101
|
Mrass P, Takano H, Ng LG, Daxini S, Lasaro MO, Iparraguirre A, Cavanagh LL, von Andrian UH, Ertl HCJ, Haydon PG, Weninger W. Random migration precedes stable target cell interactions of tumor-infiltrating T cells. ACTA ACUST UNITED AC 2006; 203:2749-61. [PMID: 17116735 PMCID: PMC2118164 DOI: 10.1084/jem.20060710] [Citation(s) in RCA: 181] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The tumor microenvironment is composed of an intricate mixture of tumor and host-derived cells that engage in a continuous interplay. T cells are particularly important in this context as they may recognize tumor-associated antigens and induce tumor regression. However, the precise identity of cells targeted by tumor-infiltrating T lymphocytes (TILs) as well as the kinetics and anatomy of TIL-target cell interactions within tumors are incompletely understood. Furthermore, the spatiotemporal conditions of TIL locomotion through the tumor stroma, as a prerequisite for establishing contact with target cells, have not been analyzed. These shortcomings limit the rational design of immunotherapeutic strategies that aim to overcome tumor-immune evasion. We have used two-photon microscopy to determine, in a dynamic manner, the requirements leading to tumor regression by TILs. Key observations were that TILs migrated randomly throughout the tumor microenvironment and that, in the absence of cognate antigen, they were incapable of sustaining active migration. Furthermore, TILs in regressing tumors formed long-lasting (≥30 min), cognate antigen–dependent contacts with tumor cells. Finally, TILs physically interacted with macrophages, suggesting tumor antigen cross-presentation by these cells. Our results demonstrate that recognition of cognate antigen within tumors is a critical determinant of optimal TIL migration and target cell interactions, and argue against TIL guidance by long-range chemokine gradients.
Collapse
Affiliation(s)
- Paulus Mrass
- Immunology Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
102
|
Misslitz A, Bernhardt G, Förster R. Trafficking on serpentines: molecular insight on how maturating T cells find their winding paths in the thymus. Immunol Rev 2006; 209:115-28. [PMID: 16448538 DOI: 10.1111/j.0105-2896.2006.00351.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Maintenance of the peripheral T-cell pool throughout the life requires uninterrupted generation of T cells. The majority of peripheral T cells are generated in the thymus. However, the thymus does not contain hematopoietic progenitors with unlimited self-renewing potential, and continuous production of T cells requires importation of such progenitors from the bone marrow into the thymus. Thymus-homing progenitors enter the thymus and subsequently migrate throughout distinct intrathymic microenvironments while differentiating into mature T cells. At each step of this scheduled journey, developing thymocytes interact intimately with the local stroma, which allow them to proceed to the next stage of their differentiation and maturation program. Undoubtedly, thymocyte/stroma interactions are instrumental for both thymocytes and stroma, because only their ongoing interplay generates and maintains a fully operational thymus, able to guarantee unimpaired T-cell supply. Therefore, proper T-cell generation intrinsically involves polarized cell migration during both adult life and embryogenesis when the thymus primordium develops into a functional thymus. The molecular mechanisms controlling cell migration during thymus development and postnatal T-cell differentiation are beginning to be defined. This review focuses on recent data regarding the role of cell migration in both colonization of the fetal thymus and T-cell development during postnatal life in mice.
Collapse
Affiliation(s)
- Ana Misslitz
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | | | | |
Collapse
|
103
|
Germain RN, Miller MJ, Dustin ML, Nussenzweig MC. Dynamic imaging of the immune system: progress, pitfalls and promise. Nat Rev Immunol 2006; 6:497-507. [PMID: 16799470 DOI: 10.1038/nri1884] [Citation(s) in RCA: 210] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Both innate and adaptive immunity are dependent on the migratory capacity of myeloid and lymphoid cells. Effector cells of the innate immune system rapidly enter infected tissues, whereas sentinel dendritic cells in these sites mobilize and transit to lymph nodes. In these and other secondary lymphoid tissues, interactions among various cell types promote adaptive humoral and cell-mediated immune responses. Recent advances in light microscopy have allowed direct visualization of these events in living animals and tissue explants, which allows a new appreciation of the dynamics of immune-cell behaviour. In this article, we review the basic techniques and the tools used for in situ imaging, as well as the limitations and potential artefacts of these methods.
