101
|
Progress and Challenges: Development and Implementation of CRISPR/Cas9 Technology in Filamentous Fungi. Comput Struct Biotechnol J 2019; 17:761-769. [PMID: 31312414 PMCID: PMC6607083 DOI: 10.1016/j.csbj.2019.06.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 06/09/2019] [Accepted: 06/11/2019] [Indexed: 12/13/2022] Open
Abstract
Widely distributed in various environmental niches, filamentous fungi play an important role in industry, drug development, and plant/animal health. Manipulation of the genome and the coding sequences are essential for a better understanding of the function of genes and their regulation, but traditional genetic approaches in some filamentous fungi are either inefficient or nonfunctional. The rapid development and wide implementation of CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats /(CRISPR)-associated protein-9 nuclease) technology for various model and non-model organisms has provided the initial framework to adapt this gene editing technology for filamentous fungi. In this review, an overview of the CRISPR/Cas9 tools and strategies that have been developed for different filamentous fungi is presented, including integration of the CAS9 gene into the genome, transient expression of Cas9/sgRNA, the AMA1-based plasmid approach, and the Cas9 RNP method. The various applications of CRISPR/Cas9 technology in filamentous fungi that have been implemented are explored, with particular emphasis on gene disruption/deletion and precise genome modification through gene tagging and alteration in gene regulation. Potential challenges that are confronted when developing a CRISPR/Cas9 system for filamentous fungi are also discussed such as the nuclear localization sequence for the CAS9 gene, potential off-target effects, and highly efficient transformation methods. Overcoming these obstacles may further facilitate wide application of this technology. As a simple, economical, and powerful tool, CRISPR/Cas9 systems have the potential for future implementation into many molecular aspects of filamentous fungi.
Collapse
|
102
|
Lecointe K, Cornu M, Leroy J, Coulon P, Sendid B. Polysaccharides Cell Wall Architecture of Mucorales. Front Microbiol 2019; 10:469. [PMID: 30941108 PMCID: PMC6433966 DOI: 10.3389/fmicb.2019.00469] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 02/22/2019] [Indexed: 11/18/2022] Open
Abstract
Invasive fungal infections are some of the most life-threatening infectious diseases in the hospital setting. In industrialized countries, the most common fungal species isolated from immunocompromised patients are Candida and Aspergillus spp. However, the number of infections due to Mucorales spp. is constantly increasing and little is known about the virulence factors of these fungi. The fungal cell wall is an important structure protecting fungi from the environment. A better knowledge of its composition should improve our understanding of host-pathogen interactions. Cell wall molecules are involved in tissue adherence, immune escape strategies, and stimulation of host defenses including phagocytosis and mediators of humoral immunity. The fungal cell wall is also a target of choice for the development of diagnostic or therapeutic tools. The present review discusses our current knowledge on the cell wall structure of Mucorales in terms of the polysaccharides and glyco-enzymes involved in its biosynthesis and degradation, with an emphasis on the missing gaps in our knowledge.
Collapse
Affiliation(s)
- Karine Lecointe
- Lille Inflammation Research International Center, UMR 995 Inserm, Fungal Associated Invasive and Inflammatory Diseases, CHU Lille, Lille University, Lille, France.,Laboratory of Parasitology and Mycology, Institute of Microbiology, CHU Lille, Lille, France
| | - Marjorie Cornu
- Lille Inflammation Research International Center, UMR 995 Inserm, Fungal Associated Invasive and Inflammatory Diseases, CHU Lille, Lille University, Lille, France.,Laboratory of Parasitology and Mycology, Institute of Microbiology, CHU Lille, Lille, France
| | - Jordan Leroy
- Lille Inflammation Research International Center, UMR 995 Inserm, Fungal Associated Invasive and Inflammatory Diseases, CHU Lille, Lille University, Lille, France.,Laboratory of Parasitology and Mycology, Institute of Microbiology, CHU Lille, Lille, France
| | - Pauline Coulon
- Lille Inflammation Research International Center, UMR 995 Inserm, Fungal Associated Invasive and Inflammatory Diseases, CHU Lille, Lille University, Lille, France.,Laboratory of Parasitology and Mycology, Institute of Microbiology, CHU Lille, Lille, France
| | - Boualem Sendid
- Lille Inflammation Research International Center, UMR 995 Inserm, Fungal Associated Invasive and Inflammatory Diseases, CHU Lille, Lille University, Lille, France.,Laboratory of Parasitology and Mycology, Institute of Microbiology, CHU Lille, Lille, France
| |
Collapse
|
103
|
Bruni GO, Zhong K, Lee SC, Wang P. CRISPR-Cas9 induces point mutation in the mucormycosis fungus Rhizopus delemar. Fungal Genet Biol 2019; 124:1-7. [PMID: 30562583 PMCID: PMC6784326 DOI: 10.1016/j.fgb.2018.12.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 12/04/2018] [Accepted: 12/05/2018] [Indexed: 12/31/2022]
Abstract
Rhizopus delemar causes devastating mucormycosis in immunodeficient individuals. Despite its medical importance, R. delemar remains understudied largely due to the lack of available genetic markers, the presence of multiple gene copies due to genome duplication, and mitotically unstable transformants resulting from conventional and limited genetic approaches. The clustered regularly interspaced short palindromic repeat (CRISPR)-associated nuclease 9 (Cas9) system induces efficient homologous and non-homologous break points and generates individual and multiple mutant alleles without requiring selective marker genes in a wide variety of organisms including fungi. Here, we have successfully adapted this technology for inducing gene-specific single nucleotide (nt) deletions in two clinical strains of R. delemar: FGSC-9543 and CDC-8219. For comparative reasons, we first screened for spontaneous uracil auxotrophic mutants resistant to 5-fluoroorotic acid (5-FOA) and obtained one substitution (f1) mutationin the FGSC-9543 strain and one deletion (f2) mutation in the CDC-8219 strain. The f2 mutant was then successfully complemented with a pyrF-dpl200 marker gene. We then introduced a vector pmCas9:tRNA-gRNA that expresses both Cas9 endonuclease and pyrF-specific gRNA into FGSC-9543 and CDC-8219 strains and obtained 34 and 42 5-FOA resistant isolates, respectively. Candidate transformants were successively transferred eight times by propagating hyphal tips prior to genotype characterization. Sequencing of the amplified pyrF allele in all transformants tested revealed a single nucleotide (nt) deletion at the 4th nucleotide before the protospacer adjacent motif (PAM) sequence, which is consistent with CRISPR-Cas9 induced gene mutation through non-homologous end joining (NHEJ). Our study provides a new research tool for investigating molecular pathogenesis mechanisms of R. delemar while also highlighting the utilization of CRISPR-Cas9 technology for generating specific mutants of Mucorales fungi.
Collapse
Affiliation(s)
- Gillian O Bruni
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Keili Zhong
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Soo Chan Lee
- South Texas Center for Emerging Infectious Diseases (STCEID), Department of Biology, University of Texas at San Antonio, San Antonio, TX, USA
| | - Ping Wang
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, USA; Department of Pediatrics, Louisiana State University Health Sciences Center, New Orleans, LA, USA.
| |
Collapse
|
104
|
Menon RR, Luo J, Chen X, Zhou H, Liu Z, Zhou G, Zhang N, Jin C. Screening of Fungi for Potential Application of Self-Healing Concrete. Sci Rep 2019; 9:2075. [PMID: 30765831 PMCID: PMC6375922 DOI: 10.1038/s41598-019-39156-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 01/18/2019] [Indexed: 02/03/2023] Open
Abstract
Concrete is susceptible to cracking owing to drying shrinkage, freeze-thaw cycles, delayed ettringite formation, reinforcement corrosion, creep and fatigue, etc. Continuous inspection and maintenance of concrete infrastructure require onerous labor and high costs. If the damaging cracks can heal by themselves without any human interference or intervention, that could be of great attraction. In this study, a novel self-healing approach is investigated, in which fungi are applied to heal cracks in concrete by promoting calcium carbonate precipitation. The goal of this investigation is to discover the most appropriate species of fungi for the application of biogenic crack repair. Our results showed that, despite the significant pH increase owing to the leaching of calcium hydroxide from concrete, Aspergillus nidulans (MAD1445), a pH regulatory mutant, could grow on concrete plates and promote calcium carbonate precipitation.
Collapse
Affiliation(s)
- Rakenth R Menon
- Department of Mechanical Engineering, Binghamton University, Binghamton, NY, 13902, USA
| | - Jing Luo
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Xiaobo Chen
- Materials Science and Engineering Program, Binghamton University, Binghamton, NY, 13902, USA
| | - Hui Zhou
- Materials Science and Engineering Program, Binghamton University, Binghamton, NY, 13902, USA
| | - Zhiyong Liu
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Guangwen Zhou
- Department of Mechanical Engineering, Binghamton University, Binghamton, NY, 13902, USA.,Materials Science and Engineering Program, Binghamton University, Binghamton, NY, 13902, USA
| | - Ning Zhang
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, 08901, USA. .,Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, 08901, USA.
| | - Congrui Jin
- Department of Mechanical Engineering, Binghamton University, Binghamton, NY, 13902, USA. .,Materials Science and Engineering Program, Binghamton University, Binghamton, NY, 13902, USA.
| |
Collapse
|
105
|
|
106
|
Wang Q, Liu H, Xu H, Hei R, Zhang S, Jiang C, Xu JR. Independent losses and duplications of autophagy-related genes in fungal tree of life. Environ Microbiol 2018; 21:226-243. [DOI: 10.1111/1462-2920.14451] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 10/16/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Qinhu Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection; Northwest A&F University; Yangling Shaanxi 712100 China
| | - Huiquan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection; Northwest A&F University; Yangling Shaanxi 712100 China
| | - Huaijian Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection; Northwest A&F University; Yangling Shaanxi 712100 China
| | - Ruonan Hei
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection; Northwest A&F University; Yangling Shaanxi 712100 China
| | - Shijie Zhang
- School of Life Sciences; Zhengzhou University; Zhengzhou Henan 450001 China
| | - Cong Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection; Northwest A&F University; Yangling Shaanxi 712100 China
| | - Jin-Rong Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection; Northwest A&F University; Yangling Shaanxi 712100 China
- Department of Botany and Plant Pathology; Purdue University; West Lafayette IN 47907 USA
| |
Collapse
|
107
|
Dong Y, Sun Q, Zhang Y, Wang X, Liu P, Xiao Y, Fang Z. Complete genome of Gongronella sp. w5 provides insight into its relationship with plant. J Biotechnol 2018; 286:1-4. [DOI: 10.1016/j.jbiotec.2018.08.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 08/30/2018] [Accepted: 08/31/2018] [Indexed: 10/28/2022]
|
108
|
Sephton-Clark PCS, Muñoz JF, Ballou ER, Cuomo CA, Voelz K. Pathways of Pathogenicity: Transcriptional Stages of Germination in the Fatal Fungal Pathogen Rhizopus delemar. mSphere 2018; 3:e00403-18. [PMID: 30258038 PMCID: PMC6158513 DOI: 10.1128/msphere.00403-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 08/22/2018] [Indexed: 12/19/2022] Open
Abstract
Rhizopus delemar is an invasive fungal pathogen responsible for the frequently fatal disease mucormycosis. Germination, a crucial mechanism by which infectious spores of Rhizopus delemar cause disease, is a key developmental process that transforms the dormant spore state into a vegetative one. The molecular mechanisms that underpin this transformation may be key to controlling mucormycosis; however, the regulation of germination remains poorly understood. This study describes the phenotypic and transcriptional changes that take place over the course of germination. This process is characterized by four distinct stages: dormancy, isotropic swelling, germ tube emergence, and hyphal growth. Dormant spores are shown to be transcriptionally unique, expressing a subset of transcripts absent in later developmental stages. A large shift in the expression profile is prompted by the initiation of germination, with genes involved in respiration, chitin, cytoskeleton, and actin regulation appearing to be important for this transition. A period of transcriptional consistency can be seen throughout isotropic swelling, before the transcriptional landscape shifts again at the onset of hyphal growth. This study provides a greater understanding of the regulation of germination and highlights processes involved in transforming Rhizopus delemar from a single-cellular to multicellular organism.IMPORTANCE Germination is key to the growth of many organisms, including fungal spores. Mucormycete spores exist abundantly within the environment and germinate to form hyphae. These spores are capable of infecting immunocompromised individuals, causing the disease mucormycosis. Germination from spore to hyphae within patients leads to angioinvasion, tissue necrosis, and often fatal infections. This study advances our understanding of how spore germination occurs in the mucormycetes, identifying processes we may be able to inhibit to help prevent or treat mucormycosis.
