101
|
Totani L, Evangelista V. Platelet-leukocyte interactions in cardiovascular disease and beyond. Arterioscler Thromb Vasc Biol 2010; 30:2357-61. [PMID: 21071701 DOI: 10.1161/atvbaha.110.207480] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Platelet-leukocyte interactions define a basic cell process that is characterized by the exchange of signals between platelets and different types of leukocytes and that bridges 2 fundamental pathophysiological events: atherothrombosis and inflammatory immune reactions. When this process takes place at the site of atherosclerotic plaque development or at the site of endothelial injury, platelet-dependent leukocyte recruitment and activation contributes to the inflammatory reaction of the vessel wall, which accounts for the exacerbation of atherosclerosis and for intimal hyperplasia and plaque instability. Moreover, platelet-leukocyte interactions may have a key role in modulating a wide array of responses of both the innate and adaptive immune systems, thus contributing to the pathogenesis of inflammatory diseases and tissue damage, as well as to host defense.
Collapse
Affiliation(s)
- Licia Totani
- Laboratory of Vascular Biology and Pharmacology, Consorzio Mario Negri Sud, Via Nazionale 8/A, 66030 Santa Maria Imbaro, Italy
| | | |
Collapse
|
102
|
Platelet - leukocyte interactions: multiple links between inflammation, blood coagulation and vascular risk. Mediterr J Hematol Infect Dis 2010; 2:e2010023. [PMID: 21415976 PMCID: PMC3033146 DOI: 10.4084/mjhid.2010.023] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Accepted: 08/08/2010] [Indexed: 11/08/2022] Open
Abstract
The aim of this review is to summarize the contribution of platelets and leukocytes and their interactions in inflammation and blood coagulation and its possible relevance in the pathogenesis of thrombosis. There is some evidence of an association between infection/inflammation and thrombosis. This is likely a bidirectional relationship. The presence of a thrombus may serve as a nidus of infection. Vascular injury indeed promotes platelet and leukocyte activation and thrombus formation and the thrombus and its components facilitate adherence of bacteria to the vessel wall. Alternatively, an infection and the associated inflammation can trigger platelet and leukocyte activation and thrombus formation. In either case platelets and leukocytes co-localize and interact in the area of vascular injury, at sites of inflammation and/or at sites of thrombosis. Following vascular injury, the subendothelial tissue, a thrombogenic surface, becomes available for interaction with these blood cells. Tissue factor, found not only in media and adventitia of the vascular wall, but also on activated platelets and leukocytes, triggers blood coagulation. Vascular-blood cell interactions, mediated by the release of preformed components of the endothelium, is modulated by both cell adhesion and production of soluble stimulatory or inhibitory molecules that alter cell function: adhesion molecules regulate cell-cell contact and facilitate the modulation of biochemical pathways relevant to inflammatory and/or thrombotic processes.
Collapse
|
103
|
Sondag CM, Combs CK. Adhesion of monocytes to type I collagen stimulates an APP-dependent proinflammatory signaling response and release of Abeta1-40. J Neuroinflammation 2010; 7:22. [PMID: 20302643 PMCID: PMC2850892 DOI: 10.1186/1742-2094-7-22] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Accepted: 03/19/2010] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Amyloid precursor protein (APP) is a ubiquitously expressed cell surface protein reported to be involved in mediating cell-cell or cell-matrix interactions. Prior work has demonstrated that APP co-localizes with beta1 integrin in different cell types. METHODS In an effort to determine the function of APP on monocytic lineage cells, in particular, the human monocyte cell line, THP-1, was used to assess the role of APP during adhesion to the extracelluar matrix component type I collagen. RESULTS Pull-down assays demonstrated that THP-1 adhesion to collagen stimulated a tyrosine kinase-associated signaling response which included subsequent phosphorylation of p38 MAP kinase and increased association of APP with alpha2beta1 integrin, specifically. In addition, cell adhesion was dependent upon APP expression since APP siRNA knockdown attenuated THP-1 adhesion to collagen compared to mock transfected controls. One consequence of the tyrosine kinase-dependent signaling response was increased secretion of interleukin-1beta (IL-1beta) and Abeta1-40 but not the Abeta1-42 fragment of APP. Increased secretion of IL-1beta was dependent upon p38 MAP kinase activity while Abeta1-40 secretion required Src family kinase activity since the specific p38 inhibitor, SB202190, and the Src family kinase inhibitor, PP2, attenuated IL-1beta and Abeta1-40 secretion, respectively. CONCLUSIONS These data demonstrate that APP is involved in classic integrin-dependent tyrosine kinase-associated adhesion and activation of peripheral monocytic cells. Moreover, divergent APP-dependent signaling is required for increased secretion of both IL-1beta and Abeta1-40 as a component of the adhesion-dependent change in phenotype. This suggests that APP may have a broad role in not only mediating cell-matrix adhesion but also in the function of peripheral immune cells.
