101
|
Kim JI, Jang HS, Jeong JH, Noh MR, Choi JY, Park KM. Defect in Runx2 gene accelerates ureteral obstruction-induced kidney fibrosis via increased TGF-β signaling pathway. Biochim Biophys Acta Mol Basis Dis 2013; 1832:1520-7. [PMID: 23639629 DOI: 10.1016/j.bbadis.2013.04.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 04/17/2013] [Accepted: 04/22/2013] [Indexed: 02/07/2023]
Abstract
Runt-related transcription factor 2 (Runx2) plays an important role in bone formation and de novo synthesis of proteins, including type 1 collagen. Runx2 has a potent effect on signaling of transforming growth factor (TGF)-β and vice versa, implicating its significant role in fibrosis. Chronic renal failure comprises fibrosis, characterized as an increase in TGF-β signaling, and expression of α-smooth muscle actin (α-SMA), and extracellular matrix proteins. Here, we evaluated the role of Runx2 in ureteral obstruction (UO)-induced kidney fibrosis using mice whose Runx2 gene expression is genetically down-regulated. UO caused tubular atrophy and dilation, expansion of interstitium, and increased expression of collagens and α-SMA with a concomitant decrease in expression of Runx2. Deficiency of Runx2 gene (Runx2(+/-) mice) showed higher expression of collagens and α-SMA in the kidney following UO compared to wild type (Runx2(+/+)) mice. UO-induced activation of TGF-β signaling was higher in the Runx2(+/-) kidney than Runx2(+/+) kidney, suggesting an inhibitory effect of Runx2 on TGF-β signaling in kidney fibrosis. Besides, overexpression of the Runx2 gene using an adenoviral vector in kidney tubule cells resulted in attenuated TGF-β-induced Smad3 phosphorylation and expressions of α-SMA and collagen I. Furthermore, Runx2 gene deficient mouse embryonic fibroblasts induced greater activation of Smad3 and expression of α-SMA in response to TGF-β. Collectively, Runx2 plays a protective role in UO-induced kidney fibrosis by inhibition of TGF-β signaling, suggesting Runx2 as a novel target for protection against fibrosis-related diseases such as chronic renal failure.
Collapse
Affiliation(s)
- Jee In Kim
- Department of Anatomy and BK21, Kyungpook National University School of Medicine, Republic of Korea
| | | | | | | | | | | |
Collapse
|
102
|
Huang Y, Song Y, Zhang C, Chen G, Wang S, Bian Z. NovelRUNX2frameshift mutations in Chinese patients with cleidocranial dysplasia. Eur J Oral Sci 2013; 121:142-7. [PMID: 23659235 DOI: 10.1111/eos.12048] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2013] [Indexed: 12/25/2022]
Affiliation(s)
- Yanyu Huang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education; School & Hospital of Stomatology; Wuhan University; Wuhan China
| | - Yaling Song
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education; School & Hospital of Stomatology; Wuhan University; Wuhan China
| | - Chenzheng Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education; School & Hospital of Stomatology; Wuhan University; Wuhan China
| | - Guoxin Chen
- Department of Orthodontics; Hubei-MOST KLOS & KLOBM; School and Hospital of Stomatology; Wuhan University; Wuhan China
| | - Shihua Wang
- Department of Stomatology; People's Hospital of Shayang; Jingmen China
| | - Zhuan Bian
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education; School & Hospital of Stomatology; Wuhan University; Wuhan China
| |
Collapse
|
103
|
Gopinathan G, Kolokythas A, Luan X, Diekwisch TGH. Epigenetic marks define the lineage and differentiation potential of two distinct neural crest-derived intermediate odontogenic progenitor populations. Stem Cells Dev 2013; 22:1763-78. [PMID: 23379639 DOI: 10.1089/scd.2012.0711] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Epigenetic mechanisms, such as histone modifications, play an active role in the differentiation and lineage commitment of mesenchymal stem cells. In the present study, epigenetic states and differentiation profiles of two odontogenic neural crest-derived intermediate progenitor populations were compared: dental pulp (DP) and dental follicle (DF). ChIP on chip assays revealed substantial H3K27me3-mediated repression of odontoblast lineage genes DSPP and dentin matrix protein 1 (DMP1) in DF cells, but not in DP cells. Mineralization inductive conditions caused steep increases of mineralization and patterning gene expression levels in DP cells when compared to DF cells. In contrast, mineralization induction resulted in a highly dynamic histone modification response in DF cells, while there was only a subdued effect in DP cells. Both DF and DP progenitors featured H3K4me3-active marks on the promoters of early mineralization genes RUNX2, MSX2, and DLX5, while OSX, IBSP, and BGLAP promoters were enriched for H3K9me3 or H3K27me3. Compared to DF cells, DP cells expressed higher levels of three pluripotency-associated genes, OCT4, NANOG, and SOX2. Finally, gene ontology comparison of bivalent marks unique for DP and DF cells highlighted cell-cell attachment genes in DP cells and neurogenesis genes in DF cells. In conclusion, the present study indicates that the DF intermediate odontogenic neural crest lineage is distinguished from its DP counterpart by epigenetic repression of DSPP and DMP1 genes and through dynamic histone enrichment responses to mineralization induction. Findings presented here highlight the crucial role of epigenetic regulatory mechanisms in the terminal differentiation of odontogenic neural crest lineages.
Collapse
Affiliation(s)
- Gokul Gopinathan
- UIC Brodie Laboratory for Craniofacial Genetics, UIC College of Dentistry, Chicago, Illinois 60612, USA
| | | | | | | |
Collapse
|
104
|
MicroRNA-338-3p promotes differentiation of mDPC6T into odontoblast-like cells by targeting Runx2. Mol Cell Biochem 2013; 377:143-9. [PMID: 23380982 DOI: 10.1007/s11010-013-1580-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 01/30/2013] [Indexed: 12/15/2022]
Abstract
Odontoblasts are terminally differentiated cells that play a vital role in dentinogenesis. The differentiation of odontoblasts is regulated by a variety of genetic and epigenetic mechanisms. Our previous microRNA microarray studies verified that miR-338-3p was up-regulated during odontoblast differentiation. The purpose of this study was to determine the function of miR-338-3p during odontoblast differentiation. The upregulation of miR-338-3p expression during odontoblast differentiation was validated by qRT-PCR. Odontoblast differentiation was enhanced after over-expression of miR-338-3p, while a loss of function approach using a miR-338-3p inhibitor impaired odontoblast differentiation. Bioinformatic analysis identified Runx2 as a potential target of miR-338-3p. Overexpression of miR-338-3p caused a decreased in the expression of Runx2 at both mRNA and protein levels, while Runx2 expression increased after treatment with miR-338-3p inhibitors. Furthermore, the activity of a luciferase reporter plasmid containing the 3'-UTR of Runx2 was significantly suppressed by ectopic expression of miR-338-3p. These results suggested that miR-338-3p promotes odontoblast differentiation through targeting Runx2.
Collapse
|
105
|
|
106
|
Karanxha L, Park SJ, Son WJ, Nor JE, Min KS. Combined effects of simvastatin and enamel matrix derivative on odontoblastic differentiation of human dental pulp cells. J Endod 2013; 39:76-82. [PMID: 23228261 PMCID: PMC3812675 DOI: 10.1016/j.joen.2012.10.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 10/08/2012] [Accepted: 10/08/2012] [Indexed: 01/19/2023]
Abstract
INTRODUCTION We previously reported that simvastatin and enamel matrix derivative (EMD) have a dentinogenic effect. However, there is little information about the combined effects of these 2 agents on odontoblastic differentiation. The aim of this study was to investigate the effects of combined treatment with simvastatin and EMD on odontoblastic differentiation of human dental pulp cells (hDPCs). This study further explored the role of extracellular signal-regulated kinase (ERK) as a target and mediator of the differentiation induced by simvastatin in hDPCs. METHODS The odontoblastic differentiation was analyzed by alkaline phosphatase activity, real-time polymerase chain reaction (PCR) for odontoblastic/osteoblastic markers (ie, dentin sialophosphoprotein, dentin matrix protein 1, and osteonectin), and alizarin red S staining. We also explored the role of ERK signaling as a mediator of simvastatin by Western blotting and real-time PCR. The expression of osteoblast-specific transcription factors was detected by reverse-transcription PCR. RESULTS The alkaline phosphatase activity and the expression of odontoblastic markers (ie, dentin sialophosphoprotein and dentin matrix protein 1) increased in simvastatin/EMD-treated cells. Mineralized nodule formation increased in EMD- and simvastatin/EMD-treated cells. Notably, the combined use of both simvastatin and EMD resulted in more potent differentiation than that observed after a single therapy. Simvastatin activated ERK phosphorylation and treatment with ERK inhibitor blocked the messenger RNA expression of odontoblastic markers. However, in simvastatin/EMD-treated cells, the expression of these genes did not decrease significantly. Compared with other groups, the EMD- and simvastatin/EMD-treated group showed a greater expression of osterix. CONCLUSIONS Simvastatin promotes odontoblastic differentiation of hDPCs via the ERK signaling pathway. In addition, simvastatin-induced differentiation is facilitated by co-treatment with EMD. Collectively, these results suggest a new strategy to induce odontoblastic differentiation of hDPCs.
