101
|
Erickson PA, Cleves PA, Ellis NA, Schwalbach KT, Hart JC, Miller CT. A 190 base pair, TGF-β responsive tooth and fin enhancer is required for stickleback Bmp6 expression. Dev Biol 2015; 401:310-23. [PMID: 25732776 DOI: 10.1016/j.ydbio.2015.02.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 02/11/2015] [Indexed: 12/17/2022]
Abstract
The ligands of the Bone Morphogenetic Protein (BMP) family of developmental signaling molecules are often under the control of complex cis-regulatory modules and play diverse roles in vertebrate development and evolution. Here, we investigated the cis-regulatory control of stickleback Bmp6. We identified a 190bp enhancer ~2.5 kilobases 5' of the Bmp6 gene that recapitulates expression in developing teeth and fins, with a core 72bp sequence that is sufficient for both domains. By testing orthologous enhancers with varying degrees of sequence conservation from outgroup teleosts in transgenic reporter gene assays in sticklebacks and zebrafish, we found that the function of this regulatory element appears to have been conserved for over 250 million years of teleost evolution. We show that a predicted binding site for the TGFβ effector Smad3 in this enhancer is required for enhancer function and that pharmacological inhibition of TGFβ signaling abolishes enhancer activity and severely reduces endogenous Bmp6 expression. Finally, we used TALENs to disrupt the enhancer in vivo and find that Bmp6 expression is dramatically reduced in teeth and fins, suggesting this enhancer is necessary for expression of the Bmp6 locus. This work identifies a relatively short regulatory sequence that is required for expression in multiple tissues and, combined with previous work, suggests that shared regulatory networks control limb and tooth development.
Collapse
Affiliation(s)
- Priscilla A Erickson
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, United States
| | - Phillip A Cleves
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, United States
| | - Nicholas A Ellis
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, United States
| | - Kevin T Schwalbach
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, United States
| | - James C Hart
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, United States
| | - Craig T Miller
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, United States.
| |
Collapse
|
102
|
Lewis CJ, Mardaryev A, Sharpe D, Botchkareva N. Inhibition of bone morphogenetic protein signalling promotes wound healing in a human ex vivo model. EUROPEAN JOURNAL OF PLASTIC SURGERY 2015. [DOI: 10.1007/s00238-014-1031-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
103
|
Sridharan R, Low SF, Mohd MR, Kew TY. Intracavernous internal carotid artery pseudoaneurysm. Singapore Med J 2015; 55:e165-8. [PMID: 25631906 DOI: 10.11622/smedj.2014148] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Epistaxis is commonly encountered in otorhinolaryngologic practice. However, severe and recurrent epistaxis is rarely seen, especially that originating from a pseudoaneurysm of the intracavernous internal carotid artery (ICA). We herein present the case of a 32-year-old man who was involved in a motor vehicle accident and subsequently developed recurrent episodes of profuse epistaxis for the next three months, which required blood transfusion and nasal packing to control the bleeding. Computed tomography angiography revealed a large intracavernous ICA pseudoaneurysm measuring 1.7 cm × 1.2 cm × 1.0 cm. The patient underwent emergent four-vessel angiography and coil embolisation and was discharged one week later without any episode of bleeding. He remained asymptomatic after three-month and one‑year intervals. This case report highlights a large intracavernous ICA pseudoaneurysm as a rare cause of epistaxis, which requires a high index of suspicion in the right clinical setting and emergent endovascular treatment to prevent mortality.
Collapse
Affiliation(s)
- Radhika Sridharan
- Department of Radiology, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaakob Latiff, 56000 Cheras, Kuala Lumpur, Malaysia.
| | | | | | | |
Collapse
|
104
|
Yuan G, Yang G, Zheng Y, Zhu X, Chen Z, Zhang Z, Chen Y. The non-canonical BMP and Wnt/β-catenin signaling pathways orchestrate early tooth development. Development 2015; 142:128-39. [PMID: 25428587 PMCID: PMC4299140 DOI: 10.1242/dev.117887] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 10/24/2014] [Indexed: 12/31/2022]
Abstract
BMP and Wnt signaling pathways play a crucial role in organogenesis, including tooth development. Despite extensive studies, the exact functions, as well as if and how these two pathways act coordinately in regulating early tooth development, remain elusive. In this study, we dissected regulatory functions of BMP and Wnt pathways in early tooth development using a transgenic noggin (Nog) overexpression model (K14Cre;pNog). It exhibits early arrested tooth development, accompanied by reduced cell proliferation and loss of odontogenic fate marker Pitx2 expression in the dental epithelium. We demonstrated that overexpression of Nog disrupted BMP non-canonical activity, which led to a dramatic reduction of cell proliferation rate but did not affect Pitx2 expression. We further identified a novel function of Nog by inhibiting Wnt/β-catenin signaling, causing loss of Pitx2 expression. Co-immunoprecipitation and TOPflash assays revealed direct binding of Nog to Wnts to functionally prevent Wnt/β-catenin signaling. In situ PLA and immunohistochemistry on Nog mutants confirmed in vivo interaction between endogenous Nog and Wnts and modulation of Wnt signaling by Nog in tooth germs. Genetic rescue experiments presented evidence that both BMP and Wnt signaling pathways contribute to cell proliferation regulation in the dental epithelium, with Wnt signaling also controlling the odontogenic fate. Reactivation of both BMP and Wnt signaling pathways, but not of only one of them, rescued tooth developmental defects in K14Cre;pNog mice, in which Wnt signaling can be substituted by transgenic activation of Pitx2. Our results reveal the orchestration of non-canonical BMP and Wnt/β-catenin signaling pathways in the regulation of early tooth development.
Collapse
Affiliation(s)
- Guohua Yuan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | - Guobin Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | - Yuqian Zheng
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA Department of Periodontology, College of Stomatology, Fujian Medical University, Fuzhou 350002, China
| | - Xiaojing Zhu
- Institute of Developmental and Regenerative Biology, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 311121, China
| | - Zhi Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Zunyi Zhang
- Institute of Developmental and Regenerative Biology, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 311121, China
| | - YiPing Chen
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| |
Collapse
|
105
|
|
106
|
Leilei Y, Bing L, Yang L, Shaoxia W, Yuan X, Dongping W, Huahu Y, Shichen S, Guangzhou Z, Ruiyun P, Lin Z, Wenlong L. iRhom2 mutation leads to aberrant hair follicle differentiation in mice. PLoS One 2014; 9:e115114. [PMID: 25546423 PMCID: PMC4278852 DOI: 10.1371/journal.pone.0115114] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 11/18/2014] [Indexed: 11/24/2022] Open
Abstract
iRhom1 and iRhom2 are inactive homologues of rhomboid intramembrane serine proteases lacking essential catalytic residues, which are necessary for the maturation of TNFα-converting enzyme (TACE). In addition, iRhoms regulate epidermal growth factor family secretion. The functional significance of iRhom2 during mammalian development is largely unclear. We have identified a spontaneous single gene deletion mutation of iRhom2 in Uncv mice. The iRhom2Uncv/Uncv mice exhibit hairless phenotype in a BALB/c genetic background. In this study, we observed dysplasia hair follicles in iRhom2Uncv/Uncv mice from postnatal day 3. Further examination found decreased hair matrix proliferation and aberrant hair shaft and inner root sheath differentiation in iRhom2Uncv/Uncv mutant hair follicles. iRhom2 is required for the maturation of TACE. Our data demonstrate that iRhom2Uncv cannot induce the maturation of TACE in vitro and the level of mature TACE is also significantly reduced in the skin of iRhom2Uncv/Uncv mice. The activation of Notch1, a substrate of TACE, is disturbed, associated with dramatically down-regulation of Lef1 in iRhom2Uncv/Uncv hair follicle matrix. This study identifies iRhom2 as a novel regulator of hair shaft and inner root sheath differentiation.
Collapse
Affiliation(s)
- Yang Leilei
- Beijing Institute of Radiation Medicine, Beijing 100850, China
- * E-mail: (YL); (WL)
| | - Liu Bing
- Institute of JingFeng Medical Laboratory Animal, Beijing 100071, China
| | - Li Yang
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Wang Shaoxia
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Xu Yuan
- Institute of JingFeng Medical Laboratory Animal, Beijing 100071, China
| | - Wang Dongping
- Institute of JingFeng Medical Laboratory Animal, Beijing 100071, China
| | - Ye Huahu
- Institute of JingFeng Medical Laboratory Animal, Beijing 100071, China
| | - Shang Shichen
- Institute of JingFeng Medical Laboratory Animal, Beijing 100071, China
| | - Zhang Guangzhou
- Institute of JingFeng Medical Laboratory Animal, Beijing 100071, China
| | - Peng Ruiyun
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Zeng Lin
- Institute of JingFeng Medical Laboratory Animal, Beijing 100071, China
| | - Li Wenlong
- Institute of JingFeng Medical Laboratory Animal, Beijing 100071, China
- * E-mail: (YL); (WL)
| |
Collapse
|
107
|
Lane J, Yumoto K, Azhar M, Ninomiya-Tsuji J, Inagaki M, Hu Y, Deng CX, Kim J, Mishina Y, Kaartinen V. Tak1, Smad4 and Trim33 redundantly mediate TGF-β3 signaling during palate development. Dev Biol 2014; 398:231-41. [PMID: 25523394 DOI: 10.1016/j.ydbio.2014.12.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Revised: 12/02/2014] [Accepted: 12/04/2014] [Indexed: 02/02/2023]
Abstract
Transforming growth factor-beta3 (TGF-β3) plays a critical role in palatal epithelial cells by inducing palatal epithelial fusion, failure of which results in cleft palate, one of the most common birth defects in humans. Recent studies have shown that Smad-dependent and Smad-independent pathways work redundantly to transduce TGF-β3 signaling in palatal epithelial cells. However, detailed mechanisms by which this signaling is mediated still remain to be elucidated. Here we show that TGF-β activated kinase-1 (Tak1) and Smad4 interact genetically in palatal epithelial fusion. While simultaneous abrogation of both Tak1 and Smad4 in palatal epithelial cells resulted in characteristic defects in the anterior and posterior secondary palate, these phenotypes were less severe than those seen in the corresponding Tgfb3 mutants. Moreover, our results demonstrate that Trim33, a novel chromatin reader and regulator of TGF-β signaling, cooperates with Smad4 during palatogenesis. Unlike the epithelium-specific Smad4 mutants, epithelium-specific Tak1:Smad4- and Trim33:Smad4-double mutants display reduced expression of Mmp13 in palatal medial edge epithelial cells, suggesting that both of these redundant mechanisms are required for appropriate TGF-β signal transduction. Moreover, we show that inactivation of Tak1 in Trim33:Smad4 double conditional knockouts leads to the palatal phenotypes which are identical to those seen in epithelium-specific Tgfb3 mutants. To conclude, our data reveal added complexity in TGF-β signaling during palatogenesis and demonstrate that functionally redundant pathways involving Smad4, Tak1 and Trim33 regulate palatal epithelial fusion.
