101
|
English MA, Lei L, Blake T, Wincovitch SM, Sood R, Azuma M, Hickstein D, Liu PP. Incomplete splicing, cell division defects, and hematopoietic blockage in dhx8 mutant zebrafish. Dev Dyn 2012; 241:879-89. [PMID: 22411201 DOI: 10.1002/dvdy.23774] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2012] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Vertebrate hematopoiesis is a complex developmental process that is controlled by genes in diverse pathways. To identify novel genes involved in early hematopoiesis, we conducted an ENU (N-ethyl-N-nitrosourea) mutagenesis screen in zebrafish. The mummy (mmy) line was investigated because of its multiple hematopoietic defects. RESULTS Homozygous mmy embryos lacked circulating blood cell types and were dead by 30 hr post-fertilization (hpf). The mmy mutants did not express myeloid markers and had significantly decreased expression of progenitor and erythroid markers in primitive hematopoiesis. Through positional cloning, we identified a truncation mutation in dhx8 in the mmy fish. dhx8 is the zebrafish ortholog of the yeast splicing factor prp22, which is a DEAH-box RNA helicase. mmy mutants had splicing defects in many genes, including several hematopoietic genes. mmy embryos also showed cell division defects as characterized by disorganized mitotic spindles and formation of multiple spindle poles in mitotic cells. These cell division defects were confirmed by DHX8 knockdown in HeLa cells. CONCLUSIONS Together, our results confirm that dhx8 is involved in mRNA splicing and suggest that it is also important for cell division during mitosis. This is the first vertebrate model for dhx8, whose function is essential for primitive hematopoiesis in developing embryos.
Collapse
Affiliation(s)
- Milton A English
- Oncogenesis and Development Section, National Human Genome Research Institute/NIH, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
102
|
Tamplin OJ, White RM, Jing L, Kaufman CK, Lacadie SA, Li P, Taylor AM, Zon LI. Small molecule screening in zebrafish: swimming in potential drug therapies. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2012; 1:459-68. [PMID: 23801494 DOI: 10.1002/wdev.37] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Phenotype-driven chemical genetic screens in zebrafish have become a proven approach for both dissection of developmental mechanisms and discovery of potential therapeutics. A library of small molecules can be arrayed into multiwell plates containing zebrafish embryos. The embryo becomes a whole organism in vivo bioassay that can produce a phenotype upon treatment. Screens have been performed that are based simply on the morphology of the embryo. Other screens have scored complex phenotypes using whole mount in situ hybridization, fluorescent transgenic reporters, and even tracking of embryo movement. The availability of many well-characterized zebrafish mutants has also enabled the discovery of chemical suppressors of genetic phenotypes. Importantly, the application of chemical libraries that already contain FDA-approved drugs has allowed the rapid translation of hits from zebrafish chemical screens to clinical trials.
Collapse
Affiliation(s)
- Owen J Tamplin
- Stem Cell Program and Hematology/Oncology, Children's Hospital Boston, Howard Hughes Medical Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | | | |
Collapse
|
103
|
Kannan RR, Vincent SGP. Screening of herbal extracts influencing hematopoiesis and their chemical genetic effects in embryonic zebrafish. Asian Pac J Trop Biomed 2012. [DOI: 10.1016/s2221-1691(12)60351-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
104
|
Abstract
Zebrafish provide an exciting animal model system for the study of human cancers. During the last few years many zebrafish models of cancer have been generated that recapitulate human hematologic malignancies and solid tumors. Concurrent technological advances have significantly improved the genetic tractability and unique advantage of in vivo imaging in zebrafish, providing a means to dissect the molecular pathways underlying tumor initiation, progression and metastasis. Comparisons of cancer-associated gene expression profiles have demonstrated a high degree of similarity in the gene signatures of specific types of tumor cells in fish and humans, indicating that the contributing genetic pathways leading to cancer are evolutionarily conserved. Furthermore, the high fecundity, optical clarity and small embryo size of zebrafish continue to make it particularly amenable to performing whole-organism small molecule screens to identify targets for therapeutic development. This chapter reviews a wide array of these zebrafish cancer models and illustrates the advantages of the zebrafish system for exploring the molecular mechanisms governing cancer-related cellular processes.
Collapse
Affiliation(s)
- Julia Etchin
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Children’s Hospital, Boston, Massachusetts, USA
| | | | | |
Collapse
|
105
|
Abstract
Zebrafish is emerging as a unique model organism for studying cancer genetics and biology. For several decades zebrafish have been used to study vertebrate development, where they have made important contributions to understanding the specification and differentiation programs in many tissues. Recently, zebrafish studies have led to important insights into thyroid development, and have been used to model endocrine cancer. Zebrafish possess a unique set of attributes that make them amenable to forward and reverse genetic approaches. Zebrafish embryos develop rapidly and can be used to study specific cell lineages or the effects of chemicals on pathways or tissue development. In this review, we highlight the structure and function of endocrine organs in zebrafish and outline the major achievements in modeling cancer. Our goal is to familiarize readers with the zebrafish as a genetic model system and propose opportunities for endocrine cancer research in zebrafish.
Collapse
Affiliation(s)
- Caitlin Bourque
- Departments of Surgery and Medicine, Weill Cornell Medical College and New York Presbyterian Hospital, USA
| | | |
Collapse
|
106
|
Simões FC, Peterkin T, Patient R. Fgf differentially controls cross-antagonism between cardiac and haemangioblast regulators. Development 2011; 138:3235-45. [PMID: 21750034 DOI: 10.1242/dev.059634] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Fibroblast growth factor (Fgf) has been implicated in the control of heart size during development, although whether this is by controlling cell fate, survival or proliferation has not been clear. Here, we show that Fgf, without affecting survival or proliferation, acts during gastrulation to drive cardiac fate and restrict anterior haemangioblast fate in zebrafish embryos. The haemangioblast programme was thought to be activated before the cardiac programme and is repressive towards it, suggesting that activation by Fgf of the cardiac programme might be via suppression of the haemangioblast programme. However, we show that the cardiac regulator nkx2.5 can also repress the haemangioblast programme and, furthermore, that cardiac specification still requires Fgf signalling even when haemangioblast regulators are independently suppressed. We further show that nkx2.5 and the cloche candidate gene lycat are expressed during gastrulation and regulated by Fgf, and that nkx2.5 overexpression, together with loss of the lycat targets etsrp and scl can stably induce expansion of the heart. We conclude that Fgf controls cardiac and haemangioblast fates by the simultaneous regulation of haemangioblast and cardiac regulators. We propose that elevation of Fgf signalling in the anterior haemangioblast territory could have led to its recruitment into the heart field during evolution, increasing the size of the heart.
Collapse
Affiliation(s)
- Filipa Costa Simões
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Oxford University, John Radcliffe Hospital, Headington OX3 9DS, UK
| | | | | |
Collapse
|
107
|
The vascular origin of hematopoietic cells. Dev Biol 2011; 362:1-10. [PMID: 21945862 DOI: 10.1016/j.ydbio.2011.09.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Revised: 09/07/2011] [Accepted: 09/07/2011] [Indexed: 11/23/2022]
Abstract
More than a century ago, several embryologists described sites of hematopoietic activity in the vascular wall of mid-gestation vertebrate embryos, and postulated the transient existence of a blood generating endothelium during ontogeny. This hypothesis gained significant attention in the 1970s when orthotopic transplantation experiments between quail and chick embryos revealed specific vascular areas as the site of the origin of definitive hematopoiesis. However, the vascular origin of hematopoietic precursors remained elusive and controversial for decades. Only recently, multiple experimental approaches have clearly documented that during vertebrate development definitive hematopoietic precursors arise from a subset of vascular endothelial cells. Interestingly, this differentiation is promoted by the intravascular fluid mechanical forces generated by the establishment of blood flow upon the initiation of heartbeat, and it is therefore connected with cardiovascular development in several critical aspects. In this review we present our current understanding of the relationship between vascular and definitive hematopoietic development through an historical analysis of the scientific evidence produced in this area of investigation.
