdU), and flow cytometry. Wound healing and transwell assay were performed to detect cell migration and invasion. Changes in epithelial-mesenchymal transition (EMT) markers, including E-cadherin, Vimentin, and SNAI1, were evaluated by quantitative real-time PCR (qRT-PCR), western blot, and immunofluorescent staining. The expression levels of matrix metalloproteinases (MMPs) were analyzed by qRT-PCR and gelatin zymography. RESULTS Our results showed that NaB inhibited the proliferation of OSCC cells and induced cell cycle arrest at G1 phase, but NaB significantly enhanced cell migration and invasion compared with the control group. Further mechanistic investigation demonstrated that NaB induced EMT by increasing the expression of Vimentin and SNAI1, decreasing the expression of membrane-bound E-cadherin, and correspondingly promoting E-cadherin translocation from the membrane to the cytoplasm. In addition, the overexpression of MMP1/2/9/13 was closely related to NaB treatment. CONCLUSIONS Our study conclude that butyrate may promote the migration and invasion of OSCC cells by inducing EMT. These findings indicate that butyrate may contribute to OSCC metastasis.
Collapse
Affiliation(s)
- Wenli Zang
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Junchao Liu
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Fengxue Geng
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Dongjuan Liu
- Department of Emergency and Oral Medicine, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Shuwei Zhang
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Yuchao Li
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Yaping Pan
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Shenyang, China
| |
Collapse
|
115
|
Lu CH, Wu CH, Hsieh PF, Wu CY, Kuo WWT, Ou CH, Lin VCH. Small interfering RNA targeting N-cadherin regulates cell proliferation and migration in enzalutamide-resistant prostate cancer. Oncol Lett 2022; 23:90. [PMID: 35126732 PMCID: PMC8805176 DOI: 10.3892/ol.2022.13210] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/03/2021] [Indexed: 12/17/2022] Open
Abstract
Enzalutamide is one of the options for treating patients with castration-resistant or metastatic prostate cancer. However, a substantial proportion of patients become resistant to enzalutamide after a period of treatment. Cells in these tumors typically exhibit increased proliferative and migratory capabilities, in which N-cadherin (CDH2) appear to serve an important role. In the present study, by up- and downregulating the expression of CDH2, the possible effects of CDH2 on the prostate cancer cell line LNCaP were investigated. Male sex hormone-sensitive LNCaP cells treated with 10 µM enzalutamide were named LNCaP enzalutamide-resistant (EnzaR) cells. Reverse transcription-PCR, western blotting and immunofluorescence staining were used to measure CDH2, E-cadherin, α-SMA, Snail and Slug expression. Transfection with the pCMV-CDH2 plasmid was performed for CDH2 upregulation, whilst transfection with small interfering RNA (siRNA)-CDH2 was performed for CDH2 downregulation. MTT and Cell Counting Kit-4 assays were used to evaluate the proportion of viable cancer cells. Subsequently, gap closure assay was performed to evaluate the migratory capability of both LNCaP and LNCaP EnzaR cell lines. CDH2 expression was found to be increased in LNCaP EnzaR cells compared with that in LNCaP cells. CDH2 overexpression increased cell viability and migration in both LNCaP and LNCaP EnzaR cell lines. By contrast, the opposite trend was observed after CDH2 expression was knocked down. CDH2 expression also showed a high association with that of four epithelial-mesenchymal transition markers, which was confirmed by western blotting. Based on these results, it was concluded that knocking down CDH2 expression using siRNA transfection mediated significant influence on LNCaP EnzaR cell physiology, which may be a potential therapeutic option for prostate cancer treatment.
Collapse
Affiliation(s)
- Cheng-Hsin Lu
- Division of Urology, Penghu Hospital, Penghu 880001, Taiwan, R.O.C.,Division of Urology, Department of Surgery, E-Da Hospital, Kaohsiung 824005, Taiwan, R.O.C.,Division of Urology, Department of Surgery, E-Da Cancer Hospital, Kaohsiung 824005, Taiwan, R.O.C
| | - Chun-Hsien Wu
- Division of Urology, Department of Surgery, E-Da Hospital, Kaohsiung 824005, Taiwan, R.O.C.,Department of Chemical Engineering and Institute of Biotechnology and Chemical Engineering, Kaohsiung 824005, Taiwan, R.O.C.,Department of Nursing, I-Shou University, Kaohsiung 824005, Taiwan, R.O.C
| | - Pei-Fang Hsieh
- Division of Urology, Department of Surgery, E-Da Hospital, Kaohsiung 824005, Taiwan, R.O.C.,Department of Medical Laboratory Science and Biotechnology, Chung-Hwa University of Medical Technology, Tainan 717302, Taiwan, R.O.C
| | - Chen-Yu Wu
- Division of Urology, Department of Surgery, E-Da Hospital, Kaohsiung 824005, Taiwan, R.O.C.,School of Medicine, College of Medicine, I-Shou University, Kaohsiung 824005, Taiwan, R.O.C
| | - Wade Wei-Ting Kuo
- Division of Urology, Department of Surgery, E-Da Hospital, Kaohsiung 824005, Taiwan, R.O.C.,Department of Chemical Engineering and Institute of Biotechnology and Chemical Engineering, Kaohsiung 824005, Taiwan, R.O.C
| | - Chien-Hui Ou
- Department of Urology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704302, Taiwan, R.O.C
| | - Victor Chia Hsiang Lin
- Division of Urology, Department of Surgery, E-Da Hospital, Kaohsiung 824005, Taiwan, R.O.C.,School of Medicine, College of Medicine, I-Shou University, Kaohsiung 824005, Taiwan, R.O.C
| |
Collapse
|
116
|
Yao X, Qi X, Wang Y, Zhang B, He T, Yan T, Zhang L, Wang Y, Zheng H, Zhang G, Guo X. Identification and Validation of an Annexin-Related Prognostic Signature and Therapeutic Targets for Bladder Cancer: Integrative Analysis. BIOLOGY 2022; 11:biology11020259. [PMID: 35205125 PMCID: PMC8869209 DOI: 10.3390/biology11020259] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/03/2022] [Accepted: 02/03/2022] [Indexed: 12/12/2022]
Abstract
Abnormal expression and dysfunction of Annexins (ANXA1-11, 13) have been widely found in several types of cancer. However, the expression pattern and prognostic value of Annexins in bladder cancer (BC) are currently still unknown. In this study, survival analysis by our in-house OSblca web server revealed that high ANXA1/2/3/5/6 expression was significantly associated with poor overall survival (OS) in BC patients, while higher ANXA11 was associated with increased OS. Through Oncomine and GEPIA2 database analysis, we found that ANXA2/3/4/13 were up-regulated, whereas ANXA1/5/6 were down-regulated in BC compared with normal bladder tissues. Further LASSO analysis built an Annexin-Related Prognostic Signature (ARPS, including four members ANXA1/5/6/10) in the TCGA BC cohort and validated it in three independent GEO BC cohorts (GSE31684, GSE32548, GSE48075). Multivariate COX analysis demonstrated that ARPS is an independent prognostic signature for BC. Moreover, GSEA results showed that immune-related pathways, such as epithelial-mesenchymal transition and IL6/JAK/STAT3 signaling were enriched in the high ARPS risk groups, while the low ARPS risk group mainly regulated metabolism-related processes, such as adipogenesis and bile acid metabolism. In conclusion, our study comprehensively analyzed the mRNA expression and prognosis of Annexin family members in BC, constructed an Annexin-related prognostic signature using LASSO and COX regression, and validated it in four independent BC cohorts, which might help to improve clinical outcomes of BC patients, offer insights into the underlying molecular mechanisms of BC development and suggest potential therapeutic targets for BC.
Collapse
Affiliation(s)
- Xitong Yao
- Cell Signal Transduction Laboratory, Department of Predictive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China; (X.Y.); (X.Q.); (Y.W.); (T.H.); (T.Y.); (L.Z.); (Y.W.); (H.Z.)
| | - Xinlei Qi
- Cell Signal Transduction Laboratory, Department of Predictive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China; (X.Y.); (X.Q.); (Y.W.); (T.H.); (T.Y.); (L.Z.); (Y.W.); (H.Z.)
| | - Yao Wang
- Cell Signal Transduction Laboratory, Department of Predictive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China; (X.Y.); (X.Q.); (Y.W.); (T.H.); (T.Y.); (L.Z.); (Y.W.); (H.Z.)
| | - Baokun Zhang
- Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases, Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing 100850, China;
| | - Tianshuai He
- Cell Signal Transduction Laboratory, Department of Predictive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China; (X.Y.); (X.Q.); (Y.W.); (T.H.); (T.Y.); (L.Z.); (Y.W.); (H.Z.)
| | - Taoning Yan
- Cell Signal Transduction Laboratory, Department of Predictive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China; (X.Y.); (X.Q.); (Y.W.); (T.H.); (T.Y.); (L.Z.); (Y.W.); (H.Z.)
| | - Lu Zhang
- Cell Signal Transduction Laboratory, Department of Predictive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China; (X.Y.); (X.Q.); (Y.W.); (T.H.); (T.Y.); (L.Z.); (Y.W.); (H.Z.)
| | - Yange Wang
- Cell Signal Transduction Laboratory, Department of Predictive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China; (X.Y.); (X.Q.); (Y.W.); (T.H.); (T.Y.); (L.Z.); (Y.W.); (H.Z.)
| | - Hong Zheng
- Cell Signal Transduction Laboratory, Department of Predictive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China; (X.Y.); (X.Q.); (Y.W.); (T.H.); (T.Y.); (L.Z.); (Y.W.); (H.Z.)
| | - Guosen Zhang
- Cell Signal Transduction Laboratory, Department of Predictive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China; (X.Y.); (X.Q.); (Y.W.); (T.H.); (T.Y.); (L.Z.); (Y.W.); (H.Z.)
- Correspondence: or (G.Z.); (X.G.); Tel.: +86-18237808750 (G.Z.)
| | - Xiangqian Guo
- Cell Signal Transduction Laboratory, Department of Predictive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China; (X.Y.); (X.Q.); (Y.W.); (T.H.); (T.Y.); (L.Z.); (Y.W.); (H.Z.)
