101
|
Kawaoka S, Arai Y, Kadota K, Suzuki Y, Hara K, Sugano S, Shimizu K, Tomari Y, Shimada T, Katsuma S. Zygotic amplification of secondary piRNAs during silkworm embryogenesis. RNA (NEW YORK, N.Y.) 2011; 17:1401-7. [PMID: 21628432 PMCID: PMC3138575 DOI: 10.1261/rna.2709411] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2011] [Accepted: 04/28/2011] [Indexed: 05/18/2023]
Abstract
PIWI-interacting RNAs (piRNAs) are 23-30-nucleotide-long small RNAs that act as sequence-specific silencers of transposable elements in animal gonads. In flies, genetics and deep sequencing data have led to a hypothesis for piRNA biogenesis called the ping-pong cycle, where antisense primary piRNAs initiate an amplification loop to generate sense secondary piRNAs. However, to date, the process of the ping-pong cycle has never been monitored at work. Here, by large-scale profiling of piRNAs from silkworm ovary and embryos of different developmental stages, we demonstrate that maternally inherited antisense-biased piRNAs trigger acute amplification of secondary sense piRNA production in zygotes, at a time coinciding with zygotic transcription of sense transposon mRNAs. These results provide on-site evidence for the ping-pong cycle.
Collapse
MESH Headings
- Animals
- Bombyx/embryology
- Bombyx/genetics
- Cluster Analysis
- Embryo, Nonmammalian
- Embryonic Development/genetics
- Embryonic Development/physiology
- Female
- Gene Amplification/physiology
- Gene Expression Profiling
- Gene Expression Regulation, Developmental
- Microarray Analysis
- Models, Biological
- Molecular Sequence Data
- RNA, Messenger, Stored/analysis
- RNA, Messenger, Stored/genetics
- RNA, Messenger, Stored/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Zygote/metabolism
Collapse
Affiliation(s)
- Shinpei Kawaoka
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yuji Arai
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Koji Kadota
- Agricultural Bioinformatics Research Unit, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yutaka Suzuki
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Kahori Hara
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Sumio Sugano
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Kentaro Shimizu
- Agricultural Bioinformatics Research Unit, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yukihide Tomari
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Toru Shimada
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
- Agricultural Bioinformatics Research Unit, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Susumu Katsuma
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
- Corresponding author.E-mail .
| |
Collapse
|
102
|
Abstract
PIWI-interacting RNAs (piRNAs) are a distinct class of small non-coding RNAs that form the piRNA-induced silencing complex (piRISC) in the germ line of many animal species. The piRISC protects the integrity of the genome from invasion by 'genomic parasites'--transposable elements--by silencing them. Owing to their limited expression in gonads and their sequence diversity, piRNAs have been the most mysterious class of small non-coding RNAs regulating RNA silencing. Now, much progress is being made into our understanding of their biogenesis and molecular functions, including the specific subcellular compartmentalization of the piRNA pathway in granular cytoplasmic bodies.
Collapse
|
103
|
Law JA, Jacobsen SE. Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat Rev Genet 2011; 11:204-20. [PMID: 20142834 DOI: 10.1038/nrg2719] [Citation(s) in RCA: 2498] [Impact Index Per Article: 192.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cytosine DNA methylation is a stable epigenetic mark that is crucial for diverse biological processes, including gene and transposon silencing, imprinting and X chromosome inactivation. Recent findings in plants and animals have greatly increased our understanding of the pathways used to accurately target, maintain and modify patterns of DNA methylation and have revealed unanticipated mechanistic similarities between these organisms. Key roles have emerged for small RNAs, proteins with domains that bind methylated DNA and DNA glycosylases in these processes. Drawing on insights from both plants and animals should deepen our understanding of the regulation and biological significance of DNA methylation.
Collapse
Affiliation(s)
- Julie A Law
- Department of Molecular, Cell and Developmental Biology, University of California-Los Angeles, 90095-1606, USA
| | | |
Collapse
|
104
|
Senti KA, Brennecke J. The piRNA pathway: a fly's perspective on the guardian of the genome. Trends Genet 2010; 26:499-509. [PMID: 20934772 DOI: 10.1016/j.tig.2010.08.007] [Citation(s) in RCA: 185] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2010] [Revised: 08/27/2010] [Accepted: 08/31/2010] [Indexed: 11/29/2022]
Abstract
Throughout the eukaryotic lineage, small RNA silencing pathways protect the genome against the deleterious influence of selfish genetic elements such as transposons. In animals an elaborate small RNA pathway centered on PIWI proteins and their interacting piRNAs silences transposons within the germline. In contrast to other small RNA silencing pathways, we lack a mechanistic understanding of this genome defense system. However, genetic and molecular studies have uncovered a fascinating conceptual framework for this pathway that is conserved from sponges to mammals. We discuss our current understanding of the piRNA pathway in Drosophila with an emphasis on origin and biogenesis of piRNAs.