Collapse
|
108
|
Song H, Yan YL, Titus T, He X, Postlethwait JH. The role of stat1b in zebrafish hematopoiesis. Mech Dev 2011; 128:442-56. [PMID: 21914475 DOI: 10.1016/j.mod.2011.08.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Revised: 08/07/2011] [Accepted: 08/25/2011] [Indexed: 01/10/2023]
Abstract
STAT1 mediates response to interferons and regulates immunity, cell proliferation, apoptosis, and sensitivity of Fanconi Anemia cells to apoptosis after interferon signaling; the roles of STAT1 in embryos, however, are not understood. To explore embryonic functions of STAT1, we investigated stat1b, an unstudied zebrafish co-ortholog of human STAT1. Zebrafish stat1a encodes all five domains of the human STAT1-alpha splice form but, like the human STAT1-beta splice variant, stat1b lacks a complete transactivation domain; thus, two unlinked zebrafish paralogs encode protein forms translated from two splice variants of a single human gene, as expected by sub-functionalization after genome duplication. Phylogenetic and conserved synteny studies showed that stat1b and stat1a arose as duplicates in the teleost genome duplication (TGD) and clarified the evolutionary origin of STAT1, STAT2, STAT3, STAT4, STAT5A, STAT5B and STAT6 by tandem and genome duplication. RT-PCR revealed maternal expression of stat1a and stat1b. In situ hybridization detected stat1b but not stat1a expression in embryonic hematopoietic tissues. Morpholino knockdown of stat1b, but not stat1a, decreased expression of the myeloid and granulocyte markers spi and mpo and increased expression of the hematopoietic progenitor marker scl, the erythrocyte marker gata1, and hemoglobin. These results suggest that zebrafish Stat1b promotes myeloid development at the expense of erythroid development.
Collapse
Affiliation(s)
- Hao Song
- Institute of Neuroscience, University of Oregon, 1425 E. 13th Avenue, Eugene, OR 97403, USA.
| | | | | | | | | |
Collapse
|
109
|
Wang LD, Wagers AJ. Dynamic niches in the origination and differentiation of haematopoietic stem cells. Nat Rev Mol Cell Biol 2011; 12:643-55. [PMID: 21886187 DOI: 10.1038/nrm3184] [Citation(s) in RCA: 238] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Haematopoietic stem cells (HSCs) are multipotent, self-renewing progenitors that generate all mature blood cells. HSC function is tightly controlled to maintain haematopoietic homeostasis, and this regulation relies on specialized cells and factors that constitute the haematopoietic 'niche', or microenvironment. Recent discoveries, aided in part by technological advances in in vivo imaging, have engendered a new appreciation for the dynamic nature of the niche, identifying novel cellular and acellular niche components and uncovering fluctuations in the relative importance of these components over time. These new insights significantly improve our understanding of haematopoiesis and raise fundamental questions about what truly constitutes a stem cell niche.
Collapse
Affiliation(s)
- Leo D Wang
- Department of Stem Cell and Regenerative Biology, Harvard University, Harvard Stem Cell Institute, 7 Divinity Ave., Cambridge, Massachusetts 02138, USA. Leo.Wang@ childrens.harvard.edu
| | | |
Collapse
|
110
|
Thoma EC, Wagner TU, Weber IP, Herpin A, Fischer A, Schartl M. Ectopic Expression of Single Transcription Factors Directs Differentiation of a Medaka Spermatogonial Cell Line. Stem Cells Dev 2011; 20:1425-38. [DOI: 10.1089/scd.2010.0290] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Eva C. Thoma
- Department of Physiological Chemistry I, University of Wuerzburg, Wuerzburg, Germany
| | - Toni U. Wagner
- Department of Physiological Chemistry I, University of Wuerzburg, Wuerzburg, Germany
| | - Isabell P. Weber
- Department of Physiological Chemistry I, University of Wuerzburg, Wuerzburg, Germany
| | - Amaury Herpin
- Department of Physiological Chemistry I, University of Wuerzburg, Wuerzburg, Germany
| | - Andreas Fischer
- Joint Research Division Vascular Biology, Medical Faculty Mannheim, Heidelberg University, and German Cancer Research Center Heidelberg (DKFZ-ZMBH Alliance), Mannheim, Germany
| | - Manfred Schartl
- Department of Physiological Chemistry I, University of Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
111
|
In vivo imaging of hematopoietic stem cell development in the zebrafish. Front Med 2011; 5:239-47. [DOI: 10.1007/s11684-011-0123-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Accepted: 02/14/2011] [Indexed: 02/01/2023]
|
112
|
Medvinsky A, Rybtsov S, Taoudi S. Embryonic origin of the adult hematopoietic system: advances and questions. Development 2011; 138:1017-31. [PMID: 21343360 DOI: 10.1242/dev.040998] [Citation(s) in RCA: 278] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Definitive hematopoietic stem cells (HSCs) lie at the foundation of the adult hematopoietic system and provide an organism throughout its life with all blood cell types. Several tissues demonstrate hematopoietic activity at early stages of embryonic development, but which tissue is the primary source of these important cells and what are the early embryonic ancestors of definitive HSCs? Here, we review recent advances in the field of HSC research that have shed light on such questions, while setting them into a historical context, and discuss key issues currently circulating in this field.
Collapse
Affiliation(s)
- Alexander Medvinsky
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, University of Edinburgh, Edinburgh EH9 3JQ, UK.
| | | | | |
Collapse
|
113
|
Abstract
First established as a valuable vertebrate model system for studying development, zebrafish have emerged as an attractive animal system for modeling human cancers. Major technical advances have been essential for the generation of zebrafish cancer models relevant to human diseases. These models develop tumors in various organ sites that bear striking resemblance to human malignances, both histologically and genetically. Thus, the focus of cancer research in zebrafish has transcended the need to validate zebrafish as a viable model organism to study cancer biology. With the significant advantages of in vivo imaging, the power of forward genetics, well-established high efficiency for transgenesis, and ease of transplantation, further exploration of the zebrafish cancer models not only will generate unique insights into underlying mechanisms of cancer but will also provide platforms useful for drug discovery.
Collapse
Affiliation(s)
- Shu Liu
- Department of Surgery, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
| | | |
Collapse
|
114
|
Runx3 is a crucial regulator of alveolar differentiation and lung tumorigenesis in mice. Differentiation 2011; 81:261-8. [DOI: 10.1016/j.diff.2011.02.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Revised: 01/14/2011] [Accepted: 02/01/2011] [Indexed: 11/20/2022]
|
115
|
Du L, Xu J, Li X, Ma N, Liu Y, Peng J, Osato M, Zhang W, Wen Z. Rumba and Haus3 are essential factors for the maintenance of hematopoietic stem/progenitor cells during zebrafish hematopoiesis. Development 2011; 138:619-29. [DOI: 10.1242/dev.054536] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The hallmark of vertebrate definitive hematopoiesis is the establishment of the hematopoietic stem/progenitor cell (HSPC) pool during embryogenesis. This process involves a defined ontogenic switching of HSPCs in successive hematopoietic compartments and is evolutionarily conserved from teleost fish to human. In zebrafish, HSPCs originate from the ventral wall of the dorsal aorta (VDA), from which they subsequently mobilize to an intermediate hematopoietic site known as the caudal hematopoietic tissue (CHT) and finally colonize the kidney for adult hematopoiesis. Despite substantial understanding of the ontogeny of HSPCs, the molecular basis governing migration, colonization and maintenance of HSPCs remains to be explored fully. Here, we report the isolation and characterization of two zebrafish mutants, rumbahkz1 and sambahkz2, that are defective in generating definitive hematopoiesis. We find that HSPC initiation in the VDA and subsequent homing to the CHT are not affected in these two mutants. However, the further development of HSPCs in the CHT is compromised in both mutants. Positional cloning reveals that Rumba is a novel nuclear C2H2 zinc-finger factor with unknown function and samba encodes an evolutionarily conserved protein that is homologous to human augmin complex subunit 3 (HAUS3). Furthermore, we show that these two factors independently regulate cell cycle progression of HSPCs and are cell autonomously required for HPSC development in the CHT. Our study identifies Rumba and Haus3 as two essential regulators of HSPC maintenance during zebrafish fetal hematopoiesis.