Collapse
Affiliation(s)
- Ronald N Germain
- Lymphocyte Biology Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | |
Collapse
|
104
|
Abstract
Recent elucidation of the role of central tolerance in preventing organ-specific autoimmunity has changed our concepts of self/nonself discrimination. This paradigmatic shift is largely attributable to the discovery of promiscuous expression of tissue-restricted self-antigens (TRAs) by medullary thymic epithelial cells (mTECs). TRA expression in mTECs mirrors virtually all tissues of the body, irrespective of developmental or spatio-temporal expression patterns. This review summarizes current knowledge on the cellular and molecular regulation of TRA expression in mTECs, outlines relevant mechanisms of antigen presentation and modes of tolerance induction, and discusses implications for the pathogenesis of autoimmune diseases and other biological processes such as fertility, pregnancy, puberty, and tumor defense.
Collapse
Affiliation(s)
- Bruno Kyewski
- Division of Developmental Immunology, Tumor Immunology Program, German Cancer Research Center, 69120 Heidelberg, Germany.
| | | |
Collapse
|
105
|
Breart B, Bousso P. Cellular orchestration of T cell priming in lymph nodes. Curr Opin Immunol 2006; 18:483-90. [PMID: 16765578 DOI: 10.1016/j.coi.2006.05.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2006] [Accepted: 05/30/2006] [Indexed: 10/24/2022]
Abstract
Progress made in visualizing T cell responses in vivo and at the single cell level has revealed an unexpected level of complexity in the orchestration of T cell activation in lymph nodes. The choreography that leads to the initiation of a T cell response involves multiple cellular actors, and is intrinsically influenced by their motility and their mode of cell-cell interactions. Recent studies have begun to depict the cellular orchestration of T cell priming and to analyze the way it could influence the outcome of T cell responses.
Collapse
Affiliation(s)
- Béatrice Breart
- G5 Dynamiques des Réponses Immunes, Equipe Avenir, Inserm U668, Institut Pasteur, Paris, France
| | | |
Collapse
|
106
|
Cahalan MD, Parker I. Imaging the choreography of lymphocyte trafficking and the immune response. Curr Opin Immunol 2006; 18:476-82. [PMID: 16765574 PMCID: PMC2749663 DOI: 10.1016/j.coi.2006.05.013] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2006] [Accepted: 05/31/2006] [Indexed: 12/20/2022]
Abstract
The functioning of the immune system depends upon exquisitely choreographed interactions between its cellular constituents. Two-photon microscopy now enables us to visualize cell motility and cell-cell interactions deep within intact tissues and organs, both in explanted preparations and in vivo. Real-time immunoimaging techniques have illuminated the roles of random and chemokine-driven motility for cellular search strategies, the complex dynamics of cellular interactions, and the micro-anatomical localization and control of lymphocyte trafficking. Recently, advances have been made in these areas of research, as exemplified by studies investigating T cell-dendritic cell interactions, T cell-B cell interactions, and the regulation of lymphocyte egress from the lymph node.
Collapse
Affiliation(s)
- Michael D Cahalan
- Department of Physiology & Biophysics and Neurobiology & Behavior, University of California, Irvine, 92697, USA
| | | |
Collapse
|
107
|
Diaspro A, Bianchini P, Vicidomini G, Faretta M, Ramoino P, Usai C. Multi-photon excitation microscopy. Biomed Eng Online 2006; 5:36. [PMID: 16756664 PMCID: PMC1550243 DOI: 10.1186/1475-925x-5-36] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2006] [Accepted: 06/06/2006] [Indexed: 11/30/2022] Open
Abstract
Multi-photon excitation (MPE) microscopy plays a growing role among microscopical techniques utilized for studying biological matter. In conjunction with confocal microscopy it can be considered the imaging workhorse of life science laboratories. Its roots can be found in a fundamental work written by Maria Goeppert Mayer more than 70 years ago. Nowadays, 2PE and MPE microscopes are expected to increase their impact in areas such biotechnology, neurobiology, embryology, tissue engineering, materials science where imaging can be coupled to the possibility of using the microscopes in an active way, too. As well, 2PE implementations in noninvasive optical bioscopy or laser-based treatments point out to the relevance in clinical applications. Here we report about some basic aspects related to the phenomenon, implications in three-dimensional imaging microscopy, practical aspects related to design and realization of MPE microscopes, and we only give a list of potential applications and variations on the theme in order to offer a starting point for advancing new applications and developments.