Collapse
Affiliation(s)
- Jamie Lane
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI 48019, USA
| | - Kenji Yumoto
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI 48019, USA
| | - Mohamad Azhar
- Department of Pediatrics, Indiana University, Indianapolis, IN, USA
| | - Jun Ninomiya-Tsuji
- Department of Environmental and Molecular Toxicology, North Carolina State University, Raleigh, NC, USA
| | - Maiko Inagaki
- Department of Environmental and Molecular Toxicology, North Carolina State University, Raleigh, NC, USA
| | - Yingling Hu
- Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Chu-Xia Deng
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Jieun Kim
- The Saban Research Institute of Children׳s Hospital Los Angeles, Los Angeles, CA, USA
| | - Yuji Mishina
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI 48019, USA
| | - Vesa Kaartinen
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI 48019, USA.
| |
Collapse
|
108
|
Zhang W, Vázquez B, Yelick PC. Bioengineered post-natal recombinant tooth bud models. J Tissue Eng Regen Med 2014; 11:658-668. [PMID: 25424341 DOI: 10.1002/term.1962] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 07/29/2014] [Accepted: 09/17/2014] [Indexed: 12/14/2022]
Abstract
The long-term goal of this study is to devise reliable methods to regenerate full-sized and fully functional biological teeth in humans. In this study, three-dimensional (3D) tissue engineering methods were used to characterize intact postnatal dental tissue recombinant constructs, and dental cell suspension recombinant constructs, as models for bioengineered tooth development. In contrast to studies using mouse embryonic dental tissues and cells, here the odontogenic potential of intact dental tissues and dental cell suspensions harvested from post natal porcine teeth and human third molar wisdom tooth dental pulp were examined. The recombinant 3D tooth constructs were cultured in osteogenic media in vitro for 1 week before subcutaneous transplantation in athymic nude rat hosts for 1 month or 3 months. Subsequent analyses using X-ray, histological and immunohistochemical methods showed that the majority of the recombinant tooth structures formed calcified tissues, including osteodentin, dentin cementum, enamel and morphologically typical tooth crowns composed of dentin and enamel. The demonstrated formation of mineralized dental tissues and tooth crown structures from easily obtained post-natal dental tissues is an important step toward reaching the long-term goal of establishing robust and reliable models for human tooth regeneration. Copyright © 2014 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- W Zhang
- Department of Oral and Maxillofacial Pathology, Tufts University, Boston, MA, USA
| | - B Vázquez
- Department of Oral and Maxillofacial Pathology, Tufts University, Boston, MA, USA
| | - P C Yelick
- Department of Oral and Maxillofacial Pathology, Tufts University, Boston, MA, USA
| |
Collapse
|
109
|
A guide for building biological pathways along with two case studies: hair and breast development. Methods 2014; 74:16-35. [PMID: 25449898 DOI: 10.1016/j.ymeth.2014.10.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 08/26/2014] [Accepted: 10/03/2014] [Indexed: 11/23/2022] Open
Abstract
Genomic information is being underlined in the format of biological pathways. Building these biological pathways is an ongoing demand and benefits from methods for extracting information from biomedical literature with the aid of text-mining tools. Here we hopefully guide you in the attempt of building a customized pathway or chart representation of a system. Our manual is based on a group of software designed to look at biointeractions in a set of abstracts retrieved from PubMed. However, they aim to support the work of someone with biological background, who does not need to be an expert on the subject and will play the role of manual curator while designing the representation of the system, the pathway. We therefore illustrate with two challenging case studies: hair and breast development. They were chosen for focusing on recent acquisitions of human evolution. We produced sub-pathways for each study, representing different phases of development. Differently from most charts present in current databases, we present detailed descriptions, which will additionally guide PESCADOR users along the process. The implementation as a web interface makes PESCADOR a unique tool for guiding the user along the biointeractions, which will constitute a novel pathway.
Collapse
|
110
|
Gordon WM, Zeller MD, Klein RH, Swindell WR, Ho H, Espetia F, Gudjonsson JE, Baldi PF, Andersen B. A GRHL3-regulated repair pathway suppresses immune-mediated epidermal hyperplasia. J Clin Invest 2014; 124:5205-18. [PMID: 25347468 DOI: 10.1172/jci77138] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 09/18/2014] [Indexed: 12/27/2022] Open
Abstract
Dermal infiltration of T cells is an important step in the onset and progression of immune-mediated skin diseases such as psoriasis; however, it is not known whether epidermal factors play a primary role in the development of these diseases. Here, we determined that the prodifferentiation transcription factor grainyhead-like 3 (GRHL3), which is essential during epidermal development, is dispensable for adult skin homeostasis, but required for barrier repair after adult epidermal injury. Consistent with activation of a GRHL3-regulated repair pathway in psoriasis, we found that GRHL3 is upregulated in lesional skin and binds known epidermal differentiation gene targets. Using an imiquimod-induced model of immune-mediated epidermal hyperplasia, we found that mice lacking GRHL3 have an exacerbated epidermal damage response, greater sensitivity to disease induction, delayed resolution of epidermal lesions, and resistance to anti-IL-22 therapy compared with WT animals. ChIP-Seq and gene expression profiling of murine skin revealed that while GRHL3 regulates differentiation pathways both during development and during repair from immune-mediated damage, it targets distinct sets of genes in the 2 processes. In particular, GRHL3 suppressed a number of alarmin and other proinflammatory genes after immune injury. This study identifies a GRHL3-regulated epidermal barrier repair pathway that suppresses disease initiation and helps resolve existing lesions in immune-mediated epidermal hyperplasia.
Collapse
|
111
|
BMP-FGF signaling axis mediates Wnt-induced epidermal stratification in developing mammalian skin. PLoS Genet 2014; 10:e1004687. [PMID: 25329657 PMCID: PMC4199507 DOI: 10.1371/journal.pgen.1004687] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 08/19/2014] [Indexed: 01/08/2023] Open
Abstract
Epidermal stratification of the mammalian skin requires proliferative basal progenitors to generate intermediate cells that separate from the basal layer and are replaced by post-mitotic cells. Although Wnt signaling has been implicated in this developmental process, the mechanism underlying Wnt-mediated regulation of basal progenitors remains elusive. Here we show that Wnt secreted from proliferative basal cells is not required for their differentiation. However, epidermal production of Wnts is essential for the formation of the spinous layer through modulation of a BMP-FGF signaling cascade in the dermis. The spinous layer defects caused by disruption of Wnt secretion can be restored by transgenically expressed Bmp4. Non-cell autonomous BMP4 promotes activation of FGF7 and FGF10 signaling, leading to an increase in proliferative basal cell population. Our findings identify an essential BMP-FGF signaling axis in the dermis that responds to the epidermal Wnts and feedbacks to regulate basal progenitors during epidermal stratification. Epidermis, a thin layer of stratified epithelium forming the outmost surface of the skin, provides the crucial function to protect animals from environmental insults, such as bacterial pathogens and water loss. This barrier function is established in embryogenesis, during which single layered epithelial cells differentiate into distinct layers of keratinocytes. Many human genetic diseases are featured with epidermal disruption, affecting at least one in five patients. Skin regeneration and future therapeutics require a thorough understanding of the molecular mechanisms underlying epidermal stratification. Wnt ligands have been implicated in hair follicle induction during skin development and self-renewal of stem cells in the interfollicular epidermis of adult skin; however, little is known about the mechanism of how Wnt signaling controls epidermal stratification during embryogenesis. In this study, by using a genetic mouse model to disrupt Wnt production in skin development, we found that signaling of epidermal Wnt in the dermis initiate mesenchymal responses by activating a Bone Morphogenetic Protein (BMP) and Fibroblast growth factor (FGF) signaling cascade, and this activation is required for feedback regulations in the embryonic epidermis to control stratification. Our findings identify a genetic hierarchy of signaling essential for epidermal-mesenchymal interactions, and promote our understanding of mammalian skin development.
Collapse
|
112
|
Genander M, Cook PJ, Ramsköld D, Keyes BE, Mertz AF, Sandberg R, Fuchs E. BMP signaling and its pSMAD1/5 target genes differentially regulate hair follicle stem cell lineages. Cell Stem Cell 2014; 15:619-33. [PMID: 25312496 DOI: 10.1016/j.stem.2014.09.009] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 08/06/2014] [Accepted: 09/17/2014] [Indexed: 11/25/2022]
Abstract
Hair follicle stem cells (HFSCs) and their transit amplifying cell (TAC) progeny sense BMPs at defined stages of the hair cycle to control their proliferation and differentiation. Here, we exploit the distinct spatial and temporal localizations of these cells to selectively ablate BMP signaling in each compartment and examine its functional role. We find that BMP signaling is required for HFSC quiescence and to promote TAC differentiation along different lineages as the hair cycle progresses. We also combine in vivo genome-wide chromatin immunoprecipitation and deep-sequencing, transcriptional profiling, and loss-of-function genetics to define BMP-regulated genes. We show that some pSMAD1/5 targets, like Gata3, function specifically in TAC lineage-progression. Others, like Id1 and Id3, function in both HFSCs and TACs, but in distinct ways. Our study therefore illustrates the complex differential roles that a key signaling pathway can play in regulation of closely related stem/progenitor cells within the context of their overall niche.
Collapse
Affiliation(s)
- Maria Genander
- Howard Hughes Medical Institute, Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Peter J Cook
- Department of Cancer Biology and Genetics, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Daniel Ramsköld
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden; Ludwig Institute for Cancer Research, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Brice E Keyes
- Howard Hughes Medical Institute, Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Aaron F Mertz
- Howard Hughes Medical Institute, Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Rickard Sandberg
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden; Ludwig Institute for Cancer Research, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Elaine Fuchs
- Howard Hughes Medical Institute, Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
113
|
Bifunctional ectodermal stem cells around the nail display dual fate homeostasis and adaptive wounding response toward nail regeneration. Proc Natl Acad Sci U S A 2014; 111:15114-9. [PMID: 25277970 DOI: 10.1073/pnas.1318848111] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Regulation of adult stem cells (SCs) is fundamental for organ maintenance and tissue regeneration. On the body surface, different ectodermal organs exhibit distinctive modes of regeneration and the dynamics of their SC homeostasis remain to be unraveled. A slow cycling characteristic has been used to identify SCs in hair follicles and sweat glands; however, whether a quiescent population exists in continuously growing nails remains unknown. Using an in vivo label retaining cells (LRCs) system, we detected an unreported population of quiescent cells within the basal layer of the nail proximal fold, organized in a ring-like configuration around the nail root. These nail LRCs express the hair stem cell marker, keratin 15 (K15), and lineage tracing show that these K15-derived cells can contribute to both the nail structure and peri-nail epidermis, and more toward the latter. Thus, this stem cell population is bifunctional. Upon nail plucking injury, the homeostasis is tilted with these SCs dominantly delivering progeny to the nail matrix and differentiated nail plate, demonstrating their plasticity to adapt to wounding stimuli. Moreover, in vivo engraftment experiments established that transplanted nail LRCs can actively participate in functional nail regeneration. Transcriptional profiling of isolated nail LRCs revealed bone morphogenetic protein signaling favors nail differentiation over epidermal fate. Taken together, we have found a previously unidentified ring-configured population of bifunctional SCs, located at the interface between the nail appendage organ and adjacent epidermis, which physiologically display coordinated homeostatic dynamics but are capable of rediverting stem cell flow in response to injury.