Collapse
Affiliation(s)
- Lorena Karanxha
- Department of Conservative Dentistry, Wonkwang University School of Dentistry, Iksan, Korea
| | - Su-Jung Park
- Department of Conservative Dentistry, Wonkwang University School of Dentistry, Iksan, Korea
| | - Won-Jun Son
- Department of Conservative Dentistry, Seoul National University School of Dentistry, Seoul, Korea
| | - Jacques E. Nor
- Angiogenesis Research Laboratory, Department of Cariology, Restorative Sciences and Endodontics, University of Michigan School of Dentistry, Ann Arbor, Michigan
- Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, Michigan
- Department of Otolaryngology, University of Michigan School of Medicine, Ann Arbor, Michigan
| | - Kyung-San Min
- Department of Conservative Dentistry, Chonbuk National University School of Dentistry, Jeonju, Korea
| |
Collapse
|
107
|
Expression and localization of Nell-1 during murine molar development. J Mol Histol 2012; 44:175-81. [DOI: 10.1007/s10735-012-9472-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 12/14/2012] [Indexed: 11/25/2022]
|
108
|
Wang X, Jin T, Chang S, Zhang Z, Czajka-Jakubowska A, Nör JE, Clarkson BH, Ni L, Liu J. In vitro differentiation and mineralization of dental pulp stem cells on enamel-like fluorapatite surfaces. Tissue Eng Part C Methods 2012; 18:821-30. [PMID: 22563788 PMCID: PMC3483051 DOI: 10.1089/ten.tec.2011.0624] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 05/01/2012] [Indexed: 01/09/2023] Open
Abstract
Our previous studies have shown good biocompatibility of fluorapatite (FA) crystal surfaces in providing a favorable environment for functional cell-matrix interactions of human dental pulp stem cells (DPSCs) and also in supporting their long-term growth. The aim of the current study was to further investigate whether this enamel-like surface can support the differentiation and mineralization of DPSCs, and, therefore, act as a potential model for studying the enamel/dentin interface and, perhaps, dentine/pulp regeneration in tooth tissue engineering. The human pathway-focused osteogenesis polymerase chain reaction (PCR) array demonstrated that the expression of osteogenesis-related genes of human DPSCs was increased on FA surfaces compared with that on etched stainless steel (SSE). Consistent with the PCR array, FA promoted mineralization compared with the SSE surface with or without the addition of a mineralization promoting supplement (MS). This was confirmed by alkaline phosphatase (ALP) staining, Alizarin red staining, and tetracycline staining for mineral formation. In conclusion, FA crystal surfaces, especially ordered (OR) FA surfaces, which mimicked the physical architecture of enamel, provided a favorable extracellular matrix microenvironment for the cells. This resulted in the differentiation of human DPSCs and mineralized tissue formation, and, thus, demonstrated that it may be a promising biomimetic model for dentin-pulp tissue engineering.
Collapse
Affiliation(s)
- Xiaodong Wang
- Department of Operative Dentistry and Endodontics, School of Stomatology, Fourth Military Medical University, Shaanxi, P.R. China
- Department of Cariology, Restorative Sciences and Endodontics, Dental School, University of Michigan, Ann Arbor, Michigan
| | - Taocong Jin
- Department of Cariology, Restorative Sciences and Endodontics, Dental School, University of Michigan, Ann Arbor, Michigan
| | - Syweren Chang
- Department of Cariology, Restorative Sciences and Endodontics, Dental School, University of Michigan, Ann Arbor, Michigan
| | - Zhaocheng Zhang
- Department of Cariology, Restorative Sciences and Endodontics, Dental School, University of Michigan, Ann Arbor, Michigan
| | - Agata Czajka-Jakubowska
- Department of Conservative Dentistry and Periodontology, Poznan University of Medical Sciences, Poznan, Poland
| | - Jacques E. Nör
- Department of Cariology, Restorative Sciences and Endodontics, Dental School, University of Michigan, Ann Arbor, Michigan
| | - Brian H. Clarkson
- Department of Cariology, Restorative Sciences and Endodontics, Dental School, University of Michigan, Ann Arbor, Michigan
| | - Longxing Ni
- Department of Operative Dentistry and Endodontics, School of Stomatology, Fourth Military Medical University, Shaanxi, P.R. China
| | - Jun Liu
- Department of Cariology, Restorative Sciences and Endodontics, Dental School, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
109
|
Lu Y, Li Y, Cavender AC, Wang S, Mansukhani A, D’Souza RN. Molecular studies on the roles of Runx2 and Twist1 in regulating FGF signaling. Dev Dyn 2012; 241:1708-15. [PMID: 22972545 PMCID: PMC4153435 DOI: 10.1002/dvdy.23858] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2012] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Supernumerary teeth are often observed in patients suffering from cleidocranial dysplasia due to a mutation in Runx2 that results in haploinsufficiency. However, the underlying molecular mechanisms are poorly defined. In this study, we assessed the roles of Runx2 and its functional antagonist Twist1 in regulating fibroblast growth factor (FGF) signaling using in vitro biochemical approaches. RESULTS We showed that Twist1 stimulated Fgfr2 and Fgf10 expression in a mesenchymal cell line and that it formed heterodimers with ubiquitously expressed E12 (together with E47 encoded by E2A gene) and upregulated Fgfr2 and Fgf10 promoter activities in a dental mesenchyme-derived cell line. We further demonstrated that the bHLH domain of Twist1 was essential for its synergistic activation of Fgfr2 promoter with E12 and that the binding of E12 stabilized Twist1 by preventing it from undergoing lysosomal degradation. Although Runx2 had no apparent effects on Fgfr2 and Fgf10 promoter activities, it inhibited the stimulatory activity of Twist1 on Fgfr2 promoter. CONCLUSIONS These findings suggest that Runx2 haploinsufficiency might result in excessive unbound Twist1 that can freely bind to E12 and enhance FGF signaling, thereby promoting the formation of extra teeth.
Collapse
Affiliation(s)
- Yongbo Lu
- Department of Biomedical Sciences, Baylor College of Dentistry, Texas A&M Health Science Center, 3302 Gaston Ave, Dallas, TX 75246, USA
| | - Yucheng Li
- Department of Biomedical Sciences, Baylor College of Dentistry, Texas A&M Health Science Center, 3302 Gaston Ave, Dallas, TX 75246, USA
- Department of Operative Dentistry and Endodontics, School of Stomatology, Fourth Military Medical University, Xi’an, Shaanxi, 710032, China
| | - Adriana C. Cavender
- Department of Biomedical Sciences, Baylor College of Dentistry, Texas A&M Health Science Center, 3302 Gaston Ave, Dallas, TX 75246, USA
| | - Suzhen Wang
- Department of Biomedical Sciences, Baylor College of Dentistry, Texas A&M Health Science Center, 3302 Gaston Ave, Dallas, TX 75246, USA
| | - Alka Mansukhani
- New York University School of Medicine – Langone Medical Center, 550 First Avenue, New York, NY10016 USA
| | - Rena N. D’Souza
- Department of Biomedical Sciences, Baylor College of Dentistry, Texas A&M Health Science Center, 3302 Gaston Ave, Dallas, TX 75246, USA
| |
Collapse
|
110
|
Roberts T, Stephen L, Beighton P. Cleidocranial dysplasia: a review of the dental, historical, and practical implications with an overview of the South African experience. Oral Surg Oral Med Oral Pathol Oral Radiol 2012; 115:46-55. [PMID: 23102800 DOI: 10.1016/j.oooo.2012.07.435] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 05/26/2012] [Accepted: 07/09/2012] [Indexed: 01/10/2023]
Abstract
Cleidocranial dysplasia (CCD) is an uncommon but well-known genetic skeletal condition. Several hundred affected persons are members of a large extended family in the Cape Town Mixed Ancestry community of South Africa. The clinical manifestations are often innocuous, but hyperdontia and other developmental abnormalities of the teeth are a major feature and may require special dental management. Over the past 40 years, the authors have encountered more than 100 affected persons in Cape Town. Emphasis has been on dental management, but medical, genetic, and social problems have also been addressed. In this article, we have reviewed the manifestations of the disorder in the light of our own experience, and performed a literature search with emphasis on the various approaches to dental management and treatment options in CCD. Advances in the understanding of the biomolecular pathogenesis of CCD are outlined and the international and local history of the disorder is documented.
Collapse
Affiliation(s)
- Tina Roberts
- Faculty of Dentistry, University of the Western Cape, Cape Town, South Africa
| | | | | |
Collapse
|
111
|
Ohira T, Spear D, Azimi N, Andreeva V, Yelick PC. Chemerin-ChemR23 signaling in tooth development. J Dent Res 2012; 91:1147-53. [PMID: 23053848 DOI: 10.1177/0022034512464777] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Our long-term goal is to identify and characterize molecular mechanisms regulating tooth development, including those mediating the critical dental epithelial-dental mesenchymal (DE-DM) cell interactions required for normal tooth development. The goal of this study was to investigate Chemerin (Rarres2)/ChemR23(Cmklr1) signaling in DE-DM cell interactions in normal tooth development. Here we present, for the first time, tissue-specific expression patterns of Chemerin and ChemR23 in mouse tooth development. We show that Chemerin is expressed in cultured DE progenitor cells, while ChemR23 is expressed in cultured DM cells. Moreover, we demonstrate that ribosomal protein S6 (rS6) and Akt, downstream targets of Chemerin/ChemR23 signaling, are phosphorylated in response to Chemerin/ChemR23 signaling in vitro and are expressed in mouse tooth development. Together, these results suggest roles for Chemerin/ChemR23-mediated DE-DM cell signaling during tooth morphogenesis.