Collapse
Affiliation(s)
- Alberto Diaspro
- LAMBS-MicroScoBio Research Center, Department of Physics, University of Genoa, Via Dodecaneso 33, 16146 Genova, Italy
- IFOM The FIRC Institute for Molecular Oncology Foundation, Via Adamello, 16, 20139 Milan, Italy
- CNR- National Research Council, Institute of Biophysics, Via De Marini, 6, 16149 Genova, Italy
| | - Paolo Bianchini
- LAMBS-MicroScoBio Research Center, Department of Physics, University of Genoa, Via Dodecaneso 33, 16146 Genova, Italy
| | - Giuseppe Vicidomini
- LAMBS-MicroScoBio Research Center, Department of Physics, University of Genoa, Via Dodecaneso 33, 16146 Genova, Italy
| | - Mario Faretta
- IFOM-IEO Consortium for Oncogenomics European Institute of Oncology, via Ripamonti 435, 20141 Milan, Italy
| | - Paola Ramoino
- DIPTERIS – Department for the Study of the Territory and its Resources, University of Genoa, Corso Europa 26, 16132 Genova, Italy
| | - Cesare Usai
- CNR- National Research Council, Institute of Biophysics, Via De Marini, 6, 16149 Genova, Italy
| |
Collapse
|
108
|
Abstract
This series of reviews examines the effect of differing tissue environments on the activity and functional capacity of cells in the immune system. From their origins as hematopoietic stem cells, throughout their development and as mature cells, cells of the immune system find themselves in distinct and highly specialized niches, and contact with antigen or inflammatory signals changes their phenotype, activity and trafficking. Two-photon microscopy has provided the first direct observations of living cells and their activation choreography in the tissue environment and will no doubt continue to provide greater understanding of cellular dynamics and immune function.
Collapse
Affiliation(s)
- Michael D Cahalan
- Department of Physiology and Biophysics, University of California, Irvine, California 92697, USA.
| | | |
Collapse
|
109
|
Castellino F, Huang AY, Altan-Bonnet G, Stoll S, Scheinecker C, Germain RN. Chemokines enhance immunity by guiding naive CD8+ T cells to sites of CD4+ T cell-dendritic cell interaction. Nature 2006; 440:890-5. [PMID: 16612374 DOI: 10.1038/nature04651] [Citation(s) in RCA: 651] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2005] [Accepted: 02/15/2006] [Indexed: 01/19/2023]
Abstract
CD8+ T cells have a crucial role in resistance to pathogens and can kill malignant cells; however, some critical functions of these lymphocytes depend on helper activity provided by a distinct population of CD4+ T cells. Cooperation between these lymphocyte subsets involves recognition of antigens co-presented by the same dendritic cell, but the frequencies of such antigen-bearing cells early in an infection and of the relevant naive T cells are both low. This suggests that an active mechanism facilitates the necessary cell-cell associations. Here we demonstrate that after immunization but before antigen recognition, naive CD8+ T cells in immunogen-draining lymph nodes upregulate the chemokine receptor CCR5, permitting these cells to be attracted to sites of antigen-specific dendritic cell-CD4+ T cell interaction where the cognate chemokines CCL3 and CCL4 (also known as MIP-1alpha and MIP-1beta) are produced. Interference with this actively guided recruitment markedly reduces the ability of CD4+ T cells to promote memory CD8+ T-cell generation, indicating that an orchestrated series of differentiation events drives nonrandom cell-cell interactions within lymph nodes, optimizing CD8+ T-cell immune responses involving the few antigen-specific precursors present in the naive repertoire.