Collapse
|
114
|
Kandyba E, Hazen VM, Kobielak A, Butler SJ, Kobielak K. Smad1 and 5 but not Smad8 establish stem cell quiescence which is critical to transform the premature hair follicle during morphogenesis toward the postnatal state. Stem Cells 2014; 32:534-47. [PMID: 24023003 DOI: 10.1002/stem.1548] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Accepted: 08/05/2013] [Indexed: 11/11/2022]
Abstract
Hair follicles (HFs) are regenerative miniorgans that offer a highly informative model system to study the regulatory mechanisms of hair follicle stem cells (hfSCs) homeostasis and differentiation. Bone morphogenetic protein (BMP) signaling is key in both of these processes, governing hfSCs quiescence in the bulge and differentiation of matrix progenitors. However, whether canonical or noncanonical pathways of BMP signaling are responsible for these processes remains unresolved. Here, we conditionally ablated two canonical effectors of BMP signaling, Smad1 and Smad5 during hair morphogenesis and postnatal cycling in mouse skin. Deletion of Smad1 and Smad5 (dKO) in the epidermis during morphogenesis resulted in neonatal lethality with lack of visible whiskers. Interestingly, distinct patterns of phospho-Smads (pSmads) activation were detected with pSmad8 restricted to epidermis and pSmad1 and pSmad5 exclusively activated in HFs. Engraftment of dKO skin revealed retarded hair morphogenesis and failure to differentiate into visible hair. The formation of the prebulge and bulge reservoir for quiescent hfSCs was precluded in dKO HFs which remained in prolonged anagen. Surprisingly, in postnatal telogen HFs, pSmad8 expression was no longer limited to epidermis and was also present in dKO bulge hfSCs and matrix progenitors. Although pSmad8 activity alone could not prevent dKO hfSCs precocious anagen activation, it sustained efficient postnatal differentiation and regeneration of visible hairs. Together, our data suggest a pivotal role for canonical BMP signaling demonstrating distinguished nonoverlapping function of pSmad8 with pSmad1 and pSmad5 in hfSCs regulation and hair morphogenesis but a redundant role in adult hair progenitors differentiation.
Collapse
Affiliation(s)
- Eve Kandyba
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research and Department of Biochemistry and Molecular Biology, USC Norris Cancer Center, University of Southern California, Los Angeles, California, USA; Department of Pathology, Department of Biochemistry and Molecular Biology, USC Norris Cancer Center, University of Southern California, Los Angeles, California, USA
| | | | | | | | | |
Collapse
|
115
|
The interactions of TGF-beta signalling pathway and Jagged2/Notch1 pathway induce acanthosis in lingual epithelia. Pathology 2014; 46:555-65. [PMID: 25203837 DOI: 10.1097/pat.0000000000000137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The aims of this study were to distinguish between the primary and secondary effects of TGF-β signalling disruption by Dox treatment in NTPDase2+ cells; and to investigate the interactions between TGF-β signalling and Jagged2/Notch1 pathway in regulating the expansion of tongue epithelia stem cells.Transgenic mice expressing rtTA from the mouse NTPDase2 promoter or K14 promoter were used to generate an inducible dominant negative TGF-β receptor type II (Tgfbr2) mutant model.Disruption of TGF-β signalling in NTPDase2+ cells initially inhibited the formation of filiform papillae but led to their regeneration over time. In contrast, disruption of TGF-β signalling induced proliferation of lingual epithelia in the middle tongue. We also observed the proliferation of lingual epithelia in the posterior tongue near the circumvallate papillae. Interactions among the TGF-β signalling pathways, Jagged2/Notch1 signalling pathways and epigenetic modifications regulate the expansion of lingual epithelial stem cells. Different molecular mechanisms are involved in the developmental regulation of lingual epithelia and filiform papillae, dependent on the location along the whole tongue. The fluctuating phenotype of tongue epithelia, over time, may be the combined effects of signalling pathways and epigenetic modifications.
Collapse
|
116
|
Evolved tooth gain in sticklebacks is associated with a cis-regulatory allele of Bmp6. Proc Natl Acad Sci U S A 2014; 111:13912-7. [PMID: 25205810 DOI: 10.1073/pnas.1407567111] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Developmental genetic studies of evolved differences in morphology have led to the hypothesis that cis-regulatory changes often underlie morphological evolution. However, because most of these studies focus on evolved loss of traits, the genetic architecture and possible association with cis-regulatory changes of gain traits are less understood. Here we show that a derived benthic freshwater stickleback population has evolved an approximate twofold gain in ventral pharyngeal tooth number compared with their ancestral marine counterparts. Comparing laboratory-reared developmental time courses of a low-toothed marine population and this high-toothed benthic population reveals that increases in tooth number and tooth plate area and decreases in tooth spacing arise at late juvenile stages. Genome-wide linkage mapping identifies largely separate sets of quantitative trait loci affecting different aspects of dental patterning. One large-effect quantitative trait locus controlling tooth number fine-maps to a genomic region containing an excellent candidate gene, Bone morphogenetic protein 6 (Bmp6). Stickleback Bmp6 is expressed in developing teeth, and no coding changes are found between the high- and low-toothed populations. However, quantitative allele-specific expression assays of Bmp6 in developing teeth in F1 hybrids show that cis-regulatory changes have elevated the relative expression level of the freshwater benthic Bmp6 allele at late, but not early, stages of stickleback development. Collectively, our data support a model where a late-acting cis-regulatory up-regulation of Bmp6 expression underlies a significant increase in tooth number in derived benthic sticklebacks.
Collapse
|
117
|
Choi YS, Zhang Y, Xu M, Yang Y, Ito M, Peng T, Cui Z, Nagy A, Hadjantonakis AK, Lang RA, Cotsarelis G, Andl T, Morrisey EE, Millar SE. Distinct functions for Wnt/β-catenin in hair follicle stem cell proliferation and survival and interfollicular epidermal homeostasis. Cell Stem Cell 2014; 13:720-33. [PMID: 24315444 DOI: 10.1016/j.stem.2013.10.003] [Citation(s) in RCA: 240] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Revised: 08/23/2013] [Accepted: 10/04/2013] [Indexed: 12/18/2022]
Abstract
Wnt/β-catenin signaling is a central regulator of adult stem cells. Variable sensitivity of Wnt reporter transgenes, β-catenin's dual roles in adhesion and signaling, and hair follicle degradation and inflammation resulting from broad deletion of epithelial β-catenin have precluded clear understanding of Wnt/β-catenin's functions in adult skin stem cells. By inducibly deleting β-catenin globally in skin epithelia, only in hair follicle stem cells, or only in interfollicular epidermis and comparing the phenotypes with those caused by ectopic expression of the Wnt/β-catenin inhibitor Dkk1, we show that this pathway is necessary for hair follicle stem cell proliferation. However, β-catenin is not required within hair follicle stem cells for their maintenance, and follicles resume proliferating after ectopic Dkk1 has been removed, indicating persistence of functional progenitors. We further unexpectedly discovered a broader role for Wnt/β-catenin signaling in contributing to progenitor cell proliferation in nonhairy epithelia and interfollicular epidermis under homeostatic, but not inflammatory, conditions.
Collapse
Affiliation(s)
- Yeon Sook Choi
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
118
|
Lane J, Yumoto K, Pisano J, Azhar M, Thomas PS, Kaartinen V. Control elements targeting Tgfb3 expression to the palatal epithelium are located intergenically and in introns of the upstream Ift43 gene. Front Physiol 2014; 5:258. [PMID: 25071603 PMCID: PMC4083190 DOI: 10.3389/fphys.2014.00258] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 06/18/2014] [Indexed: 11/13/2022] Open
Abstract
Tgfb3 is strongly and specifically expressed in the epithelial tips of pre-fusion palatal shelves where it plays a critical non-redundant role in palatal fusion in both medial edge epithelial (MEE) cells and in a thin layer of flattened peridermal cells that covers the MEE. It is not known how Tgfb3 expression is regulated in these specific cell types. Using comparative genomics and transgenic reporter assays, we have identified cis-regulatory elements that could control Tgfb3 expression during palatogenesis. Our results show that a 61-kb genomic fragment encompassing the Tgfb3 gene drives remarkably specific reporter expression in the MEE and adjacent periderm. Within this fragment, we identified two small, non-coding, evolutionarily conserved regions in intron 2 of the neighboring Ift43 gene, and a larger region in the intervening sequence between the Ift43 and Tgfb3 genes, each of which could target reporter activity to the tips of pre-fusion/fusing palatal shelves. Identification of the cis-regulatory sequences controlling spatio-temporal Tgfb3 expression in palatal shelves is a key step toward understanding upstream regulation of Tgfb3 expression during palatogenesis and should enable the development of improved tools to investigate palatal epithelial fusion.
Collapse
Affiliation(s)
- Jamie Lane
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry Ann Arbor, MI, USA
| | - Kenji Yumoto
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry Ann Arbor, MI, USA
| | - Justin Pisano
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry Ann Arbor, MI, USA
| | - Mohamad Azhar
- Department of Pediatrics, Indiana University School of Medicine Indianapolis, IN, USA
| | - Penny S Thomas
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry Ann Arbor, MI, USA
| | - Vesa Kaartinen
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry Ann Arbor, MI, USA
| |
Collapse
|
119
|
Dong X, Shen B, Ruan N, Guan Z, Zhang Y, Chen Y, Hu X. Expression patterns of genes critical for BMP signaling pathway in developing human primary tooth germs. Histochem Cell Biol 2014; 142:657-65. [DOI: 10.1007/s00418-014-1241-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2014] [Indexed: 12/23/2022]
|
120
|
Lee B, Villarreal-Ponce A, Fallahi M, Ovadia J, Sun P, Yu QC, Ito S, Sinha S, Nie Q, Dai X. Transcriptional mechanisms link epithelial plasticity to adhesion and differentiation of epidermal progenitor cells. Dev Cell 2014; 29:47-58. [PMID: 24735878 DOI: 10.1016/j.devcel.2014.03.005] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 01/17/2014] [Accepted: 03/12/2014] [Indexed: 01/05/2023]
Abstract
During epithelial tissue morphogenesis, developmental progenitor cells undergo dynamic adhesive and cytoskeletal remodeling to trigger proliferation and migration. Transcriptional mechanisms that restrict such a mild form of epithelial plasticity to maintain lineage-restricted differentiation in committed epithelial tissues are poorly understood. Here, we report that simultaneous ablation of transcriptional repressor-encoding Ovol1 and Ovol2 results in expansion and blocked terminal differentiation of embryonic epidermal progenitor cells. Conversely, mice overexpressing Ovol2 in their skin epithelia exhibit precocious differentiation accompanied by smaller progenitor cell compartments. We show that Ovol1/Ovol2-deficient epidermal cells fail to undertake α-catenin-driven actin cytoskeletal reorganization and adhesive maturation and exhibit changes that resemble epithelial-to-mesenchymal transition (EMT). Remarkably, these alterations and defective terminal differentiation are reversed upon depletion of EMT-promoting transcriptional factor Zeb1. Collectively, our findings reveal Ovol-Zeb1-α-catenin sequential repression and highlight Ovol1 and Ovol2 as gatekeepers of epithelial adhesion and differentiation by inhibiting progenitor-like traits and epithelial plasticity.