Collapse
Affiliation(s)
- T Ohira
- Department of Oral and Maxillofacial Pathology, Tufts University, Boston, MA 02111, USA
| | | | | | | | | |
Collapse
|
112
|
Ookuma YF, Kiyoshima T, Kobayashi I, Nagata K, Wada H, Fujiwara H, Yamaza H, Nonaka K, Sakai H. Multiple functional involvement of Thymosin beta-4 in tooth germ development. Histochem Cell Biol 2012; 139:355-70. [DOI: 10.1007/s00418-012-1033-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2012] [Indexed: 12/17/2022]
|
113
|
Yan YL, Bhattacharya P, He XJ, Ponugoti B, Marquardt B, Layman J, Grunloh M, Postlethwait JH, Rubin DA. Duplicated zebrafish co-orthologs of parathyroid hormone-related peptide (PTHrP, Pthlh) play different roles in craniofacial skeletogenesis. J Endocrinol 2012; 214:421-35. [PMID: 22761277 PMCID: PMC3718479 DOI: 10.1530/joe-12-0110] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In mammals, parathyroid hormone-related peptide (PTHrP, alias PTH-like hormone (Pthlh)) acts as a paracrine hormone that regulates the patterning of cartilage, bone, teeth, pancreas, and thymus. Beyond mammals, however, little is known about the molecular genetic mechanisms by which Pthlh regulates early development. To evaluate conserved pathways of craniofacial skeletogenesis, we isolated two Pthlh co-orthologs from the zebrafish (Danio rerio) and investigated their structural, phylogenetic, and syntenic relationships, expression, and function. Results showed that pthlh duplicates originated in the teleost genome duplication. Zebrafish pthlha and pthlhb were maternally expressed and showed overlapping and distinct zygotic expression patterns during skeletal development that mirrored mammalian expression domains. To explore the regulation of duplicated pthlh genes, we studied their expression patterns in mutants and found that both sox9a and sox9b are upstream of pthlha in arch and fin bud cartilages, but only sox9b is upstream of pthlha in the pancreas. Morpholino antisense knockdown showed that pthlha regulates both sox9a and sox9b in the pharyngeal arches but not in the brain or otic vesicles and that pthlhb does not regulate either sox9 gene, which is likely related to its highly degraded nuclear localization signal. Knockdown of pthlha but not pthlhb caused runx2b overexpression in craniofacial cartilages and premature bone mineralization. We conclude that in normal cartilage development, sox9 upregulates pthlh, which downregulates runx2, and that the duplicated nature of all three of these genes in zebrafish creates a network of regulation by different co-orthologs in different tissues.
Collapse
Affiliation(s)
- Yi-Lin Yan
- Institute of Neuroscience, University of Oregon, Eugene, Oregon 97403, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
114
|
Huang B, Takahashi K, Sakata-Goto T, Kiso H, Togo Y, Saito K, Tsukamoto H, Sugai M, Akira S, Shimizu A, Bessho K. Phenotypes of CCAAT/enhancer-binding protein beta deficiency: hyperdontia and elongated coronoid process. Oral Dis 2012; 19:144-50. [PMID: 22849712 DOI: 10.1111/j.1601-0825.2012.01963.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVES This investigation aimed to conduct a case-control study of mandibular morphology and dental anomalies to propose a relationship between mandibular/dental phenotypes and deficiency of CCAAT/enhancer-binding protein beta (CEBPB). MATERIALS AND METHODS Skulls of CEBPB(-/-), CEBPB(+/-) and CEBPB(+/+) mice were inspected with micro-computed tomography. Mandibular morphology was assessed with a method of Euclidean distance matrix analysis. RESULTS Elongation of the coronoid process was identified in CEBPB(+/-) (P ≤ 0.046) and CEBPB(-/-) 12-month-olds (P ≤ 0.028) but not in 14-day-olds (P ≥ 0.217) and 0-day-olds (P ≥ 0.189) of either genotype. Formation of supernumerary teeth in CEBPB(-/-) adult mice was demonstrated (χ(2) = 6.00, df = 1, P = 0.014). CONCLUSIONS CEBPB deficiency was related to elongation of the coronoid process and formation of supernumerary teeth. The mandibular and dental phenotypes of CEBPB deficiency were unseen by the 14th day after birth. Future investigations into the influence of CEBPB on mandibular and dental development are needed.
Collapse
Affiliation(s)
- B Huang
- Department of Paediatric Dentistry, School of Medicine and Dentistry, James Cook University, Cairns, Australia Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan Translational Research Center, Kyoto University Hospital, Kyoto University, Kyoto, Japan Laboratory of Host Defense, World Premier International Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
115
|
Häärä O, Harjunmaa E, Lindfors PH, Huh SH, Fliniaux I, Åberg T, Jernvall J, Ornitz DM, Mikkola ML, Thesleff I. Ectodysplasin regulates activator-inhibitor balance in murine tooth development through Fgf20 signaling. Development 2012; 139:3189-99. [PMID: 22833125 DOI: 10.1242/dev.079558] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Uncovering the origin and nature of phenotypic variation within species is the first step in understanding variation between species. Mouse models with altered activities of crucial signal pathways have highlighted many important genes and signal networks regulating the morphogenesis of complex structures, such as teeth. The detailed analyses of these models have indicated that the balanced actions of a few pathways regulating cell behavior modulate the shape and number of teeth. Currently, however, most mouse models studied have had gross alteration of morphology, whereas analyses of more subtle modification of morphology are required to link developmental studies to evolutionary change. Here, we have analyzed a signaling network involving ectodysplasin (Eda) and fibroblast growth factor 20 (Fgf20) that subtly affects tooth morphogenesis. We found that Fgf20 is a major downstream effector of Eda and affects Eda-regulated characteristics of tooth morphogenesis, including the number, size and shape of teeth. Fgf20 function is compensated for by other Fgfs, in particular Fgf9 and Fgf4, and is part of an Fgf signaling loop between epithelium and mesenchyme. We showed that removal of Fgf20 in an Eda gain-of-function mouse model results in an Eda loss-of-function phenotype in terms of reduced tooth complexity and third molar appearance. However, the extra anterior molar, a structure lost during rodent evolution 50 million years ago, was stabilized in these mice.
Collapse
Affiliation(s)
- Otso Häärä
- Developmental Biology Program, Institute of Biotechnology, University of Helsinki, POB 56, 00014 Helsinki, Finland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Athanassiou-Papaefthymiou M, Kim D, Harbron L, Papagerakis S, Schnell S, Harada H, Papagerakis P. Molecular and circadian controls of ameloblasts. Eur J Oral Sci 2012; 119 Suppl 1:35-40. [PMID: 22243224 DOI: 10.1111/j.1600-0722.2011.00918.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Stage-specific expression of ameloblast-specific genes is controlled by differential expression of transcription factors. In addition, ameloblasts follow daily rhythms in their main activities (i.e. enamel protein secretion and enamel mineralization). This time-related control is orchestrated by oscillations of clock proteins involved in the regulation of circadian rhythms. Our aim was to identify the potential links between daily rhythms and developmental controls of ameloblast differentiation. The effects of the transcription factors distal-less homeobox 3 (Dlx3) and runt-related transcription factor 2 (Runx2), and the clock gene nuclear receptor subfamily 1, group D, member 1 (Nr1d1), on secretory and maturation ameloblasts [using stage-specific markers amelogenin (Amelx), enamelin (Enam), and kallikrein-related peptidase 4 (Klk4)] were evaluated in the HAT-7 ameloblast cell line. Amelx and Enam steady-state mRNA expression levels were down-regulated in Runx2 over-expressing cells and up-regulated in Dlx3 over-expressing cells. In contrast, Klk4 mRNA was up-regulated by both Dlx3 and Runx2. Furthermore, a temporal and spatial relationship between clock genes and ameloblast differentiation markers was detected. Of interest, clock genes not only affected rhythmic expression of ameloblast-specific genes but also influenced the expression of Runx2. Multiscale mathematical modeling is being explored to further understand the temporal and developmental controls of ameloblast differentiation. Our study provides novel insights into the regulatory mechanisms sustaining ameloblast differentiation.
Collapse
Affiliation(s)
- Maria Athanassiou-Papaefthymiou
- Department of Orthodontics and Pediatric Medicine, Center for Computational Medicine and Bioinformatics, University of Michigan Schools of Dentistry and Medicine, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | |
Collapse
|
117
|
Uchibe K, Shimizu H, Yokoyama S, Kuboki T, Asahara H. Identification of novel transcription-regulating genes expressed during murine molar development. Dev Dyn 2012; 241:1217-26. [PMID: 22639370 DOI: 10.1002/dvdy.23808] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The mechanism of tooth development is a complex process regulated by numerous genes including transcription factors, growth factors, and other intra- and extracellular molecules. Especially, transcription factors play a central role in gene expression, regulating a wide spectrum of biological processes including organogenesis. Substantial evidence has been demonstrated by a number of studies using genetically engineered animal models. However, detailed molecular mechanisms of tooth development have not been completely elucidated, partially because numerous genes that play essential roles in tooth development remain unidentified. RESULTS In this study, we conducted an expression-based screening using gene expression database and in situ hybridization assays. Based on the gene expression database "EMBRYS," 207 out of 1,520 genes were expressed in the maxillary and/or mandibular processes and thus were selected for further analysis by section in situ hybridization. Among these candidates, 28 genes were newly identified as potential factors associated with tooth development by in situ hybridization assays with frontal sections of embryonic day 13.5 and 14.5 mouse embryos. The expression patterns were also examined at embryonic day 16.5 and 18.5. CONCLUSIONS These results will contribute to elucidating the mechanisms of tooth development and to improving the technology for regeneration of tooth.
Collapse
Affiliation(s)
- Kenta Uchibe
- Department of Systems BioMedicine, National Research Institute for Child Health and Development, Setagaya, Japan
| | | | | | | | | |
Collapse
|
118
|
Kurosaka H, Islam MN, Kuremoto KI, Hayano S, Nakamura M, Kawanabe N, Yanagita T, Rice DPC, Harada H, Taniuchi I, Yamashiro T. Core binding factor beta functions in the maintenance of stem cells and orchestrates continuous proliferation and differentiation in mouse incisors. Stem Cells 2012; 29:1792-803. [PMID: 21898689 DOI: 10.1002/stem.722] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Rodent incisors grow continuously throughout life, and epithelial progenitor cells are supplied from stem cells in the cervical loop. We report that epithelial Runx genes are involved in the maintenance of epithelial stem cells and their subsequent continuous differentiation and therefore growth of the incisors. Core binding factor β (Cbfb) acts as a binding partner for all Runx proteins, and targeted inactivation of this molecule abrogates the activity of all Runx complexes. Mice deficient in epithelial Cbfb produce short incisors and display marked underdevelopment of the cervical loop and suppressed epithelial Fgf9 expression and mesenchymal Fgf3 and Fgf10 expression in the cervical loop. In culture, FGF9 protein rescues these phenotypes. These findings indicate that epithelial Runx functions to maintain epithelial stem cells and that Fgf9 may be a target gene of Runx signaling. Cbfb mutants also lack enamel formation and display downregulated Shh mRNA expression in cells differentiating into ameloblasts. Furthermore, Fgf9 deficiency results in a proximal shift of the Shh expressing cell population and ectopic FGF9 protein suppresses Shh expression. These findings indicate that Shh as well as Fgf9 expression is maintained by Runx/Cbfb but that Fgf9 antagonizes Shh expression. The present results provide the first genetic evidence that Runx/Cbfb genes function in the maintenance of stem cells in developing incisors by activating Fgf signaling loops between the epithelium and mesenchyme. In addition, Runx genes also orchestrate continuous proliferation and differentiation by maintaining the expression of Fgf9 and Shh mRNA.