Collapse
Affiliation(s)
- Linsen Du
- State Key Laboratory of Molecular Neuroscience, Department of Biochemistry, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P.R. China
- Cancer Science Institute of Singapore, National University of Singapore, Centre for Life Sciences, #02-07, 28 Medical Drive, Singapore 117456
| | - Jin Xu
- State Key Laboratory of Molecular Neuroscience, Department of Biochemistry, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P.R. China
| | - Xiuling Li
- State Key Laboratory of Molecular Neuroscience, Department of Biochemistry, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P.R. China
| | - Ning Ma
- Department of Cell Biology, Southern Medical University, Guangzhou 510515, P.R. China
| | - Yanmei Liu
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden 01307, Germany
- Laboratory of Experimental Diabetology, Carl Gustav Carus Medical School, Dresden University of Technology, Dresden 01307, Germany
| | - Jinrong Peng
- College of Animal Sciences, Zhejiang University, 268 Kai Xuan Road, Hangzhou, 310029, P.R. China
| | - Motomi Osato
- Cancer Science Institute of Singapore, National University of Singapore, Centre for Life Sciences, #02-07, 28 Medical Drive, Singapore 117456
| | - Wenqing Zhang
- Department of Cell Biology, Southern Medical University, Guangzhou 510515, P.R. China
| | - Zilong Wen
- State Key Laboratory of Molecular Neuroscience, Department of Biochemistry, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P.R. China
| |
Collapse
|
116
|
Ng CEL, Yokomizo T, Yamashita N, Cirovic B, Jin H, Wen Z, Ito Y, Osato M. A Runx1 intronic enhancer marks hemogenic endothelial cells and hematopoietic stem cells. Stem Cells 2011; 28:1869-81. [PMID: 20799333 DOI: 10.1002/stem.507] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Runx1 is essential for the generation of hematopoietic stem cells (HSCs) and is frequently mutated in human leukemias. However, the cis-regulatory mechanisms modulating the Runx1 gene expression remain to be elucidated. Herewith, we report the identification of an intronic Runx1 enhancer, Runx1 +24 mouse conserved noncoding element (mCNE), using a combinatorial in silico approach involving comparative genomics and retroviral integration sites mapping. The Runx1 +24 mCNE was found to possess hematopoietic-specific enhancer activity in both zebrafish and mouse models. Significantly, this enhancer is active specifically in hemogenic endothelial cells (ECs) at sites where the de novo generation of HSCs occurs. The activity of this enhancer is also strictly restricted to HSCs within the hematopoietic compartment of the adult bone marrow. We anticipate that Runx1 +24 mCNE HSC enhancer will serve as a molecular handle for tracing and/or manipulating hemogenic ECs/HSCs behavior in vivo, and consequently become an invaluable tool for research on stem cell and cancer biology.
Collapse
Affiliation(s)
- Cherry Ee Lin Ng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | | | | | | | | | | | | | | |
Collapse
|
117
|
VEGF and FGF prime vascular tube morphogenesis and sprouting directed by hematopoietic stem cell cytokines. Blood 2011; 117:3709-19. [PMID: 21239704 DOI: 10.1182/blood-2010-11-316752] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Here, we demonstrate a novel, direct-acting, and synergistic role for 3 hematopoietic stem cell cytokines: stem cell factor, interleukin-3, and stromal derived factor-1α, in controlling human endothelial cell (EC) tube morphogenesis, sprouting, and pericyte-induced tube maturation under defined serum-free conditions in 3-dimensional matrices. Angiogenic cytokines such as vascular endothelial growth factor (VEGF) and fibroblast growth factor (FGF) alone or VEGF/FGF combinations do not support these responses. In contrast, VEGF and FGF prime EC responses to hematopoietic cytokines via up-regulation of c-Kit, IL-3Rα, and C-X-C chemokine receptor type 4 from either human ECs or embryonic quail vessel explants. In support of these findings, EC Runx1 is demonstrated to be critical in coordinating vascular morphogenic responses by controlling hematopoietic cytokine receptor expression. Combined blockade of hematopoietic cytokines or their receptors in vivo leads to blockade of developmental vascularization in quail embryos manifested by vascular hemorrhage and disrupted vascular remodeling events in multiple tissue beds. This work demonstrates a unique role for hematopoietic stem cell cytokines in vascular tube morphogenesis and sprouting and further demonstrates a novel upstream priming role for VEGF and FGF to facilitate the action of promorphogenic hematopoietic cytokines.
Collapse
|
118
|
Abstract
Compared with other vertebrate animal models, zebrafish (Danio rerio) has its superior advantages for studying stem cell migration. Zebrafish have similar tissues and organs as mammals, where tissue-specific stem cells reside in. Zebrafish eggs are externally fertilized and remain transparent until most of the organs are fully developed. This allows imaging stem cells in vivo very easily. Recently, a zebrafish double pigmentation mutant, casper, became a new popular imaging model in the zebrafish field due to its completely transparent bodies in adulthood. It has been used as an excellent model to study adult hematopoietic stem cell (HSC) in the transplantation setting. The unparalleled imaging power of zebrafish provides great opportunities of tracing stem cells in vivo in the developmental and regenerative context. In this chapter, we use HSC as an example and combine the powerful imaging techniques in zebrafish, to provide protocols for in vivo imaging fluorescence-labeled stem cell migration, stem cell fate tracing in zebrafish embryos, HSC transplantation, and in vivo imaging in both zebrafish embryos and adults. These techniques can also be applied to other types of stem cells in zebrafish embryos and adults.
Collapse
|
119
|
Abstract
The zebrafish is an excellent model system to study vertebrate blood cell development due to a highly conserved hematopoietic system, optical transparency, and amenability to both forward and reverse genetic approaches. The development of functional assays to analyze the biology of hematopoietic mutants and diseased animals remains a work in progress. Here we discuss recent advances in zebrafish hematology, prospective isolation techniques, cellular transplantation, and culture-based assays that now provide more rigorous tests of hematopoietic stem and progenitor cell function. Together with the proven strengths of the zebrafish, the development and refinement of these assays further enable efforts to better understand the development and evolution of the vertebrate hematopoietic system.
Collapse
Affiliation(s)
- David L Stachura
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California, USA
| | | |
Collapse
|
120
|
Goessling W, North TE. Hematopoietic stem cell development: using the zebrafish to identify the signaling networks and physical forces regulating hematopoiesis. Methods Cell Biol 2011; 105:117-36. [PMID: 21951528 DOI: 10.1016/b978-0-12-381320-6.00005-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hematopoietic stem cells (HSC) form the basis of the hematopoietic hierarchy, giving rise to each of the blood lineages found throughout the lifetime of the organism. The genetic programs regulating HSC development are highly conserved between vertebrate species. The zebrafish has proven to be an excellent model for discovering and characterizing the signaling networks and physical forces regulating vertebrate hematopoietic development.