Collapse
Affiliation(s)
- Briana Lee
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine CA 92697, USA
| | - Alvaro Villarreal-Ponce
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine CA 92697, USA
| | - Magid Fallahi
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine CA 92697, USA
| | - Jeremy Ovadia
- Department of Mathematics, University of California, Irvine, Irvine CA 92697, USA
| | - Peng Sun
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine CA 92697, USA
| | - Qian-Chun Yu
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Seiji Ito
- Department of Medical Chemistry, Kansai Medical University, Moriguchi 570-8506, Japan
| | - Satrajit Sinha
- Department of Biochemistry, State University of New York, Buffalo, NY 14260, USA
| | - Qing Nie
- Department of Mathematics, University of California, Irvine, Irvine CA 92697, USA
| | - Xing Dai
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine CA 92697, USA.
| |
Collapse
|
121
|
Kiso H, Takahashi K, Saito K, Togo Y, Tsukamoto H, Huang B, Sugai M, Shimizu A, Tabata Y, Economides AN, Slavkin HC, Bessho K. Interactions between BMP-7 and USAG-1 (uterine sensitization-associated gene-1) regulate supernumerary organ formations. PLoS One 2014; 9:e96938. [PMID: 24816837 PMCID: PMC4016158 DOI: 10.1371/journal.pone.0096938] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 04/13/2014] [Indexed: 11/26/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) are highly conserved signaling molecules that are part of the transforming growth factor (TGF)-beta superfamily, and function in the patterning and morphogenesis of many organs including development of the dentition. The functions of the BMPs are controlled by certain classes of molecules that are recognized as BMP antagonists that inhibit BMP binding to their cognate receptors. In this study we tested the hypothesis that USAG-1 (uterine sensitization-associated gene-1) suppresses deciduous incisors by inhibition of BMP-7 function. We learned that USAG-1 and BMP-7 were expressed within odontogenic epithelium as well as mesenchyme during the late bud and early cap stages of tooth development. USAG-1 is a BMP antagonist, and also modulates Wnt signaling. USAG-1 abrogation rescued apoptotic elimination of odontogenic mesenchymal cells. BMP signaling in the rudimentary maxillary incisor, assessed by expressions of Msx1 and Dlx2 and the phosphorylation of Smad protein, was significantly enhanced. Using explant culture and subsequent subrenal capsule transplantation of E15 USAG-1 mutant maxillary incisor tooth primordia supplemented with BMP-7 demonstrated in USAG-1+/- as well as USAG-1-/- rescue and supernumerary tooth development. Based upon these results, we conclude that USAG-1 functions as an antagonist of BMP-7 in this model system. These results further suggest that the phenotypes of USAG-1 and BMP-7 mutant mice reported provide opportunities for regenerative medicine and dentistry.
Collapse
Affiliation(s)
- Honoka Kiso
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, Japan
| | - Katsu Takahashi
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, Japan
| | - Kazuyuki Saito
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, Japan
| | - Yumiko Togo
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, Japan
| | - Hiroko Tsukamoto
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, Japan
| | - Boyen Huang
- Department of Paediatric Dentistry, School of Medicine and Dentistry, James Cook University, Cairns, Australia
| | - Manabu Sugai
- Translational Research Center, Kyoto University Hospital, Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, Japan
| | - Akira Shimizu
- Laboratory of Host Defense, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Yasuhiko Tabata
- Department of Biomaterials, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Aris N. Economides
- Regeneron Pharmaceuticals, Tarrytown, New York, United States of America
| | - Harold C. Slavkin
- Center for Craniofacial Molecular Biology, Division of Biomedical Sciences, Ostrow School of Dentistry, University of Southern California, Los Angeles, California, United States of America
| | - Kazuhisa Bessho
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
122
|
Kim E, Lee M, Li L, Yoon K, Kim K, Jung H. Failure of Tooth Formation Mediated by miR-135a Overexpression via BMP Signaling. J Dent Res 2014; 93:571-5. [DOI: 10.1177/0022034514529303] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 03/04/2014] [Indexed: 12/30/2022] Open
Abstract
MicroRNAs (miRNAs) are known to regulate a variety of gene functions in many tissues and organs, but their expression and function in tooth development are not well-understood. A specific miRNA, miR-135a, was determined to be highly expressed at the bud stage. Interestingly, after the cap stage, miR-135a was expressed in the epithelium and mesenchyme but not in the inner enamel epithelium. To identify the relationship between miR-135a and its putative target genes, Bmpr-Ia and Bmpr-Ib, in early tooth development, miR-135a was ectopically overexpressed with a lentivirus. This overexpression resulted in the repression of Bmpr-Ia and Bmpr-Ib. Furthermore, miR-135a inhibited both Bmpr-Ia and Bmpr-Ib transcription. BMP2 proteins were expressed ectopically in tooth germs during the cap stage to determine the relationship between miR-135a and BMP signaling in early tooth development. When miR-135a was ectopically expressed, no tooth formation was observed after 4 wk of incubation in the kidney capsule. This study suggested that Bmp signaling, specifically Bmpr-Ia and Bmpr-Ib, regulates tooth formation via miR-135a.
Collapse
Affiliation(s)
- E.J. Kim
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Oral Science Research Center, BK21 PLUS Project, Yonsei University College of Dentistry, Seoul, Korea
| | - M.J. Lee
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Oral Science Research Center, BK21 PLUS Project, Yonsei University College of Dentistry, Seoul, Korea
| | - L. Li
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Oral Science Research Center, BK21 PLUS Project, Yonsei University College of Dentistry, Seoul, Korea
| | - K.S. Yoon
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Oral Science Research Center, BK21 PLUS Project, Yonsei University College of Dentistry, Seoul, Korea
| | - K.S. Kim
- Graduate School of Biomedical Science and Engineering, College of Medicine, Hanyang University, Seoul, Korea
| | - H.S. Jung
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Oral Science Research Center, BK21 PLUS Project, Yonsei University College of Dentistry, Seoul, Korea
- Oral Biosciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR
| |
Collapse
|
123
|
Meng Q, Jin C, Chen Y, Chen J, Medvedovic M, Xia Y. Expression of signaling components in embryonic eyelid epithelium. PLoS One 2014; 9:e87038. [PMID: 24498290 PMCID: PMC3911929 DOI: 10.1371/journal.pone.0087038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 11/07/2013] [Indexed: 11/30/2022] Open
Abstract
Closure of an epithelium opening is a critical morphogenetic event for development. An excellent example for this process is the transient closure of embryonic eyelid. Eyelid closure requires shape change and migration of epithelial cells at the tip of the developing eyelids, and is dictated by numerous signaling pathways. Here we evaluated gene expression in epithelial cells isolated from the tip (leading edge, LE) and inner surface epithelium (IE) of the eyelid from E15.5 mouse fetuses by laser capture microdissection (LCM). We showed that the LE and IE cells are different at E15.5, such that IE had higher expression of muscle specific genes, while LE acquired epithelium identities. Despite their distinct destinies, these cells were overall similar in expression of signaling components for the “eyelid closure pathways”. However, while the LE cells had more abundant expression of Fgfr2, Erbb2, Shh, Ptch1 and 2, Smo and Gli2, and Jag1 and Notch1, the IE cells had more abundant expression of Bmp5 and Bmpr1a. In addition, the LE cells had more abundant expression of adenomatosis polyposis coli down-regulated 1 (Apcdd1), but the IE cells had high expression of Dkk2. Our results suggest that the functionally distinct LE and IE cells have also differential expression of signaling molecules that may contribute to the cell-specific responses to morphogenetic signals. The expression pattern suggests that the EGF, Shh and NOTCH pathways are preferentially active in LE cells, the BMP pathways are effective in IE cells, and the Wnt pathway may be repressed in LE and IE cells via different mechanisms.
Collapse
Affiliation(s)
- Qinghang Meng
- Department of Environmental Health, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Chang Jin
- Department of Environmental Health, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Yinglei Chen
- Department of Environmental Health, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Jing Chen
- Department of Environmental Health, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Mario Medvedovic
- Department of Environmental Health, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Ying Xia
- Department of Environmental Health, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
124
|
Kowalczyk-Quintas C, Schneider P. Ectodysplasin A (EDA) - EDA receptor signalling and its pharmacological modulation. Cytokine Growth Factor Rev 2014; 25:195-203. [PMID: 24508088 DOI: 10.1016/j.cytogfr.2014.01.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 01/11/2014] [Indexed: 01/08/2023]
Abstract
The TNF family ligand ectodysplasin A (EDA) regulates the induction, morphogenesis and/or maintenance of skin-derived structures such as teeth, hair, sweat glands and several other glands. Deficiencies in the EDA - EDA receptor (EDAR) signalling pathway cause hypohidrotic ectodermal dysplasia (HED). This syndrome is characterized by the absence or malformation of several skin-derived appendages resulting in hypotrychosis, hypodontia, heat-intolerance, dry skin and dry eyes, susceptibility to airways infections and crusting of various secretions. The EDA-EDAR system is an important effector of canonical Wnt signalling in developing skin appendages. It functions by stimulating NF-κB-mediated transcription of effectors or inhibitors of the Wnt, Sonic hedgehog (SHH), fibroblast growth factor (FGF) and transforming growth factor beta (TGFβ) pathways that regulate interactions within or between epithelial and mesenchymal cells and tissues. In animal models of Eda-deficiency, soluble EDAR agonists can precisely correct clinically relevant symptoms with low side effects even at high agonist doses, indicating that efficient negative feedback signals occur in treated tissues. Hijacking of the placental antibody transport system can help deliver active molecules to developing foetuses in a timely manner. EDAR agonists may serve to treat certain forms of ectodermal dysplasia.
Collapse
Affiliation(s)
| | - Pascal Schneider
- Department of Biochemistry, University of Lausanne, CH-1066 Epalinges, Switzerland.
| |
Collapse
|
125
|
Rishikaysh P, Dev K, Diaz D, Qureshi WMS, Filip S, Mokry J. Signaling involved in hair follicle morphogenesis and development. Int J Mol Sci 2014; 15:1647-70. [PMID: 24451143 PMCID: PMC3907891 DOI: 10.3390/ijms15011647] [Citation(s) in RCA: 239] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Revised: 10/21/2013] [Accepted: 10/22/2013] [Indexed: 12/17/2022] Open
Abstract
Hair follicle morphogenesis depends on Wnt, Shh, Notch, BMP and other signaling pathways interplay between epithelial and mesenchymal cells. The Wnt pathway plays an essential role during hair follicle induction, Shh is involved in morphogenesis and late stage differentiation, Notch signaling determines stem cell fate while BMP is involved in cellular differentiation. The Wnt pathway is considered to be the master regulator during hair follicle morphogenesis. Wnt signaling proceeds through EDA/EDAR/NF-κB signaling. NF-κB regulates the Wnt pathway and acts as a signal mediator by upregulating the expression of Shh ligand. Signal crosstalk between epithelial and mesenchymal cells takes place mainly through primary cilia. Primary cilia formation is initiated with epithelial laminin-511 interaction with dermal β-1 integrin, which also upregulates expression of downstream effectors of Shh pathway in dermal lineage. PDGF signal transduction essential for crosstalk is mediated through epithelial PDGF-A and PDGFRα expressed on the primary cilia. Dermal Shh and PDGF signaling up-regulates dermal noggin expression; noggin is a potent inhibitor of BMP signaling which helps in counteracting BMP mediated β-catenin inhibition. This interplay of signaling between the epithelial and dermal lineage helps in epithelial Shh signal amplification. The dermal Wnt pathway helps in upregulation of epithelial Notch expression. Dysregulation of these pathways leads to certain abnormalities and in some cases even tumor outgrowth.