Collapse
Affiliation(s)
- Hiroshi Kurosaka
- Department of Orthodontics, Science of Functional Recovery and Reconstruction, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
119
|
Cobourne MT, Sharpe PT. Diseases of the tooth: the genetic and molecular basis of inherited anomalies affecting the dentition. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2012; 2:183-212. [DOI: 10.1002/wdev.66] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
120
|
Tanimoto Y, Veistinen L, Alakurtti K, Takatalo M, Rice DPC. Prevention of premature fusion of calvarial suture in GLI-Kruppel family member 3 (Gli3)-deficient mice by removing one allele of Runt-related transcription factor 2 (Runx2). J Biol Chem 2012; 287:21429-38. [PMID: 22547067 DOI: 10.1074/jbc.m112.362145] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mutations in the gene encoding the zinc finger transcription factor GLI3 (GLI-Kruppel family member 3) have been identified in patients with Grieg cephalopolysyndactyly syndrome in which premature fusion of calvarial suture (craniosynostosis) is an infrequent but important feature. Here, we show that Gli3 acts as a repressor in the developing murine calvaria and that Dlx5, Runx2 type II isoform (Runx2-II), and Bmp2 are expressed ectopically in the calvarial mesenchyme, which results in aberrant osteoblastic differentiation in Gli3-deficient mouse (Gli3(Xt-J/Xt-J)) and resulted in craniosynostosis. At the same time, enhanced activation of phospho-Smad1/5/8 (pSmad1/5/8), which is a downstream mediator of canonical Bmp signaling, was observed in Gli3(Xt-J/Xt-J) embryonic calvaria. Therefore, we generated Gli3;Runx2 compound mutant mice to study the effects of decreasing Runx2 dosage in a Gli3(Xt-J/Xt-J) background. Gli3(Xt-J/Xt-J) Runx2(+/-) mice have neither craniosynostosis nor additional ossification centers in interfrontal suture and displayed a normalization of Dlx5, Runx2-II, and pSmad1/5/8 expression as well as sutural mesenchymal cell proliferation. These findings suggest a novel role for Gli3 in regulating calvarial suture development by controlling canonical Bmp-Smad signaling, which integrates a Dlx5/Runx2-II cascade. We propose that targeting Runx2 might provide an attractive way of preventing craniosynostosis in patients.
Collapse
Affiliation(s)
- Yukiho Tanimoto
- Department of Orthodontics, Institute of Dentistry, University of Helsinki, Helsinki 00014, Finland
| | | | | | | | | |
Collapse
|
121
|
Rb1 mRNA expression in developing mouse teeth. Gene Expr Patterns 2012; 12:130-5. [PMID: 22300525 DOI: 10.1016/j.gep.2012.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 12/10/2011] [Accepted: 01/17/2012] [Indexed: 11/23/2022]
Abstract
Rb1 is a tumor suppressor gene that regulates cell cycle progression through interactions with E2F transcription factors. In recent years, new roles for Rb1 in regulating cellular differentiation have also emerged. For example, it has been shown that Rb1 regulates osteoblast differentiation in a cell cycle independent manner, by binding to the transcription factor Runx2, and facilitating the up-regulation of late bone differentiation markers. Based on the facts that Runx2 also functions in tooth development, and that little is known about potential roles for Rb1 in mammalian tooth development, here we evaluated the expression of Rb1 mRNA in developmentally staged mouse teeth. Our data show that Rb1 mRNA is expressed in both dental epithelial and dental mesenchymal progenitor cells. In addition, Rb1 mRNA appears upregulated in differentiating ameloblasts and odontoblasts, suggesting roles for Rb1 in tooth differentiation.
Collapse
|
122
|
Poché RA, Sharma R, Garcia MD, Wada AM, Nolte MJ, Udan RS, Paik JH, DePinho RA, Bartlett JD, Dickinson ME. Transcription factor FoxO1 is essential for enamel biomineralization. PLoS One 2012; 7:e30357. [PMID: 22291941 PMCID: PMC3265481 DOI: 10.1371/journal.pone.0030357] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 12/14/2011] [Indexed: 01/10/2023] Open
Abstract
The Transforming growth factor β (Tgf-β) pathway, by signaling via the activation of Smad transcription factors, induces the expression of many diverse downstream target genes thereby regulating a vast array of cellular events essential for proper development and homeostasis. In order for a specific cell type to properly interpret the Tgf-β signal and elicit a specific cellular response, cell-specific transcriptional co-factors often cooperate with the Smads to activate a discrete set of genes in the appropriate temporal and spatial manner. Here, via a conditional knockout approach, we show that mice mutant for Forkhead Box O transcription factor FoxO1 exhibit an enamel hypomaturation defect which phenocopies that of the Smad3 mutant mice. Furthermore, we determined that both the FoxO1 and Smad3 mutant teeth exhibit changes in the expression of similar cohort of genes encoding enamel matrix proteins required for proper enamel development. These data raise the possibility that FoxO1 and Smad3 act in concert to regulate a common repertoire of genes necessary for complete enamel maturation. This study is the first to define an essential role for the FoxO family of transcription factors in tooth development and provides a new molecular entry point which will allow researchers to delineate novel genetic pathways regulating the process of biomineralization which may also have significance for studies of human tooth diseases such as amelogenesis imperfecta.
Collapse
Affiliation(s)
- Ross A. Poché
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Ramaswamy Sharma
- Department of Cytokine Biology, Forsyth Institute, and Department of Developmental Biology, Harvard School of Dental Medicine, Cambridge, Massachusetts, United States of America
| | - Monica D. Garcia
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Aya M. Wada
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Mark J. Nolte
- Department of Genetics, University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Ryan S. Udan
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Ji-Hye Paik
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York, United States of America
| | - Ronald A. DePinho
- Departments of Medical Oncology, Medicine, and Genetics, Belfer Institute for Applied Cancer Science, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, United States of America
| | - John D. Bartlett
- Department of Cytokine Biology, Forsyth Institute, and Department of Developmental Biology, Harvard School of Dental Medicine, Cambridge, Massachusetts, United States of America
| | - Mary E. Dickinson
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, United States of America
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
123
|
Semeghini MS, Fernandes RR, Chimello DT, de Oliveira FS, Bombonato-Prado KF. In vitro evaluation of the odontogenic potential of mouse undifferentiated pulp cells. Braz Dent J 2012; 23:328-36. [PMID: 23207845 DOI: 10.1590/s0103-64402012000400004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 04/13/2012] [Indexed: 01/09/2023] Open
Abstract
The aim of this study was to evaluate the odontogenic potential of undifferentiated pulp cells (OD-21 cell line) through chemical stimuli in vitro. Cells were divided into uninduced cells (OD-21), induced cells (OD-21 cultured in supplemented medium/OD-21+OM) and odontoblast-like cells (MDPC-23 cell line). After 3, 7, 10 and 14 days of culture, it was evaluated: proliferation and cell viability, alkaline phosphatase activity, total protein content, mineralization, immunolocalization of dentin matrix acidic phosphoprotein 1 (DMP1), alkaline phosphatase (ALP) and osteopontin (OPN) and quantification of genes ALP, OSTERIX (Osx), DMP1 and runt-related transcription factor 2 (RUNX2) through real-time polymerase chain reaction (PCR). Data were analyzed by Kruskal-Wallis and Mann-Whitney U tests (p<0.05). There was a decrease in cell proliferation in OD-21 + OM, whereas cell viability was similar in all groups, except at 7 days. The amount of total protein was higher in group OD-21 + OM in all periods; the same occurred with ALP activity after 10 days when compared with OD-21, with no significant differences from the MDPC-23 group. Mineralization was higher in OD-21+OM when compared with the negative control. Immunolocalization demonstrated that DMP1 and ALP were highly expressed in MDPC-23 cells and OD-21 + OM cells, whereas OPN was high in all groups. Real-time PCR revealed that DMP1 and ALP expression was higher in MDPC-23 cell cultures, whereas RUNX2 was lower for these cells and higher for OD-21 negative control. Osx expression was lower for OD-21 + OM. These results suggest that OD-21 undifferentiated pulp cells have odontogenic potential and could be used in dental tissue engineering.
Collapse
|
124
|
Li Y, Lu Y, Maciejewska I, Galler KM, Cavender A, D'Souza RN. TWIST1 promotes the odontoblast-like differentiation of dental stem cells. Adv Dent Res 2011; 23:280-4. [PMID: 21677079 DOI: 10.1177/0022034511405387] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Stem cells derived from the dental pulp of extracted human third molars (DPSCs) have the potential to differentiate into odontoblasts, osteoblasts, adipocytes, and neural cells when provided with the appropriate conditions. To advance the use of DPSCs for dentin regeneration, it is important to replicate the permissive signals that drive terminal events in odontoblast differentiation during tooth development. Such a strategy is likely to restore a dentin matrix that more resembles the tubular nature of primary dentin. Due to the limitations of culture conditions, the use of ex vivo gene therapy to drive the terminal differentiation of mineralizing cells holds considerable promise. In these studies, we asked whether the forced expression of TWIST1 in DPSCs could alter the potential of these cells to differentiate into odontoblast-like cells. Since the partnership between Runx2 and Twist1 proteins is known to control the onset of osteoblast terminal differentiation, we hypothesized that these genes act to control lineage determination of DPSCs. For the first time, our results showed that Twist1 overexpression in DPSCs enhanced the expression of DSPP, a gene that marks odontoblast terminal differentiation. Furthermore, co-transfection assays showed that Twist1 stimulates Dspp promoter activity by antagonizing Runx2 function in 293FT cells. Analysis of our in vitro data, taken together, suggests that lineage specification of DPSCs can be modulated through ex vivo gene modifications.