Collapse
Affiliation(s)
- Wolfram Goessling
- Genetics Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|
121
|
Danilova N, Sakamoto KM, Lin S. Ribosomal protein L11 mutation in zebrafish leads to haematopoietic and metabolic defects. Br J Haematol 2010; 152:217-28. [PMID: 21114664 DOI: 10.1111/j.1365-2141.2010.08396.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Mutations in ribosomal proteins are associated with a congenital syndrome, Diamond-Blackfan anaemia (DBA), manifested by red blood cell aplasia, developmental abnormalities and increased risk of malignancy. Recent studies suggest the involvement of p53 activation in DBA. However, which pathways are involved and how they contribute to the DBA phenotype remains unknown. Here we show that a zebrafish mutant for the rpl11 gene had defects both in the development of haematopoietic stem cells (HSCs) and maintenance of erythroid cells. The molecular signature of the mutant included upregulation of p53 target genes and global changes in metabolism. The changes in several pathways may affect haematopoiesis including upregulation of pro-apoptotic and cell cycle arrest genes, suppression of glycolysis, downregulation of biosynthesis and dysregulation of cytoskeleton. Each of these pathways has been individually implicated in haematological diseases. Inhibition of p53 partially rescued haematopoiesis in the mutant. Altogether, we propose that the unique phenotype of DBA is a sum of several abnormally regulated molecular pathways, mediated by the p53 protein family and p53-independent, which have synergistic impact on haematological and other cellular pathways affected in DBA. Our results provide new insights into the pathogenesis of DBA and point to the potential avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Nadia Danilova
- Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, 90095, USA
| | | | | |
Collapse
|
122
|
Rhodes JM, Bentley FK, Print CG, Dorsett D, Misulovin Z, Dickinson EJ, Crosier KE, Crosier PS, Horsfield JA. Positive regulation of c-Myc by cohesin is direct, and evolutionarily conserved. Dev Biol 2010; 344:637-49. [PMID: 20553708 PMCID: PMC2941799 DOI: 10.1016/j.ydbio.2010.05.493] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Accepted: 05/15/2010] [Indexed: 02/01/2023]
Abstract
Contact between sister chromatids from S phase to anaphase depends on cohesin, a large multi-subunit protein complex. Mutations in sister chromatid cohesion proteins underlie the human developmental condition, Cornelia de Lange syndrome. Roles for cohesin in regulating gene expression, sometimes in combination with CCCTC-binding factor (CTCF), have emerged. We analyzed zebrafish embryos null for cohesin subunit rad21 using microarrays to determine global effects of cohesin on gene expression during embryogenesis. This identified Rad21-associated gene networks that included myca (zebrafish c-myc), p53 and mdm2. In zebrafish, cohesin binds to the transcription start sites of p53 and mdm2, and depletion of either Rad21 or CTCF increased their transcription. In contrast, myca expression was strongly downregulated upon loss of Rad21 while depletion of CTCF had little effect. Depletion of Rad21 or the cohesin-loading factor Nipped-B in Drosophila cells also reduced expression of myc and Myc target genes. Cohesin bound the transcription start site plus an upstream predicted CTCF binding site at zebrafish myca. Binding and positive regulation of the c-Myc gene by cohesin is conserved through evolution, indicating that this regulation is likely to be direct. The exact mechanism of regulation is unknown, but local changes in histone modification associated with transcription repression at the myca gene were observed in rad21 mutants.
Collapse
Affiliation(s)
- Jenny M. Rhodes
- Department of Pathology, Dunedin School of Medicine, The University of Otago P.O. Box 913, Dunedin New Zealand
| | - Fiona K. Bentley
- Department of Pathology, Dunedin School of Medicine, The University of Otago P.O. Box 913, Dunedin New Zealand
| | - Cristin G. Print
- Department of Molecular Medicine and Pathology, School of Medical Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Dale Dorsett
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, 1100 South Grand Boulevard, Saint Louis, MO 63104, USA
| | - Ziva Misulovin
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, 1100 South Grand Boulevard, Saint Louis, MO 63104, USA
| | - Emma J. Dickinson
- Department of Pathology, Dunedin School of Medicine, The University of Otago P.O. Box 913, Dunedin New Zealand
| | - Kathryn E. Crosier
- Department of Molecular Medicine and Pathology, School of Medical Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Philip S. Crosier
- Department of Molecular Medicine and Pathology, School of Medical Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Julia A. Horsfield
- Department of Pathology, Dunedin School of Medicine, The University of Otago P.O. Box 913, Dunedin New Zealand
| |
Collapse
|
123
|
Live imaging of Runx1 expression in the dorsal aorta tracks the emergence of blood progenitors from endothelial cells. Blood 2010; 116:909-14. [DOI: 10.1182/blood-2010-01-264382] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Abstract
Blood cells of an adult vertebrate are continuously generated by hematopoietic stem cells (HSCs) that originate during embryonic life within the aorta-gonad-mesonephros region. There is now compelling in vivo evidence that HSCs are generated from aortic endothelial cells and that this process is critically regulated by the transcription factor Runx1. By time-lapse microscopy of Runx1-enhanced green fluorescent protein transgenic zebrafish embryos, we were able to capture a subset of cells within the ventral endothelium of the dorsal aorta, as they acquire hemogenic properties and directly emerge as presumptive HSCs. These nascent hematopoietic cells assume a rounded morphology, transiently occupy the subaortic space, and eventually enter the circulation via the caudal vein. Cell tracing showed that these cells subsequently populated the sites of definitive hematopoiesis (thymus and kidney), consistent with an HSC identity. HSC numbers depended on activity of the transcription factor Runx1, on blood flow, and on proper development of the dorsal aorta (features in common with mammals). This study captures the earliest events of the transition of endothelial cells to a hemogenic endothelium and demonstrates that embryonic hematopoietic progenitors directly differentiate from endothelial cells within a living organism.
Collapse
|
124
|
Genetic manipulation of AML1-ETO-induced expansion of hematopoietic precursors in a Drosophila model. Blood 2010; 116:4612-20. [PMID: 20688956 DOI: 10.1182/blood-2010-03-276998] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Among mutations in human Runx1/AML1 transcription factors, the t(8;21)(q22;q22) genomic translocation that creates an AML1-ETO fusion protein is implicated in etiology of the acute myeloid leukemia. To identify genes and components associated with this oncogene we used Drosophila as a genetic model. Expression of AML1-ETO caused an expansion of hematopoietic precursors in Drosophila, which expressed high levels of reactive oxygen species (ROS). Mutations in functional domains of the fusion protein suppress the proliferative phenotype. In a genetic screen, we found that inactivation of EcRB1 or activation of Foxo and superoxide dismutase-2 (SOD2) suppress the AML1-ETO-induced phenotype by reducing ROS expression in the precursor cells. Our studies indicate that ROS is a signaling factor promoting maintenance of normal as well as the aberrant myeloid precursors and suggests the importance of antioxidant enzymes and their regulators as targets for further study in the context of leukemia.
Collapse
|
125
|
Lung tissue regeneration after induced injury in Runx3 KO mice. Cell Tissue Res 2010; 341:465-70. [PMID: 20623301 DOI: 10.1007/s00441-010-1011-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Accepted: 06/16/2010] [Indexed: 01/08/2023]
Abstract
Runx3 is essential for normal murine lung development, and Runx3 knockout (KO) mice, which die soon after birth, exhibit alveolar hyperplasia. Wound healing, tissue repair, and regeneration mechanisms are necessary in humans for proper early lung development. Previous studies have reported that various signaling molecules, such as pErk, Tgf-beta1, CCSP, pJnk, Smad3, and HSP70 are closely related to wound healing. In order to confirm the relationship between lung defects caused by the loss of function of Runx3 and wound healing, we have localized various wound-healing markers after laser irradiation in wild-type and in Runx3 KO mouse lungs at post-natal day 1. Our results indicate that pERK, Tgf-beta1, CCSP, pJnk, and HSP70 are dramatically down-regulated by loss of Runx3 during lung wound healing. However, Smad3 is up-regulated in the Runx3 KO laser-irradiated lung region. Therefore, the lung wound-healing mechanism is inhibited in the Runx3 KO mouse, which shows abnormal lung architecture, by reduced pErk, Tgf-beta1, CCSP, pJnk, and HSP70 and by induced Smad3.