Collapse
Affiliation(s)
- Flora Castellino
- Lymphocyte Biology Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
110
|
Okada T, Cyster JG. B cell migration and interactions in the early phase of antibody responses. Curr Opin Immunol 2006; 18:278-85. [PMID: 16516453 DOI: 10.1016/j.coi.2006.02.005] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2006] [Accepted: 02/17/2006] [Indexed: 11/24/2022]
Abstract
In the early phase of thymus-dependent antibody responses antigen-engaged B cells rapidly change their localization within the secondary lymphoid organs to access helper T cells. Central to this process is the tightly controlled distribution of chemokines, sphingosine-1-phosphate and other guidance cues within the lymphoid organ, determined in part by the stromal cells, and the changing responsiveness of activated lymphocytes to these cues. Studies that use the emerging technique of real-time two-photon imaging of intact lymphoid organs began to dissect the dynamics of B cell migration before and after antigen engagement in vivo. Recent studies also provided new insight into antigen transport mechanisms in lymphoid organs and examined signaling requirements for B lymphocyte positioning and motility. Taken together, these studies have provided a more detailed map of the steps involved in B cell migration to encounter antigen and helper T cells early during the adaptive immune response.
Collapse
Affiliation(s)
- Takaharu Okada
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94143-0414, USA.
| | | |
Collapse
|
111
|
Weerkamp F, Pike-Overzet K, Staal FJT. T-sing progenitors to commit. Trends Immunol 2006; 27:125-31. [PMID: 16473042 DOI: 10.1016/j.it.2006.01.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2005] [Revised: 12/22/2005] [Accepted: 01/19/2006] [Indexed: 01/04/2023]
Abstract
T-cell development in the thymus is a complex and highly regulated process. During the process of differentiation from multipotent progenitor cells to mature T cells, proliferation, restriction of lineage potential, TCR gene rearrangements and selection events occur, all accompanied by changes in gene expression. A comprehensive understanding of thymocyte differentiation remains to be established. Two related, key issues have received much attention recently: the nature of the thymus seeding cell and the regulation of T-cell lineage commitment. Here we review the perspectives of different researchers working both on murine and human T-cell development and argue that a true T-cell commitment factor might not be required because of the unique properties of the thymus.
Collapse
Affiliation(s)
- Floor Weerkamp
- Department of Immunology, Erasmus Medical Center, Dr. Molewaterplein 50, 3015 GE Rotterdam, The Netherlands
| | | | | |
Collapse
|
112
|
Yin X, Chtanova T, Ladi E, Robey EA. Thymocyte motility: mutants, movies and migration patterns. Curr Opin Immunol 2006; 18:191-7. [PMID: 16480858 DOI: 10.1016/j.coi.2006.02.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2005] [Accepted: 02/01/2006] [Indexed: 01/12/2023]
Abstract
Developing T cells are highly motile and undergo long-range migrations in the thymus as part of their developmental program. In the past two years, significant advances have been made in understanding the nature of the signals that control the entry of thymocyte progenitors into the thymus and the exit of mature thymocytes from the thymus. Progress has also been made in identifying the chemokine signals that control intrathymic migration patterns. In addition, the recent application of two-photon laser scanning microscopy has made it possible to make real-time observations of thymocytes within the three-dimensional environment of the thymus, and has shed new light on the relationship between positive selection and thymocyte migration.
Collapse
Affiliation(s)
- Xinye Yin
- Division of Immunology, Department of Molecular and Cell Biology, 471 Life Sciences Addition, University of California, Berkeley, CA 94720, USA
| | | | | | | |
Collapse
|
113
|
Takahama Y. Journey through the thymus: stromal guides for T-cell development and selection. Nat Rev Immunol 2006; 6:127-35. [PMID: 16491137 DOI: 10.1038/nri1781] [Citation(s) in RCA: 490] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Lympho-stromal interactions in multiple microenvironments within the thymus have a crucial role in the regulation of T-cell development and selection. Recent studies have implicated that chemokines that are produced by thymic stromal cells have a pivotal role in positioning developing T cells within the thymus. In this Review, I discuss the importance of stroma-derived chemokines in guiding the traffic of developing thymocytes, with an emphasis on the processes of cortex-to-medulla migration and T-cell-repertoire selection, including central tolerance.