Collapse
Affiliation(s)
- Poppy C S Sephton-Clark
- Institute for Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Jose F Muñoz
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Elizabeth R Ballou
- Institute for Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Christina A Cuomo
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Kerstin Voelz
- Institute for Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
109
|
Wijayawardene NN, Pawłowska J, Letcher PM, Kirk PM, Humber RA, Schüßler A, Wrzosek M, Muszewska A, Okrasińska A, Istel Ł, Gęsiorska A, Mungai P, Lateef AA, Rajeshkumar KC, Singh RV, Radek R, Walther G, Wagner L, Walker C, Wijesundara DSA, Papizadeh M, Dolatabadi S, Shenoy BD, Tokarev YS, Lumyong S, Hyde KD. Notes for genera: basal clades of Fungi (including Aphelidiomycota, Basidiobolomycota, Blastocladiomycota, Calcarisporiellomycota, Caulochytriomycota, Chytridiomycota, Entomophthoromycota, Glomeromycota, Kickxellomycota, Monoblepharomycota, Mortierellomycota, Mucoromycota, Neocallimastigomycota, Olpidiomycota, Rozellomycota and Zoopagomycota). FUNGAL DIVERS 2018. [DOI: 10.1007/s13225-018-0409-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
110
|
|
111
|
Garcia A, Vellanki S, Lee SC. Genetic tools for investigating Mucorales fungal pathogenesis. CURRENT CLINICAL MICROBIOLOGY REPORTS 2018; 5:173-180. [PMID: 30574450 PMCID: PMC6296817 DOI: 10.1007/s40588-018-0097-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Mucormycosis is an emerging opportunistic fungal infection whose causative agents are found within the Mucorales family. A recent increase in immunocompromised cohorts with solid organ transplants, diabetes mellitus, and other medical conditions have resulted in increased fungal infections including mucormycosis. Our current knowledge about Mucoralean fungi is in its infancy compared to other fungal pathogens, which may be due to lack of robust genetic tools for Mucorales. In this review we summarize recent advances in genetic tools to study the two most prevalent and genetically amenable Mucoralean fungi, Mucor circinelloides and Rhizopus delemar. RECENT FINDINGS There have been advances made in the study of Mucorales family genetics. These findings include the construction of recyclable markers to manipulate the genome, as well as silencing vectors, and the adaptation of the CRISPR/Cas9 gene editing system. SUMMARY We present how these genetic methods have been applied to understand basic biology, morphogenesis, pathogenesis, and host-pathogen interactions in the two Mucoralean fungi, M. circinelloides and R. delemar. With these advances in Mucorales the opportunity to further understand the pathogenesis of these organisms is opened.
Collapse
Affiliation(s)
- Alexis Garcia
- South Texas Center for Emerging Infectious Diseases (STCEID), Department of Biology, the University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Sandeep Vellanki
- South Texas Center for Emerging Infectious Diseases (STCEID), Department of Biology, the University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Soo Chan Lee
- South Texas Center for Emerging Infectious Diseases (STCEID), Department of Biology, the University of Texas at San Antonio, San Antonio, TX 78249, USA
| |
Collapse
|
112
|
Hüttner S, Granchi Z, Nguyen TT, van Pelt S, Larsbrink J, Thanh VN, Olsson L. Genome sequence of Rhizomucor pusillus FCH 5.7, a thermophilic zygomycete involved in plant biomass degradation harbouring putative GH9 endoglucanases. ACTA ACUST UNITED AC 2018; 20:e00279. [PMID: 30211016 PMCID: PMC6132078 DOI: 10.1016/j.btre.2018.e00279] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/28/2018] [Accepted: 08/28/2018] [Indexed: 11/12/2022]
Abstract
R. pusillus encodes cellulose-, xylan- and chitin-degrading proteins. Two putative GH9 endoglucanases were identified. Enzyme system of R. pusillus is suited to consume easily accessible sugars. Endoglucanase and xylanase activity detected when the fungus was grown on wheat bran and xylan.
We report here the annotated draft genome sequence of the thermophilic zygomycete Rhizomucor pusillus strain FCH 5.7, isolated from compost soil in Vietnam. The genome assembly contains 25.59 Mb with an overall GC content of 44.95%, and comprises 10,898 protein coding genes. Genes encoding putative cellulose-, xylan- and chitin-degrading proteins were identified, including two putative endoglucanases (EC 3.2.1.4) from glycoside hydrolase family 9, which have so far been mostly assigned to bacteria and plants.
Collapse
Affiliation(s)
- Silvia Hüttner
- Department of Biology and Biological Engineering, Division of Industrial Biotechnology, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden.,Wallenberg Wood Science Center, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Zoraide Granchi
- GenomeScan B.V., Plesmanlaan 1/D, 2333 BZ Leiden, The Netherlands
| | - Thanh Thuy Nguyen
- Centre for Industrial Microbiology, Food Industries Research Institute, Thanh Xuan, Ha Noi, Viet Nam
| | - Sake van Pelt
- GenomeScan B.V., Plesmanlaan 1/D, 2333 BZ Leiden, The Netherlands
| | - Johan Larsbrink
- Department of Biology and Biological Engineering, Division of Industrial Biotechnology, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden.,Wallenberg Wood Science Center, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Vu Nguyen Thanh
- Centre for Industrial Microbiology, Food Industries Research Institute, Thanh Xuan, Ha Noi, Viet Nam
| | - Lisbeth Olsson
- Department of Biology and Biological Engineering, Division of Industrial Biotechnology, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden.,Wallenberg Wood Science Center, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| |
Collapse
|
113
|
Therapy of Mucormycosis. J Fungi (Basel) 2018; 4:jof4030090. [PMID: 30065232 PMCID: PMC6162664 DOI: 10.3390/jof4030090] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 07/28/2018] [Accepted: 07/30/2018] [Indexed: 12/18/2022] Open
Abstract
Despite the recent introduction of mold-active agents (posaconazole and isavuconazole), in addition to amphotericin B products, to our armamentarium against mucormycosis, many uncertainties remain for the management of this uncommon opportunistic infection, as there are no data from prospective randomized clinical trials to guide therapy. In this mini-review, we present the current status of treatment options. In view of the heterogeneity of the disease (different types of affected hosts, sites of infection, and infecting Mucorales), mucormycosis management requires an individualized management plan that takes into account the net state of immunosuppression of the host, including comorbidities, certainty of diagnosis, site of infection, and antifungal pharmacological properties.
Collapse
|
114
|
Molecular Confirmation of the Linkage between the Rhizopus oryzae CYP51A Gene Coding Region and Its Intrinsic Voriconazole and Fluconazole Resistance. Antimicrob Agents Chemother 2018; 62:AAC.00224-18. [PMID: 29891608 DOI: 10.1128/aac.00224-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 05/11/2018] [Indexed: 12/13/2022] Open
Abstract
Rhizopus oryzae is the most prevalent causative agent of mucormycosis, an increasingly reported opportunistic fungal infection. These Mucorales are intrinsically resistant to Candida- and Aspergillus-active antifungal azole drugs, such as fluconazole (FLC) and voriconazole, respectively. Despite its importance, the molecular mechanisms of its intrinsic azole resistance have not been elucidated yet. The aim of this work was to establish if the Rhizopus oryzaeCYP51 genes are uniquely responsible for intrinsic voriconazole and fluconazole resistance in these fungal pathogens. Two CYP51 genes were identified in the R. oryzae genome. We classified them as CYP51A and CYP51B based on their sequence similarity with other known fungal CYP51 genes. Later, we obtained a chimeric Aspergillus fumigatus strain harboring a functional R. oryzae CYP51A gene expressed under the regulation of the wild-type A. fumigatusCYP51A promoter and terminator. The mutant was selected after transformation by using a novel procedure taking advantage of the FLC hypersusceptibility of the A. fumigatusCYP51A deletion mutant used as the recipient strain. The azole susceptibility patterns of the A. fumigatus transformants harboring R. oryzae CYP51A mimicked exactly the azole susceptibility patterns of this mucormycete. The data presented in this work demonstrate that the R. oryzae CYP51A coding sequence is uniquely responsible for the R. oryzae azole susceptibility patterns.
Collapse
|
115
|
Chang HX, Noel ZA, Sang H, Chilvers MI. Annotation resource of tandem repeat-containing secretory proteins in sixty fungi. Fungal Genet Biol 2018; 119:7-19. [PMID: 30026018 DOI: 10.1016/j.fgb.2018.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 07/06/2018] [Accepted: 07/15/2018] [Indexed: 11/17/2022]
Abstract
Fungal secretory proteins that interact with host plants are regarded as effectors. Because fungal effectors rarely contain conserved sequence features, identification and annotation of fungal effectors from predicted secretory proteins are difficult using outward comparison methods such as BLAST or hidden Markov model. In desire of more sequence features to prioritize research interests of fungal secretory proteins, this study developed a pipeline to identify tandem repeat (TR) domain within putative secretory proteins and tested a hypothesis that at least one type of TR domain in non-orthologous secretory proteins has emerged from convergent evolution for plant pathogenicity. There were 2804 types of TR domains and a total of 2925 TR-containing secretory proteins found from 60 fungi. There was no conserved type of TR domain shared only by plant pathogens, indicating functional divergence for different types of TR domain and TR-containing secretory proteins. The annotation resource of putative fungal TR-containing secretory proteins provides new sequence features that will be useful for the community interested in fungal effector biology.
Collapse
Affiliation(s)
- Hao-Xun Chang
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing 48824, MI, United States
| | - Zachary A Noel
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing 48824, MI, United States
| | - Hyunkyu Sang
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing 48824, MI, United States
| | - Martin I Chilvers
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing 48824, MI, United States.
| |
Collapse
|
116
|
Maeda T, Kobayashi Y, Kameoka H, Okuma N, Takeda N, Yamaguchi K, Bino T, Shigenobu S, Kawaguchi M. Evidence of non-tandemly repeated rDNAs and their intragenomic heterogeneity in Rhizophagus irregularis. Commun Biol 2018; 1:87. [PMID: 30271968 PMCID: PMC6123716 DOI: 10.1038/s42003-018-0094-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 06/12/2018] [Indexed: 01/21/2023] Open
Abstract
Arbuscular mycorrhizal fungus (AMF) species are some of the most widespread symbionts of land plants. Our much improved reference genome assembly of a model AMF, Rhizophagus irregularis DAOM-181602 (total contigs = 210), facilitated a discovery of repetitive elements with unusual characteristics. R. irregularis has only ten or 11 copies of complete 45S rDNAs, whereas the general eukaryotic genome has tens to thousands of rDNA copies. R. irregularis rDNAs are highly heterogeneous and lack a tandem repeat structure. These findings provide evidence for the hypothesis that rDNA heterogeneity depends on the lack of tandem repeat structures. RNA-Seq analysis confirmed that all rDNA variants are actively transcribed. Observed rDNA/rRNA polymorphisms may modulate translation by using different ribosomes depending on biotic and abiotic interactions. The non-tandem repeat structure and intragenomic heterogeneity of AMF rDNA/rRNA may facilitate successful adaptation to various environmental conditions, increasing host compatibility of these symbiotic fungi.
Collapse
Affiliation(s)
- Taro Maeda
- Division of Symbiotic Systems, National Institute for Basic Biology, Myodaiji Nishigonaka, Okazaki, Aichi, 444-8585, Japan
| | - Yuuki Kobayashi
- Division of Symbiotic Systems, National Institute for Basic Biology, Myodaiji Nishigonaka, Okazaki, Aichi, 444-8585, Japan
| | - Hiromu Kameoka
- Division of Symbiotic Systems, National Institute for Basic Biology, Myodaiji Nishigonaka, Okazaki, Aichi, 444-8585, Japan
| | - Nao Okuma
- Division of Symbiotic Systems, National Institute for Basic Biology, Myodaiji Nishigonaka, Okazaki, Aichi, 444-8585, Japan
- The Graduate University for Advanced Studies [SOKENDAI], Hayama, Miura, Kanagawa, 240-0193, Japan
| | - Naoya Takeda
- School of Science and Technology, Kwansei Gakuin University, Gakuen, Mita, Hyogo, 669-1337, Japan
| | - Katsushi Yamaguchi
- Functional Genomics Facility, National Institute for Basic Biology, Myodaiji Nishigonaka, Okazaki, Aichi, 444-8585, Japan
| | - Takahiro Bino
- Functional Genomics Facility, National Institute for Basic Biology, Myodaiji Nishigonaka, Okazaki, Aichi, 444-8585, Japan
| | - Shuji Shigenobu
- The Graduate University for Advanced Studies [SOKENDAI], Hayama, Miura, Kanagawa, 240-0193, Japan.
- Functional Genomics Facility, National Institute for Basic Biology, Myodaiji Nishigonaka, Okazaki, Aichi, 444-8585, Japan.
| | - Masayoshi Kawaguchi
- Division of Symbiotic Systems, National Institute for Basic Biology, Myodaiji Nishigonaka, Okazaki, Aichi, 444-8585, Japan.