Collapse
|
126
|
Abstract
Hematopoietic stem cells (HSCs) are essential for homeostasis and injury-induced regeneration of the vertebrate blood system. Although HSC transplantations constitute the most common type of stem cell therapy applied in the clinic, we know relatively little about the molecular programming of HSCs during vertebrate embryogenesis. In vertebrate embryos, HSCs form in close association with the ventral wall of the dorsal aorta. We have shown previously that in zebrafish, HSC formation depends on the presence of a signaling cascade that involves Hedgehog, vascular endothelial growth factor, and Notch signaling. Here, we reveal that Hey2, a hairy/enhancer-of-split-related basic helix-loop-helix transcription factor often believed to act downstream of Notch, is also required for HSC formation. In dorsal aorta progenitors, Hey2 expression is induced downstream of cloche and the transcription factor Scl/Tal1, and is maintained by Hedgehog and vascular endothelial growth factor signaling. Whereas knockdown of Hey2 expression results in a loss of Notch receptor expression in dorsal aorta angioblasts, activation of Notch signaling in hey2 morphants rescues HSC formation in zebrafish embryos. These results establish an essential role for Hey2 upstream of Notch in HSC formation.
Collapse
|
127
|
Park BY, Saint-Jeannet JP. Expression analysis of Runx3 and other Runx family members during Xenopus development. Gene Expr Patterns 2010; 10:159-66. [PMID: 20433948 DOI: 10.1016/j.gep.2010.04.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 04/09/2010] [Accepted: 04/19/2010] [Indexed: 10/19/2022]
Abstract
Runx genes encode a family of proteins defined by the highly conserved runt DNA-binding domain. Studies in several organisms have shown that these transcription factors regulate multiple aspects of embryonic development and are responsible for the pathogenesis of several human diseases. Here we report the cloning and expression of Runx3 during Xenopus development and compare its expression pattern to other Runx family members, Runx1 and Runx2, and to Cbfbeta, the obligatory binding partner of Runx proteins. Using in situ hybridization in the whole embryo and on sections we show that Runx3 is co-expressed with Runx1 in the hematopoietic lineage and in Rohon-Beard sensory neurons. In contrast Runx3 and Runx2 are co-expressed in craniofacial cartilage elements. Runx3 shows also unique expression domains in a number of derivatives of the neurogenic placodes, including the ganglia of the anteroposterior and middle lateral line nerves, and ganglia of the trigeminal, glossopharyngeal, facial and vagal nerves. These observations suggest a critical role for Runx3 in the development of cranial sensory neurons, while in other tissues its co-expression with Runx1 or Runx2 may signify functional redundancy between these family members.
Collapse
Affiliation(s)
- Byung-Yong Park
- Department of Anatomy, College of Veterinary Medicine, Chonbuk National University, Jeonju, Jeonbuk 561-756, Republic of Korea
| | | |
Collapse
|
128
|
Abstract
For the last three decades significant parts of national science budgets, and international and private funding worldwide, have been dedicated to cancer research. This has resulted in a number of important scientific findings. Studies in tissue culture have multiplied our knowledge of cancer cell pathophysiology, mechanisms of transformation and strategies of survival of cancer cells, revealing therapeutically exploitable differences to normal cells. Rodent animal models have provided important insights on the developmental biology of cancer cells and on host responses to the transformed cells. However, the rate of death from some malignancies is still high, and the incidence of cancer is increasing in the western hemisphere. Alternative animal models are needed, where cancer cell biology, developmental biology and treatment can be studied in an integrated way. The zebrafish offers a number of features, such as its rapid development, tractable genetics, suitability for in vivo imaging and chemical screening, that make it an attractive model to cancer researchers. This Primer will provide a synopsis of the different cancer models generated by the zebrafish community to date. It will discuss the use of these models to further our understanding of the mechanisms of cancer development, and to promote drug discovery. The article was inspired by a workshop on the topic held in July 2009 in Spoleto, Italy, where a number of new zebrafish cancer models were presented. The overarching goal of the article is aimed at raising the awareness of basic researchers, as well as clinicians, to the versatility of this emerging alternative animal model of cancer.
Collapse
Affiliation(s)
- Marina C Mione
- IFOM Foundation - FIRC Institute of Molecular Oncology Foundation, via Adamello, Milan, Italy.
| | | |
Collapse
|
129
|
Expression of the cytoplasmic NPM1 mutant (NPMc+) causes the expansion of hematopoietic cells in zebrafish. Blood 2010; 115:3329-40. [PMID: 20197555 DOI: 10.1182/blood-2009-02-207225] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Mutations in the human nucleophosmin (NPM1) gene are the most frequent genetic alteration in adult acute myeloid leukemias (AMLs) and result in aberrant cytoplasmic translocation of this nucleolar phosphoprotein (NPMc+). However, underlying mechanisms leading to leukemogenesis remain unknown. To address this issue, we took advantage of the zebrafish model organism, which expresses 2 genes orthologous to human NPM1, referred to as npm1a and npm1b. Both genes are ubiquitously expressed, and their knockdown produces a reduction in myeloid cell numbers that is specifically rescued by NPM1 expression. In zebrafish, wild-type human NPM1 is nucleolar while NPMc+ is cytoplasmic, as in human AML, and both interact with endogenous zebrafish Npm1a and Npm1b. Forced NPMc+ expression in zebrafish causes an increase in pu.1(+) primitive early myeloid cells. A more marked perturbation of myelopoiesis occurs in p53(m/m) embryos expressing NPMc+, where mpx(+) and csf1r(+) cell numbers are also expanded. Importantly, NPMc+ expression results in increased numbers of definitive hematopoietic cells, including erythromyeloid progenitors in the posterior blood island and c-myb/cd41(+) cells in the ventral wall of the aorta. These results are likely to be relevant to human NPMc+ AML, where the observed NPMc+ multilineage expression pattern implies transformation of a multipotent stem or progenitor cell.
Collapse
|
130
|
Scl isoforms act downstream of etsrp to specify angioblasts and definitive hematopoietic stem cells. Blood 2010; 115:5338-46. [PMID: 20185582 DOI: 10.1182/blood-2009-09-244640] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Recent lineage studies suggest that hematopoietic stem cells (HSCs) may be derived from endothelial cells. However, the genetic hierarchy governing the emergence of HSCs remains elusive. We report here that zebrafish ets1-related protein (etsrp), which is essential for vascular endothelial development, also plays a critical role in the initiation of definitive hematopoiesis by controlling the expression of 2 stem cell leukemia (scl) isoforms (scl-alpha and scl-beta) in angioblasts. In etsrp morphants, which are deficient in endothelial and HSC development, scl-alpha alone partially rescues angioblast specification, arterial-venous differentiation, and the expression of HSC markers, runx1 and c-myb, whereas scl-beta requires angioblast rescue by fli1a to restore runx1 expression. Interestingly, when vascular endothelial growth factor (Vegf) signaling is inhibited, HSC marker expression can still be restored by scl-alpha in etsrp morphants, whereas the rescue of arterial ephrinb2a expression is blocked. Furthermore, both scl isoforms partially rescue runx1 but not ephrinb2a expression in embryos deficient in Vegf signaling. Our data suggest that downstream of etsrp, scl-alpha and fli1a specify the angioblasts, whereas scl-beta further initiates HSC specification from this angioblast population, and that Vegf signaling acts upstream of scl-beta during definitive hematopoiesis.
Collapse
|
131
|
Huang C, Gu S, Yu P, Yu F, Feng C, Gao N, Du J. Deficiency of smarcal1 causes cell cycle arrest and developmental abnormalities in zebrafish. Dev Biol 2009; 339:89-100. [PMID: 20036229 DOI: 10.1016/j.ydbio.2009.12.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 12/14/2009] [Accepted: 12/15/2009] [Indexed: 11/19/2022]
Abstract
Mutations in SMARCAL1 cause Schimke Immuno-Osseous Dysplasia (SIOD), an autosomal recessive multisystem developmental disease characterized by growth retardation, T-cell deficiency, bone marrow failure, anemia and renal failure. SMARCAL1 encodes an ATP-driven annealing helicase. However, the biological function of SMARCAL1 and the molecular basis of SIOD remain largely unclear. In this work, we cloned the zebrafish homologue of the human SMARCAL1 gene and found that smarcal1 regulated cell cycle progression. Morpholino knockdown of smarcal1 in zebrafish recapitulated developmental abnormalities in SIOD patients, including growth retardation, craniofacial abnormality, and haematopoietic and vascular defects. Lack of smarcal1 caused G0/G1 cell cycle arrest and induced cell apoptosis. Furthermore, using Electrophoretic Mobility Shift Assay and reporter assay, we found that SMARCAL1 was transcriptionally inhibited by E2F6, an important cell cycle regulator. Over-expression of E2F6 in zebrafish embryos reduced the expression of smarcal1 mRNA and induced developmental defects similar to those in smarcal1 morphants. These results suggest that SIOD may be caused by defects in cell cycle regulation. Our study provides a model of SIOD and reveals its cellular and molecular bases.