Collapse
Affiliation(s)
- Yousuke Takahama
- Division of Experimental Immunology, Institute for Genome Research, University of Tokushima, 3-18-15 Kuramoto, Tokushima 770-8503, Japan.
| |
Collapse
|
114
|
Abstract
The lymph nodes (LNs) harbor a cryptic T-lymphopoietic pathway that is dramatically amplified by oncostatin M (OM). OM-transgenic mice generate massive amounts of T lymphocytes in the absence of Lin(-)c-Kit(hi)IL-7Ralpha- lymphoid progenitors and of reticular epithelial cells. Extrathymic T cells that develop along the OM-dependent LN pathway originate from Lin(-)c-Kit(lo)IL-7Ralpha+ lymphoid progenitors and are different from classic T cells in terms of turnover kinetics and function. Positive selection does not obey the same rules in the thymus and the LNs, where positive selection of developing T cells is supported primarily by epithelial and hematopoietic cells, respectively. Extrathymic T cells undergo enhanced homeostatic proliferation and thereby acquire some properties of memory T cells. Following antigen encounter, extrathymic T-cells initiate proliferation and cytokine secretion more readily than classic T cells, but their accumulation is limited by an exquisite susceptibility to apoptosis. Studies on in vitro and in vivo extrathymic T-cell development have yielded novel insights into the essence of a primary T-lymphoid organ. Furthermore, comparison of the thymic and OM-dependent extrathymic pathways shows how the division of labor between primary and secondary lymphoid organs influences the repertoire and homeostasis of T lymphocytes.
Collapse
Affiliation(s)
- Marie-Eve Blais
- Institute of Research in Immunology and Cancer, University of Montreal, Montreal, Quebec, Canada
| | | | | |
Collapse
|
115
|
Kurobe H, Liu C, Ueno T, Saito F, Ohigashi I, Seach N, Arakaki R, Hayashi Y, Kitagawa T, Lipp M, Boyd RL, Takahama Y. CCR7-Dependent Cortex-to-Medulla Migration of Positively Selected Thymocytes Is Essential for Establishing Central Tolerance. Immunity 2006; 24:165-77. [PMID: 16473829 DOI: 10.1016/j.immuni.2005.12.011] [Citation(s) in RCA: 224] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2005] [Revised: 10/31/2005] [Accepted: 12/27/2005] [Indexed: 01/05/2023]
Abstract
Immature CD4+CD8+ thymocytes, which are generated in the thymic cortex, are induced upon positive selection to differentiate into mature T lymphocytes and relocate to the thymic medulla. It was recently shown that a chemokine signal via CCR7 is essential for the cortex-to-medulla migration of positively selected thymocytes in the thymus. However, the role of the cortex-to-medulla migration in T cell development and selection has remained unclear. The present study shows that the developmental kinetics and the thymic export of mature thymocytes were undisturbed in adult mice lacking CCR7 or its ligands (CCR7L). The inhibition of sphingosine-1-phosphate-mediated lymphocyte egress from the thymus led to the accumulation of mature thymocytes in the cortex of CCR7- or CCR7L-deficient mice, unlike the accumulation in the medulla of normal mice, thereby suggesting that mature thymocytes may be exported directly from the cortex in the absence of CCR7 signals. However, the thymocytes that were generated in the absence of CCR7 or CCR7L were potent in causing autoimmune dacryoadenitis and sialadenitis in mice and were thus incapable of establishing central tolerance to organ-specific antigens. These results indicate that CCR7-mediated cortex-to-medulla migration of thymocytes is essential for establishing central tolerance rather than for supporting the maturation or export of thymocytes.