Collapse
Affiliation(s)
- Kirsten-André Senti
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohrgasse 3, 1030 Vienna, Austria
| | | |
Collapse
|
105
|
Nagao A, Mituyama T, Huang H, Chen D, Siomi MC, Siomi H. Biogenesis pathways of piRNAs loaded onto AGO3 in the Drosophila testis. RNA (NEW YORK, N.Y.) 2010; 16:2503-15. [PMID: 20980675 PMCID: PMC2995411 DOI: 10.1261/rna.2270710] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Accepted: 09/16/2010] [Indexed: 05/25/2023]
Abstract
PIWI-interacting RNAs (piRNAs) silence transposable elements in animal germ cells. In Drosophila ovaries, piRNAs are produced by two distinct pathways: the "ping-pong" amplification cycle that operates in germ cells and a ping-pong-independent pathway termed the primary pathway that mainly operates in somatic cells. AGO3, one of three PIWI proteins in flies, is involved in the ping-pong cycle in ovaries. We characterized AGO3-associated piRNAs in fly testes and found that like in ovaries, AGO3 functions in the ping-pong cycle with Aubergine (Aub) for piRNA production from transposon transcripts. In contrast, most AGO3-associated piRNAs corresponding to Suppressor of Stellate [Su(Ste)] genes are antisense-oriented and bound to Aub. In addition, the vast majority of AGO3-bound piRNAs derived from the AT-chX locus on chromosome X are antisense-oriented and are also found among Aub-associated piRNAs. The presence of very few sense Su(Ste) and AT-chX piRNAs suggests that biogenesis of both Su(Ste) and AT-chX piRNAs by a ping-pong mechanism only is highly unlikely. Nevertheless, the mutual interdependence of AGO3 and Aub for the accumulation of these piRNAs shows that their production relies on both AGO3 and Aub. Analysis of piRNA pathway mutants revealed that although the requirements for piRNA factors for Su(Ste)- and AT-chX-piRNA levels mostly overlap and resemble those for the ping-pong mechanism in the ovaries, Armitage (armi) is not required for the accumulation of AT-chX-1 piRNA. These findings suggest that the impacts of armi mutants on the operation of the piRNA pathway are variable in germ cells of fly testes.
Collapse
Affiliation(s)
- Akihiro Nagao
- Department of Molecular Biology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | | | | | | | | | | |
Collapse
|
106
|
van der Heijden GW, Castañeda J, Bortvin A. Bodies of evidence - compartmentalization of the piRNA pathway in mouse fetal prospermatogonia. Curr Opin Cell Biol 2010; 22:752-7. [PMID: 20822889 DOI: 10.1016/j.ceb.2010.08.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Accepted: 08/10/2010] [Indexed: 10/19/2022]
Abstract
Epigenetic reprogramming of embryonic mouse germ cells involves DNA demethylation of the genome that is accompanied by derepression of transposable elements (TEs). Threatening the genome's integrity, TE activation is efficiently countered by the concerted action of de novo DNA methylation and PIWI-interacting small RNAs (piRNAs). Recent studies have closely examined the subcellular localization of various piRNA pathway proteins in fetal prospermatogonia of wild-type and piRNA pathway mutant mice. Our survey highlights hierarchies and partnerships between the members of this ancient defensive mechanism. Overall, the elaborate cytoplasmic compartmentalization of the piRNA pathway in fetal prospermatogonia provides a highly informative context to aid our understanding of the mouse piRNA pathway.
Collapse
|
107
|
Liao Z, Jia Q, Li F, Han Z. Identification of two piwi genes and their expression profile in honeybee, Apis mellifera. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2010; 74:91-102. [PMID: 20513057 DOI: 10.1002/arch.20362] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Piwi genes play an important role in regulating spermatogenesis and oogenesis because they participate in the biogenesis of piRNAs, a new class of noncoding RNAs. However, these genes are not well understood in most insects. To understand the function of piwi genes in honeybee reproduction, we amplified two full-length piwi-like genes, Am-aub and Am-ago3. Both the cloned Am-aub and Am-ago3 genes contained typical PAZ and PIWI domains and active catalytic motifs "Asp-Asp-Asp/His/Glu/Lys," suggesting that the two piwi-like genes possessed slicer activity. We examined the expression levels of Am-aub and Am-ago3 in workers, queens, drones, and female larvae by quantitative PCR. Am-aub was more abundant than Am-ago3 in all the tested samples. Both Am-aub and Am-ago3 were highly expressed in drones but not in workers and queens. The significant finding was that the larval food stream influenced the expression of Piwi genes in adult honeybees. This helps to understand the nutritional control of reproductive status in honeybees at the molecular level.