Collapse
Affiliation(s)
- Cindy M Sondag
- Department of Pharmacology, Physiology & Therapeutics, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203, USA
| | | |
Collapse
|
104
|
Chung AS, Kao WJ. Fibroblasts regulate monocyte response to ECM-derived matrix: The effects on monocyte adhesion and the production of inflammatory, matrix remodeling, and growth factor proteins. J Biomed Mater Res A 2009; 89:841-53. [DOI: 10.1002/jbm.a.32431] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
105
|
Bernimoulin M, Waters EK, Foy M, Steele BM, Sullivan M, Falet H, Walsh MT, Barteneva N, Geng JG, Hartwig JH, Maguire PB, Wagner DD. Differential stimulation of monocytic cells results in distinct populations of microparticles. J Thromb Haemost 2009; 7:1019-28. [PMID: 19548909 PMCID: PMC3242443 DOI: 10.1111/j.1538-7836.2009.03434.x] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Microparticles (MPs), small vesicles shed from stimulated cells, permit cross-talk between cells within a particular environment. Their composition is thought to reflect their cell of origin, and differs according to whether they are produced by stimulation or by apoptosis. Whether MP properties vary according to stimulus is not yet known. METHODS We studied the characteristics of MPs produced from monocytic THP-1 cells upon stimulation with lipopolysaccharide or a soluble P-selectin chimera, using proteomics, flow cytometry, western blotting, and electron microscopy. RESULTS Utilizing a novel criterion of calcein-AM staining to define MPs, we found that MP populations were similar with respect to size, presence and organization of cytoskeleton, and expression of certain antigens. The MPs shared the same level of procoagulant activity. We found that MPs also have distinct characteristics, depending on stimuli. These include differences in phosphatidylserine expression and expression of proteins from specific subcellular locations such as the mitochondria, and of unique antigens such as leukocyte-associated immunoglobin-like-receptor (LAIR)-1, which was found only upon stimulation with the soluble P-selectin chimera. CONCLUSION We found that the properties of MPs depend on the stimulus that produced them. This supports the concept that monocytic MPs differentially modulate thrombosis, inflammation and immune regulation according to stimulus.
Collapse
|
106
|
Haouzi D, Assou S, Mahmoud K, Tondeur S, Rème T, Hedon B, De Vos J, Hamamah S. Gene expression profile of human endometrial receptivity: comparison between natural and stimulated cycles for the same patients. Hum Reprod 2009; 24:1436-45. [PMID: 19246470 DOI: 10.1093/humrep/dep039] [Citation(s) in RCA: 170] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The adjunction of exogenous hormones for controlled ovarian stimulation (COS) may alter endometrial receptiveness. In order to identify the genes misregulated under COS, we compared the endometrium gene expression profiles, from the same patients, in a natural cycle and in a subsequent COS cycle. METHODS For the same normal-responder patients (n = 21), endometrial biopsies (n = 84) were collected during the pre-receptive (LH + 2) and receptive stages (LH + 7) of a natural cycle and, subsequently, on oocyte retrieval day (hCG + 2) and on transfer day (hCG + 5) of a stimulated cycle. Samples were analyzed using DNA microarrays. Gene expression profiles and biological pathways involved in endometrial receptivity were analyzed. RESULTS Although endometrium transition profiles from pre-receptive to receptive phases are similar between patients, COS regimens alter endometrial receptivity in comparison with natural cycle. Under COS conditions, two endometrial profiles were identified and were associated either with a moderately altered receptivity profile for the majority of the patients or a strongly altered profile for a sub-category of patients. The receptive endometrium transcription profile under COS was defective for biological functions such as TGFbeta signaling, leukocyte transendothelial migration and the cell cycle. CONCLUSIONS Gonadotrophin treatments in COS cycles led to disruptions of the transcriptional activation of genes involved in normal endometrial receptivity. We propose that when the receptiveness of the endometrium is seriously compromised by the COS protocol, fresh embryo replacement should be cancelled, the embryo frozen and thawed embryo replacement should be performed under natural cycles.