Collapse
Affiliation(s)
- Pisal Rishikaysh
- Department of Histology and Embryology, Medical Faculty in Hradec Kralove, Charles University in Prague, Simkova 870, 500 38 Hradec Kralove, Czech Republic.
| | - Kapil Dev
- Department of Histology and Embryology, Medical Faculty in Hradec Kralove, Charles University in Prague, Simkova 870, 500 38 Hradec Kralove, Czech Republic.
| | - Daniel Diaz
- Department of Histology and Embryology, Medical Faculty in Hradec Kralove, Charles University in Prague, Simkova 870, 500 38 Hradec Kralove, Czech Republic.
| | - Wasay Mohiuddin Shaikh Qureshi
- Department of Histology and Embryology, Medical Faculty in Hradec Kralove, Charles University in Prague, Simkova 870, 500 38 Hradec Kralove, Czech Republic.
| | - Stanislav Filip
- Department of Oncology and Radiotherapy, Medical Faculty in Hradec Kralove, Charles University in Prague, Simkova 870, 500 38 Hradec Kralove, Czech Republic.
| | - Jaroslav Mokry
- Department of Histology and Embryology, Medical Faculty in Hradec Kralove, Charles University in Prague, Simkova 870, 500 38 Hradec Kralove, Czech Republic.
| |
Collapse
|
126
|
Li X, Venugopalan SR, Cao H, Pinho FO, Paine ML, Snead ML, Semina EV, Amendt BA. A model for the molecular underpinnings of tooth defects in Axenfeld-Rieger syndrome. Hum Mol Genet 2014; 23:194-208. [PMID: 23975681 PMCID: PMC3857954 DOI: 10.1093/hmg/ddt411] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 08/19/2013] [Indexed: 12/18/2022] Open
Abstract
Patients with Axenfeld-Rieger Syndrome (ARS) present various dental abnormalities, including hypodontia, and enamel hypoplasia. ARS is genetically associated with mutations in the PITX2 gene, which encodes one of the earliest transcription factors to initiate tooth development. Thus, Pitx2 has long been considered as an upstream regulator of the transcriptional hierarchy in early tooth development. However, because Pitx2 is also a major regulator of later stages of tooth development, especially during amelogenesis, it is unclear how mutant forms cause ARS dental anomalies. In this report, we outline the transcriptional mechanism that is defective in ARS. We demonstrate that during normal tooth development Pitx2 activates Amelogenin (Amel) expression, whose product is required for enamel formation, and that this regulation is perturbed by missense PITX2 mutations found in ARS patients. We further show that Pitx2-mediated Amel activation is controlled by chromatin-associated factor Hmgn2, and that Hmgn2 prevents Pitx2 from efficiently binding to and activating the Amel promoter. Consistent with a physiological significance to this interaction, we show that K14-Hmgn2 transgenic mice display a severe loss of Amel expression on the labial side of the lower incisors, as well as enamel hypoplasia-consistent with the human ARS phenotype. Collectively, these findings define transcriptional mechanisms involved in normal tooth development and shed light on the molecular underpinnings of the enamel defect observed in ARS patients who carry PITX2 mutations. Moreover, our findings validate the etiology of the enamel defect in a novel mouse model of ARS.
Collapse
Affiliation(s)
- Xiao Li
- Department of Anatomy and Cell Biology and Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, IA 52244, USA
| | - Shankar R. Venugopalan
- Department of Anatomy and Cell Biology and Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, IA 52244, USA
| | - Huojun Cao
- Department of Anatomy and Cell Biology and Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, IA 52244, USA
| | - Flavia O. Pinho
- Department of Anatomy and Cell Biology and Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, IA 52244, USA
| | - Michael L. Paine
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA and
| | - Malcolm L. Snead
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA and
| | - Elena V. Semina
- Division of Developmental Biology, Department of Pediatrics, The Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Brad A. Amendt
- Department of Anatomy and Cell Biology and Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, IA 52244, USA
| |
Collapse
|
127
|
Biggs LC, Mikkola ML. Early inductive events in ectodermal appendage morphogenesis. Semin Cell Dev Biol 2014; 25-26:11-21. [DOI: 10.1016/j.semcdb.2014.01.007] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 01/23/2014] [Accepted: 01/24/2014] [Indexed: 01/18/2023]
|
128
|
Molecular patterning of the mammalian dentition. Semin Cell Dev Biol 2013; 25-26:61-70. [PMID: 24355560 DOI: 10.1016/j.semcdb.2013.12.003] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 11/20/2013] [Accepted: 12/09/2013] [Indexed: 01/15/2023]
Abstract
Four conserved signaling pathways, including the bone morphogenetic proteins (Bmp), fibroblast growth factors (Fgf), sonic hedgehog (Shh), and wingless-related (Wnt) pathways, are each repeatedly used throughout tooth development. Inactivation of any of these resulted in early tooth developmental arrest in mice. The mutations identified thus far in human patients with tooth agenesis also affect these pathways. Recent studies show that these signaling pathways interact through positive and negative feedback loops to regulate not only morphogenesis of individual teeth but also tooth number, shape, and spatial pattern. Increased activity of each of the Fgf, Shh, and canonical Wnt signaling pathways revitalizes development of the physiologically arrested mouse diastemal tooth germs whereas constitutive activation of canonical Wnt signaling in the dental epithelium is able to induce supernumerary tooth formation even in the absence of Msx1 and Pax9, two transcription factors required for normal tooth development beyond the early bud stage. Bmp4 and Msx1 act in a positive feedback loop to drive sequential tooth formation whereas the Osr2 transcription factor restricts Msx1-mediated expansion of the mesenchymal odontogenic field along both the buccolingual and anteroposterior axes to pattern mouse molar teeth in a single row. Moreover, the ectodermal-specific ectodysplasin (EDA) signaling pathway controls tooth number and tooth shape through regulation of Fgf20 expression in the dental epithelium, whereas Shh suppresses Wnt signaling through a negative feedback loop to regulate spatial patterning of teeth. In this article, we attempt to integrate these exciting findings in the understanding of the molecular networks regulating tooth development and patterning.
Collapse
|
129
|
Zhu B, Xu T, Zhang Z, Ta N, Gao X, Hui L, Guo X, Liu D. Transcriptome sequencing reveals differences between anagen and telogen secondary hair follicle-derived dermal papilla cells of the Cashmere goat (Capra hircus). Physiol Genomics 2013; 46:104-11. [PMID: 24326349 DOI: 10.1152/physiolgenomics.00132.2013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Dermal papilla is considered the control center of hair follicle growth and hair cycle. The secondary hair follicle (producing cashmere) growth cycle of the Cashmere goat (Capra hircus) is circannual, and each growth phase can be easily distinguished by its long duration. To identify gene expression patterns and differences of the dermal papilla cell (DPC) between the anagen and telogen phases, we established two DPC lines: ana-DPCs (DPCs derived from the anagen secondary hair follicle) and tel-DPCs (DPCs derived from the telogen secondary hair follicle). Compared with the ana-DPCs, the tel-DPCs lost the capacity to form cell aggregates and showed lower cell proliferation rate. Transcriptome sequencing revealed that 825 genes were differentially expressed by at least threefold between the two DPC lines. These genes were significantly enriched in cell cycle control, cell division, and chromosome partitioning from the Eukaryotic Orthologous Groups of proteins (KOG) database and in cell cycle, cell adhesion molecules, cytokine-cytokine receptor interaction, and p53 signaling pathway from the Kyoto Encyclopedia of Gene and Genomes (KEGG) database. Enrichment analyses revealed that in the middle of the telogen the DPCs of secondary hair follicles (SHFs) seemed on the one hand to promote the degeneration of SHFs and cessation of cashmere growth, while on the other hand to resist self-apoptosis and prepare for the regeneration or revivification of fully functional dermal papillae. These findings provide a better understanding of hair follicle growth and will be useful for identification of novel molecules associated with the control of hair growth cycle.
Collapse
Affiliation(s)
- Bing Zhu
- The Key Laboratory of Mammalian Reproductive Biology and Biotechnology of the Ministry of Education, Inner Mongolia University, Hohhot, Peoples Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
130
|
miR-24 affects hair follicle morphogenesis targeting Tcf-3. Cell Death Dis 2013; 4:e922. [PMID: 24232098 PMCID: PMC3847310 DOI: 10.1038/cddis.2013.426] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 09/25/2013] [Accepted: 09/30/2013] [Indexed: 12/29/2022]
Abstract
During embryonic development, hair follicles (HFs) develop from an epidermal–mesenchymal cross talk between the ectoderm progenitor layer and the underlying dermis. Epidermal stem cell activation represents a crucial point both for HF morphogenesis and for hair regeneration. miR-24 is an anti-proliferative microRNA (miRNA), which is induced during differentiation of several cellular systems including the epidermis. Here, we show that miR-24 is expressed in the HF and has a role in hair morphogenesis. We generated transgenic mice ectopically expressing miR-24 under the K5 promoter. The K5::miR-24 animals display a marked defect in HF morphogenesis, with thinning of hair coat and altered HF structure. Expression of miR-24 alters the normal process of hair keratinocyte differentiation, leading to altered expression of differentiation markers. MiR-24 directly represses the hair keratinocyte stemness regulator Tcf-3. These results support the notion that microRNAs, and among them miR-24, have an important role in postnatal epidermal homeostasis.
Collapse
|
131
|
Bradaschia-Correa V, Casado-Gomez I, Moreira MM, Ferreira LB, Arana-Chavez VE. Immunolocalization of Smad-4 in developing molar roots of alendronate-treated rats. Arch Oral Biol 2013; 58:1744-50. [DOI: 10.1016/j.archoralbio.2013.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 05/04/2013] [Accepted: 06/05/2013] [Indexed: 01/29/2023]
|
132
|
Osório C, Chacón PJ, Kisiswa L, White M, Wyatt S, Rodríguez-Tébar A, Davies AM. Growth differentiation factor 5 is a key physiological regulator of dendrite growth during development. Development 2013; 140:4751-62. [PMID: 24173804 PMCID: PMC3833432 DOI: 10.1242/dev.101378] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Dendrite size and morphology are key determinants of the functional properties of neurons. Here, we show that growth differentiation factor 5 (GDF5), a member of the bone morphogenetic protein (BMP) subclass of the transforming growth factor β superfamily with a well-characterised role in limb morphogenesis, is a key regulator of the growth and elaboration of pyramidal cell dendrites in the developing hippocampus. Pyramidal cells co-express GDF5 and its preferred receptors, BMP receptor 1B and BMP receptor 2, during development. In culture, GDF5 substantially increased dendrite, but not axon, elongation from these neurons by a mechanism that depends on activation of SMADs 1/5/8 and upregulation of the transcription factor HES5. In vivo, the apical and basal dendritic arbours of pyramidal cells throughout the hippocampus were markedly stunted in both homozygous and heterozygous Gdf5 null mutants, indicating that dendrite size and complexity are exquisitely sensitive to the level of endogenous GDF5 synthesis.