- Correspondence: or (G.Z.); (X.G.); Tel.: +86-18237808750 (G.Z.)
| |
Collapse
|
117
|
Shait Mohammed MR, Zamzami M, Choudhry H, Ahmed F, Ateeq B, Khan MI. The Histone H3K27me3 Demethylases KDM6A/B Resist Anoikis and Transcriptionally Regulate Stemness-Related Genes. Front Cell Dev Biol 2022; 10:780176. [PMID: 35186918 PMCID: PMC8847600 DOI: 10.3389/fcell.2022.780176] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 01/10/2022] [Indexed: 11/13/2022] Open
Abstract
Epithelial cancer cells that lose attachment from the extracellular matrix (ECM) to seed in a distant organ often undergo anoikis’s specialized form of apoptosis. Recently, KDM3A (H3K9 demethylase) has been identified as a critical effector of anoikis in cancer cells. However, whether other histone demethylases are involved in promoting or resisting anoikis remains elusive. We screened the major histone demethylases and found that both H3K27 histone demethylases, namely, KDM6A/B were highly expressed during ECM detachment. Inhibition of the KDM6A/B activity by using a specific inhibitor results in reduced sphere formation capacity and increased apoptosis. Knockout of KDM6B leads to the loss of stem cell properties in solitary cells. Furthermore, we found that KDM6B maintains stemness by transcriptionally regulating the expression of stemness genes SOX2, SOX9, and CD44 in detached cells. KDM6B occupies the promoter region of both SOX2 and CD44 to regulate their expression epigenetically. We also noticed an increased occupancy of the HIF1α promoter by KDM6B, suggesting its regulatory role in maintaining hypoxia in detached cancer cells. This observation was further strengthened as we found a significant positive association in the expression of both KDM6B and HIF1α in various cancer types. Overall, our results reveal a novel transcriptional program that regulates resistance against anoikis and maintains stemness-like properties.
Collapse
Affiliation(s)
- Mohammed Razeeth Shait Mohammed
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Centre of Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mazin Zamzami
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hani Choudhry
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Centre of Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Firoz Ahmed
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
- University of Jeddah Centre for Scientific and Medical Research (UJ-`CSMR), University of Jeddah, Jeddah, Saudi Arabia
| | - Bushra Ateeq
- Molecular Oncology Lab, Department of Biological Sciences and Bioengineering, Indian Institute of Technology-Kanpur (IIT-K), Kanpur, India
| | - Mohammad Imran Khan
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Centre of Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah, Saudi Arabia
- *Correspondence: Mohammad Imran Khan,
| |
Collapse
|
118
|
Anticancer potential of allicin: A review. Pharmacol Res 2022; 177:106118. [DOI: 10.1016/j.phrs.2022.106118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 02/03/2022] [Accepted: 02/03/2022] [Indexed: 12/12/2022]
|
119
|
Glucose-regulated protein 78 modulates cell growth, epithelial-mesenchymal transition, and oxidative stress in the hyperplastic prostate. Cell Death Dis 2022; 13:78. [PMID: 35075122 PMCID: PMC8786955 DOI: 10.1038/s41419-022-04522-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 12/14/2021] [Accepted: 01/11/2022] [Indexed: 01/11/2023]
Abstract
Benign prostatic hyperplasia (BPH) is a chronic condition which mainly affects elderly males. Existing scientific evidences have not completely revealed the pathogenesis of BPH. Glucose-regulated protein 78 (GRP78) is a member of the heat shock protein 70 superfamily, which serves as an important regulator in many diseases. This study aims at elucidating the role of GRP78 in the BPH process. Human prostate tissues, cultured human prostate cell lines (BPH-1 and WPMY-1) and clinical data from BPH patients were utilized. The expression and localization of GRP78 were determined with quantitative real time PCR (qRT-PCR), Western blotting and immunofluorescence staining. GRP78 knockdown and overexpression cell models were created with GRP78 siRNA and GRP78 plasmid transfection. With these models, cell viability, apoptosis rate, as well as marker levels for epithelial-mesenchymal transition (EMT) and oxidative stress (OS) were detected by CCK8 assay, flow cytometry analysis and Western blotting respectively. AKT/mTOR and MAPK/ERK pathways were also evaluated. Results showed GRP78 was localized in the epithelium and stroma of the prostate, with higher expression in BPH tissues. There was no significant difference in GRP78 expression between BPH-1 and WPMY-1 cell lines. In addition, GRP78 knockdown (KD) slowed cell growth and induced apoptosis, without effects on the cell cycle stage of both cell lines. Lack of GRP78 affected expression levels of markers for EMT and OS. Consistently, overexpression of GRP78 completely reversed all effects of knocking down GRP78. We further found that GRP78 modulated cell growth and OS via AKT/mTOR signaling, rather than the MAPK/ERK pathway. Overall, our novel data demonstrates that GRP78 plays a significant role in the development of BPH and suggests that GRP78 might be rediscovered as a new target for treatment of BPH.
Collapse
|
120
|
Di Maira G, Foglia B, Napione L, Turato C, Maggiora M, Sutti S, Novo E, Alvaro M, Autelli R, Colombatto S, Bussolino F, Carucci P, Gaia S, Rosso C, Biasiolo A, Pontisso P, Bugianesi E, Albano E, Marra F, Parola M, Cannito S. Oncostatin M is overexpressed in
NASH
‐related hepatocellular carcinoma and promotes cancer cell invasiveness and angiogenesis. J Pathol 2022; 257:82-95. [PMID: 35064579 PMCID: PMC9315146 DOI: 10.1002/path.5871] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 12/03/2021] [Accepted: 01/13/2022] [Indexed: 12/03/2022]
Abstract
Oncostatin M (OSM) is a pleiotropic cytokine of the interleukin (IL)‐6 family that contributes to the progression of chronic liver disease. Here we investigated the role of OSM in the development and progression of hepatocellular carcinoma (HCC) in non‐alcoholic fatty liver disease (NAFLD)/non‐alcoholic steatohepatitis (NASH). The role of OSM was investigated in (1) selected cohorts of NAFLD/NASH HCC patients, (2) liver cancer cells exposed to human recombinant OSM or stably transfected to overexpress human OSM, (3) murine HCC xenografts, and (4) a murine NASH‐related model of hepatic carcinogenesis. OSM was found to be selectively overexpressed in HCC cells of NAFLD/NASH patients, depending on tumor grade. OSM serum levels, barely detectable in patients with simple steatosis or NASH, were increased in patients with cirrhosis and more evident in those carrying HCC. In this latter group, OSM serum levels were significantly higher in the subjects with intermediate/advanced HCCs and correlated with poor survival. Cell culture experiments indicated that OSM upregulation in hepatic cancer cells contributes to HCC progression by inducing epithelial‐to‐mesenchymal transition and increased invasiveness of cancer cells as well as by inducing angiogenesis, which is of critical relevance. In murine xenografts, OSM overexpression was associated with slower tumor growth but an increased rate of lung metastases. Overexpression of OSM and its positive correlation with the angiogenic switch were also confirmed in a murine model of NAFLD/NASH‐related hepatocarcinogenesis. Consistent with this, analysis of liver specimens from human NASH‐related HCCs with vascular invasion showed that OSM was expressed by liver cancer cells invading hepatic vessels. In conclusion, OSM upregulation appears to be a specific feature of HCC arising on a NAFLD/NASH background, and it correlates with clinical parameters and disease outcome. Our data highlight a novel pro‐carcinogenic contribution for OSM in NAFLD/NASH, suggesting a role of this factor as a prognostic marker and a putative potential target for therapy. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Giovanni Di Maira
- Department of Clinical and Experimental Medicine and Center Denothe University of Firenze Italy
| | - Beatrice Foglia
- Department of Clinical and Biological Sciences, Unit of Experimental Medicine & Clinical Pathology University of Torino Italy
| | - Lucia Napione
- Laboratory of Vascular Oncology Candiolo Cancer Institute – FPO IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico)
- Department of Applied Science and Technology Politecnico di Torino Torino Italy
| | - Cristian Turato
- Department of Molecular Medicine University of Pavia Pavia Italy
| | - Marina Maggiora
- Department of Clinical and Biological Sciences, Unit of Experimental Medicine & Clinical Pathology University of Torino Italy
| | - Salvatore Sutti
- Dept. Health Sciences and Interdisciplinary Research Center for Autoimmune Diseases University Amedeo Avogadro of East Piedmont Novara Italy
| | - Erica Novo
- Department of Clinical and Biological Sciences, Unit of Experimental Medicine & Clinical Pathology University of Torino Italy
| | - Maria Alvaro
- Laboratory of Vascular Oncology Candiolo Cancer Institute – FPO IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico)
- Department of Oncology University of Torino Italy
| | - Riccardo Autelli
- Department of Clinical and Biological Sciences, Unit of Experimental Medicine & Clinical Pathology University of Torino Italy
| | | | - Federico Bussolino
- Laboratory of Vascular Oncology Candiolo Cancer Institute – FPO IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico)
- Department of Oncology University of Torino Italy
| | - Patrizia Carucci
- Division of Gastroenterology Città della Salute e della Scienza University‐Hospital 10100 Turin Italy
| | - Silvia Gaia
- Division of Gastroenterology Città della Salute e della Scienza University‐Hospital 10100 Turin Italy
| | - Chiara Rosso
- Department of Medical Sciences University of Torino Italy
| | | | | | | | - Emanuele Albano
- Dept. Health Sciences and Interdisciplinary Research Center for Autoimmune Diseases University Amedeo Avogadro of East Piedmont Novara Italy
| | - Fabio Marra
- Department of Clinical and Experimental Medicine and Center Denothe University of Firenze Italy
| | - Maurizio Parola
- Department of Clinical and Biological Sciences, Unit of Experimental Medicine & Clinical Pathology University of Torino Italy
| | - Stefania Cannito
- Department of Clinical and Biological Sciences, Unit of Experimental Medicine & Clinical Pathology University of Torino Italy
| |
Collapse
|
121
|
Liu Y, Cui W, Zhang R, Zhi S, Liu L, Liu X, Feng X, Chen Y, Zhang X, Hao J. Sohlh2 Inhibits the Malignant Progression of Renal Cell Carcinoma by Upregulating Klotho via DNMT3a. Front Oncol 2022; 11:769493. [PMID: 35127476 PMCID: PMC8807643 DOI: 10.3389/fonc.2021.769493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 12/21/2021] [Indexed: 11/25/2022] Open
Abstract
Background Renal cell carcinoma is the most common malignant tumor of the kidney. The 5-year survival of renal cell carcinoma with distant metastasis is very low. Sohlh2 is a newly discovered tumor suppressor gene playing inhibitory roles in a variety of tumors, but its role in renal cell carcinoma has not been reported. Methods To clarify the role of Sohlh2 in the occurrence and development of renal cell carcinoma, we constructed stably transfected human renal cell carcinoma cell lines with Sohlh2 overexpression and Sohlh2 knockdown, separately. First, we studied the effects of Sohlh2 on proliferation, migration, invasion, and epithelial–mesenchymal transition (EMT) of renal cell carcinoma cells in vitro and in vivo. Then, we detected whether Sohlh2 functions through DNMT3a/Klotho using Western blotting, qPCR, and Cell Counting Kit-8 (CCK-8) assay. Finally, we collected 40 resected renal cell carcinoma samples to study the relevance between Sohlh2, DNMT3a, and Klotho by immunohistochemistry. Results Our results showed that Sohlh2 was downregulated in renal cell carcinoma, and its expression level was negatively correlated with tumor staging. Both in vitro and in vivo experiments confirmed that Sohlh2 overexpression inhibited the proliferation, migration, invasion, metastasis, and EMT of renal cell carcinoma. Sohlh2 functions through demethylation of Klotho by downregulating the expression of DNA methyltransferase of DNMT3a. In renal cell carcinoma, Sohlh2 was positively correlated with Klotho and negatively correlated with DNMT3a. Conclusion Sohlh2 functions as a tumor suppressor gene in renal cell carcinoma by demethylation of Klotho via DNMT3a. Sohlh2 correlated with Klotho positively and with DNMT3a negatively in renal cell carcinoma. Our study suggests that Sohlh2 and DNMT3a/Klotho can be used as potential targets for the clinical treatment of renal cell carcinoma.