Collapse
Affiliation(s)
- D Haouzi
- CHU Montpellier, Institut de Recherche en Biothérapie, Hôpital Saint-Eloi, Montpellier F-34000, France
| | | | | | | | | | | | | | | |
Collapse
|
107
|
Ollivier V, Arnaud B, Jandrot-Perrus M, Ajzenberg N. Monocytes downregulate the early stage of collagen-induced platelet activation by a PECAM-1-dependent mechanism. J Thromb Haemost 2009; 7:143-51. [PMID: 18983521 DOI: 10.1111/j.1538-7836.2008.03170.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Blood vessel damage results in exposure of the subendothelial matrix, to which platelets adhere. Monocytes are recruited and activated at the site of injury. OBJECTIVES Here we studied the effect of monocytes on platelet activation induced by exposure to fibrillar collagen. METHODS Washed platelets and isolated monocytes (100/1) were coincubated with type I collagen in static adhesion conditions or in suspension. Platelet activation was assessed by measuring RANTES production and alpha-granule secretion. Platelet adherence on immobilized collagen was analyzed by fluorescence confocal microscopy. Cell-cell contacts were prevented by incubating platelets and monocytes in transwell coculture dishes. Experiments were also performed in the presence of soluble recombinant platelet endothelial cell adhesion molecule-1 (PECAM-1) or of antibodies to PECAM-1. RESULTS Unexpectedly, unstimulated monocytes limited the initial phase of platelet activation by fibrillar collagen. In adhesion conditions, monocytes reduced the secretion by platelets of the inflammatory chemokine RANTES and of beta-thromboglobulin and the formation of platelet aggregates. The inhibitory effect of monocytes on platelet activation required direct cell-cell contacts between platelets and monocytes. Monocytes also inhibited collagen-induced platelet activation in suspension conditions as assessed by the reduction of P-selectin exposure and RANTES secretion. A recovery of platelet responses was observed in the presence of soluble PECAM-1 and of PECAM-1.3 Fab, indicating that PECAM-1 is involved in monocyte-triggered downregulation of platelet reactivity. CONCLUSIONS Our data provide the first evidence that unstimulated monocytes limit the initial phase of platelet activation by collagen via a mechanism that is, at least in part, PECAM-1-dependent.
Collapse
Affiliation(s)
- V Ollivier
- Inserm, U698, Paris, F-75018, AP-HP, Hôpital Bichat, Department of Haematology, CIB PhenoGen, University Paris7-Denis Diderot, Paris, France
| | | | | | | |
Collapse
|
108
|
Rohlena J, Volger OL, van Buul JD, Hekking LHP, van Gils JM, Bonta PI, Fontijn RD, Post JA, Hordijk PL, Horrevoets AJG. Endothelial CD81 is a marker of early human atherosclerotic plaques and facilitates monocyte adhesion. Cardiovasc Res 2008; 81:187-96. [PMID: 18805782 DOI: 10.1093/cvr/cvn256] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
AIMS In a recent report, we established at the genome-wide level those genes that are specifically upregulated in the endothelium of atherosclerotic plaques in human arteries. As the transcriptome data revealed that mRNA for the tetraspanin family member CD81 is significantly and specifically upregulated in the endothelium overlying early atheroma, we set out to validate these results on the protein level, and investigate the functional consequences of CD81 upregulation. METHODS AND RESULTS Immunohistochemical analysis in an independent set of donor arteries verified in the endothelium of early human atherosclerotic lesions the enhanced expression of CD81, which appears oxidative stress-dependent. Using lentiviral overexpression and silencing in human umbilical endothelial cells, we established in an in vitro flow adhesion assay that elevated endothelial CD81 is associated with increased monocyte adhesion to non-activated CD81-transduced endothelial cells, approaching the levels normally only attained after tumour necrosis factor alpha stimulation. The CD81 effect was dependent on both intracellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1), as it was abolished in the presence of a mixture of anti-ICAM-1 and anti-VCAM-1 antibodies. Flow cytometry revealed that increased CD81 levels did not increase total ICAM-1 and VCAM-1 surface expression. Instead, it concentrated the available adhesion molecules into membrane clusters, as indicated by confocal and electron microscopy. CD81 also colocalized with ICAM-1 and VCAM-1 in the adhesion rings around bound monocytes. CONCLUSION Endothelial CD81 upregulated in early human atheroma has the potential to play a crucial role in the initial stages of atherosclerotic plaque formation by increasing monocyte adhesion prior to the full-blown inflammatory response.