- The Graduate University for Advanced Studies [SOKENDAI], Hayama, Miura, Kanagawa, 240-0193, Japan.
| |
Collapse
|
117
|
Abstract
Phylogenomic approaches have the potential to improve confidence about the inter-relationships of species in the order Mucorales within the fungal tree of life. Rhizopus species are especially important as plant and animal pathogens and bioindustrial fermenters for food and metabolite production. A dataset of 192 orthologous genes was used to construct a phylogenetic tree of 21 Rhizopus strains, classified into four species isolated from habitats of industrial, medical and environmental importance. The phylogeny indicates that the genus Rhizopus consists of three major clades, with R. microsporus as the basal species and the sister lineage to R. stolonifer and two closely related species R. arrhizus and R. delemar A comparative analysis of the mating type locus across Rhizopus reveals that its structure is flexible even between different species in the same genus, but shows similarities between Rhizopus and other mucoralean fungi. The topology of single-gene phylogenies built for two genes involved in mating is similar to the phylogenomic tree. Comparison of the total length of the genome assemblies showed that genome size varies by as much as threefold within a species and is driven by changes in transposable element copy numbers and genome duplications.
Collapse
|
118
|
Abstract
Modern genomics has shed light on many entomopathogenic fungi and expanded our knowledge widely; however, little is known about the genomic features of the insect-commensal fungi. Harpellales are obligate commensals living in the digestive tracts of disease-bearing insects (black flies, midges, and mosquitoes). In this study, we produced and annotated whole-genome sequences of nine Harpellales taxa and conducted the first comparative analyses to infer the genomic diversity within the members of the Harpellales. The genomes of the insect gut fungi feature low (26% to 37%) GC content and large genome size variations (25 to 102 Mb). Further comparisons with insect-pathogenic fungi (from both Ascomycota and Zoopagomycota), as well as with free-living relatives (as negative controls), helped to identify a gene toolbox that is essential to the fungus-insect symbiosis. The results not only narrow the genomic scope of fungus-insect interactions from several thousands to eight core players but also distinguish host invasion strategies employed by insect pathogens and commensals. The genomic content suggests that insect commensal fungi rely mostly on adhesion protein anchors that target digestive system, while entomopathogenic fungi have higher numbers of transmembrane helices, signal peptides, and pathogen-host interaction (PHI) genes across the whole genome and enrich genes as well as functional domains to inactivate the host inflammation system and suppress the host defense. Phylogenomic analyses have revealed that genome sizes of Harpellales fungi vary among lineages with an integer-multiple pattern, which implies that ancient genome duplications may have occurred within the gut of insects. Insect guts harbor various microbes that are important for host digestion, immune response, and disease dispersal in certain cases. Bacteria, which are among the primary endosymbionts, have been studied extensively. However, fungi, which are also frequently encountered, are poorly known with respect to their biology within the insect guts. To understand the genomic features and related biology, we produced the whole-genome sequences of nine gut commensal fungi from disease-bearing insects (black flies, midges, and mosquitoes). The results show that insect gut fungi tend to have low GC content across their genomes. By comparing these commensals with entomopathogenic and free-living fungi that have available genome sequences, we found a universal core gene toolbox that is unique and thus potentially important for the insect-fungus symbiosis. This comparative work also uncovered different host invasion strategies employed by insect pathogens and commensals, as well as a model system to study ancient fungal genome duplication within the gut of insects.
Collapse
|
119
|
Genomic evidence for intraspecific hybridization in a clonal and extremely halotolerant yeast. BMC Genomics 2018; 19:364. [PMID: 29764372 PMCID: PMC5952469 DOI: 10.1186/s12864-018-4751-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 05/02/2018] [Indexed: 12/31/2022] Open
Abstract
Background The black yeast Hortaea werneckii (Dothideomycetes, Ascomycota) is one of the most extremely halotolerant fungi, capable of growth at NaCl concentrations close to saturation. Although dothideomycetous fungi are typically haploid, the reference H. werneckii strain has a diploid genome consisting of two subgenomes with a high level of heterozygosity. Results In order to explain the origin of the H. werneckii diploid genome we here report the genome sequencing of eleven strains isolated from different habitats and geographic locations. Comparison of nine diploid and two haploid strains showed that the reference genome was likely formed by hybridization between two haploids and not by endoreduplication as suggested previously. Results also support additional hybridization events in the evolutionary history of investigated strains, however exchange of genetic material in the species otherwise appears to be rare. Possible links between such unusual reproduction and the extremotolerance of H. werneckii remain to be investigated. Conclusions H. werneckii appears to be able to form persistent haploid as well as diploid strains, is capable of occasional hybridization between relatively heterozygous haploids, but is otherwise limited to clonal reproduction. The reported data and the first identification of haploid H. werneckii strains establish this species as a good model for studying the effects of ploidy and hybridization in an extremotolerant system unperturbed by frequent genetic recombination. Electronic supplementary material The online version of this article (10.1186/s12864-018-4751-5) contains supplementary material, which is available to authorized users.
Collapse
|
120
|
Abstract
Ubiquitin ligases (E3s) are basic components of the eukaryotic ubiquitination system. In this work, the emergence and diversification of fungal HECT ubiquitin ligases is described. Phylogenetic and structural data indicate that six HECT subfamilies (RSP5, TOM1, UFD4, HUL4, HUL4A and HUL5) existed in the common ancestor of all fungi. These six subfamilies have evolved very conservatively, with only occasional losses and duplications in particular fungal lineages. However, an early, drastic reduction in the number of HECT genes occurred in microsporidians, in parallel to the reduction of their genomes. A significant correlation between the total number of genes and the number of HECT-encoding genes present in fungi has been observed. However, transitions from unicellularity to multicellularity or vice versa apparently had no effect on the evolution of this family. Likely orthologs or co-orthologs of all fungal HECT genes have been detected in animals. Four genes are deduced to be present in the common ancestor of fungi, animals and plants. Protein-protein interactions detected in both the yeast Saccharomyces cerevisiae and humans suggest that some ancient functions of HECT proteins have been conserved since the animals/fungi split.
Collapse
|
121
|
Petrikkos G, Tsioutis C. Recent Advances in the Pathogenesis of Mucormycoses. Clin Ther 2018; 40:894-902. [PMID: 29631910 DOI: 10.1016/j.clinthera.2018.03.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 02/10/2018] [Accepted: 03/13/2018] [Indexed: 12/12/2022]
Abstract
PURPOSE The purposes of this review are to describe the pathogenesis of mucormycosis and to address recent research advances in understanding the mechanisms of fungal invasion and dissemination. METHODS Studies and reviews published in the PubMed and ClinicalTrials.gov databases until December 2017 that explored or reported recent advances in the understanding of the pathogenesis of mucormycosis were reviewed. FINDINGS To cause disease, fungal spores need to evade the innate immune system and germinate, leading to angioinvasion and tissue destruction. Recent studies have found that Mucorales are able to downregulate several host defense mechanisms and have identified the specific receptors through which Mucorales attach to the endothelium, facilitating their endocytosis and subsequent angioinvasion. In addition, certain conditions found to act through various mechanisms and pathways in experimental and animal studies, such as hyperglycemia, elevated iron concentrations, and acidosis (particularly diabetic ketoacidosis), increase the virulence of the fungi and enhance their attachment to the endothelium, rendering patients with uncontrolled diabetes and patients with iron overload susceptible to mucormycosis. The role and various antifungal functions of platelets and natural killer cells are highlighted, and the potential contribution of alternative therapies, such as manipulating the innate immune host defenses with granulocyte transfusions or administration of growth factors and using the antifungal effects of calcineurin inhibitors, are presented. Finally, directions and possible implications for future research are provided. IMPLICATIONS This article provides a comprehensive overview of research advances in the pathogenesis of infections caused by Mucorales and helps future studies develop effective treatment strategies and improve patient outcomes.
Collapse
Affiliation(s)
- George Petrikkos
- School of Medicine, European University Cyprus, Nicosia, Cyprus; Infectious Diseases Research Laboratory, Fourth Dept of Internal Medicine, University General Hospital Attikon, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| | | |
Collapse
|
122
|
Abstract
The kingdom Fungi comprises species that inhabit nearly all ecosystems. Fungi exist as both free-living and symbiotic unicellular and multicellular organisms with diverse morphologies. The genomes of fungi encode genes that enable them to thrive in diverse environments, invade plant and animal cells, and participate in nutrient cycling in terrestrial and aquatic ecosystems. The continuously expanding databases of fungal genome sequences have been generated by individual and large-scale efforts such as Génolevures, Broad Institute's Fungal Genome Initiative, and the 1000 Fungal Genomes Project (http://1000.fungalgenomes.org). These efforts have produced a catalog of fungal genes and genomic organization. The genomic datasets can be utilized to better understand how fungi have adapted to their lifestyles and ecological niches. Large datasets of fungal genomic and transcriptomic data have enabled the use of novel methodologies and improved the study of fungal evolution from a molecular sequence perspective. Combined with microscopes, petri dishes, and woodland forays, genome sequencing supports bioinformatics and comparative genomics approaches as important tools in the study of the biology and evolution of fungi.
Collapse
|
123
|
Abstract
Newly available genome sequences of two Mucoralean fungi, Phycomyces blakesleeanus and Mucor circinelloides, provide evidence for an ancient whole-genome duplication that contributed to the generation of expanded gene families. These fungi have robust responses to light that can be correlated with the expansion of gene networks involved in light sensing and signaling.
Collapse
Affiliation(s)
- Jason E Stajich
- Department of Plant Pathology & Microbiology and Institute for Integrative Genome Biology, University of California-Riverside, Riverside, CA 92521, USA.
| |
Collapse
|
124
|
Genome mining for peptidases in heat-tolerant and mesophilic fungi and putative adaptations for thermostability. BMC Genomics 2018; 19:152. [PMID: 29463214 PMCID: PMC5819190 DOI: 10.1186/s12864-018-4549-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 02/13/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Peptidases (EC 3.4) consist of a large group of hydrolytic enzymes that catalyze the hydrolysis of proteins accounting for approximately 65% of the total worldwide enzyme production. Peptidases from thermophilic fungi have adaptations to high temperature that makes them adequate for biotechnological application. In the present study, we profiled the genomes of heat-tolerant fungi and phylogenetically related mesophilic species for genes encoding for peptidases and their putative adaptations for thermostability. RESULTS We generated an extensive catalogue of these enzymes ranging from 241 to 820 peptidase genes in the genomes of 23 fungi. Thermophilic species presented the smallest number of peptidases encoding genes in relation to mesophilic species, and the peptidases families with a greater number of genes were the most affected. We observed differences in peptidases in thermophilic species in comparison to mesophilic counterparts, at (i) the genome level: a great reduction in the number of peptidases encoding genes that harbored a higher number of copies; (ii) in the primary protein structure: shifts in proportion of single or groups of amino acids; and (iii) in the three-dimensional structure: reduction in the number of internal cavities. Similar results were reported for extremely thermophilic proteins, but here we show for the first time that several changes also occurred on the moderate thermophilic enzymes of fungi. In regards to the amino acids composition, peptidases from thermophilic species in relation to the mesophilic ones, contained a larger proportion of Ala, Glu, Gly, Pro, Arg and Val residues and a lower number of Cys, His, Ile, Lys, Met, Asn, Gln, Ser, Thr and Trp residues (P < 0.05). Moreover, we observed an increase in the proportion of hydrophobic and charged amino acids and a decrease in polar amino acids. CONCLUSIONS Although thermophilic fungi present less genes encoding for peptidases, these have adaptations that could play a role in thermal resistance from genome to protein structure level.
Collapse
|
125
|
Spatafora JW, Chang Y, Benny GL, Lazarus K, Smith ME, Berbee ML, Bonito G, Corradi N, Grigoriev I, Gryganskyi A, James TY, O'Donnell K, Roberson RW, Taylor TN, Uehling J, Vilgalys R, White MM, Stajich JE. A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data. Mycologia 2018; 108:1028-1046. [PMID: 27738200 DOI: 10.3852/16-042] [Citation(s) in RCA: 628] [Impact Index Per Article: 104.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 07/04/2016] [Indexed: 12/12/2022]
Abstract
Zygomycete fungi were classified as a single phylum, Zygomycota, based on sexual reproduction by zygospores, frequent asexual reproduction by sporangia, absence of multicellular sporocarps, and production of coenocytic hyphae, all with some exceptions. Molecular phylogenies based on one or a few genes did not support the monophyly of the phylum, however, and the phylum was subsequently abandoned. Here we present phylogenetic analyses of a genome-scale data set for 46 taxa, including 25 zygomycetes and 192 proteins, and we demonstrate that zygomycetes comprise two major clades that form a paraphyletic grade. A formal phylogenetic classification is proposed herein and includes two phyla, six subphyla, four classes and 16 orders. On the basis of these results, the phyla Mucoromycota and Zoopagomycota are circumscribed. Zoopagomycota comprises Entomophtoromycotina, Kickxellomycotina and Zoopagomycotina; it constitutes the earliest diverging lineage of zygomycetes and contains species that are primarily parasites and pathogens of small animals (e.g. amoeba, insects, etc.) and other fungi, i.e. mycoparasites. Mucoromycota comprises Glomeromycotina, Mortierellomycotina, and Mucoromycotina and is sister to Dikarya. It is the more derived clade of zygomycetes and mainly consists of mycorrhizal fungi, root endophytes, and decomposers of plant material. Evolution of trophic modes, morphology, and analysis of genome-scale data are discussed.