Collapse
Affiliation(s)
- Yang Liu
- Key Laboratory of The Ministry of Education for Experimental Teratology, Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
- Medical Research Center, The Affiliated Hospital of Jining Medical University, Jining, China
| | - Weiwei Cui
- Key Laboratory of The Ministry of Education for Experimental Teratology, Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ruihong Zhang
- Key Laboratory of The Ministry of Education for Experimental Teratology, Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Sujuan Zhi
- Key Laboratory of The Ministry of Education for Experimental Teratology, Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lanlan Liu
- Key Laboratory of The Ministry of Education for Experimental Teratology, Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xuyue Liu
- Key Laboratory of The Ministry of Education for Experimental Teratology, Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaoning Feng
- Key Laboratory of The Ministry of Education for Experimental Teratology, Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yanru Chen
- Department of Human Anatomy, Shandong First Medical University, Taian, China
| | - Xiaoli Zhang
- Key Laboratory of The Ministry of Education for Experimental Teratology, Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Xiaoli Zhang, ; Jing Hao,
| | - Jing Hao
- Key Laboratory of The Ministry of Education for Experimental Teratology, Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Xiaoli Zhang, ; Jing Hao,
| |
Collapse
|
122
|
Sawicki J, Berner R, Löser T, Schöll E. Modeling Tumor Disease and Sepsis by Networks of Adaptively Coupled Phase Oscillators. FRONTIERS IN NETWORK PHYSIOLOGY 2022; 1:730385. [PMID: 36925568 PMCID: PMC10013027 DOI: 10.3389/fnetp.2021.730385] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 11/19/2021] [Indexed: 06/18/2023]
Abstract
In this study, we provide a dynamical systems perspective to the modelling of pathological states induced by tumors or infection. A unified disease model is established using the innate immune system as the reference point. We propose a two-layer network model for carcinogenesis and sepsis based upon the interaction of parenchymal cells and immune cells via cytokines, and the co-evolutionary dynamics of parenchymal, immune cells, and cytokines. Our aim is to show that the complex cellular cooperation between parenchyma and stroma (immune layer) in the physiological and pathological case can be qualitatively and functionally described by a simple paradigmatic model of phase oscillators. By this, we explain carcinogenesis, tumor progression, and sepsis by destabilization of the healthy homeostatic state (frequency synchronized), and emergence of a pathological state (desynchronized or multifrequency cluster). The coupled dynamics of parenchymal cells (metabolism) and nonspecific immune cells (reaction of innate immune system) are represented by nodes of a duplex layer. The cytokine interaction is modeled by adaptive coupling weights between the nodes representing the immune cells (with fast adaptation time scale) and the parenchymal cells (slow adaptation time scale) and between the pairs of parenchymal and immune cells in the duplex network (fixed bidirectional coupling). Thereby, carcinogenesis, organ dysfunction in sepsis, and recurrence risk can be described in a correct functional context.
Collapse
Affiliation(s)
- Jakub Sawicki
- Potsdam Institute for Climate Impact Research, Potsdam, Germany
| | - Rico Berner
- Institut für Mathematik, Technische Universität Berlin, Berlin, Germany
- Institut für Theoretische Physik, Technische Universität Berlin, Berlin, Germany
| | | | - Eckehard Schöll
- Potsdam Institute for Climate Impact Research, Potsdam, Germany
- Institut für Theoretische Physik, Technische Universität Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität, Berlin, Germany
| |
Collapse
|
123
|
STAT3 Signaling in Breast Cancer: Multicellular Actions and Therapeutic Potential. Cancers (Basel) 2022; 14:cancers14020429. [PMID: 35053592 PMCID: PMC8773745 DOI: 10.3390/cancers14020429] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary Many signaling pathways are overactive in breast cancer, and among them is the STAT3 signaling pathway. STAT3 is activated by secreted factors within the breast tumor, many of which are elevated and correlate to advanced disease and poor survival outcomes. This review examines how STAT3 signaling is activated in breast cancer by the proinflammatory, gp130 cytokines, interleukins 6 and 11. We evaluate how this signaling cascade functions in the various cells of the tumor microenvironment to drive disease progression and metastasis. We discuss how our understanding of these processes may lead to the development of novel therapeutics to tackle advanced disease. Abstract Interleukin (IL)-6 family cytokines, such as IL-6 and IL-11, are defined by the shared use of the gp130 receptor for the downstream activation of STAT3 signaling and the activation of genes which contribute to the “hallmarks of cancer”, including proliferation, survival, invasion and metastasis. Increased expression of these cytokines, or the ligand-specific receptors IL-6R and IL-11RA, in breast tumors positively correlate to disease progression and poorer patient outcome. In this review, we examine evidence from pre-clinical studies that correlate enhanced IL-6 and IL-11 mediated gp130/STAT3 signaling to the progression of breast cancer. Key processes by which the IL-6 family cytokines contribute to the heterogeneous nature of breast cancer, immune evasion and metastatic potential, are discussed. We examine the latest research into the therapeutic targeting of IL-6 family cytokines that inhibit STAT3 transcriptional activity as a potential breast cancer treatment, including current clinical trials. The importance of the IL-6 family of cytokines in cellular processes that promote the development and progression of breast cancer warrants further understanding of the molecular basis for its actions to help guide the development of future therapeutic targets.
Collapse
|
124
|
Ciszewski WM, Włodarczyk J, Chmielewska-Kassassir M, Fichna J, Wozniak LA, Sobierajska K. Evening primrose seed extract rich in polyphenols modulates the invasiveness of colon cancer cells by regulating the TYMS expression. Food Funct 2022; 13:10994-11007. [DOI: 10.1039/d2fo01737g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Natural polyphenols are plant metabolites exhibiting a broad range of biological activities.
Collapse
Affiliation(s)
- Wojciech M. Ciszewski
- Department of Molecular Cell Mechanisms, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland
| | - Jakub Włodarczyk
- Department of Biochemistry, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland
| | | | - Jakub Fichna
- Department of Biochemistry, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland
| | - Lucyna A. Wozniak
- Department of Structural Biology, Medical University of Lodz, Zeligowskiego 7/9, 90-752, Lodz, Poland
| | - Katarzyna Sobierajska
- Department of Molecular Cell Mechanisms, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland
| |
Collapse
|
125
|
Pradeepa, Suresh V, Singh VK, Nayak KB, Senapati S, Chakraborty S. EVI1 promotes metastasis by downregulating TIMP2 in metastatic colon and breast cancer cells. Int J Biochem Cell Biol 2022; 142:106118. [PMID: 34800694 DOI: 10.1016/j.biocel.2021.106118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/30/2021] [Accepted: 11/08/2021] [Indexed: 10/19/2022]
Abstract
Ecotropic viral integration site-1 (EVI1) is an oncogenic zinc finger transcription factor whose expression is frequently upregulated in a variety of cancers, including both myeloid malignancies and solid tumors. Previously, our group has shown that EVI1 knockdown minimizes the metastatic potential of colon cancer cells compared to that of control cells. In this study, to identify the potential targets that regulate cancer metastasis, control and EVI1 knockdown colon cancer cells were subjected to microarray. Differential gene expression analysis revealed significant downregulation of tissue inhibitor of matrix metalloproteinase-2 (TIMP2) in EVI1 expressing cells. EVI1 knockdown increased TIMP2 protein expression levels and reduced wound healing and migration capacity in metastatic cells. Mechanistically, the TIMP2 promoter harbors potential binding sites for EVI1; EVI1 binds to TIMP2 promoter and represses its expression, as observed using ChIP and luciferase assay, respectively. TIMP2 is an important metastasis suppressor gene; however, its function is suppressed in many cancers through hypermethylation. Thus, demethylation could prove to be a potential alternative to reactivate TIMP2 functional activity. Immunoprecipitation analysis showed that DNA-methyltransferase 1 (DNMT1), which plays a vital role in maintaining the genome methylation pattern during DNA replication and repair, interacts with EVI1 to promote TIMP2 silencing. Treating cancer cells in vitro with a known demethylation agent, 5-aza-2'-deoxycytidine (Aza-D), restored the optimal TIMP2 expression without altering EVI1 binding efficiency and reduced relative wound healing potential of cancer cells. Animal studies showed that Aza-D treated cells injected through the intravenous route exhibited reduced liver and skin metastasis when compared to non-treated cells. Furthermore, Aza-D treatment in mice delayed the metastasis progression compared to the vehicle treated group. Thus, the present study provides an insight into the therapeutic applications of demethylating agents to reduce cancer metastasis in models with EVI1 overexpressing tumors.
Collapse
Affiliation(s)
- Pradeepa
- Cancer Biology Group, Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha 751023, India
| | - Voddu Suresh
- Tumor Microenvironment and Animal Models Group, Institute of Life Sciences, Nalco Square, Bhubaneswar 751023, India
| | - Vivek Kumar Singh
- Cancer Biology Group, Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha 751023, India
| | - Kasturi Bala Nayak
- Cancer Biology Group, Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha 751023, India
| | - Shantibhusan Senapati
- Tumor Microenvironment and Animal Models Group, Institute of Life Sciences, Nalco Square, Bhubaneswar 751023, India
| | - Soumen Chakraborty
- Cancer Biology Group, Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha 751023, India.
| |
Collapse
|
126
|
Naderi R, Gholizadeh-Ghaleh Aziz S, Haghigi-Asl AS. Evaluating the effect of Alantolactone on the expression of N-cadherin and Vimentin genes effective in epithelial-mesenchymal transition (EMT) in breast cancer cell line (MDA-MB-231). Ann Med Surg (Lond) 2022; 73:103240. [PMID: 35079373 PMCID: PMC8767280 DOI: 10.1016/j.amsu.2021.103240] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVE Breast cancer is the second leading cause of death and the most common cancer among women. 10 to 20 percent of breast cancer samples have a negative triple phenotype that is more metastatic and more difficult to diagnose. Tumor invasion to other tissues and the formation of a secondary tumor depend on the epithelial to mesenchymal transition process, and the STAT3 pathway, which is associated with tumor proliferation and invasion and is the target gene for the drug, alantolactone. In this study, the EMT process is evaluated in negative triple-breasted cancer cells treated with alantolactone. METHODS We used MDA-MB-231 cell line for assessing the survival rate of triple negative breast cancer cells and MTT test for determining alantolactone dose. We used three doses of 0.01 0.1, and 1 μM of alantolactone for evaluating the cell behavior in cancer invasion pathway. Real-time PCR was used to evaluate the expression of Vimentin, and N-cadherin genes. All of the tests were repeated thrice and the data were analyzed using Prism version 7.0. RESULTS The expression of Vimentin and N-cadherin decreased significantly at 1 μM alantolactone compared to the control group, p < 0.05. CONCLUSION Alantolactone affects the expression of Vimentin and N-cadherin through STAT3 signaling pathway and suppresses EMT process, metastasis and cancer invasion. This component may be used for treatment of patients with breast cancer.