Collapse
Affiliation(s)
- Jakub Rohlena
- Department of Medical Biochemistry, Academic Medical Centre, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
109
|
Bournazos S, Rennie J, Hart SP, Fox KAA, Dransfield I. Monocyte functional responsiveness after PSGL-1-mediated platelet adhesion is dependent on platelet activation status. Arterioscler Thromb Vasc Biol 2008; 28:1491-8. [PMID: 18497306 DOI: 10.1161/atvbaha.108.167601] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Acute coronary diseases are characterized by elevated levels of circulating platelet-leukocyte complexes, raising the possibility that proinflammatory processes might be initiated in leukocytes after platelet adhesion. Here we examined the mechanism of platelet binding to polymorphonuclear leukocytes, monocytes, and monocyte subsets and investigated the potential functional consequences of monocyte binding to minimally activated or thrombin-activated platelets. METHODS AND RESULTS In this article, we describe key differences in terms of stability of PSGL-1-mediated interaction of platelets with monocytes and polymorphonuclear leukocytes and a small but significant difference in platelet binding to monocyte subsets (CD14(high) and CD14(low)/HLA-DR(high)). We also report differential effects of platelet binding on monocyte functional responses between minimally and thrombin-activated platelets. In particular, monocyte CD11b expression and release of proinflammatory cytokines, like interleukin 1beta and tumor necrosis factor alpha, were significantly upregulated on adhesion of stimulated platelets, whereas unstimulated platelets had no effect. Moreover, binding of unstimulated, but not of thrombin-activated, platelets to monocytes had no impact on NF-kappaB activity, monocyte migration, and induction of apoptosis in the absence of survival factors. CONCLUSIONS Our data suggest that in the absence of overt activation, PSGL-1-P-selectin-dependent platelet binding to monocytes represents a normal physiological process with little impact on the potential of monocytes to cause vascular injury.
Collapse
Affiliation(s)
- Stylianos Bournazos
- The University of Edinburgh/MRC Centre for Inflammation Research, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | | | | | | | | |
Collapse
|
110
|
Critical but divergent roles for CD62L and CD44 in directing blood monocyte trafficking in vivo during inflammation. Blood 2008; 112:1166-74. [PMID: 18391078 PMCID: PMC2515150 DOI: 10.1182/blood-2007-06-098327] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Using noninvasive in vivo imaging and experimental autoimmune uveoretinitis as a model, we show for the first time that the mechanisms controlling blood monocyte recirculation through peripheral and lymphoid tissues alter during inflammation. The recirculation of monocytes in mice with ocular inflammation but not controls was found to depend on the selectin CD62-ligand (CD62L) and on CD44. Not only was rolling efficiency ablated or markedly reduced in antibody-treated mice, but most of the labeled monocytes also disappeared from the circulation within seconds, anti-CD44–treated monocytes homing to the lymph nodes and anti–CD62L-treated monocytes homing to the spleen. Our data indicate that, although PSGL-1 has a partial role in the transmigration of monocytes into the inflamed retina, CD62L has a key role in regulating recruitment of monocytes to lymphoid tissue from the blood during inflammation and that CD44 is required to maintain CD62L+ inflammatory monocytes within the circulation during inflammation. This effect was systemic, because sequestered monocytes accumulated in mesenteric as well as draining cervical lymph nodes, and inflammation dependent, because depletion of circulating blood monocytes was much reduced or absent in normal mice and accumulations of adoptively transferred monocytes in the lymphoid tissues did not occur.