Collapse
Affiliation(s)
- Joseph W Spatafora
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331
| | - Ying Chang
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331
| | - Gerald L Benny
- Department of Plant Pathology, University of Florida, Gainesville, Florida 32611
| | - Katy Lazarus
- Department of Plant Pathology, University of Florida, Gainesville, Florida 32611
| | - Matthew E Smith
- Department of Plant Pathology, University of Florida, Gainesville, Florida 32611
| | - Mary L Berbee
- Department of Botany, University of British Columbia, Vancouver, British Columbia, V6T 1Z4 Canada
| | - Gregory Bonito
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, Michigan 48824
| | - Nicolas Corradi
- Department of Biology, University of Ottawa, Ottawa, Ontario, K1N 6N5 Canada
| | - Igor Grigoriev
- US Department of Energy (DOE) Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, California 94598
| | | | - Timothy Y James
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan 48103
| | - Kerry O'Donnell
- Mycotoxin Prevention and Applied Microbiology Research Unit, NCAUR-ARS-USDA, 1815 N. University Street, Peoria, Illinois 61604
| | - Robert W Roberson
- School of Life Sciences, Arizona State University, Tempe, Arizona 85287
| | - Thomas N Taylor
- Department of Ecology and Evolutionary Biology, and Natural History Museum and Biodiversity Research Center, University of Kansas, Lawrence, Kansas 66045
| | - Jessie Uehling
- Biology Department, Box 90338, Duke University, Durham, North Carolina 27708
| | - Rytas Vilgalys
- Biology Department, Box 90338, Duke University, Durham, North Carolina 27708
| | - Merlin M White
- Department of Biological Sciences, Boise State University, Boise, Idaho 83725
| | - Jason E Stajich
- Department of Plant Pathology & Microbiology and Institute for Integrative Genome Biology, University of California-Riverside, Riverside, California 92521
| |
Collapse
|
126
|
Carlson AL, Ishak HD, Kurian J, Mikheyev AS, Gifford I, Mueller UG. Nuclear populations of the multinucleate fungus of leafcutter ants can be dekaryotized and recombined to manipulate growth of nutritive hyphal nodules harvested by the ants. Mycologia 2018; 109:832-846. [PMID: 29300677 DOI: 10.1080/00275514.2017.1400304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We dekaryotized the multinucleate fungus Leucocoprinus gongylophorus, a symbiotic fungus cultivated vegetatively by leafcutter ants as their food. To track genetic changes resulting from dekaryotization (elimination of some nuclei from the multinuclear population), we developed two multiplex microsatellite fingerprinting panels (15 loci total), then characterized the allele profiles of 129 accessions generated by dekaryotization treatment. Genotype profiles of the 129 accessions confirmed allele loss expected by dekaryotization of the multinucleate fungus. We found no evidence for haploid and single-nucleus strains among the 129 accessions. Microscopy of fluorescently stained dekaryotized accessions revealed great variation in nuclei number between cells of the same vegetative mycelium, with cells containing typically between 3 and 15 nuclei/cell (average = 9.4 nuclei/cell; mode = 8). We distinguish four mycelial morphotypes among the dekaryotized accessions; some of these morphotypes had lost the full competence to produce gongylidia (nutritive hyphal-tip swellings consumed by leafcutter ants as food). In mycelial growth confrontations between different gongylidia-incompetent accessions, allele profiles suggest exchange of nuclei between dekaryotized accessions, restoring full gongylidia competence in some of these strains. The restoration of gongylidia competence after genetic exchange between dekaryotized strains suggests the hypothesis that complementary nuclei interact, or nuclear and cytoplasmic factors interact, to promote or enable gongylidia competence.
Collapse
Affiliation(s)
- Alexis L Carlson
- a Department of Integrative Biology , University of Texas at Austin , Austin , Texas 78712
| | - Heather D Ishak
- a Department of Integrative Biology , University of Texas at Austin , Austin , Texas 78712
| | - James Kurian
- a Department of Integrative Biology , University of Texas at Austin , Austin , Texas 78712
| | - Alexander S Mikheyev
- b Okinawa Institute of Science and Technology , 1919-1 Tancha, Onna-son, Kunigami , Okinawa 904-2234 , Japan
| | - Isaac Gifford
- a Department of Integrative Biology , University of Texas at Austin , Austin , Texas 78712
| | - Ulrich G Mueller
- a Department of Integrative Biology , University of Texas at Austin , Austin , Texas 78712
| |
Collapse
|
127
|
Wadhwa G, Shanmughavel P, Singh AK, Bellare JR. Computational Tools: RNA Interference in Fungal Therapeutics. CURRENT TRENDS IN BIOINFORMATICS: AN INSIGHT 2018. [PMCID: PMC7122507 DOI: 10.1007/978-981-10-7483-7_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
There is steady rise in the number of immunocompromised population due to increased use of potent immunosuppression therapies. This is associated with increased risk of acquiring fungal opportunistic infections in immunocompromised patients which account for high morbidity and mortality rates, if left untreated. The conventional antifungal drugs to treat fungal diseases (mycoses) are increasingly becoming inadequate due to observed varied susceptibility of fungi and their recurrent resistance. RNA interference (RNAi), sequence-specific gene silencing, is emerging as a promising new therapeutic approach. This chapter discusses various aspects of RNAi, viz., the fundamental RNAi machinery present in fungi, in silico siRNA features, designing guidelines and tools, siRNA delivery, and validation of gene knockdown for therapeutics against mycoses. Target gene identification is a crucial step in designing of gene-specific siRNA in addition to efficient delivery strategies to bring about effective inhibition of fungi. Subsequently, designed siRNA can be delivered effectively in vitro either by soaking fungi with siRNA or by transforming inverted repeat transgene containing plasmid into fungi, which ultimately generates siRNA(s). Finally, fungal inhibition can be verified at the RNA and protein levels by blotting techniques, fluorescence imaging, and biochemical assays. Despite challenges, several such in vitro studies have spawned optimism around RNAi as a revolutionary new class of therapeutics against mycoses. But, pharmacokinetic parameters need to be evaluated from in vivo studies and clinical trials to recognize RNAi as a novel treatment approach for mycoses.
Collapse
Affiliation(s)
- Gulshan Wadhwa
- Department of Biotechnology Apex Bioinformatics Centre, Ministry of Science & Technology, New Delhi, India
| | - P. Shanmughavel
- Department of Bioinformatics, Bharathiar University, Coimbatore, Tamil Nadu India
| | - Atul Kumar Singh
- Central Research Facility, Indian Institute of Technology Delhi, New Delhi, India
| | - Jayesh R. Bellare
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
128
|
Muszewska A, Piłsyk S, Perlińska-Lenart U, Kruszewska JS. Diversity of Cell Wall Related Proteins in Human Pathogenic Fungi. J Fungi (Basel) 2017; 4:E6. [PMID: 29371499 PMCID: PMC5872309 DOI: 10.3390/jof4010006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 12/13/2017] [Accepted: 12/25/2017] [Indexed: 02/06/2023] Open
Abstract
The cell wall is one of the major keys to fungal identity. Fungi use their cell wall to sense the environment, and localize nutrients and competing microorganism. Pathogenic species additionally modify their cell walls to hide from a host's immune system. With the growing number of fungal infections and alarming shortage of available drugs, we are in need of new approaches to fight pathogens. The cell wall seems to be a natural target, since animal host cells are devoid of it. The current knowledge about fungal cell wall components is often limited, and there is huge diversity both in structure and composition between species. In order to compare the distribution of diverse proteins involved in cell wall biosynthesis and maintenance, we performed sequence homology searches against 24 fungal proteomes from distinct taxonomic groups, all reported as human pathogens. This approach led to identification of 4014 cell wall proteins (CWPs), and enabled us to speculate about cell wall composition in recently sequenced pathogenic fungi with limited experimental information. We found large expansions of several CWP families, in particular taxa, and a number of new CWPs possibly involved in evading host immune recognition. Here, we present a comprehensive evolutionary history of fungal CWP families in the context of the fungal tree of life.
Collapse
Affiliation(s)
- Anna Muszewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-792 Warsaw, Poland.
| | - Sebastian Piłsyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-792 Warsaw, Poland.
| | | | - Joanna S Kruszewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-792 Warsaw, Poland.
| |
Collapse
|
129
|
Sista Kameshwar AK, Qin W. Comparative study of genome-wide plant biomass-degrading CAZymes in white rot, brown rot and soft rot fungi. Mycology 2017; 9:93-105. [PMID: 30123665 PMCID: PMC6059041 DOI: 10.1080/21501203.2017.1419296] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 12/15/2017] [Indexed: 12/12/2022] Open
Abstract
We have conducted a genome-level comparative study of basidiomycetes wood-rotting fungi (white, brown and soft rot) to understand the total plant biomass (lignin, cellulose, hemicellulose and pectin) -degrading abilities. We have retrieved the genome-level annotations of well-known 14 white rot fungi, 15 brown rot fungi and 13 soft rot fungi. Based on the previous literature and the annotations obtained from CAZy (carbohydrate-active enzyme) database, we have separated the genome-wide CAZymes of the selected fungi into lignin-, cellulose-, hemicellulose- and pectin-degrading enzymes. Results obtained in our study reveal that white rot fungi, especially Pleurotus eryngii and Pleurotus ostreatus potentially possess high ligninolytic ability, and soft rot fungi, especially Botryosphaeria dothidea and Fusarium oxysporum sp., potentially possess high cellulolytic, hemicellulolytic and pectinolytic abilities. The total number of genes encoding for cytochrome P450 monooxygenases and metabolic processes were high in soft and white rot fungi. We have tentatively calculated the overall lignocellulolytic abilities among the selected wood-rotting fungi which suggests that white rot fungi possess higher lignin and soft rot fungi potentially possess higher cellulolytic, hemicellulolytic and pectinolytic abilities. This approach can be applied industrially to efficiently find lignocellulolytic and aromatic compound-degrading fungi based on their genomic abilities.
Collapse
Affiliation(s)
| | - Wensheng Qin
- Department of Biology, Lakehead University, Thunder Bay, Canada
| |
Collapse
|
130
|
Satari B, Karimi K. Mucoralean fungi for sustainable production of bioethanol and biologically active molecules. Appl Microbiol Biotechnol 2017; 102:1097-1117. [DOI: 10.1007/s00253-017-8691-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 12/01/2017] [Accepted: 12/02/2017] [Indexed: 11/27/2022]
|
131
|
Sherrington SL, Kumwenda P, Kousser C, Hall RA. Host Sensing by Pathogenic Fungi. ADVANCES IN APPLIED MICROBIOLOGY 2017; 102:159-221. [PMID: 29680125 DOI: 10.1016/bs.aambs.2017.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The ability to cause disease extends from the ability to grow within the host environment. The human host provides a dynamic environment to which fungal pathogens must adapt to in order to survive. The ability to grow under a particular condition (i.e., the ability to grow at mammalian body temperature) is considered a fitness attribute and is essential for growth within the human host. On the other hand, some environmental conditions activate signaling mechanisms resulting in the expression of virulence factors, which aid pathogenicity. Therefore, pathogenic fungi have evolved fitness and virulence attributes to enable them to colonize and infect humans. This review highlights how some of the major pathogenic fungi respond and adapt to key environmental signals within the human host.
Collapse
Affiliation(s)
- Sarah L Sherrington
- Institute for Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Pizga Kumwenda
- Institute for Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Courtney Kousser
- Institute for Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Rebecca A Hall
- Institute for Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom.
| |
Collapse
|
132
|
Ibrahim AS, Voelz K. The mucormycete-host interface. Curr Opin Microbiol 2017; 40:40-45. [PMID: 29107938 PMCID: PMC5733727 DOI: 10.1016/j.mib.2017.10.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 10/17/2017] [Accepted: 10/18/2017] [Indexed: 01/28/2023]
Abstract
Mucormycosis is a fungal infection with fulminant angioinvasion leading to high morbidity and mortality in susceptible individuals. The major predisposing conditions are uncontrolled diabetes, neutropenia, malignancies, receipt of a transplant and traumatic injury [1]. Over the past decade, mucormycosis has become an emerging fungal infection due to the increase in patient groups presenting with these pre-disposing conditions and our medical advances in diagnosing the infection [2-4]. Yet, we currently lack clinical interventions to treat mucormycosis effectively. This in turn is due to a lack of understanding of mucormycosis pathogenesis. Here, we discuss our current understanding of selected aspects of interactions at the mucormycete-host interface. We will highlight open questions that might guide future research directions for investigations into the pathogenesis of mucormycosis and potential innovative therapeutic approaches.