Collapse
Affiliation(s)
- Roya Naderi
- Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | | | | |
Collapse
|
127
|
Gu H, Li Y, Cui X, Cao H, Hou Z, Ti Y, Liu D, Gao J, Wang Y, Wen P. MICAL1 inhibits colorectal cancer cell migration and proliferation by regulating the EGR1/β-catenin signaling pathway. Biochem Pharmacol 2022; 195:114870. [PMID: 34902339 DOI: 10.1016/j.bcp.2021.114870] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/18/2021] [Accepted: 12/03/2021] [Indexed: 12/26/2022]
Abstract
MICAL1 has been reported to be involved in the malignant processes of several types of cancer cells, however, the roles of MICAL1 in colorectal cancer (CRC) have not been well-characterized. This study aims to investigate the cellular functions and molecular mechanisms of MICAL1 in CRC cells. Here, we found that both mRNA and protein levels of MICAL1 were down-regulated in colorectal cancer tissues compared with matched adjacent non-tumor tissues, and the expression level of MICAL1 was correlated with the metastatic status of colorectal cancer. Importantly, overexpression of MICAL1 significantly inhibited colorectal cancer cell migration and growth, and increased the level of E-cadherin and Occludin, and suppressed the expression level of Vimentin and N-cadherin; while silencing of MICAL1 promoted CRC cell migration and enhanced EMT. In addition, MICAL1 overexpression significantly inhibited the proliferation and growth of CRC in vitro and in vivo. Moreover, RNA sequencing and bioinformatics analysis identified that MICAL1 was closely correlated with "cell migration", "cell cycle" and "β-catenin signaling" genesets. Mechanistically, overexpression of MICAL1 downregulated the mRNA level of EGR1 and β-catenin, decreased the protein level and nuclear translocation of β-catenin, and inhibited the transcriptions of β-catenin downstream targets, c-myc and cyclin D1. The ectopic expression of EGR1 or β-catenin can significantly block the MICAL1-mediated inhibitory effects. Collectively, MICAL1 is down-regulated in CRC, and plays an inhibitory role in the migration and growth of CRC cells by suppressing the ERG1/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Huanyu Gu
- Department of Pathophysiology, Jinzhou Medical University, Jinzhou 121000, Liaoning, China
| | - Yi Li
- Department of Pathophysiology, Jinzhou Medical University, Jinzhou 121000, Liaoning, China
| | - Xiuping Cui
- Life Science Institute, Jinzhou Medical University, Jinzhou 121000, Liaoning, China
| | - Huiru Cao
- Department of Pathophysiology, Jinzhou Medical University, Jinzhou 121000, Liaoning, China
| | - Zhijuan Hou
- Department of Pathophysiology, Jinzhou Medical University, Jinzhou 121000, Liaoning, China
| | - Yunhe Ti
- Department of Pathophysiology, Jinzhou Medical University, Jinzhou 121000, Liaoning, China
| | - Dahua Liu
- Biological Anthropology Institute, Jinzhou Medical University, Jinzhou 121000, Liaoning, China
| | - Jing Gao
- Department of Ultrasonography, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, China
| | - Yu Wang
- Life Science Institute, Jinzhou Medical University, Jinzhou 121000, Liaoning, China.
| | - Pushuai Wen
- Department of Pathophysiology, Jinzhou Medical University, Jinzhou 121000, Liaoning, China; Biological Anthropology Institute, Jinzhou Medical University, Jinzhou 121000, Liaoning, China.
| |
Collapse
|
128
|
de Keijzer MJ, de Klerk DJ, de Haan LR, van Kooten RT, Franchi LP, Dias LM, Kleijn TG, van Doorn DJ, Heger M. Inhibition of the HIF-1 Survival Pathway as a Strategy to Augment Photodynamic Therapy Efficacy. Methods Mol Biol 2022; 2451:285-403. [PMID: 35505024 DOI: 10.1007/978-1-0716-2099-1_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Photodynamic therapy (PDT) is a non-to-minimally invasive treatment modality that utilizes photoactivatable drugs called photosensitizers to disrupt tumors with locally photoproduced reactive oxygen species (ROS). Photosensitizer activation by light results in hyperoxidative stress and subsequent tumor cell death, vascular shutdown and hypoxia, and an antitumor immune response. However, sublethally afflicted tumor cells initiate several survival mechanisms that account for decreased PDT efficacy. The hypoxia inducible factor 1 (HIF-1) pathway is one of the most effective cell survival pathways that contributes to cell recovery from PDT-induced damage. Several hundred target genes of the HIF-1 heterodimeric complex collectively mediate processes that are involved in tumor cell survival directly and indirectly (e.g., vascularization, glucose metabolism, proliferation, and metastasis). The broad spectrum of biological ramifications culminating from the activation of HIF-1 target genes reflects the importance of HIF-1 in the context of therapeutic recalcitrance. This chapter elaborates on the involvement of HIF-1 in cancer biology, the hypoxic response mechanisms, and the role of HIF-1 in PDT. An overview of inhibitors that either directly or indirectly impede HIF-1-mediated survival signaling is provided. The inhibitors may be used as pharmacological adjuvants in combination with PDT to augment therapeutic efficacy.
Collapse
Affiliation(s)
- Mark J de Keijzer
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
- Department of Pharmaceutics, Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Daniel J de Klerk
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, The Netherlands
| | - Lianne R de Haan
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, The Netherlands
| | - Robert T van Kooten
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Leonardo P Franchi
- Departamento de Bioquímica e Biologia Molecular, Instituto de Ciências Biológicas (ICB) 2, Universidade Federal de Goiás (UFG), Goiânia, GO, Brazil
- Faculty of Philosophy, Sciences, and Letters of Ribeirão Preto, epartment of Chemistry, Center of Nanotechnology and Tissue Engineering-Photobiology and Photomedicine Research Group,University of São Paulo, São Paulo, Brazil
| | - Lionel M Dias
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, The Netherlands
| | - Tony G Kleijn
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, The Netherlands
| | - Diederick J van Doorn
- Department of Gastroenterology and Hepatology, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Michal Heger
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China.
- Department of Pharmaceutics, Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, The Netherlands.
| |
Collapse
|
129
|
CMAHP promotes metastasis by reducing ubiquitination of Snail and inducing angiogenesis via GM-CSF overexpression in gastric cancer. Oncogene 2022; 41:159-172. [PMID: 34716430 DOI: 10.1038/s41388-021-02087-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 12/18/2022]
Abstract
Pseudogenes are generally considered "junk" DNA or "genomic fossils" generated during the evolution process that lack biological activity. However, accumulating reports indicate that pseudogenes have biological functions critical for cancer development. Experiments from the current study showed marked overexpression of the cytidine monophospho-N-acetylneuraminic acid hydroxylase pseudogene (CMAHP) in gastric cancer, which was associated with poor overall survival. However, the mechanisms underlying the activity of CMAHP in tumor development are largely unknown. Gene Set Enrichment Analysis (GSEA) revealed that CMAHP-correlated genes are significantly involved in epithelial-mesenchymal transition (EMT) and angiogenesis. Functional studies further confirmed that CMAHP mediates metastasis and angiogenesis in vitro and in vivo. Furthermore, CMAHP promoted cancer cell migration, invasion, and metastasis through Snail overexpression, which decreased ubiquitination mediated by NF-κB signaling. Angiogenesis is known to be induced by granulocyte-macrophage colony-stimulating factor (GM-CSF) stimulation. CMAHP increased GM-CSF transactivation via promoting direct binding of c-Jun to the -1981/-1975 region of the GM-CSF promoter. Notably, CMAHP interacts with Histone H1.4 promoting histone acetylation to enhance c-Jun and RelA (p65) expression. Our collective findings provide novel evidence that CMAHP contributes to tumor progression and modulates metastasis and angiogenesis in gastric cancer.
Collapse
|
130
|
A Gene Signature Derived from the Loss of CDKN1A (p21) Is Associated with CMS4 Colorectal Cancer. Cancers (Basel) 2021; 14:cancers14010136. [PMID: 35008299 PMCID: PMC8750372 DOI: 10.3390/cancers14010136] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/14/2021] [Accepted: 12/20/2021] [Indexed: 12/02/2022] Open
Abstract
Simple Summary A gene signature derived from the loss of CDKN1A (p21) gene, obtained in HCT116 p21-/- colorectal cancer cells, is identified in a large cohort of primary colorectal (CRC) tumors and is associated with the Consensus Molecular Subtype (CMS) of colon cancer that has a worse relapse-free and overall survival, that is, CMS4 (also called mesenchymal subtype). The presented gene signature can help to uncover the early molecular mechanisms of epithelial–mesenchymal transition (EMT), which is known to be associated with high stemness and drug resistance. Abstract The epithelial–mesenchymal transition (EMT) is associated with tumor aggressiveness and increased invasion, migration, metastasis, angiogenesis, and drug resistance. Although the HCT116 p21-/- cell line is well known for its EMT-associated phenotype, with high Vimentin and low E-cadherin protein levels, the gene signature of this rather intermediate EMT-like cell line has not been determined so far. In this work, we present a robust molecular and bioinformatics analysis, to reveal the associated gene expression profile and its correlation with different types of colorectal cancer tumors. We compared the quantitative signature obtained with the NanoString platform with the expression profiles of colorectal cancer (CRC) Consensus Molecular Subtypes (CMS) as identified, and validated the results in a large independent cohort of human tumor samples. The expression signature derived from the p21-/- cells showed consistent and reliable numbers of upregulated and downregulated genes, as evaluated with two machine learning methods against the four CRC subtypes (i.e., CMS1, 2, 3, and 4). High concordance was found between the upregulated gene signature of HCT116 p21-/- cells and the signature of the CMS4 mesenchymal subtype. At the same time, the upregulated gene signature of the native HCT116 cells was similar to that of CMS1. Using a multivariate Cox regression model to analyze the survival data in the CRC tumor cohort, we selected genes that have a predictive risk power (with a significant gene risk incidence score). A set of genes of the mesenchymal signature was proven to be significantly associated with poor survival, specifically in the CMS4 CRC human cohort. We suggest that the gene signature of HCT116 p21-/- cells could be a suitable metric for mechanistic studies regarding the CMS4 signature and its functional consequences in CRC. Moreover, this model could help to discover the molecular mechanisms of intermediate EMT, which is known to be associated with extraordinarily high stemness and drug resistance.