Collapse
|
111
|
Platelet-leucocyte aggregates form in the mesenteric vasculature in patients with ulcerative colitis. Eur J Gastroenterol Hepatol 2008; 20:283-9. [PMID: 18334871 DOI: 10.1097/meg.0b013e3282f246c2] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS Inflammation and thrombosis are closely related processes, which may play a role in the pathogenesis, as well as complications, of inflammatory bowel disease (IBD). Platelet activation and platelet-leucocyte aggregation are increased and platelet aggregation is known to occur in the mesenteric vasculature in IBD. The aims of this study were to test the hypotheses that platelet-leucocyte aggregation, platelet activation and neutrophil activation occur in the mesenteric vessels of patients with ulcerative colitis (UC). PATIENTS AND METHODS Platelet-leucocyte aggregates (PLAs), platelet activation (P-selectin expression) and neutrophil activation (L-selectin expression, which decreases on neutrophil activation) were assessed flow cytometrically in mesenteric arterial, and venous blood sampled in eight patients with UC and eight controls with colonic carcinoma undergoing intestinal resections. RESULTS In the patients with UC, the number of PLAs in the mesenteric vein exceeded that in the artery, the median rise being 38% (P=0.02). In UC, arterial PLA numbers were 0.17 (0.02-0.32) (median, range) x 10(9)/l versus venous 0.26 (0.09-1.6) x 10(9)/l (P=0.02). The median percentage increase was 45%. Mesenteric PLA formation did not occur in patients with colonic carcinoma [arterial 0.06 (0.03-0.49) x 10(9)/l vs. venous 0.05 (0.02-0.35) x 10(9)/l; P=0.55]. The median percentage change was +45% for UC patients and -5% for controls. No arteriovenous gradient was observed in P-selectin expression, but L-selectin expression (arbitrary units), increased in the mesenteric vasculature of the UC patients [arterial 839 (503-995), venous 879 (477-1035); P=0.03] and fell in those with colonic carcinoma [arterial 900 (660-959), venous 850 (546-957); P=0.04]. The median percentage change was +4% for UC and -7% for controls. CONCLUSION The finding of increased numbers of PLAs in the venous mesenteric circulation supports the hypothesis that activated vascular endothelium stimulates PLA formation in UC.
Collapse
|
112
|
Fuchs D, Piller R, Linseisen J, Daniel H, Wenzel U. The human peripheral blood mononuclear cell proteome responds to a dietary flaxseed-intervention and proteins identified suggest a protective effect in atherosclerosis. Proteomics 2007; 7:3278-88. [PMID: 17708591 DOI: 10.1002/pmic.200700096] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Flaxseed is one of the richest sources of lignans that are converted to enterolactone by the intestinal microflora. Enterolactone has been suggested to be the prime active compound mediating atherosclerosis-protective effects that were shown for flaxseed. The effects of a 1-wk intervention with 0.4 g of flaxseed/kg body weight per day on enterolactone plasma levels in seven healthy men revealed that all participants (PAs) responded with enhanced enterolactone plasma levels. Proteome analysis of peripheral blood mononuclear cells (PBMC) from donors before, during, and after the intervention showed that flaxseed consumption affected significantly the steady-state levels of 16 proteins of which four were altered in a similar manner when blood mononuclear cells were exposed ex vivo to enterolactone. Enhanced levels of peroxiredoxin and reduced levels of the long-chain fatty acid beta-oxidation multienzyme complex may be taken as indicators of a reduced oxidative stress whereas reduced levels of glycoprotein IIIa/II could indicate improved protection from thrombotic and inflammatory processes. In conclusion, the blood mononuclear cell proteome responds to dietary flaxseed intake with changes in a number of atherosclerosis-relevant proteins that may be taken as biomarkers of exposure and some of these changes observed can be attributed to the action of the lignan metabolite enterolactone.