Collapse
Affiliation(s)
- Catarina Osório
- School of Biosciences, Cardiff University, Cardiff CF10 3AT, UK
| | | | | | | | | | | | | |
Collapse
|
133
|
Bone morphogenetic protein signaling suppresses wound-induced skin repair by inhibiting keratinocyte proliferation and migration. J Invest Dermatol 2013; 134:827-837. [PMID: 24126843 PMCID: PMC3945401 DOI: 10.1038/jid.2013.419] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 09/02/2013] [Accepted: 09/16/2013] [Indexed: 12/29/2022]
Abstract
Bone morphogenetic protein (BMP) signalling plays a key role in the control of skin development and postnatal remodelling by regulating keratinocyte proliferation, differentiation and apoptosis. To study the role of BMPs in wound-induced epidermal repair, we used transgenic mice overexpressing the BMP downstream component Smad1 under the control of a K14 promoter as an in vivo model, as well as ex vivo and in vitro assays. K14-caSmad1 mice exhibited retarded wound healing associated with significant inhibition of proliferation and increased apoptosis in healing wound epithelium. Furthermore, microarray and qRT-PCR analyses revealed decreased expression of a number of cytoskeletal/cell motility-associated genes including wound-associated keratins (Krt16, Krt17) and Myo5a, in the epidermis of K14-caSmad1 mice versus wild-type controls during wound healing. BMP treatment significantly inhibited keratinocyte migration ex vivo, and primary keratinocytes of K14-caSmad1 mice showed retarded migration compared to wild-type controls. Finally, siRNA-mediated silencing of Bmpr-1B in primary mouse keratinocytes accelerated cell migration and was associated with increased expression of Krt16, Krt17 and Myo5a compared to controls. Thus, this study demonstrates that BMPs inhibit keratinocyte proliferation, cytoskeletal organization and migration in regenerating skin epithelium during wound healing, and raises a possibility for using BMP antagonists for the management of chronic wounds.
Collapse
|
134
|
Cessation of epithelial Bmp signaling switches the differentiation of crown epithelia to the root lineage in a β-catenin-dependent manner. Mol Cell Biol 2013; 33:4732-44. [PMID: 24081330 DOI: 10.1128/mcb.00456-13] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The differentiation of dental epithelia into enamel-producing ameloblasts or the root epithelial lineage compartmentalizes teeth into crowns and roots. Bmp signaling has been linked to enamel formation, but its role in root epithelial lineage differentiation is unclear. Here we show that cessation of epithelial Bmp signaling by Bmpr1a depletion during the differentiation stage switched differentiation of crown epithelia into the root lineage and led to formation of ectopic cementum-like structures. This phenotype is related to the upregulation of Wnt/β-catenin signaling and epithelial-mesenchymal transition (EMT). Although epithelial β-catenin depletion during the differentiation stage also led to variable enamel defect and precocious/ectopic formation of fragmented root epithelia in some teeth, it did not cause ectopic cementogenesis and inhibited EMT in cultured dental epithelia. Concomitant epithelial β-catenin depletion rescued EMT and ectopic cementogenesis caused by Bmpr1a depletion. These data suggested that Bmp and Wnt/β-catenin pathways interact antagonistically in dental epithelia to regulate the root lineage differentiation and EMT. These findings will aid in the design of new strategies to promote functional differentiation in the regeneration and tissue engineering of teeth and will provide new insights into the dynamic interactions between the Bmp and Wnt/β-catenin pathways during cell fate decisions.
Collapse
|
135
|
Cao H, Jheon A, Li X, Sun Z, Wang J, Florez S, Zhang Z, McManus MT, Klein OD, Amendt BA. The Pitx2:miR-200c/141:noggin pathway regulates Bmp signaling and ameloblast differentiation. Development 2013; 140:3348-59. [PMID: 23863486 PMCID: PMC3737717 DOI: 10.1242/dev.089193] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2013] [Indexed: 02/06/2023]
Abstract
The mouse incisor is a remarkable tooth that grows throughout the animal's lifetime. This continuous renewal is fueled by adult epithelial stem cells that give rise to ameloblasts, which generate enamel, and little is known about the function of microRNAs in this process. Here, we describe the role of a novel Pitx2:miR-200c/141:noggin regulatory pathway in dental epithelial cell differentiation. miR-200c repressed noggin, an antagonist of Bmp signaling. Pitx2 expression caused an upregulation of miR-200c and chromatin immunoprecipitation assays revealed endogenous Pitx2 binding to the miR-200c/141 promoter. A positive-feedback loop was discovered between miR-200c and Bmp signaling. miR-200c/141 induced expression of E-cadherin and the dental epithelial cell differentiation marker amelogenin. In addition, miR-203 expression was activated by endogenous Pitx2 and targeted the Bmp antagonist Bmper to further regulate Bmp signaling. miR-200c/141 knockout mice showed defects in enamel formation, with decreased E-cadherin and amelogenin expression and increased noggin expression. Our in vivo and in vitro studies reveal a multistep transcriptional program involving the Pitx2:miR-200c/141:noggin regulatory pathway that is important in epithelial cell differentiation and tooth development.
Collapse
Affiliation(s)
- Huojun Cao
- Department of Anatomy and Cell Biology, The University of Iowa, Iowa City, IA 52242, USA
| | - Andrew Jheon
- Department of Orofacial Sciences and Program in Craniofacial and Mesenchymal Biology, UCSF, San Francisco, CA 94143-0442, USA
| | - Xiao Li
- Department of Anatomy and Cell Biology, The University of Iowa, Iowa City, IA 52242, USA
| | - Zhao Sun
- Department of Anatomy and Cell Biology, The University of Iowa, Iowa City, IA 52242, USA
| | - Jianbo Wang
- Department of Anatomy and Cell Biology, The University of Iowa, Iowa City, IA 52242, USA
| | - Sergio Florez
- Department of Anatomy and Cell Biology, The University of Iowa, Iowa City, IA 52242, USA
| | - Zichao Zhang
- Department of Anatomy and Cell Biology, The University of Iowa, Iowa City, IA 52242, USA
| | - Michael T. McManus
- Department of Microbiology and Immunology and Diabetes Center, UCSF, San Francisco, CA 94143-0442, USA
| | - Ophir D. Klein
- Department of Orofacial Sciences and Program in Craniofacial and Mesenchymal Biology, UCSF, San Francisco, CA 94143-0442, USA
- Department of Pediatrics and Institute for Human Genetics, UCSF, San Francisco, CA 94143-0442, USA
| | - Brad A. Amendt
- Department of Anatomy and Cell Biology, The University of Iowa, Iowa City, IA 52242, USA
- Craniofacial Anomalies Research Center, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
136
|
Li L, Wang Y, Lin M, Yuan G, Yang G, Zheng Y, Chen Y. Augmented BMPRIA-mediated BMP signaling in cranial neural crest lineage leads to cleft palate formation and delayed tooth differentiation. PLoS One 2013; 8:e66107. [PMID: 23776616 PMCID: PMC3680418 DOI: 10.1371/journal.pone.0066107] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 05/01/2013] [Indexed: 01/11/2023] Open
Abstract
The importance of BMP receptor Ia (BMPRIa) mediated signaling in the development of craniofacial organs, including the tooth and palate, has been well illuminated in several mouse models of loss of function, and by its mutations associated with juvenile polyposis syndrome and facial defects in humans. In this study, we took a gain-of-function approach to further address the role of BMPR-IA-mediated signaling in the mesenchymal compartment during tooth and palate development. We generated transgenic mice expressing a constitutively active form of BmprIa (caBmprIa) in cranial neural crest (CNC) cells that contributes to the dental and palatal mesenchyme. Mice bearing enhanced BMPRIa-mediated signaling in CNC cells exhibit complete cleft palate and delayed odontogenic differentiation. We showed that the cleft palate defect in the transgenic animals is attributed to an altered cell proliferation rate in the anterior palatal mesenchyme and to the delayed palatal elevation in the posterior portion associated with ectopic cartilage formation. Despite enhanced activity of BMP signaling in the dental mesenchyme, tooth development and patterning in transgenic mice appeared normal except delayed odontogenic differentiation. These data support the hypothesis that a finely tuned level of BMPRIa-mediated signaling is essential for normal palate and tooth development.
Collapse
Affiliation(s)
- Lu Li
- Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana, United States of America
| | - Ying Wang
- Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana, United States of America
- Department of Operative Dentistry and Endodontics, College of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi Province, P.R. China
| | - Minkui Lin
- Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana, United States of America
- Department of Periodontology, College of Stomatology, Fujian Medical University, Fuzhou, Fujian Province, P.R. China
| | - Guohua Yuan
- Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana, United States of America
- Department of Pediatric Dentistry, College of Stomatology, Wuhan University, Wuhan, Hubei Province, P.R. China
| | - Guobin Yang
- Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana, United States of America
- Department of Pediatric Dentistry, College of Stomatology, Wuhan University, Wuhan, Hubei Province, P.R. China
| | - Yuqian Zheng
- Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana, United States of America
- Department of Periodontology, College of Stomatology, Fujian Medical University, Fuzhou, Fujian Province, P.R. China
| | - YiPing Chen
- Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
137
|
Saadi I, Das P, Zhao M, Raj L, Ruspita I, Xia Y, Papaioannou VE, Bei M. Msx1 and Tbx2 antagonistically regulate Bmp4 expression during the bud-to-cap stage transition in tooth development. Development 2013; 140:2697-702. [PMID: 23720046 DOI: 10.1242/dev.088393] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Bmp4 expression is tightly regulated during embryonic tooth development, with early expression in the dental epithelial placode leading to later expression in the dental mesenchyme. Msx1 is among several transcription factors that are induced by epithelial Bmp4 and that, in turn, are necessary for the induction and maintenance of dental mesenchymal Bmp4 expression. Thus, Msx1(-/-) teeth arrest at early bud stage and show loss of Bmp4 expression in the mesenchyme. Ectopic expression of Bmp4 rescues this bud stage arrest. We have identified Tbx2 expression in the dental mesenchyme at bud stage and show that this can be induced by epithelial Bmp4. We also show that endogenous Tbx2 and Msx1 can physically interact in mouse C3H10T1/2 cells. In order to ascertain a functional relationship between Msx1 and Tbx2 in tooth development, we crossed Tbx2 and Msx1 mutant mice. Our data show that the bud stage tooth arrest in Msx1(-/-) mice is partially rescued in Msx1(-/-);Tbx2(+/-) compound mutants. This rescue is accompanied by formation of the enamel knot (EK) and by restoration of mesenchymal Bmp4 expression. Finally, knockdown of Tbx2 in C3H10T1/2 cells results in an increase in Bmp4 expression. Together, these data identify a novel role for Tbx2 in tooth development and suggest that, following their induction by epithelial Bmp4, Msx1 and Tbx2 in turn antagonistically regulate odontogenic activity that leads to EK formation and to mesenchymal Bmp4 expression at the key bud-to-cap stage transition.