Collapse
|
131
|
Multicellular mechanochemical hybrid cellular Potts model of tissue formation during epithelial‐mesenchymal transition. COMPUTATIONAL AND SYSTEMS ONCOLOGY 2021. [DOI: 10.1002/cso2.1031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
132
|
Li T, Li X, Mao R, Pan L, Que Y, Zhu C, Jin L, Li S. NLRP2 inhibits cell proliferation and migration by regulating EMT in lung adenocarcinoma cells. Cell Biol Int 2021; 46:588-598. [PMID: 34957627 DOI: 10.1002/cbin.11755] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 12/14/2022]
Abstract
Nucleotide-binding oligomerization domain-like receptors (NLRs) are crucial types of innate immune sensors and well known for their critical roles in the immune system. However, how NLRP2 functions in the progression of cancer is largely unknown. Here, we identified NLRP2 as an antioncogene in lung adenocarcinoma (LUAD) cells. Gain- and loss-of-function studies revealed that NLRP2 silencing promoted cell proliferation and migration by stimulating NF-kB signaling in the microenvironment, which induced epithelial-to-mesenchymal transition (EMT) phenotype and cytoskeleton reorganization in LUAD cells. The addition of the NF-kB inhibitor rescued the function of NLRP2 on EMT. Moreover, NLRP2 increased the level of cofilin phosphorylation and repressed subsequent F-actin reorganization. Consistently, the in vivo study showed that NLRP2 played an inhibitory role in forming metastasis foci. Taken together, NLRP2 inhibited cell proliferation and migration by regulating EMT in LUAD cells, demonstrating the essential function of NLRP2 in the development of LUAD.
Collapse
Affiliation(s)
- Tiantian Li
- Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xu Li
- Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Rongchen Mao
- Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lihua Pan
- Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuhui Que
- Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chao Zhu
- Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lai Jin
- Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shengnan Li
- Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
133
|
Dai YC, Pan Y, Quan MM, Chen Q, Pan Y, Ruan YY, Sun JG. MicroRNA-1246 Mediates Drug Resistance and Metastasis in Breast Cancer by Targeting NFE2L3. Front Oncol 2021; 11:677168. [PMID: 34926237 PMCID: PMC8671458 DOI: 10.3389/fonc.2021.677168] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 11/16/2021] [Indexed: 12/16/2022] Open
Abstract
MicroRNA (miR)-1246 is abnormally expressed and has pro-oncogenic functions in multiple types of cancer. In the present study, its functions in breast cancer and the underlying mechanisms were further elucidated. The clinical relevance of miR-1246 was analyzed and its expression in clinical specimens and cell lines was examined by reverse transcription-quantitat000000ive PCR analysis. FACS was used to detect cell apoptosis and mitochondrial transmembrane potential. A Transwell system was used to detect cell migration and invasion. Luciferase assay was used to confirm the target gene of miR-1246. Xenograft and metastasis mouse models were constructed to determine the function of miR-1246 in vivo. miR-1246 was found to be negatively associated with overall survival in breast cancer. miR-1246 inhibitor could effectively increase the cytotoxicity of docetaxel (Doc) by inducing apoptosis, and impair cell migration and invasion by suppressing epithelial-to-mesenchymal transition. Nuclear factor (erythroid 2)-like factor 3 (NFE2L3) was confirmed as a new target gene of miR-1246, and its overexpression was shown to reduce drug resistance and migration of MDA-MB-231 cells. More importantly, NFE2L3-silencing attenuated the effect of miR-1246 inhibitor. Finally, the inhibition of miR-1246 effectively enhanced the cytotoxicity of Doc in xenografts and impaired breast cancer metastasis. Therefore, miR-1246 may promote drug resistance and metastasis in breast cancer by targeting NFE2L3.
Collapse
Affiliation(s)
- Yue-Chu Dai
- Department of Surgical Oncology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Yin Pan
- Department of Surgical Oncology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Ming-Ming Quan
- Department of Surgical Oncology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Qi Chen
- Precision Medicine Center, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Yue Pan
- Department of Surgical Oncology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Yan-Yun Ruan
- Precision Medicine Center, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Jian-Guo Sun
- Department of Surgical Oncology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China.,Precision Medicine Center, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| |
Collapse
|
134
|
Zhuang X, Shi G, Hu X, Wang H, Sun W, Wu Y. Interferon-gamma inhibits aldehyde dehydrogenasebright cancer stem cells in the 4T1 mouse model of breast cancer. Chin Med J (Engl) 2021; 135:194-204. [PMID: 34890380 PMCID: PMC8769120 DOI: 10.1097/cm9.0000000000001558] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Despite improvements in disease diagnosis, treatment, and prognosis, breast cancer is still a leading cause of cancer death for women. Compelling evidence suggests that targeting cancer stem cells (CSCs) have a crucial impact on overcoming the current shortcomings of chemotherapy and radiotherapy. In the present study, we aimed to study the effects of T cells and a critical anti-tumor cytokine, interferon-gamma (IFN-γ), on breast cancer stem cells. METHODS BALB/c mice and BALB/c nude mice were subcutaneously injected with 4T1 tumor cells. Tumor growth and pulmonary metastasis were assessed. ALDEFLOUR™ assays were performed to identify aldehyde dehydrogenasebright (ALDHbr) tumor cells. ALDHbr cells as well as T cells from tumor-bearing BALB/c mice were analyzed using flow cytometry. The effects of CD8+ T cells on ALDHbr tumor cells were assessed in vitro and in vivo. The expression profiles of ALDHbr and ALDHdim 4T1 tumor cells were determined. The levels of plasma IFN-γ were measured by enzyme-linked immunosorbent assay, and their associations with the percentages of ALDHbr tumor cells were evaluated. The effects of IFN-γ on ALDH expression and the malignancy of 4T1 tumor cells were analyzed in vitro. RESULTS There were fewer metastatic nodules in tumor-bearing BALB/c mice than those in tumor-bearing BALB/c nude mice (25.40 vs. 54.67, P < 0.050). CD8+ T cells decreased the percentages of ALDHbr 4T1 tumor cells in vitro (control vs. effector to target ratio of 1:1, 10.15% vs. 5.76%, P < 0.050) and in vivo (control vs. CD8+ T cell depletion, 10.15% vs. 21.75%, P < 0.001). The functions of upregulated genes in ALDHbr 4T1 tumor cells were enriched in the pathway of response to IFN-γ. The levels of plasma IFN-γ decreased gradually in tumor-bearing BALB/c mice, while the percentages of ALDHbr tumor cells in primary tumors increased. IFN-γ at a concentration of 26.68 ng/mL decreased the percentages of ALDHbr 4T1 tumor cells (22.88% vs. 9.88%, P < 0.050) and the protein levels of aldehyde dehydrogenase 1 family member A1 in 4T1 tumor cells (0.86 vs. 0.49, P < 0.050) and inhibited the abilities of sphere formation (sphere diameter <200 μm, 159.50 vs. 72.0; ≥200 μm, 127.0 vs. 59.0; both P < 0.050) and invasion (89.67 vs. 67.67, P < 0.001) of 4T1 tumor cells. CONCLUSION CD8+ T cells and IFN-γ decreased CSC numbers in a 4T1 mouse model of breast cancer. The application of IFN-γ may be a potential strategy for reducing CSCs in breast cancer.
Collapse
Affiliation(s)
- Xiufen Zhuang
- Department of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212000, China
| | - Guilan Shi
- Department of Immunology, Zibo Vocational Institute Health School, Zibo, Shandong 255000, China
- Department of Medical Engineering, Morsani College of Medicine, Tampa, FL 33612, USA
| | - Xiao Hu
- Department of Oncology, Suqian First Hospital, Suqian, Jiangsu 223800, China
| | - Huiru Wang
- Department of Blood Transfusion, The First Affiliated Hospital of USTC, Hefei, Anhui 230001, China
| | - Wen Sun
- Department of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212000, China
| | - Yanhong Wu
- Department of Medical Microbiology and Immunology, School of Basic Medical Sciences, Wannan Medical College, Wuhu, Anhui 241002, China
| |
Collapse
|
135
|
Ling Z, Yang C, Tan J, Dou C, Chen Y. Beyond immunosuppressive effects: dual roles of myeloid-derived suppressor cells in bone-related diseases. Cell Mol Life Sci 2021; 78:7161-7183. [PMID: 34635950 PMCID: PMC11072300 DOI: 10.1007/s00018-021-03966-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/11/2021] [Accepted: 09/29/2021] [Indexed: 02/08/2023]
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immature myeloid cells (IMCs) with immunosuppressive functions, whereas IMCs originally differentiate into granulocytes, macrophages, and dendritic cells (DCs) to participate in innate immunity under steady-state conditions. At present, difficulties remain in identifying MDSCs due to lacking of specific biomarkers. To make identification of MDSCs accurately, it also needs to be determined whether having immunosuppressive functions. MDSCs play crucial roles in anti-tumor, angiogenesis, and metastasis. Meanwhile, MDSCs could make close interaction with osteoclasts, osteoblasts, chondrocytes, and other stromal cells within microenvironment of bone and joint, and thereby contributing to poor prognosis of bone-related diseases such as cancer-related bone metastasis, osteosarcoma (OS), rheumatoid arthritis (RA), osteoarthritis (OA), and orthopedic trauma. In addition, MDSCs have been shown to participate in the procedure of bone repair. In this review, we have summarized the function of MDSCs in cancer-related bone metastasis, the interaction with stromal cells within the bone microenvironment as well as joint microenvironment, and the critical role of MDSCs in bone repair. Besides, the promising value of MDSCs in the treatment for bone-related diseases is also well discussed.
Collapse
Affiliation(s)
- Zhiguo Ling
- Department of Orthopaedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Chuan Yang
- Department of Biomedical Materials Science, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Jiulin Tan
- Department of Orthopaedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Ce Dou
- Department of Orthopaedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yueqi Chen
- Department of Orthopaedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| |
Collapse
|
136
|
Borkiewicz L. Histone 3 Lysine 27 Trimethylation Signature in Breast Cancer. Int J Mol Sci 2021; 22:12853. [PMID: 34884658 PMCID: PMC8657745 DOI: 10.3390/ijms222312853] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/22/2021] [Accepted: 11/26/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer development and progression rely on complicated genetic and also epigenetic changes which regulate gene expression without altering the DNA sequence. Epigenetic mechanisms such as DNA methylation, histone modifications, and regulation by lncRNAs alter protein expression by either promoting gene transcription or repressing it. The presence of so-called chromatin modification marks at various gene promoters and gene bodies is associated with normal cell development but also with tumorigenesis and progression of different types of cancer, including the most frequently diagnosed breast cancer. This review is focused on the significance of one of the abundant post-translational modifications of histone 3- trimethylation of lysine 27 (H3K27me3), which was shown to participate in tumour suppressor genes' silencing. Unlike other reviews in the field, here the overview of existing evidence linking H3K27me3 status with breast cancer biology and the tumour outcome is presented especially in the context of diverse breast cancer subtypes. Moreover, the potential of agents that target H3K27me3 for the treatment of this complex disease as well as H3K27 methylation in cross-talk with other chromatin modifications and lncRNAs are discussed.