Collapse
Affiliation(s)
- Cheng Huang
- Institute for Nutritional Sciences and Key Laboratory of Nutrition and Metabolism, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | | | | | | | | | | | | |
Collapse
|
132
|
Zagami CJ, Zusso M, Stifani S. Runx transcription factors: lineage-specific regulators of neuronal precursor cell proliferation and post-mitotic neuron subtype development. J Cell Biochem 2009; 107:1063-72. [PMID: 19507194 DOI: 10.1002/jcb.22221] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Runt-related (RUNX) genes encode evolutionarily conserved transcription factors that play essential roles during development and adult tissue homeostasis. RUNX proteins regulate the transition from proliferation to differentiation in a variety of cell lineages. Moreover, they control the diversification of distinct cellular phenotypes in numerous tissues. Alterations of RUNX functions are associated with several cancers and other human pathologies, underscoring the vital roles of these transcription factors in adult organs. Insights into the functions and regulations of mammalian RUNX proteins have been provided mostly by studies of RUNX involvement in mechanisms of hematopoietic and skeletal development and disease. A growing number of recent investigations are revealing new functions for RUNX family members during the development of the mammalian nervous system. This review will discuss recent progress in the study of RUNX protein involvement in mammalian neural development, with emphasis on the differentiation of olfactory, sensory, and motor neuron lineages.
Collapse
|
133
|
Mönnich M, Banks S, Eccles M, Dickinson E, Horsfield J. Expression of cohesin and condensin genes during zebrafish development supports a non-proliferative role for cohesin. Gene Expr Patterns 2009; 9:586-94. [PMID: 19723591 DOI: 10.1016/j.gep.2009.08.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Accepted: 08/25/2009] [Indexed: 12/27/2022]
Abstract
Cohesin and condensin are similar, but distinct multi-subunit protein complexes that have well-described roles in sister chromatid cohesion and chromosome condensation, respectively. Recently it has emerged that cohesin, and proteins that regulate cohesin function have additional developmental roles. To further understand the role of cohesin in development, we analyzed the expression of genes encoding cohesin and condensin subunits in developing zebrafish embryos and juvenile brain. We found that cohesin subunits are expressed in a pattern that is similar (but not quite identical) to the expression of condensin subunits. Cohesin genes smc1a, rad21, pds5b and smc3 were expressed in the forebrain ventricular zone, the tectum, the mid-hindbrain boundary, the fourth ventricle, branchial arches, the otic vesicle, the eye and faintly in the developing pectoral fins. Condensin genes smc2 and smc4 were expressed in the forebrain ventricular zone, the tectum, the mid-hindbrain boundary, the fourth ventricle, branchial arches, eye and pectoral fins. Condensin genes were additionally expressed in the hindbrain proliferative zone, an area in which cohesin genes were not detected. A comparison with pcna expression and BrdU incorporation revealed that the expression of cohesins and condensins closely overlap with zones of proliferation. Interestingly, cohesin genes were expressed in non-proliferating cells flanking rhombomere boundaries in the developing brain. In mature brain and eye, cohesin was expressed in both proliferating cells and in broad zones of post-mitotic cells. The distribution of cohesin and condensin mRNAs supports existing evidence for a non-cell cycle role for cohesin in the developing brain.
Collapse
Affiliation(s)
- Maren Mönnich
- Department of Pathology, The University of Otago, Dunedin, New Zealand
| | | | | | | | | |
Collapse
|
134
|
Gering M, Patient R. Notch signalling and haematopoietic stem cell formation during embryogenesis. J Cell Physiol 2009; 222:11-6. [PMID: 19725072 DOI: 10.1002/jcp.21905] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The Notch signalling pathway is repeatedly employed during embryonic development and adult homeostasis of a variety of tissues. In particular, its frequent involvement in the regulation of stem and progenitor cell maintenance and proliferation, as well as its role in binary fate decisions in cells that are destined to differentiate, is remarkable. Here, we review its role in the development of haematopoietic stem cells during vertebrate embryogenesis and put it into the context of Notch's functions in arterial specification, angiogenic vessel sprouting and vessel maintenance. We further discuss interactions with other signalling cascades, and pinpoint open questions and some of the challenges that lie ahead.
Collapse
Affiliation(s)
- Martin Gering
- Institute of Genetics, School of Biology, Queen's Medical Centre, University of Nottingham, Nottingham, UK
| | | |
Collapse
|
135
|
Ontogenetic development of erythropoiesis can be studied non-invasively in GATA-1:DsRed transgenic zebrafish. Comp Biochem Physiol A Mol Integr Physiol 2009; 154:270-8. [DOI: 10.1016/j.cbpa.2009.06.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Revised: 06/26/2009] [Accepted: 06/29/2009] [Indexed: 11/19/2022]
|
136
|
Abstract
PURPOSE OF REVIEW A wealth of new experimental evidence has been published over the past year that has helped refine our models of blood cell development. We will review this information, discuss the current models of hematopoietic ontogeny and provide perspective on current and future research directions, with an emphasis on how studies in the zebrafish are helping us better understand how hematopoietic stem cells are formed in the vertebrate embryo. RECENT FINDINGS Several important studies have been published recently addressing the embryonic development of hematopoietic stem cells. These studies have helped clarify several controversial topics in developmental hematopoiesis, including the concepts of the hemangioblast and hemogenic endothelium. In particular, the postulate that hematopoietic stem cells arise through hemogenic endothelial intermediates has been greatly strengthened by a collection of convincing publications reviewed below. SUMMARY A precise understanding of how hematopoietic stem cells are patterned during development has important implications for both developmental biology and regenerative medicine. Since hematopoietic stem cells are the only hematopoietic cells capable of lifelong, multilineage blood cell production, understanding the stepwise, molecular processes of their instruction from mesoderm is key to replicating these events in vitro from pluripotent embryonic stem cells.
Collapse
|
137
|
Ganly P, Walker LC, Morris CM. Familial Mutations of the Transcription Factor RUNX1 (AML1, CBFA2) Predispose to Acute Myeloid Leukemia. Leuk Lymphoma 2009; 45:1-10. [PMID: 15061191 DOI: 10.1080/1042819031000139611] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
RUNX1 (AML1, CBFA2) is mutated in affected members of families with autosomal dominant thrombocytopenia and platelet dense granule storage pool deficiency. Many of those affected, usually by point mutations in one allele, are predisposed to the development of acute myeloid leukemia (AML) in adult life. The RUNX1 protein complexes with core binding factor beta (CBFB) to form a heterodimeric core binding transcription factor (CBF) that regulates many genes important in hematopoiesis. RUNX1 was first identified as the gene on chromosome 21 that is rearranged by the translocation t(8;21)(q22;q22.12) recurrently found in the leukemic cells of patients with AML. In addition to the t(8;21), RUNX1 is rearranged with one of several partner genes on other chromosomes by somatically acquired translocations associated with hematological malignancies. Point mutations of RUNX1 are also found in sporadic leukemias to reinforce the important position of this gene on the multi-step path to leukemia. In animal models, at least one functional copy of RUNX1 is required to effect definitive embryonic hematopoiesis. Cells expressing dominant-negative mutants of RUNX1 are readily immortalized and transformed, and those RUNX1 mutants which retain CBFB binding ability may possess dominant-negative function. However, in some families there is transmitted one mutated allele of RUNX1 with no dominant-negative function, demonstrating that simple haploinsufficiency of RUNX1 predisposes to AML and also causes a generalized hematopoietic stem cell disorder most recognizable as thrombocytopenia.