Collapse
Affiliation(s)
- Y Li
- Biomedical Sciences, Baylor College of Dentistry, Texas A&M Health Science Center, Dallas, 75246, USA
| | | | | | | | | | | |
Collapse
|
125
|
Expression of mineralized tissue associated proteins: dentin sialoprotein and phosphophoryn in rodent hair follicles. J Dermatol Sci 2011; 64:92-8. [PMID: 21908176 DOI: 10.1016/j.jdermsci.2011.08.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 08/11/2011] [Accepted: 08/21/2011] [Indexed: 11/22/2022]
Abstract
BACKGROUND Mammalian hair development and tooth development are controlled by a series of reciprocal epithelial-mesenchymal interactions. Similar growth factors and transcription factors, such as fibroblast growth factor (FGF), sonic hedgehog homolog (SHH), bone morphogenetic proteins (BMPs) and Wnt10a, were reported to be involved in both of these interactions. Dentin sialoprotein (DSP) and phosphophoryn (PP) are the two major non-collagenous proteins secreted by odontoblasts that participate in dentin mineralization during tooth development. Because of striking similarities between tooth development and hair follicle development, we investigated whether DSP and/or PP proteins may also play a role in hair follicle development. OBJECTIVE In this study, we examined the presence and location of DSP/PP proteins during hair follicle development. METHODS Rat PP proteins were detected using immunohistochemical/immunofluorescent staining. DSP-PP mRNAs were detected by in situ hybridization with riboprobes. LacZ expression was detected in mouse tissues using a DSP-PP promoter-driven LUC in transgenic mice. RESULTS We found that PP proteins and DSP-PP mRNAs are present in rat hair follicles. We also demonstrate that an 8 kb DSP-PP promoter is able to drive lacZ expression in hair follicles. CONCLUSION We have firmly established the presence of DSP/PP in mouse and rat hair follicles by immunohistochemical/immunofluorescent staining, in situ hybridization with riboprobes and transgenic mice studies. The expression of DSP/PP in hair follicles is the first demonstration that major mineralization proteins likely may also contribute to soft tissue development. This finding opens a new avenue for future investigations into the molecular-genetic management of soft tissue development.
Collapse
|
126
|
Nieminen P, Morgan NV, Fenwick AL, Parmanen S, Veistinen L, Mikkola ML, van der Spek PJ, Giraud A, Judd L, Arte S, Brueton LA, Wall SA, Mathijssen IMJ, Maher ER, Wilkie AOM, Kreiborg S, Thesleff I. Inactivation of IL11 signaling causes craniosynostosis, delayed tooth eruption, and supernumerary teeth. Am J Hum Genet 2011; 89:67-81. [PMID: 21741611 DOI: 10.1016/j.ajhg.2011.05.024] [Citation(s) in RCA: 148] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 05/13/2011] [Accepted: 05/25/2011] [Indexed: 01/30/2023] Open
Abstract
Craniosynostosis and supernumerary teeth most often occur as isolated developmental anomalies, but they are also separately manifested in several malformation syndromes. Here, we describe a human syndrome featuring craniosynostosis, maxillary hypoplasia, delayed tooth eruption, and supernumerary teeth. We performed homozygosity mapping in three unrelated consanguineous Pakistani families and localized the syndrome to a region in chromosome 9. Mutational analysis of candidate genes in the region revealed that all affected children harbored homozygous missense mutations (c.662C>G [p.Pro221Arg], c.734C>G [p.Ser245Cys], or c.886C>T [p.Arg296Trp]) in IL11RA (encoding interleukin 11 receptor, alpha) on chromosome 9p13.3. In addition, a homozygous nonsense mutation, c.475C>T (p.Gln159X), and a homozygous duplication, c.916_924dup (p.Thr306_Ser308dup), were observed in two north European families. In cell-transfection experiments, the p.Arg296Trp mutation rendered the receptor unable to mediate the IL11 signal, indicating that the mutation causes loss of IL11RA function. We also observed disturbed cranial growth and suture activity in the Il11ra null mutant mice, in which reduced size and remodeling of limb bones has been previously described. We conclude that IL11 signaling is essential for the normal development of craniofacial bones and teeth and that its function is to restrict suture fusion and tooth number. The results open up the possibility of modulation of IL11 signaling for the treatment of craniosynostosis.
Collapse
Affiliation(s)
- Pekka Nieminen
- Institute of Dentistry, Biomedicum, University of Helsinki, Finland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
127
|
The role of runt-related transcription factor 2 (Runx2) in the late stage of odontoblast differentiation and dentin formation. Biochem Biophys Res Commun 2011; 410:698-704. [DOI: 10.1016/j.bbrc.2011.06.065] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2011] [Accepted: 06/08/2011] [Indexed: 11/15/2022]
|
128
|
Liu JC, Lengner CJ, Gaur T, Lou Y, Hussain S, Jones MD, Borodic B, Colby JL, Steinman HA, van Wijnen AJ, Stein JL, Jones SN, Stein GS, Lian JB. Runx2 protein expression utilizes the Runx2 P1 promoter to establish osteoprogenitor cell number for normal bone formation. J Biol Chem 2011; 286:30057-70. [PMID: 21676869 DOI: 10.1074/jbc.m111.241505] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Runt-related transcription factor, Runx2, is essential for osteogenesis and is controlled by both distal (P1) and proximal (P2) promoters. To understand Runx2 function requires determination of the spatiotemporal activity of P1 and P2 to Runx2 protein production. We generated a mouse model in which the P1-derived transcript was replaced with a lacZ reporter allele, resulting in loss of P1-derived protein while simultaneously allowing discrimination between the activities of the two promoters. Loss of P1-driven expression causes developmental defects with cleidocranial dysplasia-like syndromes that persist in the postnatal skeleton. P1 activity is robust in preosteogenic mesenchyme and at the onset of bone formation but decreases as bone matures. Homozygous Runx2-P1(lacZ/lacZ) mice have a normal life span but exhibit severe osteopenia and compromised bone repair in adult mice because of osteoblastic defects and not increased osteoclastic resorption. Gene expression profiles of bone, immunohistochemical studies, and ex vivo differentiation using calvarial osteoblasts and marrow stromal cells identified mechanisms for the skeletal phenotype. The findings indicate that P1 promoter activity is necessary for generating a threshold level of Runx2 protein to commit sufficient osteoprogenitor numbers for normal bone formation. P1 promoter function is not compensated via the P2 promoter. However, the P2 transcript with compensatory mechanisms from bone morphogenetic protein (BMP) and Wnt signaling is adequate for mineralization of the bone tissue that does form. We conclude that selective utilization of the P1 and P2 promoters enables the precise spatiotemporal expression of Runx2 necessary for normal skeletogenesis and the maintenance of bone mass in the adult.
Collapse
Affiliation(s)
- Julie C Liu
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
129
|
Dingwall M, Marchildon F, Gunanayagam A, Louis CS, Wiper-Bergeron N. Retinoic acid-induced Smad3 expression is required for the induction of osteoblastogenesis of mesenchymal stem cells. Differentiation 2011; 82:57-65. [PMID: 21612856 DOI: 10.1016/j.diff.2011.05.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 04/28/2011] [Accepted: 05/09/2011] [Indexed: 12/18/2022]
Abstract
Mesenchymal stem cells are pluripotent precursor cells that can differentiate into osteoblasts, adipocytes, chondrocytes and myocytes. Despite their important therapeutic potential little is known about the transcriptional cascades that govern lineage decisions in these cells. Treatment of C3H10T1/2 mouse mesenchymal stem cells with retinoic acid (RA) inhibits adipogenesis and enhances osteoblastogenesis. In particular, RA treatment stimulates the expression of the osteoblast master regulator, runt-related transcription factor 2 (Runx2), whose expression is necessary for the formation of bone. We have shown previously in mesenchymal stem cells that RA acts to stimulate osteoblastogenesis by interfering with the actions of the bzip transcription factor CCAAT/Enhancer Binding Protein beta (C/EBPβ), where it binds to a negative regulatory element within the Runx2 promoter and inhibits its expression. Herein we show that Smad3, whose expression is stimulated by RA, relays the effects of RA on differentiation by initiating the displacement of C/EBPβ from the Runx2 promoter. In addition to stimulating Smad3 expression, RA also stimulated the nuclear localization of this factor, such that in the absence of RA, ectopic Smad3 was unable to drive osteoblastogenesis. While not sufficient to promote osteoblastogenesis, knockdown of Smad3 using a specific shRNA prevented the RA-mediated stimulation of differentiation and displacement of C/EBPβ from the Runx2 P1 promoter. Taken together, these data indicate that Smad3 is an important mediator of RA activity during mesenchymal stem cell differentiation and is necessary for the stimulation of osteoblastogenesis.