Collapse
Affiliation(s)
- Hirotsugu Kurobe
- Division of Experimental Immunology, Institute for Genome Research, University of Tokushima, Tokushima 770-8503, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Reichardt P, Gunzer M. The biophysics of T lymphocyte activation in vitro and in vivo. Results Probl Cell Differ 2006; 43:199-218. [PMID: 17068973 DOI: 10.1007/400_021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
T cell activation is crucial for the development of specific immune reactions. It requires physical contact between T cells and antigen-presenting cells (APC). Since these cells are initially located at distinct positions in the body, they have to migrate and find each other within secondary lymphoid organs. After encountering each other both cells have to maintain a close membrane contact sufficiently long to ensure successful signaling. Thus, there is the necessity to temporarily synchronize the motile behavior of these cells. Initially, it had been proposed that during antigen recognition, T cells receive a stop signal and maintain a stable contact with APC for several hours when an appropriate APC has been encountered. However, direct cell observation via time-lapse microscopy in vitro and in vivo has revealed a different picture. While long contacts can be observed, many interactions appear to be very short and sequential despite efficient signaling. Thus, two concepts addressing the biophysics of T cell activation have emerged. The single encounter model proposes that after a period of dynamic searching, a T cell stops to interact with one appropriately presenting APC until signaling is completed. The serial encounter model suggests that T cells are able to collect a series of short signals by different APC until a critical activation threshold is achieved. Future research needs to clarify the relative importance of short and dynamic versus long-lived T cell-APC encounters for the outcome of T cell activation. Furthermore, a thorough understanding of the molecular events underlying the observed complex motility patterns will make these phenomena amenable for intervention, which might result in the identification of new types of immune modulating drugs.
Collapse
Affiliation(s)
- Peter Reichardt
- Junior Research Group of Immunodynamics, German Research Centre for Biotechnology (GBF), Braunschweig, Germany
| | | |
Collapse
|
117
|
|
118
|
Abstract
Intracellular signals arising from interactions of immature thymocytes with distinct populations of stromal cells in the thymus are central to T cell development. The characteristics of these signals and the mechanisms underlying thymocyte migration between stromal cell compartments have been difficult to identify from static measurements of fixed tissue. Recent advances in two-photon microscopy and the development of three-dimensional models for real-time studies of T cell development have shed light on how single cells navigate the thymus. These studies reveal crosstalk between thymocyte signaling and motility that may integrate the search for potentially rare self-antigens with the requirement for sustained signaling in T cell maturation.
Collapse
Affiliation(s)
- Nirav R Bhakta
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Beckman Center Rm B-111A, Stanford CA 94305, USA
| | | |
Collapse
|
119
|
Abstract
Cellular interactions in lymphoid organs initiate the immune response and determine its outcome. Using two-photon microscopy in the lymph node, several groups have begun to investigate the motility characteristics and interactions among T lymphocytes, B lymphocytes, and dendritic cells (DC) in lymphoid organs. In the first "close encounter", T cells of a particular antigen specificity interact with antigen-bearing dendritic cells and begin to activate. Activation of both CD4+ and CD8+ T cells evolves through several stages; from transient interactions to stable clusters and later to dissociation and proliferation of T cells (clonal expansion). The second "close encounter" requires that antigen-engaged B cells become accessible to T cells by directed migration to the edge of the follicle. T cells and B cells then pair up and waltz together for an extended period, while helper T cells provide signals for B cells to differentiate into plasma cells. In this topical review, we compare the activation choreography of CD4+ T cells interacting first with dendritic cells, and then with B cells, during initiation of the humoral immune response.
Collapse
Affiliation(s)
- Michael D Cahalan
- Department of Physiology and Biophysics and Center for Immunology, University of California, Irvine, CA 92697-4561, USA.