Collapse
Affiliation(s)
- Peter Ganly
- Cancer Genetics Research Group, Christchurch School of Medicine and Health Sciences, PO Box 4345, Christchurch, New Zealand.
| | | | | |
Collapse
|
138
|
|
139
|
Wilkinson RN, Pouget C, Gering M, Russell AJ, Davies SG, Kimelman D, Patient R. Hedgehog and Bmp polarize hematopoietic stem cell emergence in the zebrafish dorsal aorta. Dev Cell 2009; 16:909-16. [PMID: 19531361 DOI: 10.1016/j.devcel.2009.04.014] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Revised: 03/02/2009] [Accepted: 04/29/2009] [Indexed: 01/09/2023]
Abstract
Hematopoietic stem cells (HSCs) are first detected in the floor of the embryonic dorsal aorta (DA), and we investigate the signals that induce the HSC program there. We show that while continued Hedgehog (Hh) signaling from the overlying midline structures maintains the arterial program characteristic of the DA roof, a ventral Bmp4 signal induces the blood stem cell program in the DA floor. This patterning of the DA by Hh and Bmp is the mirror image of that in the neural tube, with Hh favoring dorsal rather than ventral cell types, and Bmp favoring ventral rather than dorsal. With the majority of current data supporting a model whereby HSCs derive from arterial endothelium, our data identify the signal driving this conversion. These findings are important for the study of the production of HSCs from embryonic stem cells and establish a paradigm for the development of adult stem cells.
Collapse
Affiliation(s)
- Robert N Wilkinson
- MRC Molecular Hematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | | | | | | | | | | | | |
Collapse
|
140
|
A Drosophila model identifies calpains as modulators of the human leukemogenic fusion protein AML1-ETO. Proc Natl Acad Sci U S A 2009; 106:12043-8. [PMID: 19581587 DOI: 10.1073/pnas.0902449106] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The t(8:21)(q22;q22) translocation is 1 of the most common chromosomal abnormalities linked to acute myeloid leukemia (AML). AML1-ETO, the product of this translocation, fuses the N-terminal portion of the RUNX transcription factor AML1 (also known as RUNX1), including its DNA-binding domain, to the almost entire transcriptional corepressor ETO (also known as MTG8 or RUNX1T1). This fusion protein acts primarily by interfering with endogenous AML1 function during myeloid differentiation, although relatively few genes are known that participate with AML1-ETO during leukemia progression. Here, we assessed the consequences of expressing this chimera in Drosophila blood cells. Reminiscent of what is observed in AML, AML1-ETO specifically inhibited the differentiation of the blood cell lineage whose development depends on the RUNX factor Lozenge (LZ) and induced increased numbers of LZ(+) progenitors. Using an in vivo RNAi-based screen for suppressors of AML1-ETO, we identified calpainB as required for AML1-ETO-induced blood cell disorders in Drosophila. Remarkably, calpain inhibition triggered AML1-ETO degradation and impaired the clonogenic potential of the human t(8;21) leukemic blood cell line Kasumi-1. Therefore Drosophila provides a promising genetically tractable model to investigate the conserved basis of leukemogenesis and to open avenues in AML therapy.
Collapse
|
141
|
A genetic screen in zebrafish defines a hierarchical network of pathways required for hematopoietic stem cell emergence. Blood 2009; 113:5776-82. [PMID: 19332767 DOI: 10.1182/blood-2008-12-193607] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Defining the genetic pathways essential for hematopoietic stem cell (HSC) development remains a fundamental goal impacting stem cell biology and regenerative medicine. To genetically dissect HSC emergence in the aorta-gonad-mesonephros (AGM) region, we screened a collection of insertional zebrafish mutant lines for expression of the HSC marker, c-myb. Nine essential genes were identified, which were subsequently binned into categories representing their proximity to HSC induction. Using overexpression and loss-of-function studies in zebrafish, we ordered these signaling pathways with respect to each other and to the Vegf, Notch, and Runx programs. Overexpression of vegf and notch is sufficient to induce HSCs in the tbx16 mutant, despite a lack of axial vascular organization. Although embryos deficient for artery specification, such as the phospholipase C gamma-1 (plcgamma1) mutant, fail to specify HSCs, overexpression of notch or runx1 can rescue their hematopoietic defect. The most proximal HSC mutants, such as hdac1, were found to have no defect in vessel or artery formation. Further analysis demonstrated that hdac1 acts downstream of Notch signaling but upstream or in parallel to runx1 to promote AGM hematopoiesis. Together, our results establish a hierarchy of signaling programs required and sufficient for HSC emergence in the AGM.
Collapse
|
142
|
Transcriptional regulation of a myeloid-lineage specific gene lysozyme C during zebrafish myelopoiesis. Mech Dev 2009; 126:314-23. [PMID: 19275935 DOI: 10.1016/j.mod.2009.02.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Revised: 02/26/2009] [Accepted: 02/27/2009] [Indexed: 11/24/2022]
Abstract
lysozyme C (lyz), a glycoside hydrolase expressed exclusively in myeloid cells, is involved in the host defense against bacterial infection. We isolated a 2.4kb zebrafish lyz promoter region and established transgenic lines that drive enhanced green fluorescent protein (EGFP) to examine how lyz expression is regulated during myelopoiesis. We found that the 2.4kb lyz promoter is sufficient to drive myeloid-specific expression of EGFP in zebrafish. We identified potential transcriptional regulatory elements including a Runx element (TGTGGT at -1.70kb) and a C/ebp element (TTTGGCAAT at -1.46kb) in the lyz promoter, and showed that they are required for myeloid-specific expression of EGFP. We found that the myeloid-lineage transcription factors C/ebp1, Runx1 and Pu.1 can bind to the 2.4kb lyz promoter. Forced expression of runx1, c/ebp1 and pu.1 together induced ectopic lyz expression in the intermediated cell mass (ICM). Thus, we propose that c/ebp1 and runx1 presumably cooperated with pu.1 in the transcriptional regulation of lyz during zebrafish myelopoiesis.
Collapse
|
143
|
Discovering chemical modifiers of oncogene-regulated hematopoietic differentiation. Nat Chem Biol 2009; 5:236-43. [PMID: 19172146 PMCID: PMC2658727 DOI: 10.1038/nchembio.147] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Accepted: 01/16/2009] [Indexed: 12/19/2022]
Abstract
It has been proposed that inhibitors of an oncogene's effects on multipotent hematopoietic progenitor cell differentiation may change the properties of the leukemic stem cells and complement the clinical use of cytotoxic drugs. Using zebrafish, we developed a robust in vivo hematopoietic differentiation assay that reflects the activity of the oncogene AML1-ETO. Screening for modifiers of AML1-ETO-mediated hematopoietic dysregulation uncovered unexpected roles of COX-2- and beta-catenin-dependent pathways in AML1-ETO function. This approach may open doors for developing therapeutics targeting oncogene function within leukemic stem cells.
Collapse
|
144
|
Abstract
The ETS protein Spi-1/Pu.1 plays a pivotal and widespread role throughout hematopoiesis in many species. This study describes the identification, characterization, and functional analysis of a new zebrafish spi transcription factor spi-1-like (spi-1l) that is expressed in primitive myeloid cells, erythro-myelo progenitor cells, and in the adult kidney. Spi-1l functions genetically downstream of etsrp, scl, and spi-1/pu.1 in myeloid differentiation. Spi-1l is coexpressed in a subset of spi-1/pu.1 cells and its function is necessary and sufficient for macrophage and granulocyte differentiation. These results establish a critical role for spi-1l in zebrafish myeloid cell differentiation.