Collapse
Affiliation(s)
- Molly Dingwall
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5
| | | | | | | | | |
Collapse
|
130
|
Porntaveetus T, Ohazama A, Choi HY, Herz J, Sharpe PT. Wnt signaling in the murine diastema. Eur J Orthod 2011; 34:518-24. [PMID: 21531785 DOI: 10.1093/ejo/cjr049] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The correct number and shape of teeth are critical factors for an aesthetic and functional dentition. Understanding the molecular mechanisms regulating tooth number and shape are therefore important in orthodontics. Mice have only one incisor and three molars in each jaw quadrant that are divided by a tooth-less region, the diastema. Although mice lost teeth in the diastema during evolution, the remnants of the evolutionary lost teeth are observed as transient epithelial buds in the wild-type diastema during early stages of development. Shh and Fgf signaling pathways that are essential for tooth development have been shown to be repressed in the diastema. It remains unclear however how Wnt signaling, that is also required for tooth development, is regulated in the diastema. In this study we found that in the embryonic diastema, Wnt5a expression was observed in mesenchyme, whereas Wnt4 and Wnt10b were expressed in epithelium. The expression of Wnt6 and Wnt11 was found in both tissues. The Wnt co-receptor, Lrp6, was weakly expressed in the diastema overlapping with weak Lrp4 expression, a co-receptor that inhibits Wnt signaling. Secreted Wnt inihibitors Dkk1, Dkk2, and Dkk3 were also expressed in the diastema. Lrp4 mutant mice develop supernumerary teeth in the diastema that is accompanied by upregulation of Wnt signaling and Lrp6 expression. Wnt signaling is thus usually attenuated in the diastema by these secreted and membrane bound Wnt inhibitors.
Collapse
Affiliation(s)
- Thantrira Porntaveetus
- Department of Craniofacial Development, Dental Institute, King's College London, Guy's Hospital, London, UK
| | | | | | | | | |
Collapse
|
131
|
Wang XP, Fan J. Molecular genetics of supernumerary tooth formation. Genesis 2011; 49:261-77. [PMID: 21309064 PMCID: PMC3188466 DOI: 10.1002/dvg.20715] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 01/02/2011] [Accepted: 01/06/2011] [Indexed: 01/07/2023]
Abstract
Despite advances in the knowledge of tooth morphogenesis and differentiation, relatively little is known about the aetiology and molecular mechanisms underlying supernumerary tooth formation. A small number of supernumerary teeth may be a common developmental dental anomaly, while multiple supernumerary teeth usually have a genetic component and they are sometimes thought to represent a partial third dentition in humans. Mice, which are commonly used for studying tooth development, only exhibit one dentition, with very few mouse models exhibiting supernumerary teeth similar to those in humans. Inactivation of Apc or forced activation of Wnt/β(catenin signalling results in multiple supernumerary tooth formation in both humans and in mice, but the key genes in these pathways are not very clear. Analysis of other model systems with continuous tooth replacement or secondary tooth formation, such as fish, snake, lizard, and ferret, is providing insights into the molecular and cellular mechanisms underlying succesional tooth development, and will assist in the studies on supernumerary tooth formation in humans. This information, together with the advances in stem cell biology and tissue engineering, will pave ways for the tooth regeneration and tooth bioengineering.
Collapse
Affiliation(s)
- Xiu-Ping Wang
- Department of Developmental Biology, Harvard School of Dental Medicine, Harvard University, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
132
|
Abstract
Mutations in the transcription factors PAX9 and MSX1 cause selective tooth agenesis in humans. In tooth bud mesenchyme of mice, both proteins are required for the expression of Bmp4, which is the key signaling factor for progression to the next step of tooth development. We have previously shown that Pax9 can transactivate a 2.4-kb Bmp4 promoter construct, and that most tooth-agenesis-causing PAX9 mutations impair DNA binding and Bmp4 promoter activation. We also found that Msx1 by itself represses transcription from this proximal Bmp4 promoter, and that, in combination with Pax9, it acts as a potentiator of Pax9-induced Bmp4 transactivation. This synergism of Msx1 with Pax9 is significant, because it is currently the only documented mechanism for Msx1-mediated activation of Bmp4. In this study, we investigated whether the 5 known tooth-agenesis-causing MSX1 missense mutations disrupt this Pax9-potentiation effect, or if they lead to deficiencies in protein stability, protein-protein interactions, nuclear translocation, and DNA-binding. We found that none of the studied molecular mechanisms yielded a satisfactory explanation for the pathogenic effects of the Msx1 mutations, calling for an entirely different approach to the investigation of this step of odontogenesis on the molecular level.
Collapse
Affiliation(s)
- Y Wang
- Department of Biomedical Sciences, Texas A&M University Health Science Center Baylor College of Dentistry, 3302 Gaston Ave., Dallas, TX 75246, USA
| | | | | | | |
Collapse
|
133
|
Lin PS, Chang MC, Chan CP, Lee SY, Lee JJ, Tsai YL, Tseng HC, Tai TF, Lin HJ, Jeng JH. Transforming growth factor β1 down-regulates Runx-2 and alkaline phosphatase activity of human dental pulp cells via ALK5/Smad2/3 signaling. ACTA ACUST UNITED AC 2011; 111:394-400. [DOI: 10.1016/j.tripleo.2010.09.079] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 08/24/2010] [Accepted: 09/29/2010] [Indexed: 10/18/2022]
|
134
|
Xuan D, Sun X, Yan Y, Xie B, Xu P, Zhang J. Effect of cleidocranial dysplasia-related novel mutation of RUNX2 on characteristics of dental pulp cells and tooth development. J Cell Biochem 2010; 111:1473-81. [DOI: 10.1002/jcb.22875] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
135
|
WU LIAN, FENG JUNSHENG, WANG LYNN, MU YANDONG, BAKER ANDREW, DONLY KEVINJ, GLUHAK-HEINRICH JELICA, HARRIS STEPHENE, MACDOUGALL MARY, CHEN SHUO. Immortalized mouse floxed Bmp2 dental papilla mesenchymal cell lines preserve odontoblastic phenotype and respond to BMP2. J Cell Physiol 2010; 225:132-9. [PMID: 20458728 PMCID: PMC2980836 DOI: 10.1002/jcp.22204] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Bone morphogenetic protein 2 (Bmp2) is essential for odontogensis and dentin mineralization. Generation of floxed Bmp2 dental mesenchymal cell lines is a valuable application for studying the effects of Bmp2 on dental mesenchymal cell differentiation and its signaling pathways during dentinogenesis. Limitation of the primary culture of dental mesenchymal cells has led to the development of cell lines that serve as good surrogate models for the study of dental mesenchymal cell differentiation into odontoblasts and mineralization. In this study, we established and characterized immortalized mouse floxed Bmp2 dental papilla mesenchymal cell lines, which were isolated from 1st mouse mandibular molars at postnatal day 1 and immortalized with pSV40 and clonally selected. These transfected cell lines were characterized by RT-PCR, immunohistochemistry, and analyzed for alkaline phosphatase activity and mineralization nodule formation. One of these immortalized cell lines, iBmp2-dp, displayed a higher proliferation rate, but retained the genotypic and phenotypic characteristics similar to primary cells as determined by expression of tooth-specific markers as well as demonstrated the ability to differentiate and form mineralized nodules. In addition, iBmp2-dp cells were inducible and responded to BMP2 stimulation. Thus, we for the first time described the establishment of an immortalized mouse floxed Bmp2 dental papilla mesenchyma cell line that might be used for studying the mechanisms of dental cell differentiation and dentin mineralization mediated by Bmp2 and other growth factor signaling pathways.
Collapse
Affiliation(s)
- LI-AN WU
- Department of Pediatric Dentistry, Dental School, The University of Texas Health Science Center at San Antonio, San Antonio, Texas
- Department of Pediatric Dentistry, School of Stomatology, The Fourth Military Medical University, Xi-an, China
| | - JUNSHENG FENG
- Department of Pediatric Dentistry, Dental School, The University of Texas Health Science Center at San Antonio, San Antonio, Texas
- Department of Anatomy & Embryology, Fujian Medical University, Fuzhou, China
| | - LYNN WANG
- Department of Pediatric Dentistry, Dental School, The University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - YAN-DONG MU
- Department of Pediatric Dentistry, Dental School, The University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - ANDREW BAKER
- Department of Pediatric Dentistry, Dental School, The University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - KEVIN J DONLY
- Department of Pediatric Dentistry, Dental School, The University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - JELICA GLUHAK-HEINRICH
- Department of Orthodontics, Dental School, The University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - STEPHEN E HARRIS
- Department of Periodontics, Dental School, The University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - MARY MACDOUGALL
- Department of Oral/Maxillofacial Surgery, University of Alabama, Birmingham, Alabama
| | - SHUO CHEN
- Department of Pediatric Dentistry, Dental School, The University of Texas Health Science Center at San Antonio, San Antonio, Texas
| |
Collapse
|
136
|
Wen J, Tao R, Ni L, Duan Q, Lu Q. Immunolocalization and expression of Runx2 in tertiary dentinogenesis. Hybridoma (Larchmt) 2010; 29:195-9. [PMID: 20568992 DOI: 10.1089/hyb.2009.0120] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Runx2 is a new transcription factor that takes part in odontoblast differentiation. This study is aimed at investigating the immunolocalization and expression of Runx2 in the process of dental pulp injury and repair using immunohistochemical technique. In normal dental pulp, positive staining can hardly be detected. In experimental groups, strong positive staining was detected at the site of the impaired pulp after 1 day, while only weak Runx2 staining was detected 3 days after operation. Five days later, a large number of stellate cells in the root apex expressed Runx2, and after 7 days, followed by the reparative dentinogenesis, Runx2 expression vanished slowly, then totally disappeared. Taken together, the expression of Runx2 has temporal and spatial specificity during different phases in rat tertiary dentinogenesis.