Collapse
Affiliation(s)
- Ashraf S Ibrahim
- Division of Infectious Diseases, Los Angeles Biomedical Research Institute and David Geffen School of Medicine, Harbor - University of California, Los Angeles, UCLA Medical Center, Torrance, Los Angeles, CA, USA
| | - Kerstin Voelz
- School of Biosciences and Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK.
| |
Collapse
|
133
|
Muszewska A, Steczkiewicz K, Stepniewska-Dziubinska M, Ginalski K. Cut-and-Paste Transposons in Fungi with Diverse Lifestyles. Genome Biol Evol 2017; 9:3463-3477. [PMID: 29228286 PMCID: PMC5751038 DOI: 10.1093/gbe/evx261] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2017] [Indexed: 02/06/2023] Open
Abstract
Transposable elements (TEs) shape genomes via recombination and transposition, lead to chromosomal rearrangements, create new gene neighborhoods, and alter gene expression. They play key roles in adaptation either to symbiosis in Amanita genus or to pathogenicity in Pyrenophora tritici-repentis. Despite growing evidence of their importance, the abundance and distribution of mobile elements replicating in a "cut-and-paste" fashion is barely described so far. In order to improve our knowledge on this old and ubiquitous class of transposable elements, 1,730 fungal genomes were scanned using both de novo and homology-based approaches. DNA TEs have been identified across the whole data set and display uneven distribution from both DNA TE classification and fungal taxonomy perspectives. DNA TE content correlates with genome size, which confirms that many transposon families proliferate simultaneously. In contrast, it is independent from intron density, average gene distance and GC content. TE count is associated with species' lifestyle and tends to be elevated in plant symbionts and decreased in animal parasites. Lastly, we found that fungi with both RIP and RNAi systems have more total DNA TE sequences but less elements retaining a functional transposase, what reflects stringent control over transposition.
Collapse
Affiliation(s)
- Anna Muszewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Kamil Steczkiewicz
- Laboratory of Bioinformatics and Systems Biology, CeNT, University of Warsaw, Poland
| | | | - Krzysztof Ginalski
- Laboratory of Bioinformatics and Systems Biology, CeNT, University of Warsaw, Poland
| |
Collapse
|
134
|
Mondo SJ, Lastovetsky OA, Gaspar ML, Schwardt NH, Barber CC, Riley R, Sun H, Grigoriev IV, Pawlowska TE. Bacterial endosymbionts influence host sexuality and reveal reproductive genes of early divergent fungi. Nat Commun 2017; 8:1843. [PMID: 29184190 PMCID: PMC5705715 DOI: 10.1038/s41467-017-02052-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 11/03/2017] [Indexed: 11/09/2022] Open
Abstract
Many heritable mutualisms, in which beneficial symbionts are transmitted vertically between host generations, originate as antagonisms with parasite dispersal constrained by the host. Only after the parasite gains control over its transmission is the symbiosis expected to transition from antagonism to mutualism. Here, we explore this prediction in the mutualism between the fungus Rhizopus microsporus (Rm, Mucoromycotina) and a beta-proteobacterium Burkholderia, which controls host asexual reproduction. We show that reproductive addiction of Rm to endobacteria extends to mating, and is mediated by the symbiont gaining transcriptional control of the fungal ras2 gene, which encodes a GTPase central to fungal reproductive development. We also discover candidate G-protein-coupled receptors for the perception of trisporic acids, mating pheromones unique to Mucoromycotina. Our results demonstrate that regulating host asexual proliferation and modifying its sexual reproduction are sufficient for the symbiont's control of its own transmission, needed for antagonism-to-mutualism transition in heritable symbioses. These properties establish the Rm-Burkholderia symbiosis as a powerful system for identifying reproductive genes in Mucoromycotina.
Collapse
Affiliation(s)
- Stephen J Mondo
- School of Integrative Plant Science, Plant Pathology and Plant Microbe-Biology, Cornell University, Ithaca, NY, 14853, USA
- US DOE Joint Genome Institute, Walnut Creek, CA, 94598, USA
| | - Olga A Lastovetsky
- Graduate Field of Microbiology, Cornell University, Ithaca, NY, 14853, USA
| | - Maria L Gaspar
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA
| | - Nicole H Schwardt
- School of Integrative Plant Science, Plant Pathology and Plant Microbe-Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Colin C Barber
- School of Integrative Plant Science, Plant Pathology and Plant Microbe-Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Robert Riley
- US DOE Joint Genome Institute, Walnut Creek, CA, 94598, USA
| | - Hui Sun
- US DOE Joint Genome Institute, Walnut Creek, CA, 94598, USA
| | - Igor V Grigoriev
- US DOE Joint Genome Institute, Walnut Creek, CA, 94598, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Teresa E Pawlowska
- School of Integrative Plant Science, Plant Pathology and Plant Microbe-Biology, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
135
|
Caramalho R, Tyndall JDA, Monk BC, Larentis T, Lass-Flörl C, Lackner M. Intrinsic short-tailed azole resistance in mucormycetes is due to an evolutionary conserved aminoacid substitution of the lanosterol 14α-demethylase. Sci Rep 2017; 7:15898. [PMID: 29162893 PMCID: PMC5698289 DOI: 10.1038/s41598-017-16123-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 11/08/2017] [Indexed: 11/24/2022] Open
Abstract
Mucormycoses are emerging and potentially lethal infections. An increase of breakthrough infections has been found in cohorts receiving short-tailed azoles prophylaxis (e.g. voriconazole (VCZ)). Although VCZ is ineffective in vitro and in vivo, long-tailed triazoles such as posaconazole remain active against mucormycetes. Our goal was to validate the molecular mechanism of resistance to short-tailed triazoles in Mucorales. The paralogous cytochrome P450 genes (CYP51 F1 and CYP51 F5) of Rhizopus arrhizus, Rhizopus microsporus, and Mucor circinelloides were amplified and sequenced. Alignment of the protein sequences of the R. arrhizus, R. microsporus, and M. circinelloides CYP51 F1 and F5 with additional Mucorales species (n = 3) and other fungi (n = 16) confirmed the sequences to be lanosterol 14α-demethylases (LDMs). Sequence alignment identified a pan-Mucorales conservation of a phenylalanine129 substitution in all CYP51 F5s analyzed. A high resolution X-ray crystal structure of Saccharomyces cerevisiae LDM in complex with VCZ was used for generating a homology model of R. arrhizus CYP51 F5. Structural and functional knowledge of S. cerevisiae CYP51 shows that the F129 residue in Mucorales CYP51 F5 is responsible for intrinsic resistance of Mucorales against short-tailed triazoles, with a V to A substitution in Helix I also potentially playing a role.
Collapse
Affiliation(s)
- Rita Caramalho
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Schöpfstraße, number 41, 2nd floor, A-6020, Innsbruck, Austria
| | - Joel D A Tyndall
- School of Pharmacy, University of Otago, Dunedin, 9054, New Zealand
| | - Brian C Monk
- Sir John Walsh Research Institute and the Department of Oral Sciences, New Zealand's National Centre for Dentistry, University of Otago, Dunedin, 9054, New Zealand
| | - Thomas Larentis
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Schöpfstraße, number 41, 2nd floor, A-6020, Innsbruck, Austria
| | - Cornelia Lass-Flörl
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Schöpfstraße, number 41, 2nd floor, A-6020, Innsbruck, Austria
| | - Michaela Lackner
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Schöpfstraße, number 41, 2nd floor, A-6020, Innsbruck, Austria.
| |
Collapse
|
136
|
Neu E, Featherston J, Rees J, Debener T. A draft genome sequence of the rose black spot fungus Diplocarpon rosae reveals a high degree of genome duplication. PLoS One 2017; 12:e0185310. [PMID: 28981525 PMCID: PMC5628827 DOI: 10.1371/journal.pone.0185310] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 09/11/2017] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Black spot is one of the most severe and damaging diseases of garden roses. We present the draft genome sequence of its causative agent Diplocarpon rosae as a working tool to generate molecular markers and to analyze functional and structural characteristics of this fungus. RESULTS The isolate DortE4 was sequenced with 191x coverage of different read types which were assembled into 2457 scaffolds. By evidence supported genome annotation with the MAKER pipeline 14,004 gene models were predicted and transcriptomic data indicated that 88.5% of them are expressed during the early stages of infection. Analyses of k-mer distributions resulted in unexpectedly large genome size estimations between 72.5 and 91.4 Mb, which cannot be attributed to its repeat structure and content of transposable elements alone, factors explaining such differences in other fungal genomes. In contrast, different lines of evidences demonstrate that a huge proportion (approximately 80%) of genes are duplicated, which might indicate a whole genome duplication event. By PCR-RFLP analysis of six paralogous gene pairs of BUSCO orthologs, which are expected to be single copy genes, we could show experimentally that the duplication is not due to technical error and that not all isolates tested possess all of the paralogs. CONCLUSIONS The presented genome sequence is still a fragmented draft but contains almost the complete gene space. Therefore, it provides a useful working tool to study the interaction of D. rosae with the host and the influence of a genome duplication outside of the model yeast in the background of a phytopathogen.
Collapse
Affiliation(s)
- Enzo Neu
- Institute for Plant Genetics, Leibniz University Hannover, Hannover, Germany
| | - Jonathan Featherston
- Agricultural Research Council, Biotechnology Platform, Onderstepoort, Pretoria, South Africa
| | - Jasper Rees
- Agricultural Research Council, Biotechnology Platform, Onderstepoort, Pretoria, South Africa
| | - Thomas Debener
- Institute for Plant Genetics, Leibniz University Hannover, Hannover, Germany
- * E-mail:
| |
Collapse
|
137
|
Apophysomyces variabilis: draft genome sequence and comparison of predictive virulence determinants with other medically important Mucorales. BMC Genomics 2017; 18:736. [PMID: 28923009 PMCID: PMC5604411 DOI: 10.1186/s12864-017-4136-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 09/08/2017] [Indexed: 12/28/2022] Open
Abstract
Background Apophysomyces species are prevalent in tropical countries and A. variabilis is the second most frequent agent causing mucormycosis in India. Among Apophysomyces species, A. elegans, A. trapeziformis and A. variabilis are commonly incriminated in human infections. The genome sequences of A. elegans and A. trapeziformis are available in public database, but not A. variabilis. We, therefore, performed the whole genome sequence of A. variabilis to explore its genomic structure and possible genes determining the virulence of the organism. Results The whole genome of A. variabilis NCCPF 102052 was sequenced and the genomic structure of A. variabilis was compared with already available genome structures of A. elegans, A. trapeziformis and other medically important Mucorales. The total size of genome assembly of A. variabilis was 39.38 Mb with 12,764 protein-coding genes. The transposable elements (TEs) were low in Apophysomyces genome and the retrotransposon Ty3-gypsy was the common TE. Phylogenetically, Apophysomyces species were grouped closely with Phycomyces blakesleeanus. OrthoMCL analysis revealed 3025 orthologues proteins, which were common in those three pathogenic Apophysomyces species. Expansion of multiple gene families/duplication was observed in Apophysomyces genomes. Approximately 6% of Apophysomyces genes were predicted to be associated with virulence on PHIbase analysis. The virulence determinants included the protein families of CotH proteins (invasins), proteases, iron utilisation pathways, siderophores and signal transduction pathways. Serine proteases were the major group of proteases found in all Apophysomyces genomes. The carbohydrate active enzymes (CAZymes) constitute the majority of the secretory proteins. Conclusion The present study is the maiden attempt to sequence and analyze the genomic structure of A. variabilis. Together with available genome sequence of A. elegans and A. trapeziformis, the study helped to indicate the possible virulence determinants of pathogenic Apophysomyces species. The presence of unique CAZymes in cell wall might be exploited in future for antifungal drug development. Electronic supplementary material The online version of this article (10.1186/s12864-017-4136-1) contains supplementary material, which is available to authorized users.