Collapse
|
145
|
Titus TA, Yan YL, Wilson C, Starks AM, Frohnmayer JD, Bremiller RA, Cañestro C, Rodriguez-Mari A, He X, Postlethwait JH. The Fanconi anemia/BRCA gene network in zebrafish: embryonic expression and comparative genomics. Mutat Res 2008; 668:117-32. [PMID: 19101574 DOI: 10.1016/j.mrfmmm.2008.11.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Accepted: 11/23/2008] [Indexed: 10/21/2022]
Abstract
Fanconi anemia (FA) is a genetic disease resulting in bone marrow failure, high cancer risks, and infertility, and developmental anomalies including microphthalmia, microcephaly, hypoplastic radius and thumb. Here we present cDNA sequences, genetic mapping, and genomic analyses for the four previously undescribed zebrafish FA genes (fanci, fancj, fancm, and fancn), and show that they reverted to single copy after the teleost genome duplication. We tested the hypothesis that FA genes are expressed during embryonic development in tissues that are disrupted in human patients by investigating fanc gene expression patterns. We found fanc gene maternal message, which can provide Fanc proteins to repair DNA damage encountered in rapid cleavage divisions. Zygotic expression was broad but especially strong in eyes, central nervous system and hematopoietic tissues. In the pectoral fin bud at hatching, fanc genes were expressed specifically in the apical ectodermal ridge, a signaling center for fin/limb development that may be relevant to the radius/thumb anomaly of FA patients. Hatching embryos expressed fanc genes strongly in the oral epithelium, a site of squamous cell carcinomas in FA patients. Larval and adult zebrafish expressed fanc genes in proliferative regions of the brain, which may be related to microcephaly in FA. Mature ovaries and testes expressed fanc genes in specific stages of oocyte and spermatocyte development, which may be related to DNA repair during homologous recombination in meiosis and to infertility in human patients. The intestine strongly expressed some fanc genes specifically in proliferative zones. Our results show that zebrafish has a complete complement of fanc genes in single copy and that these genes are expressed in zebrafish embryos and adults in proliferative tissues that are often affected in FA patients. These results support the notion that zebrafish offers an attractive experimental system to help unravel mechanisms relevant not only to FA, but also to breast cancer, given the involvement of fancj (brip1), fancn (palb2) and fancd1 (brca2) in both conditions.
Collapse
Affiliation(s)
- Tom A Titus
- Institute of Neuroscience, University of Oregon, 1425 E. 13th Avenue, Eugene, OR 97403, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
146
|
Zebrafish runx1 promoter-EGFP transgenics mark discrete sites of definitive blood progenitors. Blood 2008; 113:1241-9. [PMID: 18927441 DOI: 10.1182/blood-2008-04-149898] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The transcription factor Runx1 is essential for the development of definitive hematopoietic stem cells (HSCs) during vertebrate embryogenesis and is transcribed from 2 promoters, P1 and P2, generating 2 major Runx1 isoforms. We have created 2 stable runx1 promoter zebrafish-transgenic lines that provide insight into the roles of the P1 and P2 isoforms during the establishment of definitive hematopoiesis. The Tg(runx1P1:EGFP) line displays fluorescence in the posterior blood island, where definitive erythromyeloid progenitors develop. The Tg(runx1P2:EGFP) line marks definitive HSCs in the aorta-gonad-mesonephros, with enhanced green fluorescent protein-labeled cells later populating the pronephros and thymus. This suggests that a function of runx1 promoter switching is associated with the establishment of discrete definitive blood progenitor compartments. These runx1 promoter-transgenic lines are novel tools for the study of Runx1 regulation and function in normal and malignant hematopoiesis. The ability to visualize and isolate fluorescently labeled HSCs should contribute to further elucidating the complex regulation of HSC development.
Collapse
|
147
|
A non-canonical function of zebrafish telomerase reverse transcriptase is required for developmental hematopoiesis. PLoS One 2008; 3:e3364. [PMID: 18846223 PMCID: PMC2561060 DOI: 10.1371/journal.pone.0003364] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Accepted: 07/23/2008] [Indexed: 11/19/2022] Open
Abstract
Although it is clear that telomerase expression is crucial for the maintenance of telomere homeostasis, there is increasing evidence that the TERT protein can have physiological roles that are independent of this central function. To further examine the role of telomerase during vertebrate development, the zebrafish telomerase reverse transcriptase (zTERT) was functionally characterized. Upon zTERT knockdown, zebrafish embryos show reduced telomerase activity and are viable, but develop pancytopenia resulting from aberrant hematopoiesis. The blood cell counts in TERT-depleted zebrafish embryos are markedly decreased and hematopoietic cell differentiation is impaired, whereas other somatic lineages remain morphologically unaffected. Although both primitive and definitive hematopoiesis is disrupted by zTERT knockdown, the telomere lengths are not significantly altered throughout early development. Induced p53 deficiency, as well as overexpression of the anti-apoptotic proteins Bcl-2 and E1B-19K, significantly relieves the decreased blood cells numbers caused by zTERT knockdown, but not the impaired blood cell differentiation. Surprisingly, only the reverse transcriptase motifs of zTERT are crucial, but the telomerase RNA-binding domain of zTERT is not required, for rescuing complete hematopoiesis. This is therefore the first demonstration of a non-canonical catalytic activity of TERT, which is different from “authentic” telomerase activity, is required for during vertebrate hematopoiesis. On the other hand, zTERT deficiency induced a defect in hematopoiesis through a potent and specific effect on the gene expression of key regulators in the absence of telomere dysfunction. These results suggest that TERT non-canonically functions in hematopoietic cell differentiation and survival in vertebrates, independently of its role in telomere homeostasis. The data also provide insights into a non-canonical pathway by which TERT functions to modulate specification of hematopoietic stem/progenitor cells during vertebrate development. (276 words)
Collapse
|
148
|
Marschallinger J, Steinbacher P, Haslett JR, Sänger AM, Rescan PY, Stoiber W. Patterns of angiogenic and hematopoietic gene expression during brown trout embryogenesis. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2008; 310:479-91. [DOI: 10.1002/jez.b.21220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
149
|
Danilova N, Sakamoto KM, Lin S. Role of p53 family in birth defects: Lessons from zebrafish. ACTA ACUST UNITED AC 2008; 84:215-27. [DOI: 10.1002/bdrc.20129] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
150
|
Suhr ST, Ramachandran R, Fuller CL, Veldman MB, Byrd CA, Goldman D. Highly-restricted, cell-specific expression of the simian CMV-IE promoter in transgenic zebrafish with age and after heat shock. Gene Expr Patterns 2008; 9:54-64. [PMID: 18723125 DOI: 10.1016/j.gep.2008.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2007] [Revised: 07/14/2008] [Accepted: 07/29/2008] [Indexed: 11/18/2022]
Abstract
Promoters with high levels of ubiquitous expression are of significant utility in the production of transgenic animals and cell lines. One such promoter is derived from the human cytomegalovirus immediate early (CMV-IE) gene. We sought to ascertain if the simian CMV-IE promoter (sCMV), used extensively in non-mammalian vertebrate research, also directs intense, widespread expression when stably introduced into zebrafish. Analysis of sCMV-driven expression revealed a temporal and spatial pattern not predicted by studies using the hCMV promoter in other transgenic animals or by observations of early F0 embryos expressing injected sCMV-reporter plasmids. Unexpectedly, in transgenic fish produced by both integration of linearized plasmid or Tol2-mediated transgenesis, sCMV promoter expression was generally observed in a small population of cells in telencephalon and spinal cord between days 2 and 7, and was thereafter confined to discrete regions of CNS that included the olfactory bulb, retina, cerebellum, spinal cord, and lateral line. In skeletal muscle, intense transgene expression was not observed until well into adulthood (>2-3 months post-fertilization). One final unexpected characteristic of the sCMV promoter in stable transgenic fish was tissue-specific responsiveness of the promoter to heat shock at both embryonic and adult stages. These data suggest that, in the context of stable transgenesis, the simian CMV-IE gene promoter responds differently to intracellular regulatory forces than other characterized CMV promoters.
Collapse
Affiliation(s)
- Steven T Suhr
- Molecular and Behavioral Neuroscience Institute, Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | | | | | | | | | | |
Collapse
|