Collapse
Affiliation(s)
- Lidia Borkiewicz
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-059 Lublin, Poland
| |
Collapse
|
137
|
Chae U, Kim B, Kim H, Park YH, Lee SH, Kim SU, Lee DS. Peroxiredoxin-6 regulates p38-mediated epithelial-mesenchymal transition in HCT116 colon cancer cells. JOURNAL OF BIOLOGICAL RESEARCH (THESSALONIKE, GREECE) 2021; 28:22. [PMID: 34814951 PMCID: PMC8609821 DOI: 10.1186/s40709-021-00153-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 11/01/2021] [Indexed: 12/13/2022]
Abstract
Background Peroxiredoxins (Prxs) are antioxidant enzymes that protect cells from oxidative stress induced by several factors. They regulate several signaling pathways, such as metabolism, immune response, and intracellular reactive oxygen species (ROS) homeostasis. Epithelial–mesenchymal transition (EMT) is a transforming process that induces the loss of epithelial features of cancer cells and the gain of the mesenchymal phenotype. The EMT promotes metastasis and cancer cell progression mediated by several pathways, such as mitogen-activated protein kinases (MAPKs) and epigenetic regulators. Methods We used Prx6 overexpressed and downregulated HCT116 cells to study the mechanism between Prx6 and colon cancer. The expression of Prx6, GAPDH, Snail, Twist1, E-cadherin, Vimentin, N-cadherin, ERK, p-ERK, p38, p-p38, JNK, and p-JNK were detected by Western blotting. Additionally, an animal study for xenograft assay was conducted to explore the function of Prx6 on tumorigenesis. Cell proliferation and migration were determined by IncuCyte Cell Proliferation and colony formation assays. Results We confirmed that the expression of Prx6 and EMT signaling highly occurs in HCT116 compared with that in other colon cancer cell lines. Prx6 regulates the EMT signaling pathway by modulating EMT-related transcriptional repressors and mesenchymal genes in HCT116 colon cancer cells. Under the Prx6-overexpressed condition, HCT116 cells proliferation increased significantly. Moreover, the HCT116 cells proliferation decreased in the siPrx6-treated cells. Eleven days after HCT116 cell injection, Prx6 was overexpressed in the HCT116-injected mice, and the tumor volume increased significantly compared with that of the control mice. Furthermore, Prx6 regulates EMT signaling through p38 phosphorylation in colon cancer cells. Conclusion We suggested that Prx6 regulates EMT signaling pathway through p38 phosphorylation modulation in HCT116 colon cancer cells. Supplementary Information The online version contains supplementary material available at 10.1186/s40709-021-00153-6.
Collapse
Affiliation(s)
- Unbin Chae
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, 28116, Republic of Korea
| | - Bokyung Kim
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - HanSeop Kim
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, 28116, Republic of Korea.,School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Young-Ho Park
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, 28116, Republic of Korea.,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Seung Hwan Lee
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, 28116, Republic of Korea
| | - Sun-Uk Kim
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, 28116, Republic of Korea.,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Dong-Seok Lee
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
138
|
Yan D, Earp HS, DeRyckere D, Graham DK. Targeting MERTK and AXL in EGFR Mutant Non-Small Cell Lung Cancer. Cancers (Basel) 2021; 13:5639. [PMID: 34830794 PMCID: PMC8616094 DOI: 10.3390/cancers13225639] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/20/2022] Open
Abstract
MERTK and AXL are members of the TAM family of receptor tyrosine kinases and are abnormally expressed in 69% and 93% of non-small cell lung cancers (NSCLCs), respectively. Expression of MERTK and/or AXL provides a survival advantage for NSCLC cells and correlates with lymph node metastasis, drug resistance, and disease progression in patients with NSCLC. The TAM receptors on host tumor infiltrating cells also play important roles in the immunosuppressive tumor microenvironment. Thus, MERTK and AXL are attractive biologic targets for NSCLC treatment. Here, we will review physiologic and oncologic roles for MERTK and AXL with an emphasis on the potential to target these kinases in NSCLCs with activating EGFR mutations.
Collapse
Affiliation(s)
- Dan Yan
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University, Atlanta, GA 30322, USA; (D.Y.); (D.D.)
| | - H. Shelton Earp
- UNC Lineberger Comprehensive Cancer Center, Department of Medicine, Chapel Hill, NC 27599, USA;
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Deborah DeRyckere
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University, Atlanta, GA 30322, USA; (D.Y.); (D.D.)
| | - Douglas K. Graham
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University, Atlanta, GA 30322, USA; (D.Y.); (D.D.)
| |
Collapse
|
139
|
Sharma N, Raut PW, Baruah MM, Sharma A. Combination of quercetin and 2-methoxyestradiol inhibits epithelial-mesenchymal transition in PC-3 cell line via Wnt signaling pathway. Future Sci OA 2021; 7:FSO747. [PMID: 34737887 PMCID: PMC8558868 DOI: 10.2144/fsoa-2021-0028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 08/10/2021] [Indexed: 12/05/2022] Open
Abstract
Aim: We have previously reported that quercetin (Qu) regulates epithelial–mesenchymal transition (EMT) by modulating Wnt signaling components. In this study, we investigated the synergistic effect of Qu and 2-methoxyestradiol (2-ME) and the role of Wnt signaling components in regulating EMT in PC-3 cells. Materials & methods: EMT was induced by treating PC-3 cells with TGF-β, followed by evaluation of expression of EMT markers and Wnt signaling proteins in naive, induced and after exposing induced cells to Qu and 2-ME at both gene and protein level by real-time PCR (RT-PCR) and western blot, respectively. Results: Qu and 2-ME synergistically downregulated mesenchymal markers with simultaneous upregulation of epithelial markers. Wnt signaling proteins expression was also downregulated by Qu and 2-ME in TGF-β-induced EMT in PC-3 cells. Conclusion: Thus, combination therapy of Qu and 2-ME could be a new promising therapeutic approach for the treatment of prostate cancer. The current study describes the synergistic effect of quercetin and 2-methoxyestradiol and the role of Wnt signaling components in regulating epithelial–mesenchymal transition (EMT) in PC-3 cells. EMT was induced by treating PC-3 cells with TGF-β, followed by the evaluation of expression of EMT markers and Wnt signaling proteins in naive and induced states. Quercetin and 2-methoxyestradiol could synergistically downregulate mesenchymal markers with simultaneous upregulation of epithelial markers along with the downregulation of Wnt signaling proteins.
Collapse
Affiliation(s)
- Neeti Sharma
- School of Engineering, Ajeenkya DY Patil University, Charholi Budruk, Pune, 412105, India
| | - Piyush W Raut
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Gram - Lavale; Taluka - Mulshi, Pune, India
| | - Meghna M Baruah
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Gram - Lavale; Taluka - Mulshi, Pune, India
| | - Akshay Sharma
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Gram - Lavale; Taluka - Mulshi, Pune, India
| |
Collapse
|
140
|
Huang J, Yu S, Ding L, Ma L, Chen H, Zhou H, Zou Y, Yu M, Lin J, Cui Q. The Dual Role of Circular RNAs as miRNA Sponges in Breast Cancer and Colon Cancer. Biomedicines 2021; 9:biomedicines9111590. [PMID: 34829818 PMCID: PMC8615412 DOI: 10.3390/biomedicines9111590] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/13/2021] [Accepted: 10/27/2021] [Indexed: 02/07/2023] Open
Abstract
Breast cancer (BC) and colon cancer (CRC) are the two most deadly cancers in the world. These cancers partly share the same genetic background and are partially regulated by the same genes. The outcomes of traditional chemoradiotherapy and surgery remain suboptimal, with high postoperative recurrence and a low survival rate. It is, therefore, urgent to innovate and improve the existing treatment measures. Many studies primarily reported that the microRNA (miRNA) sponge functions of circular RNA (circRNA) in BC and CRC have an indirect relationship between the circRNA–miRNA axis and malignant behaviors. With a covalent ring structure, circRNAs can regulate the expression of target genes in multiple ways, especially by acting as miRNA sponges. Therefore, this review mainly focuses on the roles of circRNAs as miRNA sponges in BC and CRC based on studies over the last three years, thus providing a theoretical reference for finding new therapeutic targets in the future.
Collapse
Affiliation(s)
- Jiashu Huang
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (J.H.); (S.Y.); (L.D.); (L.M.); (H.C.); (H.Z.); (Y.Z.); (M.Y.); (J.L.)
- Key Lab of Molecular Cancer Biology, Yunnan Education Department, Kunming 650091, China
| | - Shenghao Yu
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (J.H.); (S.Y.); (L.D.); (L.M.); (H.C.); (H.Z.); (Y.Z.); (M.Y.); (J.L.)
- Key Lab of Molecular Cancer Biology, Yunnan Education Department, Kunming 650091, China
| | - Lei Ding
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (J.H.); (S.Y.); (L.D.); (L.M.); (H.C.); (H.Z.); (Y.Z.); (M.Y.); (J.L.)
- Key Lab of Molecular Cancer Biology, Yunnan Education Department, Kunming 650091, China
| | - Lingyuan Ma
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (J.H.); (S.Y.); (L.D.); (L.M.); (H.C.); (H.Z.); (Y.Z.); (M.Y.); (J.L.)
- Key Lab of Molecular Cancer Biology, Yunnan Education Department, Kunming 650091, China
| | - Hongjian Chen
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (J.H.); (S.Y.); (L.D.); (L.M.); (H.C.); (H.Z.); (Y.Z.); (M.Y.); (J.L.)
- Key Lab of Molecular Cancer Biology, Yunnan Education Department, Kunming 650091, China
| | - Hui Zhou
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (J.H.); (S.Y.); (L.D.); (L.M.); (H.C.); (H.Z.); (Y.Z.); (M.Y.); (J.L.)
- Key Lab of Molecular Cancer Biology, Yunnan Education Department, Kunming 650091, China
| | - Yayan Zou
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (J.H.); (S.Y.); (L.D.); (L.M.); (H.C.); (H.Z.); (Y.Z.); (M.Y.); (J.L.)
- Key Lab of Molecular Cancer Biology, Yunnan Education Department, Kunming 650091, China
| | - Min Yu
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (J.H.); (S.Y.); (L.D.); (L.M.); (H.C.); (H.Z.); (Y.Z.); (M.Y.); (J.L.)
- Key Lab of Molecular Cancer Biology, Yunnan Education Department, Kunming 650091, China
| | - Jie Lin
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (J.H.); (S.Y.); (L.D.); (L.M.); (H.C.); (H.Z.); (Y.Z.); (M.Y.); (J.L.)
- Key Lab of Molecular Cancer Biology, Yunnan Education Department, Kunming 650091, China
| | - Qinghua Cui
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (J.H.); (S.Y.); (L.D.); (L.M.); (H.C.); (H.Z.); (Y.Z.); (M.Y.); (J.L.)