Collapse
|
138
|
Denardi-Souza T, Massarolo KC, Tralamazza SM, Badiale-Furlong E. Monitoring of fungal biomass changed by Rhizopus oryzae in relation to amino acid and essential fatty acids profile in soybean meal, wheat and rice. CYTA - JOURNAL OF FOOD 2017. [DOI: 10.1080/19476337.2017.1359676] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Taiana Denardi-Souza
- Laboratory of Mycotoxins and Food Science, Post Graduate Program in Engineering and Food Science, School of Chemistry and Food, Federal University of Rio Grande – FURG, Rio Grande, Brazil
| | - Kelly Cristina Massarolo
- Laboratory of Mycotoxins and Food Science, Post Graduate Program in Engineering and Food Science, School of Chemistry and Food, Federal University of Rio Grande – FURG, Rio Grande, Brazil
| | - Sabina M Tralamazza
- Laboratory of Mycology and Mycotoxicology, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo-USP, Sao Paulo, Brazil
| | - Eliana Badiale-Furlong
- Laboratory of Mycotoxins and Food Science, Post Graduate Program in Engineering and Food Science, School of Chemistry and Food, Federal University of Rio Grande – FURG, Rio Grande, Brazil
| |
Collapse
|
139
|
Affiliation(s)
- Clara Baldin
- The Division of Infectious Diseases, Los Angeles Biomedical Research Institute at Harbor, University of California Los Angeles (UCLA) Medical Center and the St. John’s Cardiovascular Research Center, Torrance, California, United States of America
| | - Ashraf S. Ibrahim
- The Division of Infectious Diseases, Los Angeles Biomedical Research Institute at Harbor, University of California Los Angeles (UCLA) Medical Center and the St. John’s Cardiovascular Research Center, Torrance, California, United States of America
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| |
Collapse
|
140
|
Schwager EE, Sharma PP, Clarke T, Leite DJ, Wierschin T, Pechmann M, Akiyama-Oda Y, Esposito L, Bechsgaard J, Bilde T, Buffry AD, Chao H, Dinh H, Doddapaneni H, Dugan S, Eibner C, Extavour CG, Funch P, Garb J, Gonzalez LB, Gonzalez VL, Griffiths-Jones S, Han Y, Hayashi C, Hilbrant M, Hughes DST, Janssen R, Lee SL, Maeso I, Murali SC, Muzny DM, Nunes da Fonseca R, Paese CLB, Qu J, Ronshaugen M, Schomburg C, Schönauer A, Stollewerk A, Torres-Oliva M, Turetzek N, Vanthournout B, Werren JH, Wolff C, Worley KC, Bucher G, Gibbs RA, Coddington J, Oda H, Stanke M, Ayoub NA, Prpic NM, Flot JF, Posnien N, Richards S, McGregor AP. The house spider genome reveals an ancient whole-genome duplication during arachnid evolution. BMC Biol 2017. [PMID: 28756775 DOI: 10.1186/s12915-017-0399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2023] Open
Abstract
BACKGROUND The duplication of genes can occur through various mechanisms and is thought to make a major contribution to the evolutionary diversification of organisms. There is increasing evidence for a large-scale duplication of genes in some chelicerate lineages including two rounds of whole genome duplication (WGD) in horseshoe crabs. To investigate this further, we sequenced and analyzed the genome of the common house spider Parasteatoda tepidariorum. RESULTS We found pervasive duplication of both coding and non-coding genes in this spider, including two clusters of Hox genes. Analysis of synteny conservation across the P. tepidariorum genome suggests that there has been an ancient WGD in spiders. Comparison with the genomes of other chelicerates, including that of the newly sequenced bark scorpion Centruroides sculpturatus, suggests that this event occurred in the common ancestor of spiders and scorpions, and is probably independent of the WGDs in horseshoe crabs. Furthermore, characterization of the sequence and expression of the Hox paralogs in P. tepidariorum suggests that many have been subject to neo-functionalization and/or sub-functionalization since their duplication. CONCLUSIONS Our results reveal that spiders and scorpions are likely the descendants of a polyploid ancestor that lived more than 450 MYA. Given the extensive morphological diversity and ecological adaptations found among these animals, rivaling those of vertebrates, our study of the ancient WGD event in Arachnopulmonata provides a new comparative platform to explore common and divergent evolutionary outcomes of polyploidization events across eukaryotes.
Collapse
Affiliation(s)
- Evelyn E Schwager
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK
- Department of Biological Sciences, University of Massachusetts Lowell, 198 Riverside Street, Lowell, MA, 01854, USA
| | - Prashant P Sharma
- Department of Zoology, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI, 53706, USA
| | - Thomas Clarke
- Department of Biology, Washington and Lee University, 204 West Washington Street, Lexington, VA, 24450, USA
- Department of Biology, University of California, Riverside, Riverside, CA, 92521, USA
- J. Craig Venter Institute, 9714 Medical Center Drive, Rockville, MD, 20850, USA
| | - Daniel J Leite
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK
| | - Torsten Wierschin
- Ernst Moritz Arndt University Greifswald, Institute for Mathematics and Computer Science, Walther-Rathenau-Str. 47, 17487, Greifswald, Germany
| | - Matthias Pechmann
- Department for Developmental Biology, University Goettingen, Johann-Friedrich-Blumenbach-Institut for Zoology and Anthropology, GZMB Ernst-Caspari-Haus, Justus-von-Liebig-Weg 11, 37077, Goettingen, Germany
- Department of Developmental Biology, University of Cologne, Cologne Biocenter, Institute of Zoology, Zuelpicher Straße 47b, 50674, Cologne, Germany
| | - Yasuko Akiyama-Oda
- JT Biohistory Research Hall, 1-1 Murasaki-cho, Takatsuki, Osaka, 569-1125, Japan
- Osaka Medical College, Takatsuki, Osaka, Japan
| | - Lauren Esposito
- Institute for Biodiversity Science and Sustainability, California Academy of Sciences, 55 Music Concourse Drive, San Francisco, CA, 94118, USA
| | - Jesper Bechsgaard
- Department of Bioscience, Aarhus University, Ny Munkegade 116, building 1540, 8000, Aarhus C, Denmark
| | - Trine Bilde
- Department of Bioscience, Aarhus University, Ny Munkegade 116, building 1540, 8000, Aarhus C, Denmark
| | - Alexandra D Buffry
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK
| | - Hsu Chao
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Huyen Dinh
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - HarshaVardhan Doddapaneni
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Shannon Dugan
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Cornelius Eibner
- Department of Genetics, Friedrich-Schiller-University Jena, Philosophenweg 12, 07743, Jena, Germany
| | - Cassandra G Extavour
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA, 02138, USA
| | - Peter Funch
- Department of Bioscience, Aarhus University, Ny Munkegade 116, building 1540, 8000, Aarhus C, Denmark
| | - Jessica Garb
- Department of Biological Sciences, University of Massachusetts Lowell, 198 Riverside Street, Lowell, MA, 01854, USA
| | - Luis B Gonzalez
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK
| | - Vanessa L Gonzalez
- Smithsonian National Museum of Natural History, MRC-163, P.O. Box 37012, Washington, DC, 20013-7012, USA
| | - Sam Griffiths-Jones
- Faculty of Biology Medicine and Health, University of Manchester, D.1416 Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - Yi Han
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Cheryl Hayashi
- Department of Biology, University of California, Riverside, Riverside, CA, 92521, USA
- Division of Invertebrate Zoology, American Museum of Natural History, New York, NY, 10024, USA
| | - Maarten Hilbrant
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK
- Department of Developmental Biology, University of Cologne, Cologne Biocenter, Institute of Zoology, Zuelpicher Straße 47b, 50674, Cologne, Germany
| | - Daniel S T Hughes
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Ralf Janssen
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, 75236, Uppsala, Sweden
| | - Sandra L Lee
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Ignacio Maeso
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide, Sevilla, Spain
| | - Shwetha C Murali
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Donna M Muzny
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Rodrigo Nunes da Fonseca
- Nucleo em Ecologia e Desenvolvimento SocioAmbiental de Macaé (NUPEM), Campus Macaé, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, 27941-222, Brazil
| | - Christian L B Paese
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK
| | - Jiaxin Qu
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Matthew Ronshaugen
- Faculty of Biology Medicine and Health, University of Manchester, D.1416 Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - Christoph Schomburg
- Department for Developmental Biology, University Goettingen, Johann-Friedrich-Blumenbach-Institut for Zoology and Anthropology, GZMB Ernst-Caspari-Haus, Justus-von-Liebig-Weg 11, 37077, Goettingen, Germany
| | - Anna Schönauer
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK
| | - Angelika Stollewerk
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, E1 4NS, London, UK
| | - Montserrat Torres-Oliva
- Department for Developmental Biology, University Goettingen, Johann-Friedrich-Blumenbach-Institut for Zoology and Anthropology, GZMB Ernst-Caspari-Haus, Justus-von-Liebig-Weg 11, 37077, Goettingen, Germany
| | - Natascha Turetzek
- Department for Developmental Biology, University Goettingen, Johann-Friedrich-Blumenbach-Institut for Zoology and Anthropology, GZMB Ernst-Caspari-Haus, Justus-von-Liebig-Weg 11, 37077, Goettingen, Germany
| | - Bram Vanthournout
- Department of Bioscience, Aarhus University, Ny Munkegade 116, building 1540, 8000, Aarhus C, Denmark
- Evolution and Optics of Nanostructure group (EON), Biology Department, Ghent University, Gent, Belgium
| | - John H Werren
- Biology Department, University of Rochester, Rochester, NY, 14627, USA
| | - Carsten Wolff
- Humboldt-Universität of Berlin, Institut für Biologie, Philippstr.13, 10115, Berlin, Germany
| | - Kim C Worley
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Gregor Bucher
- Department of Evolutionary Developmental Genetics, Johann-Friedrich-Blumenbach-Institute, GZMB, Georg-August-University, Göttingen Campus, Justus von Liebig Weg 11, 37077, Göttingen, Germany.
| | - Richard A Gibbs
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| | - Jonathan Coddington
- Smithsonian National Museum of Natural History, MRC-163, P.O. Box 37012, Washington, DC, 20013-7012, USA.
| | - Hiroki Oda
- JT Biohistory Research Hall, 1-1 Murasaki-cho, Takatsuki, Osaka, 569-1125, Japan.
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka, Japan.
| | - Mario Stanke
- Ernst Moritz Arndt University Greifswald, Institute for Mathematics and Computer Science, Walther-Rathenau-Str. 47, 17487, Greifswald, Germany.
| | - Nadia A Ayoub
- Department of Biology, Washington and Lee University, 204 West Washington Street, Lexington, VA, 24450, USA.
| | - Nikola-Michael Prpic
- Department for Developmental Biology, University Goettingen, Johann-Friedrich-Blumenbach-Institut for Zoology and Anthropology, GZMB Ernst-Caspari-Haus, Justus-von-Liebig-Weg 11, 37077, Goettingen, Germany.
| | - Jean-François Flot
- Université libre de Bruxelles (ULB), Evolutionary Biology & Ecology, C.P. 160/12, Avenue F.D. Roosevelt 50, 1050, Brussels, Belgium.
| | - Nico Posnien
- Department for Developmental Biology, University Goettingen, Johann-Friedrich-Blumenbach-Institut for Zoology and Anthropology, GZMB Ernst-Caspari-Haus, Justus-von-Liebig-Weg 11, 37077, Goettingen, Germany.
| | - Stephen Richards
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| | - Alistair P McGregor
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK.