Collapse
Affiliation(s)
- Irfan Saadi
- Center for Regenerative and Developmental Biology, The Forsyth Institute, Cambridge, MA 02142, USA
| | | | | | | | | | | | | | | |
Collapse
|
138
|
Hairless down-regulates expression of Msx2 and its related target genes in hair follicles. J Dermatol Sci 2013; 71:203-9. [PMID: 23702391 DOI: 10.1016/j.jdermsci.2013.04.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 04/09/2013] [Accepted: 04/18/2013] [Indexed: 01/11/2023]
Abstract
BACKGROUND Hairless (HR), a transcriptional cofactor, plays important roles in hair follicle (HF) morphogenesis and cycling. Recently, we reported the new Hr mutant mouse called "Hairpoor" (Hr(Hp)) that causes HR overexpression through translational de-repression. The Msh homeobox 2 (Msx2) is a homolog of the Drosophila muscle segment homeobox (msh) gene, which expressed in the hair bulb, including in the germinal matrix, and its expression spreads into the upper region of the HF including the hair cortex. OBJECTIVE Although Msx2 is regarded as an important gene in hair cycle control and hair shaft differentiation, the regulation of Msx2 expression is not well-known. METHODS Using realtime polymerase chain reaction (PCR) and western blot, we investigated the relationship between HR and Msx2 in the Hr(Hp)/Hr(Hp) mouse during the HF morphogenesis. Immunohistochemistry was performed to compare the pattern of expression of MSX2 in Hr(Hp)/Hr(Hp) mouse skin with that in wild-type skin. Msx2 mRNA expression and promoter activity was estimated using a transient expression system to see whether HR down-regulates Msx2 expression in vitro. We also investigated whether downregulation of MSX2 by HR also affects the MSX2 regulatory pathway in the Hr(Hp)/Hr(Hp) mouse and in an in vitro system. RESULTS We found that the expression of Msx2 was down-regulated by HR, which in turn down-regulated expression of Foxn1 and Lef1, MSX2 target genes, in vivo as well as in vitro. CONCLUSION Our results show that HR regulates expression of genes in the MSX2 regulatory pathway, which explains abnormal HF formation in Hr(Hp)/Hr(Hp) skin.
Collapse
|
139
|
Li F, Zhou M. Conditional expression of the dominant-negative TGF-β receptor type II elicits lingual epithelial hyperplasia in transgenic mice. Dev Dyn 2013; 242:444-55. [PMID: 23362225 DOI: 10.1002/dvdy.23933] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 01/05/2013] [Accepted: 01/14/2013] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The transforming growth factor-β (TGF-β) signaling pathway is generally believed to be a potent inhibitor of proliferation. However, many epithelia lacking the essential Tgfbr2 gene still maintain normal tissue homeostasis. Here, transgenic mice expressing rtTA from the human keratin 14 (K14) promoter were used to generate an inducible dominant-negative TGF-β receptor type II (Tgfbr2) mutant model, which allowed us to distinguish between the primary and secondary effects of TGF-β signaling disruption by Doxycycline treatment in K14+ epithelial stem cells. RESULTS We showed that in mice lacking TGF-β signaling in K14+ cells, invasive carcinomas developed on the ventral surface of the tip of the tongue, while filiform papillae on the dorsal surface showed different pathological changes from the tip to the posterior of the tongue. In addition, acetylation levels of histone H4 and histone H3 rapidly increased, while pMAPK activity was enhanced and Jagged2 inactivated in lingual epithelia after disruption of TGF-β signaling. CONCLUSIONS Our results contribute to the understanding of TGF-β signaling in regulating homeostasis and carcinogenesis in lingual epithelia.
Collapse
Affiliation(s)
- Feng Li
- School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, People's Republic of China.
| | | |
Collapse
|
140
|
Phillips MA, Qin Q, Hu Q, Zhao B, Rice RH. Arsenite suppression of BMP signaling in human keratinocytes. Toxicol Appl Pharmacol 2013; 269:290-6. [PMID: 23566955 DOI: 10.1016/j.taap.2013.02.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2013] [Revised: 02/25/2013] [Accepted: 02/26/2013] [Indexed: 12/12/2022]
Abstract
Arsenic, a human skin carcinogen, suppresses differentiation of cultured keratinocytes. Exploring the mechanism of this suppression revealed that BMP-6 greatly increased levels of mRNA for keratins 1 and 10, two of the earliest differentiation markers expressed, a process prevented by co-treatment with arsenite. BMP also stimulated, and arsenite suppressed, mRNA for FOXN1, an important transcription factor driving early keratinocyte differentiation. Keratin mRNAs increased slowly after BMP-6 addition, suggesting they are indirect transcriptional targets. Inhibition of Notch1 activation blocked BMP induction of keratins 1 and 10, while FOXN1 induction was largely unaffected. Supporting a requirement for Notch1 signaling in keratin induction, BMP increased levels of activated Notch1, which was blocked by arsenite. BMP also greatly decreased active ERK, while co-treatment with arsenite maintained active ERK. Inhibition of ERK signaling mimicked BMP by inducing keratin and FOXN1 mRNAs and by increasing active Notch1, effects blocked by arsenite. Of 6 dual-specificity phosphatases (DUSPs) targeting ERK, two were induced by BMP unless prevented by simultaneous exposure to arsenite and EGF. Knockdown of DUSP2 or DUSP14 using shRNAs greatly reduced FOXN1 and keratins 1 and 10 mRNA levels and their induction by BMP. Knockdown also decreased activated Notch1, keratin 1 and keratin 10 protein levels, both in the presence and absence of BMP. Thus, one of the earliest effects of BMP is induction of DUSPs, which increases FOXN1 transcription factor and activates Notch1, both required for keratin gene expression. Arsenite prevents this cascade by maintaining ERK signaling, at least in part by suppressing DUSP expression.
Collapse
Affiliation(s)
- Marjorie A Phillips
- Department of Environmental Toxicology, University of California, Davis, CA 95616-8588, USA
| | | | | | | | | |
Collapse
|
141
|
Song Z, Liu C, Iwata J, Gu S, Suzuki A, Sun C, He W, Shu R, Li L, Chai Y, Chen Y. Mice with Tak1 deficiency in neural crest lineage exhibit cleft palate associated with abnormal tongue development. J Biol Chem 2013; 288:10440-50. [PMID: 23460641 DOI: 10.1074/jbc.m112.432286] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Cleft palate represents one of the most common congenital birth defects in humans. TGFβ signaling, which is mediated by Smad-dependent and Smad-independent pathways, plays a crucial role in regulating craniofacial development and patterning, particularly in palate development. However, it remains largely unknown whether the Smad-independent pathway contributes to TGFβ signaling function during palatogenesis. In this study, we investigated the function of TGFβ activated kinase 1 (Tak1), a key regulator of Smad-independent TGFβ signaling in palate development. We show that Tak1 protein is expressed in both the epithelium and mesenchyme of the developing palatal shelves. Whereas deletion of Tak1 in the palatal epithelium or mesenchyme did not give rise to a cleft palate defect, inactivation of Tak1 in the neural crest lineage using the Wnt1-Cre transgenic allele resulted in failed palate elevation and subsequently the cleft palate formation. The failure in palate elevation in Wnt1-Cre;Tak1(F/F) mice results from a malformed tongue and micrognathia, resembling human Pierre Robin sequence cleft of the secondary palate. We found that the abnormal tongue development is associated with Fgf10 overexpression in the neural crest-derived tongue tissue. The failed palate elevation and cleft palate were recapitulated in an Fgf10-overexpressing mouse model. The repressive effect of the Tak1-mediated noncanonical TGFβ signaling on Fgf10 expression was further confirmed by inhibition of p38, a downstream kinase of Tak1, in the primary cell culture of developing tongue. Tak1 thus functions to regulate tongue development by controlling Fgf10 expression and could represent a candidate gene for mutation in human PRS clefting.
Collapse
Affiliation(s)
- Zhongchen Song
- Department of Periodontology, Ninth People's Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
142
|
Jia S, Zhou J, Gao Y, Baek JA, Martin JF, Lan Y, Jiang R. Roles of Bmp4 during tooth morphogenesis and sequential tooth formation. Development 2013; 140:423-32. [PMID: 23250216 DOI: 10.1242/dev.081927] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Previous studies have suggested that Bmp4 is a key Msx1-dependent mesenchymal odontogenic signal for driving tooth morphogenesis through the bud-to-cap transition. Whereas all tooth germs were arrested at the bud stage in Msx1(-/-) mice, we show that depleting functional Bmp4 mRNAs in the tooth mesenchyme, through neural crest-specific gene inactivation in Bmp4(f/f);Wnt1Cre mice, caused mandibular molar developmental arrest at the bud stage but allowed maxillary molars and incisors to develop to mineralized teeth. We found that expression of Osr2, which encodes a zinc finger protein that antagonizes Msx1-mediated activation of odontogenic mesenchyme, was significantly upregulated in the molar tooth mesenchyme in Bmp4(f/f);Wnt1Cre embryos. Msx1 heterozygosity enhanced maxillary molar developmental defects whereas Osr2 heterozygosity partially rescued mandibular first molar morphogenesis in Bmp4(f/f);Wnt1Cre mice. Moreover, in contrast to complete lack of supernumerary tooth initiation in Msx1(-/-)Osr2(-/-) mice, Osr2(-/-)Bmp4(f/f);Wnt1Cre compound mutant mice exhibited formation and subsequent arrest of supernumerary tooth germs that correlated with downregulation of Msx1 expression in the tooth mesenchyme. In addition, we found that the Wnt inhibitors Dkk2 and Wif1 were much more abundantly expressed in the mandibular than maxillary molar mesenchyme in wild-type embryos and that Dkk2 expression was significantly upregulated in the molar mesenchyme in Bmp4(f/f);Wnt1Cre embryos, which correlated with the dramatic differences in maxillary and mandibular molar phenotypes in Bmp4(f/f);Wnt1Cre mice. Together, these data indicate that Bmp4 signaling suppresses tooth developmental inhibitors in the tooth mesenchyme, including Dkk2 and Osr2, and synergizes with Msx1 to activate mesenchymal odontogenic potential for tooth morphogenesis and sequential tooth formation.