| | | |
Collapse
|
120
|
Germain RN, Castellino F, Chieppa M, Egen JG, Huang AYC, Koo LY, Qi H. An extended vision for dynamic high-resolution intravital immune imaging. Semin Immunol 2005; 17:431-41. [PMID: 16216522 PMCID: PMC1462950 DOI: 10.1016/j.smim.2005.09.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The past few years have seen the application of confocal and especially two-photon microscopy to the dynamic high-resolution imaging of lymphocytes and antigen presenting cells within organs such as lymph nodes and thymus. After summarizing some of the published results obtained to date using these methods, we describe our view of how this technology will develop and be applied in the near future. This includes its extension to a wide variety of non-lymphoid tissues, to the tracking of functional responses in addition to migratory behavior, to the analysis of molecular events previously studied only in vitro, to dissection of the interplay between hematopoietic and stromal elements, to visualization of a wider array of cell types including neutrophils, macrophages, NK cells, NKT cells and others, and to the interaction of the host with infectious agents. Reaching these goals will depend on a combination of new tools for genetic manipulations, novel fluorescent reporters, enhanced instrumentation, and better surgical techniques for the extended imaging of live animals. The end result will be a new level of understanding of how orchestrated cell movement and interaction contribute to the physiological and pathological activities of the immune system.
Collapse
Affiliation(s)
- Ronald N Germain
- Lymphocyte Biology Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, DHHS, Bldg. 10 Rm. 11N311, 10 Center Dr. MSC-1892 Bethesda, MD 20892, USA.
| | | | | | | | | | | | | |
Collapse
|
121
|
Abstract
The dynamic process of thymocyte migration can now be visualized in real-time and in the context of the native thymic environment. With improved computational resources, key information can be extracted from real-time imaging data and the migratory behaviors of developing thymocytes can be quantitated. The extraction and exploitation of three dimensional data through time is providing new insight into the nature and regulation of intrathymic migration. In this review we discuss this interdisciplinary approach and the promise it holds for the study of thymocyte migration in situ.
Collapse
Affiliation(s)
- Colleen M Witt
- Division of Immunology, Department of Molecular and Cell Biology, 479 Life Sciences Addition, University of California, Berkeley, CA 94720, USA.
| | | |
Collapse
|
122
|
Anderson MS, Venanzi ES, Chen Z, Berzins SP, Benoist C, Mathis D. The cellular mechanism of Aire control of T cell tolerance. Immunity 2005; 23:227-39. [PMID: 16111640 DOI: 10.1016/j.immuni.2005.07.005] [Citation(s) in RCA: 462] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2004] [Revised: 06/10/2005] [Accepted: 07/13/2005] [Indexed: 01/30/2023]
Abstract
Aire promotes the tolerization of thymocytes by inducing the expression of a battery of peripheral-tissue antigens in thymic medullary epithelial cells. We demonstrate that the cellular mechanism by which Aire exerts its tolerance-promoting function is not primarily positive selection of regulatory T cells, but rather negative selection of T effector cells. Surprisingly, supplementing its influence on the transcription of genes encoding peripheral-tissue antigens, Aire somehow enhances the antigen-presentation capability of medullary epithelial cells. Thus, this transcriptional control element promotes central tolerance both by furnishing a specific thymic stromal cell type with a repertoire of self antigens and by better arming such cells to present these antigens to differentiating thymocytes. In Aire's absence, autoimmunity and ultimately overt autoimmune disease develops.
Collapse
Affiliation(s)
- Mark S Anderson
- Section on Immunology and Immunogenetics, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | | | |
Collapse
|
123
|
Abstract
What are the technical underpinnings of two-photon microscopy? What are the advantages of using two-photon microscopy versus conventional confocal microscopy?
Collapse
Affiliation(s)
- David W Piston
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
| |
Collapse
|
124
|
Witt C, Raychaudhuri S, Chakraborty AK. Movies, measurement, and modeling: the three Ms of mechanistic immunology. ACTA ACUST UNITED AC 2005; 201:501-4. [PMID: 15728232 PMCID: PMC2213049 DOI: 10.1084/jem.20050197] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Immunological phenomena that were once deduced from genetic, biochemical, and in situ approaches are now being witnessed in living color, in three dimensions, and in real time. The information in time-lapse imaging can provide valuable mechanistic insight into a host of processes, from cell migration to signal transduction. What we need now are methods to quantitate these new visual data and to exploit computational resources and statistical mechanical methods to develop mechanistic models.
Collapse
Affiliation(s)
- Colleen Witt
- University of California, Berkeley, CA 94720, USA
| | | | | |
Collapse
|