| |
Collapse
|
141
|
Schwager EE, Sharma PP, Clarke T, Leite DJ, Wierschin T, Pechmann M, Akiyama-Oda Y, Esposito L, Bechsgaard J, Bilde T, Buffry AD, Chao H, Dinh H, Doddapaneni H, Dugan S, Eibner C, Extavour CG, Funch P, Garb J, Gonzalez LB, Gonzalez VL, Griffiths-Jones S, Han Y, Hayashi C, Hilbrant M, Hughes DST, Janssen R, Lee SL, Maeso I, Murali SC, Muzny DM, Nunes da Fonseca R, Paese CLB, Qu J, Ronshaugen M, Schomburg C, Schönauer A, Stollewerk A, Torres-Oliva M, Turetzek N, Vanthournout B, Werren JH, Wolff C, Worley KC, Bucher G, Gibbs RA, Coddington J, Oda H, Stanke M, Ayoub NA, Prpic NM, Flot JF, Posnien N, Richards S, McGregor AP. The house spider genome reveals an ancient whole-genome duplication during arachnid evolution. BMC Biol 2017; 15:62. [PMID: 28756775 PMCID: PMC5535294 DOI: 10.1186/s12915-017-0399-x] [Citation(s) in RCA: 203] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 06/21/2017] [Indexed: 12/15/2022] Open
Abstract
Background The duplication of genes can occur through various mechanisms and is thought to make a major contribution to the evolutionary diversification of organisms. There is increasing evidence for a large-scale duplication of genes in some chelicerate lineages including two rounds of whole genome duplication (WGD) in horseshoe crabs. To investigate this further, we sequenced and analyzed the genome of the common house spider Parasteatoda tepidariorum. Results We found pervasive duplication of both coding and non-coding genes in this spider, including two clusters of Hox genes. Analysis of synteny conservation across the P. tepidariorum genome suggests that there has been an ancient WGD in spiders. Comparison with the genomes of other chelicerates, including that of the newly sequenced bark scorpion Centruroides sculpturatus, suggests that this event occurred in the common ancestor of spiders and scorpions, and is probably independent of the WGDs in horseshoe crabs. Furthermore, characterization of the sequence and expression of the Hox paralogs in P. tepidariorum suggests that many have been subject to neo-functionalization and/or sub-functionalization since their duplication. Conclusions Our results reveal that spiders and scorpions are likely the descendants of a polyploid ancestor that lived more than 450 MYA. Given the extensive morphological diversity and ecological adaptations found among these animals, rivaling those of vertebrates, our study of the ancient WGD event in Arachnopulmonata provides a new comparative platform to explore common and divergent evolutionary outcomes of polyploidization events across eukaryotes. Electronic supplementary material The online version of this article (doi:10.1186/s12915-017-0399-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Evelyn E Schwager
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK.,Department of Biological Sciences, University of Massachusetts Lowell, 198 Riverside Street, Lowell, MA, 01854, USA
| | - Prashant P Sharma
- Department of Zoology, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI, 53706, USA
| | - Thomas Clarke
- Department of Biology, Washington and Lee University, 204 West Washington Street, Lexington, VA, 24450, USA.,Department of Biology, University of California, Riverside, Riverside, CA, 92521, USA.,J. Craig Venter Institute, 9714 Medical Center Drive, Rockville, MD, 20850, USA
| | - Daniel J Leite
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK
| | - Torsten Wierschin
- Ernst Moritz Arndt University Greifswald, Institute for Mathematics and Computer Science, Walther-Rathenau-Str. 47, 17487, Greifswald, Germany
| | - Matthias Pechmann
- Department for Developmental Biology, University Goettingen, Johann-Friedrich-Blumenbach-Institut for Zoology and Anthropology, GZMB Ernst-Caspari-Haus, Justus-von-Liebig-Weg 11, 37077, Goettingen, Germany.,Department of Developmental Biology, University of Cologne, Cologne Biocenter, Institute of Zoology, Zuelpicher Straße 47b, 50674, Cologne, Germany
| | - Yasuko Akiyama-Oda
- JT Biohistory Research Hall, 1-1 Murasaki-cho, Takatsuki, Osaka, 569-1125, Japan.,Osaka Medical College, Takatsuki, Osaka, Japan
| | - Lauren Esposito
- Institute for Biodiversity Science and Sustainability, California Academy of Sciences, 55 Music Concourse Drive, San Francisco, CA, 94118, USA
| | - Jesper Bechsgaard
- Department of Bioscience, Aarhus University, Ny Munkegade 116, building 1540, 8000, Aarhus C, Denmark
| | - Trine Bilde
- Department of Bioscience, Aarhus University, Ny Munkegade 116, building 1540, 8000, Aarhus C, Denmark
| | - Alexandra D Buffry
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK
| | - Hsu Chao
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Huyen Dinh
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - HarshaVardhan Doddapaneni
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Shannon Dugan
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Cornelius Eibner
- Department of Genetics, Friedrich-Schiller-University Jena, Philosophenweg 12, 07743, Jena, Germany
| | - Cassandra G Extavour
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA, 02138, USA
| | - Peter Funch
- Department of Bioscience, Aarhus University, Ny Munkegade 116, building 1540, 8000, Aarhus C, Denmark
| | - Jessica Garb
- Department of Biological Sciences, University of Massachusetts Lowell, 198 Riverside Street, Lowell, MA, 01854, USA
| | - Luis B Gonzalez
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK
| | - Vanessa L Gonzalez
- Smithsonian National Museum of Natural History, MRC-163, P.O. Box 37012, Washington, DC, 20013-7012, USA
| | - Sam Griffiths-Jones
- Faculty of Biology Medicine and Health, University of Manchester, D.1416 Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - Yi Han
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Cheryl Hayashi
- Department of Biology, University of California, Riverside, Riverside, CA, 92521, USA.,Division of Invertebrate Zoology, American Museum of Natural History, New York, NY, 10024, USA
| | - Maarten Hilbrant
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK.,Department of Developmental Biology, University of Cologne, Cologne Biocenter, Institute of Zoology, Zuelpicher Straße 47b, 50674, Cologne, Germany
| | - Daniel S T Hughes
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Ralf Janssen
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, 75236, Uppsala, Sweden
| | - Sandra L Lee
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Ignacio Maeso
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide, Sevilla, Spain
| | - Shwetha C Murali
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Donna M Muzny
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Rodrigo Nunes da Fonseca
- Nucleo em Ecologia e Desenvolvimento SocioAmbiental de Macaé (NUPEM), Campus Macaé, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, 27941-222, Brazil
| | - Christian L B Paese
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK
| | - Jiaxin Qu
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Matthew Ronshaugen
- Faculty of Biology Medicine and Health, University of Manchester, D.1416 Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - Christoph Schomburg
- Department for Developmental Biology, University Goettingen, Johann-Friedrich-Blumenbach-Institut for Zoology and Anthropology, GZMB Ernst-Caspari-Haus, Justus-von-Liebig-Weg 11, 37077, Goettingen, Germany
| | - Anna Schönauer
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK
| | - Angelika Stollewerk
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, E1 4NS, London, UK
| | - Montserrat Torres-Oliva
- Department for Developmental Biology, University Goettingen, Johann-Friedrich-Blumenbach-Institut for Zoology and Anthropology, GZMB Ernst-Caspari-Haus, Justus-von-Liebig-Weg 11, 37077, Goettingen, Germany
| | - Natascha Turetzek
- Department for Developmental Biology, University Goettingen, Johann-Friedrich-Blumenbach-Institut for Zoology and Anthropology, GZMB Ernst-Caspari-Haus, Justus-von-Liebig-Weg 11, 37077, Goettingen, Germany
| | - Bram Vanthournout
- Department of Bioscience, Aarhus University, Ny Munkegade 116, building 1540, 8000, Aarhus C, Denmark.,Evolution and Optics of Nanostructure group (EON), Biology Department, Ghent University, Gent, Belgium
| | - John H Werren
- Biology Department, University of Rochester, Rochester, NY, 14627, USA
| | - Carsten Wolff
- Humboldt-Universität of Berlin, Institut für Biologie, Philippstr.13, 10115, Berlin, Germany
| | - Kim C Worley
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Gregor Bucher
- Department of Evolutionary Developmental Genetics, Johann-Friedrich-Blumenbach-Institute, GZMB, Georg-August-University, Göttingen Campus, Justus von Liebig Weg 11, 37077, Göttingen, Germany.
| | - Richard A Gibbs
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| | - Jonathan Coddington
- Smithsonian National Museum of Natural History, MRC-163, P.O. Box 37012, Washington, DC, 20013-7012, USA.
| | - Hiroki Oda
- JT Biohistory Research Hall, 1-1 Murasaki-cho, Takatsuki, Osaka, 569-1125, Japan. .,Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka, Japan.
| | - Mario Stanke
- Ernst Moritz Arndt University Greifswald, Institute for Mathematics and Computer Science, Walther-Rathenau-Str. 47, 17487, Greifswald, Germany.
| | - Nadia A Ayoub
- Department of Biology, Washington and Lee University, 204 West Washington Street, Lexington, VA, 24450, USA.
| | - Nikola-Michael Prpic
- Department for Developmental Biology, University Goettingen, Johann-Friedrich-Blumenbach-Institut for Zoology and Anthropology, GZMB Ernst-Caspari-Haus, Justus-von-Liebig-Weg 11, 37077, Goettingen, Germany.
| | - Jean-François Flot
- Université libre de Bruxelles (ULB), Evolutionary Biology & Ecology, C.P. 160/12, Avenue F.D. Roosevelt 50, 1050, Brussels, Belgium.
| | - Nico Posnien
- Department for Developmental Biology, University Goettingen, Johann-Friedrich-Blumenbach-Institut for Zoology and Anthropology, GZMB Ernst-Caspari-Haus, Justus-von-Liebig-Weg 11, 37077, Goettingen, Germany.
| | - Stephen Richards
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| | - Alistair P McGregor
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK.
| |
Collapse
|
142
|
Insight into the Recent Genome Duplication of the Halophilic Yeast Hortaea werneckii: Combining an Improved Genome with Gene Expression and Chromatin Structure. G3-GENES GENOMES GENETICS 2017; 7:2015-2022. [PMID: 28500048 PMCID: PMC5499112 DOI: 10.1534/g3.117.040691] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Extremophilic organisms demonstrate the flexibility and adaptability of basic biological processes by highlighting how cell physiology adapts to environmental extremes. Few eukaryotic extremophiles have been well studied and only a small number are amenable to laboratory cultivation and manipulation. A detailed characterization of the genome architecture of such organisms is important to illuminate how they adapt to environmental stresses. One excellent example of a fungal extremophile is the halophile Hortaea werneckii (Pezizomycotina, Dothideomycetes, Capnodiales), a yeast-like fungus able to thrive at near-saturating concentrations of sodium chloride and which is also tolerant to both UV irradiation and desiccation. Given its unique lifestyle and its remarkably recent whole genome duplication, H. werneckii provides opportunities for testing the role of genome duplications and adaptability to extreme environments. We previously assembled the genome of H. werneckii using short-read sequencing technology and found a remarkable degree of gene duplication. Technology limitations, however, precluded high-confidence annotation of the entire genome. We therefore revisited the H. wernickii genome using long-read, single-molecule sequencing and provide an improved genome assembly which, combined with transcriptome and nucleosome analysis, provides a useful resource for fungal halophile genomics. Remarkably, the ∼50 Mb H. wernickii genome contains 15,974 genes of which 95% (7608) are duplicates formed by a recent whole genome duplication (WGD), with an average of 5% protein sequence divergence between them. We found that the WGD is extraordinarily recent, and compared to Saccharomyces cerevisiae, the majority of the genome’s ohnologs have not diverged at the level of gene expression of chromatin structure.
Collapse
|
143
|
Abstract
Although at the level of resolution of genes and molecules most information about mating in fungi is from a single lineage, the Dikarya, many fundamental discoveries about mating in fungi have been made in the earlier branches of the fungi. These are nonmonophyletic groups that were once classified into the chytrids and zygomycetes. Few species in these lineages offer the potential of genetic tractability, thereby hampering the ability to identify the genes that underlie those fundamental insights. Research performed during the past decade has now established the genes required for mating type determination and pheromone synthesis in some species in the phylum Mucoromycota, especially in the order Mucorales. These findings provide striking parallels with the evolution of mating systems in the Dikarya fungi. Other discoveries in the Mucorales provide the first examples of sex-cell type identity being driven directly by a gene that confers mating type, a trait considered more of relevance to animal sex determination but difficult to investigate in animals. Despite these discoveries, there remains much to be gleaned about mating systems from these fungi.
Collapse
|
144
|
Abstract
Purpose of Review Comparative genome sequencing studies of human fungal pathogens enable identification of genes and variants associated with virulence and drug resistance. This review describes current approaches, resources, and advances in applying whole genome sequencing to study clinically important fungal pathogens. Recent Findings Genomes for some important fungal pathogens were only recently assembled, revealing gene family expansions in many species and extreme gene loss in one obligate species. The scale and scope of species sequenced is rapidly expanding, leveraging technological advances to assemble and annotate genomes with higher precision. By using iteratively improved reference assemblies or those generated de novo for new species, recent studies have compared the sequence of isolates representing populations or clinical cohorts. Whole genome approaches provide the resolution necessary for comparison of closely related isolates, for example, in the analysis of outbreaks or sampled across time within a single host. Summary Genomic analysis of fungal pathogens has enabled both basic research and diagnostic studies. The increased scale of sequencing can be applied across populations, and new metagenomic methods allow direct analysis of complex samples.
Collapse
|
145
|
Shelest E. Transcription Factors in Fungi: TFome Dynamics, Three Major Families, and Dual-Specificity TFs. Front Genet 2017; 8:53. [PMID: 28523015 PMCID: PMC5415576 DOI: 10.3389/fgene.2017.00053] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Accepted: 04/13/2017] [Indexed: 11/13/2022] Open
Abstract
Transcription factors (TFs) are essential regulators of gene expression in a cell; the entire repertoire of TFs (TFome) of a species reflects its regulatory potential and the evolutionary history of the regulatory mechanisms. In this work, I give an overview of fungal TFs, analyze TFome dynamics, and discuss TF families and types of particular interest. Whole-genome annotation of TFs in more than 200 fungal species revealed ~80 families of TFs that are typically found in fungi. Almost half of the considered genomes belonged to basidiomycetes and zygomycetes, which have been underrepresented in earlier annotations due to dearth of sequenced genomes. The TFomes were analyzed in terms of expansion strategies genome- and lineage-wise. Generally, TFomes are known to correlate with genome size; but what happens to particular families when a TFome is expanding? By dissecting TFomes into single families and estimating the impact of each of them, I show that in fungi the TFome increment is largely limited to three families (C6 Zn clusters, C2H2-like Zn fingers, and homeodomain-like). To see whether this is a fungal peculiarity or a ubiquitous eukaryotic feature, I also analyzed metazoan TFomes, where I observed a similar trend (limited number of TFome-shaping families) but also some important differences connected mostly with the increased complexity in animals. The expansion strategies of TF families are lineage-specific; I demonstrate how the patterns of the TF families' distributions, designated as "TF signatures," can be used as a taxonomic feature, e.g., for allocation of uncertain phyla. In addition, both fungal and metazoan genomes contain an intriguing type of TFs. While usually TFs have a single DNA-binding domain, these TFs possess two (or more) different DNA-binding specificities. I demonstrate that dual-specific TFs comprising various combinations of all major TF families are a typical feature of fungal and animal genomes and have an interesting evolutionary history involving gene duplications and domain losses.