Collapse
Affiliation(s)
- Jun Wen
- Department of Operative Dentistry and Endodontics, College of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | | | | | | | | |
Collapse
|
137
|
Zhang W, Ahluwalia IP, Yelick PC. Three dimensional dental epithelial-mesenchymal constructs of predetermined size and shape for tooth regeneration. Biomaterials 2010; 31:7995-8003. [PMID: 20682455 DOI: 10.1016/j.biomaterials.2010.07.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Accepted: 07/04/2010] [Indexed: 12/11/2022]
Abstract
While it is known that precise dental epithelial-mesenchymal (DE-DM) cell interactions provide critical functions in tooth development, reliable methods to establish proper DE-DM cell interactions for tooth regeneration have yet to be established. To address this challenge, and to generate bioengineered teeth of predetermined size and shape, in this study, we characterize three dimensional (3D) pre-fabricated DE-DM cell constructs. Human dental pulp cell seeded Collagen gel layers were co-cultured with porcine DE cells suspended in Growth Factor Reduced (GFR) Matrigel. The resulting 3D DE-DM cell layers were cultured in vitro, or implanted and grown subcutaneously in vivo in nude rats. Molecular, histological and immunohistochemical (IHC) analyses of harvested implants revealed organized DE-DM cell interactions, the induced expression of dental tissue-specific markers Amelogenin (AM) and Dentin Sialophosphoprotein (DSPP), and basement membrane markers Laminin 5 and collagen IV, and irregular mineralized tissue formation after 4 weeks. We anticipate that these studies will facilitate the eventual establishment of reliable methods to elaborate dental tissues, and full sized teeth of specified sized and shape.
Collapse
Affiliation(s)
- Weibo Zhang
- Division of Craniofacial and Molecular Genetics, Department of Oral and Maxillofacial Pathology, Tufts University School of Dental Medicine, Boston MA 02111, USA
| | | | | |
Collapse
|
138
|
Lee HK, Lee DS, Ryoo HM, Park JT, Park SJ, Bae HS, Cho MI, Park JC. The odontogenic ameloblast-associated protein (ODAM) cooperates with RUNX2 and modulates enamel mineralization via regulation of MMP-20. J Cell Biochem 2010; 111:755-67. [DOI: 10.1002/jcb.22766] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
139
|
Pan K, Sun Q, Zhang J, Ge S, Li S, Zhao Y, Yang P. Multilineage differentiation of dental follicle cells and the roles of Runx2 over-expression in enhancing osteoblast/cementoblast-related gene expression in dental follicle cells. Cell Prolif 2010; 43:219-28. [PMID: 20546240 DOI: 10.1111/j.1365-2184.2010.00670.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVES Dental follicle cells (DFCs) provide the origin of periodontal tissues, and Runx2 is essential for bone formation and tooth development. In this study, pluripotency of DFCs was evaluated and effects of Runx2 on them were investigated. MATERIALS AND METHODS The DFCs were induced to differentiate towards osteoblasts, adipocytes or chondrocytes, and alizarin red staining, oil red O staining or alcian blue staining was performed to reveal the differentiated states. Bone marrow stromal cells (BMSCs) and primary mouse fibroblasts served as controls. DFCs were also infected with recombinant retroviruses encoding either full-length Runx2 or mutant Runx2 without the VWRPY motif. Western blot analysis, real-time real time RT-PCR and in vitro mineralization assay were performed to evaluate the effects of full-length Runx2 or mutant Runx2 on osteogenic/cementogenic differentiation of the cells. RESULTS The above-mentioned staining methods demonstrated that DFCs were successfully induced to differentiate towards osteoblasts, adipocytes or chondrocytes respectively, confirming the existence of pluripotent mesenchymal stem cells in dental follicle tissues. However, staining intensity in DFC cultures was weaker than in BMSC cultures. Real-time PCR analysis indicated that mutant Runx2 induced a more pronounced increase in expression levels of OC, OPN, Col I and CP23 than full-length Runx2. Mineralization assay also showed that mutant Runx2 increased mineralization nodule formation more prominently than full-length Runx2. CONCLUSIONS Multipotent DFCs can be induced to differentiate towards osteoblasts, adipocytes or chondrocytes in vitro. Runx2 over-expression up-regulated expression levels of osteoblast/cementoblast-related genes and in vitro enhanced osteogenic differentiation of DFCs. In addition, mutant Runx2-induced changes in DFCs were more prominent than those induced by full-length Runx2.
Collapse
Affiliation(s)
- K Pan
- Department of Periodontology and Institute of Oral Biomedicine, School of Dentistry, Shandong University, Jinan, China
| | | | | | | | | | | | | |
Collapse
|
140
|
Gluhak-Heinrich J, Guo D, Yang W, Harris MA, Lichtler A, Kream B, Zhang J, Feng JQ, Smith LC, Dechow P, Harris SE. New roles and mechanism of action of BMP4 in postnatal tooth cytodifferentiation. Bone 2010; 46:1533-45. [PMID: 20206312 PMCID: PMC2875306 DOI: 10.1016/j.bone.2010.02.024] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Revised: 01/22/2010] [Accepted: 02/24/2010] [Indexed: 11/28/2022]
Abstract
During the phase of overt tooth cytodifferentiation that occurs after birth in the mouse and using the 3.6Collagen1a-Cre and the BMP4 floxed and BMP4 knockout mice, the BMP4 gene was deleted in early collagen producing odontoblasts around postnatal day 1. BMP4 expression was reduced over 90% in alveolar osteoblasts and odontoblasts. There was decreased rate of predentin to dentin formation and decreased mature odontoblast differentiation reflected in reduced DMP1 expression and proper dentinal tubule formation, as well as reduced Collagen type I and Osteocalcin expression. We observed mutant dysmorphogenic odontoblasts that failed to properly elongate and differentiate. The consequence of this failed differentiation process leads to permanent loss of dentin thickness, apparent enlarged pulp chambers in the molars and reduced bone supporting the tooth structures in mice as old as 10-12 months. Deletion of the BMP4 gene in odontoblasts also indirectly disrupted the process of enamel formation that persisted throughout life. The mechanism for this altered differentiation program in the absence of the BMP4 gene in odontoblasts is from decreased BMP signaling, and decreased expression of three key transcription factors, Dlx3, Dlx5, and Osterix. BMP signaling, as well as Dlx3 and Amelogenin expression, is also indirectly reduced in the ameloblasts of the odontoblast BMP4 cKO mice. This supports a key paracrine or endocrine postnatal role of odontoblast derived BMP4 on the proper amelogenesis and formation of the enamel.
Collapse
Affiliation(s)
- J Gluhak-Heinrich
- The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
141
|
The static magnetic field accelerates the osteogenic differentiation and mineralization of dental pulp cells. Cytotechnology 2010; 62:143-55. [PMID: 20464482 DOI: 10.1007/s10616-010-9271-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2009] [Accepted: 04/04/2010] [Indexed: 12/22/2022] Open
Abstract
Dental pulp cells (DPCs) can differentiate into osteoblasts and are deemed a promising cell source for bone regeneration. Static magnetic field (SMF) stimulates osteoblast differentiation but the effect in DPCs remains unknown. The aim of this study was to investigate the effect of SMF exposure on the osteogenic differentiation and mineralization of rat DPCs in vitro. Cells were continuously exposed to SMF at 290 mT in the presence/absence of osteogenic induction [dexamethasone (Dex)/beta-glycerophosphate (beta-GP)]. Results showed that SMF alone did not impair the cell cycle and proliferation. On the other hand, obvious condensation in the metachromatic staining of the extracellular matrix with toluidine blue was observed for SMF-exposed cells as well as the Dex/beta-GP treated cells. SMF in combination with Dex/beta-GP significantly increased the mRNA expression of osteogenic genes, as well as the ALP activity and extracellular calcium concentration at the early stage, followed by obvious calcium deposits later. Besides, SMF exposure increased the activity of extracellular signal-regulated kinase 1/2 (ERK1/2) at 3 h and accelerated the mRNA expression of osteogenic transcription factor, Cbfa1, advancing its activation time from 168 to 72 h under osteogenic induction. In summary, SMF exposure in combination of Dex/beta-GP induction could significantly accelerate the osteogenic differentiation and mineralization of DPCs.
Collapse
|
142
|
Tziafas D, Kodonas K. Differentiation potential of dental papilla, dental pulp, and apical papilla progenitor cells. J Endod 2010; 36:781-789. [PMID: 20416419 DOI: 10.1016/j.joen.2010.02.006] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Revised: 01/27/2010] [Accepted: 02/08/2010] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Regenerative endodontic procedures use the differentiation potential of embryonic and adult pulp progenitor cell populations to reconstitute dental structures. METHODS An in-depth search of the literature was accomplished to review biologic knowledge from basic research on tooth morphogenesis and differentiation, root development, dentin-pulp regeneration, pulp revascularization and apexification, experimental and clinical studies on the dentinogenic differentiation potential of progenitor cells in the embryonic dental papilla, dental pulp, and associated mesenchymal tissues of the developing root. RESULTS Odontogenic potential is determined during early tooth morphogenesis in the odontogenic mesenchyme. Progenitor cells from the odontogenic mesenchyme give rise to primary dentin-forming cells (odontoblasts) in the presence of stage-specific enamel epithelium and/or basement membrane and tertiary dentin-forming cells (odontoblast-like cells) in experimental conditions. The specificity of odontogenic mesenchymal cells to form tertiary dentin might be related to the repertoire of signaling pathways operated by the temporospatial pattern of epithelial-mesenchymal interactions during tooth formation. Dental papilla cells isolated from tooth germs before the onset of odontoblast differentiation have not shown any competence to become odontoblasts in the absence of enamel epithelium. On the other hand, the specificity of progenitor cells in the mesenchymal cell populations of the developing root apex remains to be determined. CONCLUSIONS It seems evident that the dental pulp might be only used as a source of progenitor cells with dentinogenic competence for the regeneration of the dentin-pulp complex. The nature of dental or apical papilla progenitor cells in terms of their specificity for dentin regeneration has to be first characterized.
Collapse
Affiliation(s)
- Dimitrios Tziafas
- Department of Endodontology, School of Dentistry, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | | |
Collapse
|
143
|
Revisiting the supernumerary: the epidemiological and molecular basis of extra teeth. Br Dent J 2010; 208:25-30. [PMID: 20057458 DOI: 10.1038/sj.bdj.2009.1177] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2009] [Indexed: 11/08/2022]
Abstract
Supernumerary teeth are a common clinical and radiographic finding and may produce occlusal and dental problems. The aetiological basis of extra teeth is poorly understood in human populations; however, the mouse provides a useful model system to investigate the complex genetics of tooth development. This article describes recent advances in our understanding of the genetic basis of supernumerary teeth. We have reviewed biological evidence that provides insight into why supernumerary tooth formation may occur. Indeed, many of the molecular signalling pathways known to be involved in normal development of the tooth germ can also give rise to additional teeth if inappropriately regulated. These include components of the Hedgehog, FGF, Wnt, TNF and BMP families, which provide a useful resource of candidate genes that may potentially play a role in human supernumerary tooth formation.