Collapse
Affiliation(s)
- Shihai Jia
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | | | | | | | | | | | | |
Collapse
|
143
|
Lim X, Nusse R. Wnt signaling in skin development, homeostasis, and disease. Cold Spring Harb Perspect Biol 2013; 5:cshperspect.a008029. [PMID: 23209129 DOI: 10.1101/cshperspect.a008029] [Citation(s) in RCA: 175] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The skin and its appendages constitute the largest organ of the body. Its stratified epithelia offer protection from environmental stresses such as dehydration, irradiation, mechanical trauma, and pathogenic infection, whereas its appendages, like hair and sebaceous glands, help regulate body temperature as well as influence animal interaction and social behavior through camouflage and sexual signaling. To respond to and function effectively in a dynamic external environment, the skin and its appendages possess a remarkable ability to regenerate in a carefully controlled fashion. When this finely tuned homeostatic process is disrupted, skin diseases such as cancers may result. At present, the molecular signals that orchestrate cell proliferation, differentiation, and patterning in the skin remain incompletely understood. It is increasingly apparent that many morphogenetic pathways with key roles in development are also important in regulating skin biology. Of these, Wnt signaling has emerged as the dominant pathway controlling the patterning of skin and influencing the decisions of embryonic and adult stem cells to adopt the various cell lineages of the skin and its appendages, as well as subsequently controlling the function of differentiated skin cells. Here we will review established concepts and present recent advances in our understanding of the diverse roles that Wnt signaling plays in skin development, homeostasis, and disease.
Collapse
Affiliation(s)
- Xinhong Lim
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | | |
Collapse
|
144
|
Sox2 in the dermal papilla niche controls hair growth by fine-tuning BMP signaling in differentiating hair shaft progenitors. Dev Cell 2013; 23:981-94. [PMID: 23153495 DOI: 10.1016/j.devcel.2012.10.013] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 09/25/2012] [Accepted: 10/16/2012] [Indexed: 12/11/2022]
Abstract
How dermal papilla (DP) niche cells regulate hair follicle progenitors to control hair growth remains unclear. Using Tbx18(Cre) to target embryonic DP precursors, we ablate the transcription factor Sox2 early and efficiently, resulting in diminished hair shaft outgrowth. We find that DP niche expression of Sox2 controls the migration speed of differentiating hair shaft progenitors. Transcriptional profiling of Sox2 null DPs reveals increased Bmp6 and decreased BMP inhibitor Sostdc1, a direct Sox2 transcriptional target. Subsequently, we identify upregulated BMP signaling in knockout hair shaft progenitors and demonstrate that Bmp6 inhibits cell migration, an effect that can be attenuated by Sostdc1. A shorter and Sox2-negative hair type lacks Sostdc1 in the DP and shows reduced migration and increased BMP activity of hair shaft progenitors. Collectively, our data identify Sox2 as a key regulator of hair growth that controls progenitor migration by fine-tuning BMP-mediated mesenchymal-epithelial crosstalk.
Collapse
|
145
|
Competitive balance of intrabulge BMP/Wnt signaling reveals a robust gene network ruling stem cell homeostasis and cyclic activation. Proc Natl Acad Sci U S A 2013; 110:1351-6. [PMID: 23292934 DOI: 10.1073/pnas.1121312110] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hair follicles facilitate the study of stem cell behavior because stem cells in progressive activation stages, ordered within the follicle architecture, are capable of cyclic regeneration. To study the gene network governing the homeostasis of hair bulge stem cells, we developed a Keratin 15-driven genetic model to directly perturb molecular signaling in the stem cells. We visualize the behavior of these modified stem cells, evaluating their hair-regenerating ability and profile their molecular expression. Bone morphogenetic protein (BMP)-inactivated stem cells exhibit molecular profiles resembling those of hair germs, yet still possess multipotentiality in vivo. These cells also exhibit up-regulation of Wnt7a, Wnt7b, and Wnt16 ligands and Frizzled (Fzd) 10 receptor. We demonstrate direct transcriptional modulation of the Wnt7a promoter. These results highlight a previously unknown intra-stem cell antagonistic competition, between BMP and Wnt signaling, to balance stem cell activity. Reduced BMP signaling and increased Wnt signaling tilts each stem cell toward a hair germ fate and, vice versa, based on a continuous scale dependent on the ratio of BMP/Wnt activity. This work reveals one more hierarchical layer regulating stem cell homeostasis beneath the stem cell-dermal papilla-based epithelial-mesenchymal interaction layer and the hair follicle-intradermal adipocyte-based tissue interaction layer. Although hierarchical layers are all based on BMP/Wnt signaling, the multilayered control ensures that all information is taken into consideration and allows hair stem cells to sum up the total activators/inhibitors involved in making the decision of activation.
Collapse
|
146
|
Abstract
BACKGROUND As a result of numerous rapid and exciting developments in tissue engineering technology, scientists are able to regenerate a fully functional tooth in animal models, from a bioengineered tooth germ. Advances in technology, together with our understanding of the mechanisms of tooth development and studies dealing with dentally derived stem cells, have led to significant progress in the field of tooth regeneration. AIM AND DESIGN This review focuses on some of the recent advances in tooth bioengineering technology, the signalling pathways in tooth development, and in dental stem cell biology. These factors are highlighted in respect of our current knowledge of tooth regeneration. RESULTS AND CONCLUSION An understanding of these new approaches in tooth regeneration should help to prepare clinicians to use this new and somewhat revolutionary therapy while also enabling them to partake in future clinical trials. Tooth bioengineering promises to be at the forefront of the next generation of dental treatments.
Collapse
Affiliation(s)
- Ying Wang
- Department of Orthodontics, School of Dental Medicine, State University of New York at Buffalo, Buffalo, NY 14214, USA
| | | | | |
Collapse
|
147
|
Lin HY, Yang LT. Differential response of epithelial stem cell populations in hair follicles to TGF-β signaling. Dev Biol 2012; 373:394-406. [PMID: 23103542 DOI: 10.1016/j.ydbio.2012.10.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 10/04/2012] [Accepted: 10/19/2012] [Indexed: 12/17/2022]
Abstract
Epidermal stem cells residing in different locations in the skin continuously self-renew and differentiate into distinct cell lineages to maintain skin homeostasis during postnatal life. Murine epidermal stem cells located at the bulge region are responsible for replenishing the hair lineage, while the stem cells at the isthmus regenerate interfollicular epidermis and sebaceous glands. In vitro cell culture and in vivo animal studies have implicated TGF-β signaling in the maintenance of epidermal and hair cycle homeostasis. Here, we employed a triple transgenic animal model that utilizes a combined Cre/loxP and rtTA/TRE system to allow inducible and reversible inhibition of TGF-β signaling in hair follicle lineages and suprabasal layer of the epidermis. Using this animal model, we have analyzed the role of TGF-β signaling in distinct phases of the hair cycle. Transient abrogation of TGF-β signaling does not prevent catagen progression; however, it induces aberrant proliferation and differentiation of isthmus stem cells to epidermis and sebocyte lineages and a blockade in anagen re-entry as well as results in an incomplete hair shaft development. Moreover, ablation of TGF-β signaling during anagen leads to increased apoptosis in the secondary hair germ and bulb matrix cells. Blocking of TGF-β signaling in bulge stem cell cultures abolishes their colony-forming ability, suggesting that TGF-β signaling is required for the maintenance of bulge stem cells. At the molecular level, inhibition of TGF-β signaling results in a decrease in both Lrig1-expressing isthmus stem cells and Lrg5-expressing bulge stem cells, which may account for the phenotypes seen in our animal model. These data strongly suggest that TGF-β signaling plays an important role in regulating the proliferation, differentiation, and apoptosis of distinct epithelial stem cell populations in hair follicles.
Collapse
Affiliation(s)
- Hsien-Yi Lin
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Miaoli County 35053, Taiwan, ROC
| | | |
Collapse
|
148
|
Gerhart J, Hayes C, Scheinfeld V, Chernick M, Gilmour S, George-Weinstein M. Myo/Nog cells in normal, wounded and tumor-bearing skin. Exp Dermatol 2012; 21:466-8. [PMID: 22621191 DOI: 10.1111/j.1600-0625.2012.01503.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Murine and human skin were examined for the presence of Myo/Nog cells that were originally discovered in the chick embryo by their expression of MyoD mRNA, noggin and the G8 antigen. Myo/Nog cells are the primary source of noggin in telogen hair follicles. They are scarce within the interfollicular dermis and absent in the epidermis. Within 24 h following epidermal abrasion, Myo/Nog cells increase in number in the follicles and appear in the wound. Myo/Nog cells are also recruited to the stroma of tumors formed from v-Ras-transformed keratinocytes (Ker/Ras). Human squamous cell carcinomas and malignant melanomas contain significantly more Myo/Nog cells than basal cell carcinomas. Myo/Nog cells are distinct from macrophages, granulocytes and cells expressing alpha smooth muscle actin in the tumor stroma. Myo/Nog cells may be modulators of skin homoeostasis and wound healing, and potential diagnostic and therapeutic targets in skin cancer.
Collapse
|
149
|
Sennett R, Rendl M. Mesenchymal-epithelial interactions during hair follicle morphogenesis and cycling. Semin Cell Dev Biol 2012; 23:917-27. [PMID: 22960356 DOI: 10.1016/j.semcdb.2012.08.011] [Citation(s) in RCA: 270] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 07/27/2012] [Accepted: 08/24/2012] [Indexed: 12/17/2022]
Abstract
Embryonic hair follicle induction and formation are regulated by mesenchymal-epithelial interactions between specialized dermal cells and epidermal stem cells that switch to a hair fate. Similarly, during postnatal hair growth, communication between mesenchymal dermal papilla cells and surrounding epithelial matrix cells coordinates hair shaft production. Adult hair follicle regeneration in the hair cycle again is thought to be controlled by activating signals originating from the mesenchymal compartment and acting on hair follicle stem cells. Although many signaling pathways are implicated in hair follicle formation and growth, the precise nature, timing, and intersection of these inductive and regulatory signals remains elusive. The goal of this review is to summarize our current understanding and to discuss recent new insights into mesenchymal-epithelial interactions during hair follicle morphogenesis and cycling.
Collapse
Affiliation(s)
- Rachel Sennett
- Black Family Stem Cell Institute, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | |
Collapse
|
150
|
Lee J, Tumbar T. Hairy tale of signaling in hair follicle development and cycling. Semin Cell Dev Biol 2012; 23:906-16. [PMID: 22939761 DOI: 10.1016/j.semcdb.2012.08.003] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 08/06/2012] [Indexed: 01/06/2023]
Abstract
Hair follicles (HFs) is an appendage from the vertebrate skin epithelium, and is critical for environmental sensing, animal appearance, and body heat maintenance. HFs arise from the embryonic ectoderm and regenerate cyclically during adult life. Distinct morphological and functional stages from development through homeostasis have been extensively studied for the past decades to dissect the critical molecular mechanisms. Accumulating work suggests that different signaling cascades, such as Wnt, Bmp, Shh, and Notch, together with specific combinations of transcription factors are at work at different stages. Here we provide a comprehensive review of mouse genetics studies, which include lineage tracing along with knockout and over-expression of core genes from key signaling pathways, to paint an updated view of the molecular regulatory network that govern each stage of hair follicle development and adult cycling.
Collapse
Affiliation(s)
- Jayhun Lee
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, United States
| | | |
Collapse
|