- Key Lab of Molecular Cancer Biology, Yunnan Education Department, Kunming 650091, China
- Correspondence: ; Tel.: +86-871-65031412
| |
Collapse
|
141
|
Chu Q, Gu X, Zheng Q, Guo Z, Shan D, Wang J, Zhu H. Long noncoding RNA SNHG4: a novel target in human diseases. Cancer Cell Int 2021; 21:583. [PMID: 34717631 PMCID: PMC8557547 DOI: 10.1186/s12935-021-02292-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/21/2021] [Indexed: 12/21/2022] Open
Abstract
Recently, long noncoding RNAs (lncRNAs) have attracted great attention from researchers. LncRNAs are non-protein-coding RNAs of more than 200 nucleotides in length. Multiple studies have been published on the relationship between lncRNA expression and the progression of human diseases. LncRNA small nucleolar RNA host gene 4 (SNHG4), a member of the lncRNA SNHG family, is abnormally expressed in a variety of human diseases, including gastric cancer, renal cell carcinoma, glioblastoma, neuroblastoma, prostate cancer, colorectal cancer, osteosarcoma, cervical cancer, liver cancer, lung cancer, non-small-cell lung cancer, neonatal pneumonia, diabetic retinopathy, neuropathic pain, acute cerebral infarction, acute myeloid leukaemia, and endometriosis. In this paper, the structure of SNHG4 is first introduced, and then studies in humans, animal models and cells are summarized to highlight the expression and function of SNHG4 in the above diseases. In addition, the specific mechanism of SNHG4 as a competing endogenous RNA (ceRNA) is discussed. The findings indicate that SNHG4 can be used as a biomarker for disease prognosis evaluation and as a potential target for disease diagnosis and treatment.
Collapse
Affiliation(s)
- Qingfei Chu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, NO. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Xinyu Gu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, NO. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Qiuxian Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, NO. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Zixuan Guo
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, NO. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Dandan Shan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, NO. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Jing Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, NO. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Haihong Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, NO. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.
| |
Collapse
|
142
|
Alfaro-García JP, Granados-Alzate MC, Vicente-Manzanares M, Gallego-Gómez JC. An Integrated View of Virus-Triggered Cellular Plasticity Using Boolean Networks. Cells 2021; 10:cells10112863. [PMID: 34831086 PMCID: PMC8616224 DOI: 10.3390/cells10112863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/18/2021] [Accepted: 10/22/2021] [Indexed: 11/16/2022] Open
Abstract
Virus-related mortality and morbidity are due to cell/tissue damage caused by replicative pressure and resource exhaustion, e.g., HBV or HIV; exaggerated immune responses, e.g., SARS-CoV-2; and cancer, e.g., EBV or HPV. In this context, oncogenic and other types of viruses drive genetic and epigenetic changes that expand the tumorigenic program, including modifications to the ability of cancer cells to migrate. The best-characterized group of changes is collectively known as the epithelial–mesenchymal transition, or EMT. This is a complex phenomenon classically described using biochemistry, cell biology and genetics. However, these methods require enormous, often slow, efforts to identify and validate novel therapeutic targets. Systems biology can complement and accelerate discoveries in this field. One example of such an approach is Boolean networks, which make complex biological problems tractable by modeling data (“nodes”) connected by logical operators. Here, we focus on virus-induced cellular plasticity and cell reprogramming in mammals, and how Boolean networks could provide novel insights into the ability of some viruses to trigger uncontrolled cell proliferation and EMT, two key hallmarks of cancer.
Collapse
Affiliation(s)
- Jenny Paola Alfaro-García
- Molecular and Translation Medicine Group, Faculty of Medicine, University of Antioquia, Medellin 050010, Colombia; (J.P.A.-G.); (M.C.G.-A.)
| | - María Camila Granados-Alzate
- Molecular and Translation Medicine Group, Faculty of Medicine, University of Antioquia, Medellin 050010, Colombia; (J.P.A.-G.); (M.C.G.-A.)
| | - Miguel Vicente-Manzanares
- Molecular Mechanisms Program, Centro de Investigación del Cáncer, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007 Salamanca, Spain
- Correspondence: (M.V.-M.); (J.C.G.-G.)
| | - Juan Carlos Gallego-Gómez
- Molecular and Translation Medicine Group, Faculty of Medicine, University of Antioquia, Medellin 050010, Colombia; (J.P.A.-G.); (M.C.G.-A.)
- Correspondence: (M.V.-M.); (J.C.G.-G.)
| |
Collapse
|
143
|
Cai F, Xu H, Zha D, Wang X, Li P, Yu S, Yao Y, Chang X, Chen J, Lu Y, Hua ZC, Zhuang H. AK2 Promotes the Migration and Invasion of Lung Adenocarcinoma by Activating TGF-β/Smad Pathway In vitro and In vivo. Front Pharmacol 2021; 12:714365. [PMID: 34630090 PMCID: PMC8493805 DOI: 10.3389/fphar.2021.714365] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 09/07/2021] [Indexed: 12/25/2022] Open
Abstract
Adenylate kinase 2 (AK2) is a wide-spread and highly conserved protein kinase whose main function is to catalyze the exchange of nucleotide phosphate groups. In this study, we showed that AK2 regulated tumor cell metastasis in lung adenocarcinoma. Positive expression of AK2 is related to lung adenocarcinoma progression and poor survival of patients. Knockdown or knockout of AK2 inhibited, while overexpression of AK2 promoted, human lung adenocarcinoma cell migration and invasion ability. Differential proteomics results showed that AK2 might be closely related to epithelial-mesenchymal transition (EMT). Further research indicated that AK2 regulated EMT occurrence through the Smad-dependent classical signaling pathways as measured by western blot and qPCR assays. Additionally, in vivo experiments showed that AK2-knockout in human lung tumor cells reduced their EMT-like features and formed fewer metastatic nodules both in liver and in lung tissues. In conclusion, we uncover a cancer metastasis-promoting role for AK2 and provide a rationale for targeting AK2 as a potential therapeutic approach for lung cancer.
Collapse
Affiliation(s)
- Fangfang Cai
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, China.,School of Biopharmacy, China Pharmaceutical University, Nanjing, China
| | - Huangru Xu
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, China
| | - Daolong Zha
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, China
| | - Xiaoyang Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, China
| | - Ping Li
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, China
| | - Shihui Yu
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, China
| | - Yingying Yao
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, China
| | - Xiaoyao Chang
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, China
| | - Jia Chen
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, China
| | - Yanyan Lu
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, China
| | - Zi-Chun Hua
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, China.,School of Biopharmacy, China Pharmaceutical University, Nanjing, China.,Changzhou High-Tech Research Institute of Nanjing University and Jiangsu TargetPharma Laboratories Inc., Changzhou, China
| | - Hongqin Zhuang
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, China
| |
Collapse
|
144
|
Zhang S, Ding J, Wang J, Yin T, Zhang Y, Yang J. CXCL5 Downregulation in Villous Tissue Is Correlated With Recurrent Spontaneous Abortion. Front Immunol 2021; 12:717483. [PMID: 34603292 PMCID: PMC8486294 DOI: 10.3389/fimmu.2021.717483] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/30/2021] [Indexed: 11/18/2022] Open
Abstract
Recurrent spontaneous abortion (RSA) affects 5% of childbearing-age women worldwide. Inadequate trophoblast invasion is one of the main reasons for the development of RSA; however, the underlying molecular mechanisms for RSA have not been fully understood, and further explanation is urgently needed. C-X-C motif chemokine ligand 5 (CXCL5) is reported to contribute to the invasion of cancer cells, and its aberrant expression is associated with the cellular process of tumor pathology. Considering the high behavioral similarity between trophoblast cells and cancer cells, we hypothesized that CXCL5 may influence trophoblast invasion, and its expression levels in villous tissue may be correlated with RSA. In this study, we firstly investigated the CXCL5 expression in placental villous tissues of 15 RSA patients and 13 control patients, and the results showed that CXCL5 levels were significantly lower in villous tissue from RSA patients than those of the controls. Further in vitro experiments presented that recombinant human CXCL5 can enhance trophoblast migration, invasion, and epithelial-to-mesenchymal transition (EMT) process. We also demonstrated that CXCL5 exerted these effects on trophoblast cells through PI3K/AKT/ERK1/2 signaling pathway. In conclusion, these data indicate that CXCL5 downregulation in human villous tissue is correlated with RSA. Additionally, we found that estrogen, progesterone, human chorionic gonadotropin, and decidual stromal cells can regulate CXCL5 and chemokine receptor 2 (CXCR2) expression of trophoblast in a cell manner.
Collapse
Affiliation(s)
- Sainan Zhang
- Reproductive Medical Center, Renmin Hospital of Wuhan University & Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Jinli Ding
- Reproductive Medical Center, Renmin Hospital of Wuhan University & Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Jiayu Wang
- Reproductive Medical Center, Renmin Hospital of Wuhan University & Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Tailang Yin
- Reproductive Medical Center, Renmin Hospital of Wuhan University & Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Yan Zhang
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jing Yang
- Reproductive Medical Center, Renmin Hospital of Wuhan University & Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| |
Collapse
|
145
|
Hu X, Han D, Wang Y, Gu J, Wang X, Jiang Y, Yang Y, Liu J. Phospho-Smad3L promotes progression of hepatocellular carcinoma through decreasing miR-140-5p level and stimulating epithelial-mesenchymal transition. Dig Liver Dis 2021; 53:1343-1351. [PMID: 33775574 DOI: 10.1016/j.dld.2021.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 02/02/2021] [Accepted: 03/03/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND The transforming growth factor β (TGF-β) activates JNK, phosphorylates Smad3 to linker-phosphorylated Smad3 (pSmad3L), resulting in liver tumorigenesis. However, the effect of pSmad3L on hepatocellular carcinoma (HCC) prognosis is obscure. AIM To detect the effect of pSmad3L on HCC prognosis and investigate the mechanism. METHODS The expressions of pSmad3L, E-cadherin, vimentin and MicroRNA-140-5p (miR-140-5p) were detected by using immunohistochemistry, immunofluorescence and in situ hybridization. Next, the relationships of pSmad3L and HCC patients' prognoses, pSmad3L and EMT markers, pSmad3L and miR-140-5p were analyzed using Spearman's rank correlation test. JNK/pSmad3L specific inhibitor SP600125 or Smad3 mutant plasmid was used to suppress JNK/pSmad3L pathway, and QPCR assay was performed to investigate the effect of pSmad3L on miR-140-5p level. The proliferation and invasion of hepatoma cells were observed using colony formation assay and transwell assay. RESULTS We demonstrated that patient with high level of pSmad3L predicted poor prognosis. Next, we verified that pSmad3L promoted EMT of hepatoma cells in vivo and in vitro. In order to investigate the mechanism, we verified a negative correlation between pSmad3L and miR-140-5p, which was an EMT inhibitor, in the liver tissues of HCC patient and diethylnitrosamine (DEN)-induced rat HCC model. We further used SP600125 or pSmad3L mutant plasmid to decrease pSmad3L level of hepatoma cells, and inhibition of pSmad3L increased miR-140-5p level and suppressed EMT of hepatoma cells. CONCLUSIONS JNK/pSmad3L pathway induces EMT by inhibiting miR-140-5p in HCC progression.