Collapse
|
144
|
The significance of RUNX2 in postnatal development of the mandibular condyle. J Orofac Orthop 2010; 71:17-31. [PMID: 20135247 DOI: 10.1007/s00056-010-9929-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Accepted: 12/02/2009] [Indexed: 02/02/2023]
Abstract
OBJECTIVE RUNX2, in the Runt gene family, is one of the most important transcription factors in the development of the skeletal system. Research in recent decades has shown that this factor plays a major role in the development, growth and maturation of bone and cartilage. It is also important in tooth development, mechanotransduction and angiogenesis, and plays a significant role in various pathological processes, i.e. tumor metastasization. Mutations in the RUNX2 gene correlate with the cleidocranial dysplasia (CCD) syndrome, important to dentistry, particularly orthodontics because of its dental and orofacial symptoms. Current research on experimentally-induced mouse mutants enables us to study the etiology and pathogenesis of these malformations at the cellular and molecular biological level. This study's aim is to provide an overview of the RUNX2 gene's function especially in skeletal development, and to summarize our research efforts to date, which has focused on investigating the influence of RUNX2 on mandibular growth, which is slightly or not at all altered in many CCD patients. MATERIALS AND METHODS Immunohistochemical analyses were conducted to reveal RUNX2 in the condylar cartilage of normal mice and of heterozygous RUNX2 knockout mice in early and late growth phases; we also performed radiographic and cephalometric analyses. RESULTS We observed that RUNX2 is involved in normal condylar growth in the mouse and probably plays a significant role in osteogenesis and angiogenesis. The RUNX2 also has a biomechanical correlation in relation to cartilage compartmentalization. At the protein level, we noted no differences in the occurrence and distribution of RUNX2 in the condyle, except for a short phase during the 4th and 6th postnatal weeks, so that one allele might suffice for largely normal growth; other biological factors may have compensatory effects. However, we did observe small changes in a few cephalometric parameters concerning the mandibles of heterozygous knockout animals. We discuss potential correlations to our findings by relating them to the most current knowledge about the RUNX2 biology.
Collapse
|
145
|
|
146
|
Ravindran S, Song Y, George A. Development of three-dimensional biomimetic scaffold to study epithelial-mesenchymal interactions. Tissue Eng Part A 2010; 16:327-42. [PMID: 19712044 PMCID: PMC2806069 DOI: 10.1089/ten.tea.2009.0110] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Accepted: 08/24/2009] [Indexed: 01/09/2023] Open
Abstract
Epithelial-mesenchymal interactions play a key role in the development of tissues such as tooth, lungs, and kidneys. To successfully engineer or repair such living tissues it is necessary to first understand the complex cell-cell and cell-matrix interactions underlying organogenesis. To mimic an in vivo setting it is necessary to assemble a three-dimensional matrix that would facilitate cell-cell interaction leading to proliferation and cellular differentiation. In this study, we have developed an in vitro three-dimensional multilayered coculture system using type I collagen and chitosan blends as matrices, to study epithelial-mesenchymal interactions that occur during tooth morphogenesis. Results from this study showed that the matrix composition influenced the migration, proliferation, and differentiation properties of the epithelial and mesenchymal cells. Specifically, the system supported the migration and differentiation of the HAT-7 epithelial cells and mesenchymal-derived dental pulp stem cells. Results from the in vivo implantation study of the coculture system in mice demonstrated a similar cellular migration and differentiation pattern that corroborates well with the in vitro model. Interestingly, the biopolymer matrix also permitted neovascularization in vivo.
Collapse
Affiliation(s)
- Sriram Ravindran
- Department of Oral Biology, University of Illinois at Chicago, Chicago, Illinois, USA
| | | | | |
Collapse
|
147
|
Brook AH. Multilevel complex interactions between genetic, epigenetic and environmental factors in the aetiology of anomalies of dental development. Arch Oral Biol 2009; 54 Suppl 1:S3-17. [PMID: 19913215 PMCID: PMC2981858 DOI: 10.1016/j.archoralbio.2009.09.005] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 09/17/2009] [Accepted: 09/18/2009] [Indexed: 01/13/2023]
Abstract
Dental anomalies are caused by complex interactions between genetic, epigenetic and environmental factors during the long process of dental development. This process is multifactorial, multilevel, multidimensional and progressive over time. In this paper the evidence from animal models and from human studies is integrated to outline the current position and to construct and evaluate models, as a basis for future work. Dental development is multilevel entailing molecular and cellular interactions which have macroscopic outcomes. It is multidimensional, requiring developments in the three spatial dimensions and the fourth dimension of time. It is progressive, occurring over a long period, yet with critical stages. The series of interactions involving multiple genetic signalling pathways are also influenced by extracellular factors. Interactions, gradients and spatial field effects of multiple genes, epigenetic and environmental factors all influence the development of individual teeth, groups of teeth and the dentition as a whole. The macroscopic, clinically visible result in humans is a complex unit of four different tooth types formed in morphogenetic fields, in which teeth within each field form directionally and erupt at different times, reflecting the spatio-temporal control of development. Even when a specific mutation of a single gene or one major environmental insult has been identified in a patient with a dental anomaly, detailed investigation of the phenotype often reveals variation between affected individuals in the same family, between dentitions in the same individual and even between different teeth in the same dentition. The same, or closely similar phenotypes, whether anomalies of tooth number or structure, may arise from different aetiologies: not only mutations in different genes but also environmental factors may result in similar phenotypes. Related to the action of a number of the developmental regulatory genes active in odontogenesis, in different tissues, mutations can result in syndromes of which dental anomalies are part. Disruption of the antagonistic balance between developmental regulatory genes, acting as activators or inhibitors can result in dental anomalies. There are critical stages in the development of the individual tooth germs and, if progression fails, the germ will not develop further or undergoes apoptosis. The reiterative signalling patterns over time during the sequential process of initiation and morphogenesis are reflected in the clinical association of anomalies of number, size and form and the proposed models. An initial step in future studies is to combine the genetic investigations with accurate recording and measurement of the phenotype. They also need to collate findings at each level and exploit the accurate definition of both human and murine phenotypes now possible.
Collapse
Affiliation(s)
- A H Brook
- International Collaborating Centre in Oro-facial Genetics and Development, University of Liverpool, School of Dental Sciences, Edwards Building, Daulby Street, Pembroke Place, Liverpool, L69 3GN, UK.
| |
Collapse
|
148
|
Chen S, Gluhak-Heinrich J, Wang YH, Wu YM, Chuang HH, Chen L, Yuan GH, Dong J, Gay I, MacDougall M. Runx2, osx, and dspp in tooth development. J Dent Res 2009; 88:904-9. [PMID: 19783797 DOI: 10.1177/0022034509342873] [Citation(s) in RCA: 219] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The transcription factors Runx2 and Osx are necessary for osteoblast and odontoblast differentiation, while Dspp is important for odontoblast differentiation. The relationship among Runx2, Osx, and Dspp during tooth and craniofacial bone development remains unknown. In this study, we hypothesized that the roles of Runx2 and Osx in the regulation of osteoblast and odontoblast lineages may be independent of one another. The results showed that Runx2 expression overlapped with Osx in dental and osteogenic mesenchyme from E12 to E16. At the later stages, from E18 to PN14, Runx2 and Osx expressions remained intense in alveolar bone osteoblasts. However, Runx2 expression was down-regulated, whereas Osx expression was clearly seen in odontoblasts. At later stages, Dspp transcription was weakly present in osteoblasts, but strong in odontoblasts where Osx was highly expressed. In mouse odontoblast-like cells, Osx overexpression increased Dspp transcription. Analysis of these data suggests differential biological functions of Runx2, Osx, and Dspp during odontogenesis and osteogenesis.
Collapse
Affiliation(s)
- S Chen
- Department of Pediatric Dentistry, TheUniversity of Texas Health Science Center at San Antonio,7703 Floyd Curl Dr., San Antonio, TX 78229-3900, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
149
|
Hertwig's epithelial root sheath cells do not transform into cementoblasts in rat molar cementogenesis. Ann Anat 2009; 191:547-55. [DOI: 10.1016/j.aanat.2009.07.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Revised: 07/22/2009] [Accepted: 07/30/2009] [Indexed: 12/13/2022]
|
150
|
Jonason JH, Xiao G, Zhang M, Xing L, Chen D. Post-translational Regulation of Runx2 in Bone and Cartilage. J Dent Res 2009; 88:693-703. [PMID: 19734454 DOI: 10.1177/0022034509341629] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The Runx2 gene product is essential for mammalian bone development. In humans, Runx2 haploinsufficiency results in cleidocranial dysplasia, a skeletal disorder characterized by bone and dental abnormalities. At the molecular level, Runx2 acts as a transcription factor for genes expressed in hypertrophic chondrocytes and osteoblasts. Runx2 gene expression and protein function are regulated on multiple levels, including transcription, translation, and post-translational modification. Furthermore, Runx2 is involved in numerous protein-protein interactions, most of which either activate or repress transcription of target genes. In this review, we discuss expression of Runx2 during development as well as the post-translational regulation of Runx2 through modification by phosphorylation, ubiquitination, and acetylation.
Collapse
Affiliation(s)
- J H Jonason
- Department of Orthopaedics, Center for Musculoskeletal Research, University of Rochester School of Medicine, 601 Elmwood Avenue, Box 665, Rochester, NY 14642, USA
| | | | | | | | | |
Collapse
|