Collapse
Affiliation(s)
- Dagmar Fuchs
- Department of Food and Nutrition, Molecular Nutrition Unit, Technical University of Munich, Freising, Germany
| | | | | | | | | |
Collapse
|
113
|
Vowinkel T, Wood KC, Stokes KY, Russell J, Tailor A, Anthoni C, Senninger N, Krieglstein CF, Granger DN. Mechanisms of platelet and leukocyte recruitment in experimental colitis. Am J Physiol Gastrointest Liver Physiol 2007; 293:G1054-60. [PMID: 17884975 DOI: 10.1152/ajpgi.00350.2007] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Both leukocytes and platelets accumulate in the colonic microvasculature during experimental colitis, leading to microvascular dysfunction and tissue injury. The objective of this study was to determine whether the recruitment of leukocytes and platelets in inflamed colonic venules are codependent processes. The rolling and adherence of leukocytes and platelets in colonic venules of mice with dextran sodium sulfate (DSS)-induced colitis were monitored by intravital videomicroscopy. DSS elicited an increased recruitment of both rolling and adherent leukocytes and platelets. DSS-colitic mice rendered thrombocytopenic with anti-platelet serum exhibited profound reductions in leukocyte adhesion. Neutropenia, induced with anti-neutrophil serum, significantly reduced the adhesion of leukocytes and the accumulation of platelet-leukocyte aggregates while greatly enhancing the number of platelets that roll and adhere directly to venular endothelial cells. The enhanced platelet adhesion associated with neutropenia was mediated by platelet P-selectin interactions with endothelial cell P-selectin glycoprotein ligand (PSGL-1). DSS colitis was also associated with an increased expression of PSGL-1 in the colonic vasculature. These findings indicate that the recruitment of leukocytes and platelets in inflamed colonic venules are co-dependent processes.
Collapse
Affiliation(s)
- Thorsten Vowinkel
- Department of Molecular and Cellular Physiology, LSU Health Sciences Center, Shreveport, LA 71130-3932, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
114
|
Haselmayer P, Grosse-Hovest L, von Landenberg P, Schild H, Radsak MP. TREM-1 ligand expression on platelets enhances neutrophil activation. Blood 2007; 110:1029-35. [PMID: 17452516 DOI: 10.1182/blood-2007-01-069195] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The triggering receptor expressed on myeloid cells 1 (TREM-1) plays an important role in the innate immune response related to severe infections and sepsis. Modulation of TREM-1-associated activation improves the outcome in rodent models for pneumonia and sepsis. However, the identity and occurrence of the natural TREM-1 ligands are so far unknown, impairing the further understanding of the biology of this receptor. Here, we report the presence of a ligand for TREM-1 on human platelets. Using a recombinant TREM-1 fusion protein, we demonstrate specific binding of TREM-1 to platelets. TREM-1-specific signals are required for the platelet-induced augmentation of polymorphonuclear leukocyte (PMN) effector functions (provoked by LPS). However, TREM-1 interaction with its ligand is not required for platelet/PMN complex formation, which is dependent on integrins and selectins. Taken together, the results indicate that the TREM-1 ligand is expressed by platelets, and the TREM-1/ligand interaction contributes to the amplification of LPS-induced PMN activation. Our results shed new light on our understanding of TREM-1 and its role in the innate inflammatory response in infections and might contribute to the development of future concepts to treat sepsis.
Collapse
Affiliation(s)
- Philipp Haselmayer
- Institute of Immunology, University of Mainz, Obere Zahlbacher Strasse 67, D-55131 Mainz, Germany
| | | | | | | | | |
Collapse
|
115
|
Koenen RR, von Hundelshausen P, Weber C. Inflammatory blues turns velvet skin into rawhide: monocyte rolling on modified endothelial PSGL-1. Arterioscler Thromb Vasc Biol 2007; 27:990-2. [PMID: 17442895 DOI: 10.1161/atvbaha.107.141689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
116
|
de Gorter DJJ, Beuling EA, Kersseboom R, Middendorp S, van Gils JM, Hendriks RW, Pals ST, Spaargaren M. Bruton's tyrosine kinase and phospholipase Cgamma2 mediate chemokine-controlled B cell migration and homing. Immunity 2007; 26:93-104. [PMID: 17239630 DOI: 10.1016/j.immuni.2006.11.012] [Citation(s) in RCA: 230] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2005] [Revised: 06/26/2006] [Accepted: 11/16/2006] [Indexed: 01/28/2023]
Abstract
Control of integrin-mediated adhesion and migration by chemokines plays a critical role in B cell development, differentiation, and function; however, the underlying signaling mechanisms are poorly defined. Here we show that the chemokine SDF-1 induced activation of Bruton's tyrosine kinase (Btk) and that integrin-mediated adhesion and migration in response to SDF-1 or CXCL13, as well as in vivo homing to lymphoid organs, was impaired in Btk-deficient (pre-)B cells. Furthermore, SDF-1 induced tyrosine phosphorylation of Phospholipase Cgamma2 (PLCgamma2), which, unlike activation of the migration regulatory GTPases Rac or Rap1, was mediated by Btk. PLCgamma2-deficient B cells also exhibited impaired SDF-1-controlled migration. These results reveal that Btk and PLCgamma2 mediate chemokine-controlled migration, thereby providing insights into the control of B cell homeostasis, trafficking, and function, as well as into the pathogenesis of the immunodeficiency disease X-linked agammaglobulinemia (XLA).