Collapse
Affiliation(s)
- Xiangpeng Hu
- Digestive Department, the Second Affiliated Hospital of Anhui Medical University, Hefei, China; Department of Pharmacology, School of Basic Medical College, Anhui Medical University, Hefei, China
| | - Dan Han
- Department of Pathophysiology, School of Basic Medical College, Anhui Medical University, Hefei, China; Biopharmaceutical Research Institute, Anhui Medical University, Hefei, China
| | - Yanyan Wang
- Department of Pathophysiology, School of Basic Medical College, Anhui Medical University, Hefei, China; Biopharmaceutical Research Institute, Anhui Medical University, Hefei, China
| | - Jiong Gu
- Department of General Surgery, the Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xian Wang
- Department of Pathology, the Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yufeng Jiang
- Department of Pharmacology, School of Basic Medical College, Anhui Medical University, Hefei, China
| | - Yan Yang
- Department of Pharmacology, School of Basic Medical College, Anhui Medical University, Hefei, China.
| | - Jun Liu
- Department of Pathophysiology, School of Basic Medical College, Anhui Medical University, Hefei, China; Biopharmaceutical Research Institute, Anhui Medical University, Hefei, China; Functional experiment center, School of Basic Medical College, Anhui Medical University, Hefei, China.
| |
Collapse
|
146
|
A novel fucoidan complex-based functional beverage attenuates oral cancer through inducing apoptosis, G2/M cell cycle arrest and retarding cell migration/invasion. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
147
|
Sui Y, Hu W, Zhang W, Li D, Zhu H, You Q, Zhu R, Yi Q, Tang T, Gao L, Zhu S, Yang T. Insights into homeobox B9: a propeller for metastasis in dormant prostate cancer progenitor cells. Br J Cancer 2021; 125:1003-1015. [PMID: 34247196 PMCID: PMC8476533 DOI: 10.1038/s41416-021-01482-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 05/30/2021] [Accepted: 06/30/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Metastasis is the major cause of treatment failure and cancer-related deaths in prostate cancer (PCa) patients. Our previous study demonstrated that a CD44+ subpopulation isolated from PCa cells or tumours possesses both stem cell properties and metastatic potential, serving as metastatic prostate cancer stem cells (mPCSCs) in PCa metastasis. However, the underlying mechanisms remain unknown. METHODS In this study, we established PCa models via the orthotopic and subcutaneous implantation of different human PCa cancer cell lines, and compared the metastatic efficacy, after which process function analysis of target genes was pinpointed. RESULTS Several novel differentially expressed genes (DEGs) between orthotopic and ectopic tumours were identified. Among them, human homeobox B9 (HOXB9) transcription factor was found to be essential for PCa metastasis, as evidenced by the diminished number of lung metastatic foci derived from orthotopic implantation with HOXB9-deficient CWR22 cells, compared with the control. In addition, HOXB9 protein expression was upregulated in PCa tissues, compared with paracancer and benign prostate hyperplasia tissues. It was also positively correlated with Gleason scores. Gain- and loss-of-function assays showed that HOXB9 altered the expression of various tumour metastasis- and cancer stem cell (CSC) growth-related genes in a transforming growth factor beta (TGFβ)-dependent manner. Moreover, HOXB9 was overexpressed in an ALDH+CD44+CXCR4+CD24+ subpopulation of PCa cells that exhibited enhanced TGFβ-dependent tumorigenic and metastatic abilities, compared with other isogenic PCa cells. This suggests that HOXB9 may contribute to PCa tumorigenesis and metastasis via TGFβ signalling. Of note, ALDH+CD44+CXCR4+CD24+-PCa cells exhibited resistance to castration and antiandrogen therapy and were present in human PCa tissues. CONCLUSION Taken together, our study identified HOXB9 as a critical regulator of metastatic mPCSC behaviour. This occurs through altering the expression of a panel of CSC growth- and invasion/metastasis-related genes via TGFβ signalling. Thus, targeting HOXB9 is a potential novel therapeutic PCa treatment strategy.
Collapse
Affiliation(s)
- Yi Sui
- grid.412615.5Department of Nutrition, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wei Hu
- grid.477929.6Department of Urology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Wei Zhang
- grid.488206.00000 0004 4912 1751Department of Pharmacology, School of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Dejian Li
- grid.477929.6Department of Othopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Hongbo Zhu
- grid.477929.6Department of Pathology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Qinghua You
- grid.477929.6Department of Pathology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Rujian Zhu
- grid.477929.6Department of Urology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Qingtong Yi
- grid.477929.6Department of Urology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Tao Tang
- grid.10784.3a0000 0004 1937 0482Department of Obstetrics and Gynaecology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Lili Gao
- grid.477929.6Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Shengjuan Zhu
- grid.477929.6Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Tao Yang
- grid.477929.6Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| |
Collapse
|
148
|
Abooshahab R, Al-Salami H, Dass CR. The increasing role of pigment epithelium-derived factor in metastasis: from biological importance to a promising target. Biochem Pharmacol 2021; 193:114787. [PMID: 34571004 DOI: 10.1016/j.bcp.2021.114787] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/22/2021] [Accepted: 09/22/2021] [Indexed: 12/17/2022]
Abstract
Pigment epithelium-derived factor (PEDF) is a non-inhibitory member of the serpin (serine protease inhibitor) family and is a well-known potent anti-tumor factor in a variety of cancers. It has been ascertained that PEDF regulates multiple metastatic processes through various plausible mechanisms, including inhibiting angiogenesis, inducing apoptosis, stimulating extracellular matrix (ECM) degradation, and suppressing the epithelial-to-mesenchymal transition (EMT) process. Although PEDF has been recognized as an anti-metastatic marker in most studies, its role remains controversial with conflicting reports of PEDF as a metastatic marker. The emerging insights into the mechanism(s) of PEDF in tumor progression and its therapeutic effects are discussed systematically in this review, aiming to improve our understanding in the context of metastasis and drug development.
Collapse
Affiliation(s)
- Raziyeh Abooshahab
- Curtin Medical School, Curtin University, Bentley 6102, Australia; Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hani Al-Salami
- Curtin Medical School, Curtin University, Bentley 6102, Australia; Curtin Health Innovation Research Institute, Bentley 6102, Australia
| | - Crispin R Dass
- Curtin Medical School, Curtin University, Bentley 6102, Australia; Curtin Health Innovation Research Institute, Bentley 6102, Australia.
| |
Collapse
|
149
|
Bang TH, Park BS, Kang HM, Kim JH, Kim IR. Polydatin, a Glycoside of Resveratrol, Induces Apoptosis and Inhibits Metastasis Oral Squamous Cell Carcinoma Cells In Vitro. Pharmaceuticals (Basel) 2021; 14:ph14090902. [PMID: 34577602 PMCID: PMC8468100 DOI: 10.3390/ph14090902] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 01/07/2023] Open
Abstract
Although various methods, such as surgery and chemotherapy, are applied to the treatment of OSCC, there are problems, such as functional and aesthetic limitations of the mouth and face, drug side effects, and lymph node metastasis. Many researchers are making efforts to develop new therapeutic agents from plant-derived substances to overcome the side effects that occur in oral cancer treatment. Polydatin is known as a natural precursor of resveratrol, and research on its efficacy is being actively conducted recently. Therefore, we investigated whether polydatin can induce apoptosis and whether it affects cell migration and invasion through the regulation of EMT-related factors in OSCC. Polydatin decreased the survival and proliferation rates of CAL27 and Ca9-22 cells, and induced the release of cytochrome c, a factor related to apoptosis, and fragmentation of procaspase-3 and PARP. Another form of cell death, autophagy, was observed in polydatin-treated cells. In addition, polydatin inhibits cell migration and invasion, and it has been shown to occur through increased expression of E-cadherin, an EMT related factor, and decreased expression of N-cadherin and Slug and Snail proteins and genes. These findings suggest that polydatin is a potential oral cancer treatment.
Collapse
Affiliation(s)
- Tae-Hyun Bang
- Department of Oral Anatomy, School of Dentistry, Pusan National University, Busandaehak-ro, 49, Mulguem-eup, Yangsan-si 50612, Korea; (T.-H.B.); (B.-S.P.); (H.-M.K.)
| | - Bong-Soo Park
- Department of Oral Anatomy, School of Dentistry, Pusan National University, Busandaehak-ro, 49, Mulguem-eup, Yangsan-si 50612, Korea; (T.-H.B.); (B.-S.P.); (H.-M.K.)
- Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan 50612, Korea
| | - Hae-Mi Kang
- Department of Oral Anatomy, School of Dentistry, Pusan National University, Busandaehak-ro, 49, Mulguem-eup, Yangsan-si 50612, Korea; (T.-H.B.); (B.-S.P.); (H.-M.K.)
- Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan 50612, Korea
| | - Jung-Han Kim
- Department of Oral and Maxillofacial Surgery, Medical Center, Dong-A University, Daesingongwon-ro, 26, Seo-gu, Busan 49201, Korea;
| | - In-Ryoung Kim
- Department of Oral Anatomy, School of Dentistry, Pusan National University, Busandaehak-ro, 49, Mulguem-eup, Yangsan-si 50612, Korea; (T.-H.B.); (B.-S.P.); (H.-M.K.)
- Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan 50612, Korea
- Correspondence: ; Tel.: +82-51-510-8552
| |
Collapse
|
150
|
Kisling SG, Natarajan G, Pothuraju R, Shah A, Batra SK, Kaur S. Implications of prognosis-associated genes in pancreatic tumor metastasis: lessons from global studies in bioinformatics. Cancer Metastasis Rev 2021; 40:721-738. [PMID: 34591244 PMCID: PMC8556170 DOI: 10.1007/s10555-021-09991-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 08/31/2021] [Indexed: 12/13/2022]
Abstract
Pancreatic cancer (PC) is a highly lethal malignancy with a 5-year survival rate of 10%. The occurrence of metastasis, among other hallmarks, is the main contributor to its poor prognosis. Consequently, the elucidation of metastatic genes involved in the aggressive nature of the disease and its poor prognosis will result in the development of new treatment modalities for improved management of PC. There is a deep interest in understanding underlying disease pathology, identifying key prognostic genes, and genes associated with metastasis. Computational approaches, which have become increasingly relevant over the last decade, are commonly used to explore such interests. This review aims to address global studies that have employed global approaches to identify prognostic and metastatic genes, while highlighting their methods and limitations. A panel of 48 prognostic genes were identified across these studies, but only five, including ANLN, ARNTL2, PLAU, TOP2A, and VCAN, were validated in multiple studies and associated with metastasis. Their association with metastasis has been further explored here, and the implications of these genes in the metastatic cascade have been interpreted.
Collapse
Affiliation(s)
- Sophia G Kisling
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Gopalakrishnan Natarajan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Ramesh Pothuraju
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Ashu Shah
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA.
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA.
- Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Sukhwinder Kaur
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA.
| |
Collapse
|