Collapse
Affiliation(s)
- Zhen Liao
- Department of Entomology, Nanjing Agricultural University/Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, Nanjing, China
| | | | | | | |
Collapse
|
108
|
Lau NC. Small RNAs in the animal gonad: guarding genomes and guiding development. Int J Biochem Cell Biol 2010; 42:1334-47. [PMID: 20227517 DOI: 10.1016/j.biocel.2010.03.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Accepted: 03/08/2010] [Indexed: 10/19/2022]
Abstract
Germ cells must safeguard, apportion, package, and deliver their genomes with exquisite precision to ensure proper reproduction and embryonic development. Classical genetic approaches have identified many genes controlling animal germ cell development, but only recently have some of these genes been linked to the RNA interference (RNAi) pathway, a gene silencing mechanism centered on small regulatory RNAs. Germ cells contain microRNAs (miRNAs), endogenous siRNAs (endo-siRNAs), and Piwi-interacting RNAs (piRNAs); these are bound by members of the Piwi/Argonaute protein family. piwi genes were known to specify germ cell development, but we now understand that mutations disrupting germline development can also affect small RNA accumulation. Small RNA studies in germ cells have revealed a surprising diversity of regulatory mechanisms and a unifying function for germline genes in controlling the spread of transposable elements. Future challenges will be to understand the production of germline small RNAs and to identify the full breadth of gene regulation by these RNAs. Progress in this area will likely impact biomedical goals of manipulating stem cells and preventing diseases caused by the transposition of mobile DNA elements.
Collapse
Affiliation(s)
- Nelson C Lau
- Department of Biology, Brandeis University, 415 South Street, Waltham, MA 02454, USA.
| |
Collapse
|
109
|
The telomere-specific non-LTR retrotransposons SART1 and TRAS1 are suppressed by Piwi subfamily proteins in the silkworm, Bombyx mori. Cell Mol Biol Lett 2009; 15:118-33. [PMID: 19943120 PMCID: PMC6275988 DOI: 10.2478/s11658-009-0038-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Accepted: 11/24/2009] [Indexed: 01/22/2023] Open
Abstract
The telomere structures in Bombyx mori are thought to be maintained mainly by the transposition of the specialized telomeric retroelements SART and TRAS. The silkworm genome has telomeric TTAGG repeats and telomerase, but this telomerase displays little or no activity. Here, we report that the transcription of the telomeric retroelements SART1 and TRAS1 is suppressed by the silkworm Piwi subfamily proteins BmAgo3 and Siwi. The silkworm Piwi subfamily was found to be expressed predominantly in the gonads and early embryo, as in other model organisms, but in BmN4 cultured cells, these proteins formed granules that were separate from the nuage, which is a different behaviour pattern. The expression of TRAS1 was increased in BmN4 cells when BmAgo3 or Siwi were silenced by RNAi. Our results suggest that B. mori Piwi proteins are involved in regulating the transposition of telomeric retroelements, and that the functional piRNA pathway is conserved in BmN4 cultured cells.
Collapse
|
110
|
Lau NC, Robine N, Martin R, Chung WJ, Niki Y, Berezikov E, Lai EC. Abundant primary piRNAs, endo-siRNAs, and microRNAs in a Drosophila ovary cell line. Genome Res 2009; 19:1776-85. [PMID: 19541914 DOI: 10.1101/gr.094896.109] [Citation(s) in RCA: 154] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Piwi proteins, a subclass of Argonaute-family proteins, carry approximately 24-30-nt Piwi-interacting RNAs (piRNAs) that mediate gonadal defense against transposable elements (TEs). We analyzed the Drosophila ovary somatic sheet (OSS) cell line and found that it expresses miRNAs, endogenous small interfering RNAs (endo-siRNAs), and piRNAs in abundance. In contrast to intact gonads, which contain mixtures of germline and somatic cell types that express different Piwi-class proteins, OSS cells are a homogenous somatic cell population that expresses only PIWI and primary piRNAs. Detailed examination of its TE-derived piRNAs and endo-siRNAs revealed aspects of TE defense that do not rely upon ping-pong amplification. In particular, we provide evidence that a subset of piRNA master clusters, including flamenco, are specifically expressed in OSS and ovarian follicle cells. These data indicate that the restriction of certain TEs in somatic gonadal cells is largely mediated by a primary piRNA pathway.
Collapse
Affiliation(s)
- Nelson C Lau
- Department of Molecular Biology, Massachusetts General Hospital, Boston, 02114, USA.
| | | | | | | | | | | | | |
Collapse
|