Collapse
Affiliation(s)
- David J J de Gorter
- Department of Pathology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
117
|
Abstract
Beyond an eminent role in hemostasis and thrombosis, platelets are characterized by expert functions in assisting and modulating inflammatory reactions and immune responses. This is achieved by the regulated expression of adhesive and immune receptors on the platelet surface and by the release of a multitude of secretory products including inflammatory mediators and cytokines, which can mediate the interaction with leukocytes and enhance their recruitment. In addition, platelets are characterized by an enormous surface area and open canalicular system, which in concert with specialized recognition receptors may contribute to the engulfment of serum components, antigens, and pathogens. Platelet-dependent increases in leukocyte adhesion may not only account for an exacerbation of atherosclerosis, for arterial repair processes, but also for lymphocyte trafficking during adaptive immunity and host defense. This review compiles a selection of platelet-derived tools for bridging inflammation and vascular disease and highlights the molecular key components governing platelet-mediated mechanisms operative in immune surveillance, vascular remodeling, and atherosclerosis.
Collapse
Affiliation(s)
- Philipp von Hundelshausen
- Institute of Cardiovascular Molecular Research, University Hospital of the Rheinisch-Westfälische Technische Hochschule, Aachen, Germany
| | | |
Collapse
|
118
|
Xu J, Cai J, Anderson B, Wagner B, Albrecht R, Peek SF, Suresh M, Darien BJ. Cloning and functional characterization of recombinant equine P-selectin. Vet Immunol Immunopathol 2007; 116:115-30. [PMID: 17306378 DOI: 10.1016/j.vetimm.2007.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2006] [Revised: 01/03/2007] [Accepted: 01/08/2007] [Indexed: 11/24/2022]
Abstract
The recent molecular characterization and sequencing of equine P-selectin (ePsel), and its glycoprotein ligand, P-selectin glycoprotein ligand-1 (PSGL-1), have provided the tools for further investigation into their role in leukocyte trafficking. Here, we report the generation of a genetically engineered chimeric protein (ePsel-IgG) in which the equine P-selectin lectin and epithelial growth factor (EGF) domains were covalently linked to the equine IgG1 heavy chain constant region. The soluble ePsel-IgG was observed to bind to equine monocytes by confocal microscopy and flow cytometry. Furthermore, equine monocytes bound to immobilized ePsel-IgG in a time course and dose dependent manner. Not only did ePsel-IgG act as an adhesion molecule, it was also found to activate ERK1/2 kinase and induce IL-8 mRNA expression in equine monocytes. That all of the aforementioned ePsel-IgG-induced cell binding and cell signaling were abolished by the addition of EDTA, suggested that ePsel-IgG chimera mediated events occurred via the P-selectin ligand, PSGL-1. We were able to demonstrate that 78% of equine monocytes cross-reacted with anti-human HECA-452 antibody, which recognizes the sialy-Lewis X (sLex) epitope, a well-known carbohydrate binding site on human PSGL-1. Pre-incubation of equine PBMC with neuraminidase or O-sialoglycoprotein endopeptidase (OSGP) reduced ePsel-IgG monocyte binding to 36% or 60%, respectively. Taken together, these data suggest that there might be two ligand recognition sites on P-selectin, one of which recognizes sLex and another which recognizes P-selectin ligand core protein. The ePsel-IgG chimera can be a useful as a reagent for further studies on the role of equine P-selectin and signal transduction in inflammatory events in horse.
Collapse
Affiliation(s)
- Jin Xu
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706-1102, USA
| | | | | | | | | | | | | | | |
Collapse
|