Collapse
Affiliation(s)
- Ekaterina Shelest
- Systems biology/Bioinformatics group, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell InstituteJena, Germany
| |
Collapse
|
146
|
Odoni DI, Tamayo-Ramos JA, Sloothaak J, van Heck RGA, Martins Dos Santos VAP, de Graaff LH, Suarez-Diez M, Schaap PJ. Comparative proteomics of Rhizopus delemar ATCC 20344 unravels the role of amino acid catabolism in fumarate accumulation. PeerJ 2017; 5:e3133. [PMID: 28382234 PMCID: PMC5376114 DOI: 10.7717/peerj.3133] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 03/01/2017] [Indexed: 11/20/2022] Open
Abstract
The filamentous fungus Rhizopus delemar naturally accumulates relatively high amounts of fumarate. Although the culture conditions that increase fumarate yields are well established, the network underlying the accumulation of fumarate is not yet fully understood. We set out to increase the knowledge about fumarate accumulation in R. delemar. To this end, we combined a transcriptomics and proteomics approach to identify key metabolic pathways involved in fumarate production in R. delemar, and propose that a substantial part of the fumarate accumulated in R. delemar during nitrogen starvation results from the urea cycle due to amino acid catabolism.
Collapse
Affiliation(s)
- Dorett I Odoni
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, The Netherlands
| | - Juan A Tamayo-Ramos
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, The Netherlands
| | - Jasper Sloothaak
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, The Netherlands
| | - Ruben G A van Heck
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, The Netherlands
| | - Vitor A P Martins Dos Santos
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, The Netherlands.,LifeGlimmer GmBH, Berlin, Germany
| | - Leo H de Graaff
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, The Netherlands
| | - Maria Suarez-Diez
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, The Netherlands
| | - Peter J Schaap
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
147
|
Li J, Gu F, Wu R, Yang J, Zhang KQ. Phylogenomic evolutionary surveys of subtilase superfamily genes in fungi. Sci Rep 2017; 7:45456. [PMID: 28358043 PMCID: PMC5371821 DOI: 10.1038/srep45456] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 02/28/2017] [Indexed: 01/10/2023] Open
Abstract
Subtilases belong to a superfamily of serine proteases which are ubiquitous in fungi and are suspected to have developed distinct functional properties to help fungi adapt to different ecological niches. In this study, we conducted a large-scale phylogenomic survey of subtilase protease genes in 83 whole genome sequenced fungal species in order to identify the evolutionary patterns and subsequent functional divergences of different subtilase families among the main lineages of the fungal kingdom. Our comparative genomic analyses of the subtilase superfamily indicated that extensive gene duplications, losses and functional diversifications have occurred in fungi, and that the four families of subtilase enzymes in fungi, including proteinase K-like, Pyrolisin, kexin and S53, have distinct evolutionary histories which may have facilitated the adaptation of fungi to a broad array of life strategies. Our study provides new insights into the evolution of the subtilase superfamily in fungi and expands our understanding of the evolution of fungi with different lifestyles.
Collapse
Affiliation(s)
- Juan Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, P.R. China
| | - Fei Gu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, P.R. China
| | - Runian Wu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, P.R. China
| | - JinKui Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, P.R. China
| | - Ke-Qin Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, P.R. China
| |
Collapse
|
148
|
Polaino S, Villalobos-Escobedo JM, Shakya VPS, Miralles-Durán A, Chaudhary S, Sanz C, Shahriari M, Luque EM, Eslava AP, Corrochano LM, Herrera-Estrella A, Idnurm A. A Ras GTPase associated protein is involved in the phototropic and circadian photobiology responses in fungi. Sci Rep 2017; 7:44790. [PMID: 28322269 PMCID: PMC5359613 DOI: 10.1038/srep44790] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 02/14/2017] [Indexed: 01/09/2023] Open
Abstract
Light is an environmental signal perceived by most eukaryotic organisms and that can have major impacts on their growth and development. The MadC protein in the fungus Phycomyces blakesleeanus (Mucoromycotina) has been postulated to form part of the photosensory input for phototropism of the fruiting body sporangiophores, but the madC gene has remained unidentified since the 1960s when madC mutants were first isolated. In this study the madC gene was identified by positional cloning. All madC mutant strains contain loss-of-function point mutations within a gene predicted to encode a GTPase activating protein (GAP) for Ras. The madC gene complements the Saccharomyces cerevisiae Ras-GAP ira1 mutant and the encoded MadC protein interacts with P. blakesleeanus Ras homologs in yeast two-hybrid assays, indicating that MadC is a regulator of Ras signaling. Deletion of the homolog in the filamentous ascomycete Neurospora crassa affects the circadian clock output, yielding a pattern of asexual conidiation similar to a ras-1 mutant that is used in circadian studies in N. crassa. Thus, MadC is unlikely to be a photosensor, yet is a fundamental link in the photoresponses from blue light perceived by the conserved White Collar complex with Ras signaling in two distantly-related filamentous fungal species.
Collapse
Affiliation(s)
- Silvia Polaino
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, USA
| | - José M Villalobos-Escobedo
- Laboratorio Nacional de Genómica para la Biodiversidad, CINVESTAV Sede Irapuato, Irapuato, Guanajuato, Mexico
| | - Viplendra P S Shakya
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, USA
| | | | - Suman Chaudhary
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, USA
| | - Catalina Sanz
- Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain
| | - Mahdi Shahriari
- Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain
| | - Eva M Luque
- Departamento de Genética, Universidad de Sevilla, Sevilla, Spain
| | - Arturo P Eslava
- Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain
| | | | - Alfredo Herrera-Estrella
- Laboratorio Nacional de Genómica para la Biodiversidad, CINVESTAV Sede Irapuato, Irapuato, Guanajuato, Mexico
| | - Alexander Idnurm
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, USA.,School of BioSciences, University of Melbourne, Australia
| |
Collapse
|
149
|
Teixeira M, Moreno L, Stielow B, Muszewska A, Hainaut M, Gonzaga L, Abouelleil A, Patané J, Priest M, Souza R, Young S, Ferreira K, Zeng Q, da Cunha M, Gladki A, Barker B, Vicente V, de Souza E, Almeida S, Henrissat B, Vasconcelos A, Deng S, Voglmayr H, Moussa T, Gorbushina A, Felipe M, Cuomo C, de Hoog GS. Exploring the genomic diversity of black yeasts and relatives ( Chaetothyriales, Ascomycota). Stud Mycol 2017; 86:1-28. [PMID: 28348446 PMCID: PMC5358931 DOI: 10.1016/j.simyco.2017.01.001] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The order Chaetothyriales (Pezizomycotina, Ascomycetes) harbours obligatorily melanised fungi and includes numerous etiologic agents of chromoblastomycosis, phaeohyphomycosis and other diseases of vertebrate hosts. Diseases range from mild cutaneous to fatal cerebral or disseminated infections and affect humans and cold-blooded animals globally. In addition, Chaetothyriales comprise species with aquatic, rock-inhabiting, ant-associated, and mycoparasitic life-styles, as well as species that tolerate toxic compounds, suggesting a high degree of versatile extremotolerance. To understand their biology and divergent niche occupation, we sequenced and annotated a set of 23 genomes of main the human opportunists within the Chaetothyriales as well as related environmental species. Our analyses included fungi with diverse life-styles, namely opportunistic pathogens and closely related saprobes, to identify genomic adaptations related to pathogenesis. Furthermore, ecological preferences of Chaetothyriales were analysed, in conjuncture with the order-level phylogeny based on conserved ribosomal genes. General characteristics, phylogenomic relationships, transposable elements, sex-related genes, protein family evolution, genes related to protein degradation (MEROPS), carbohydrate-active enzymes (CAZymes), melanin synthesis and secondary metabolism were investigated and compared between species. Genome assemblies varied from 25.81 Mb (Capronia coronata) to 43.03 Mb (Cladophialophora immunda). The bantiana-clade contained the highest number of predicted genes (12 817 on average) as well as larger genomes. We found a low content of mobile elements, with DNA transposons from Tc1/Mariner superfamily being the most abundant across analysed species. Additionally, we identified a reduction of carbohydrate degrading enzymes, specifically many of the Glycosyl Hydrolase (GH) class, while most of the Pectin Lyase (PL) genes were lost in etiological agents of chromoblastomycosis and phaeohyphomycosis. An expansion was found in protein degrading peptidase enzyme families S12 (serine-type D-Ala-D-Ala carboxypeptidases) and M38 (isoaspartyl dipeptidases). Based on genomic information, a wide range of abilities of melanin biosynthesis was revealed; genes related to metabolically distinct DHN, DOPA and pyomelanin pathways were identified. The MAT (MAting Type) locus and other sex-related genes were recognized in all 23 black fungi. Members of the asexual genera Fonsecaea and Cladophialophora appear to be heterothallic with a single copy of either MAT-1-1 or MAT-1-2 in each individual. All Capronia species are homothallic as both MAT1-1 and MAT1-2 genes were found in each single genome. The genomic synteny of the MAT-locus flanking genes (SLA2-APN2-COX13) is not conserved in black fungi as is commonly observed in Eurotiomycetes, indicating a unique genomic context for MAT in those species. The heterokaryon (het) genes expansion associated with the low selective pressure at the MAT-locus suggests that a parasexual cycle may play an important role in generating diversity among those fungi.
Collapse
Affiliation(s)
- M.M. Teixeira
- Division of Pathogen Genomics, Translational Genomics Research Institute (TGen), Flagstaff, AZ, USA
- Department of Cell Biology, University of Brasília, Brasilia, Brazil
| | - L.F. Moreno
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
- Department of Basic Pathology, Federal University of Paraná State, Curitiba, PR, Brazi1
- Institute of Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - B.J. Stielow
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - A. Muszewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - M. Hainaut
- Université Aix-Marseille (CNRS), Marseille, France
| | - L. Gonzaga
- The National Laboratory for Scientific Computing (LNCC), Petropolis, Brazil
| | | | - J.S.L. Patané
- Department of Biochemistry, University of São Paulo, Brazil
| | - M. Priest
- Broad Institute of MIT and Harvard, Cambridge, USA
| | - R. Souza
- The National Laboratory for Scientific Computing (LNCC), Petropolis, Brazil
| | - S. Young
- Broad Institute of MIT and Harvard, Cambridge, USA
| | - K.S. Ferreira
- Department of Biological Sciences, Federal University of São Paulo, Diadema, SP, Brazil
| | - Q. Zeng
- Broad Institute of MIT and Harvard, Cambridge, USA
| | - M.M.L. da Cunha
- Núcleo Multidisciplinar de Pesquisa em Biologia UFRJ-Xerém-NUMPEX-BIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - A. Gladki
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - B. Barker
- Division of Pathogen Genomics, Translational Genomics Research Institute (TGen), Flagstaff, AZ, USA
| | - V.A. Vicente
- Department of Basic Pathology, Federal University of Paraná State, Curitiba, PR, Brazi1
| | - E.M. de Souza
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, PR, Brazil
| | - S. Almeida
- Department of Clinical and Toxicological Analysis, University of São Paulo, São Paulo, SP, Brazil
| | - B. Henrissat
- Université Aix-Marseille (CNRS), Marseille, France
| | - A.T.R. Vasconcelos
- The National Laboratory for Scientific Computing (LNCC), Petropolis, Brazil
| | - S. Deng
- Shanghai Institute of Medical Mycology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - H. Voglmayr
- Department of Systematic and Evolutionary Botany, University of Vienna, Vienna, Austria
| | - T.A.A. Moussa
- Biological Sciences Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - A. Gorbushina
- Federal Institute for Material Research and Testing (BAM), Berlin, Germany
| | - M.S.S. Felipe
- Department of Cell Biology, University of Brasília, Brasilia, Brazil
| | - C.A. Cuomo
- Broad Institute of MIT and Harvard, Cambridge, USA
| | - G. Sybren de Hoog
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
- Department of Basic Pathology, Federal University of Paraná State, Curitiba, PR, Brazi1
- Institute of Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
- Biological Sciences Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
150
|
The inhibition of mating in Phycomyces blakesleeanus by light is dependent on the MadA-MadB complex that acts in a sex-specific manner. Fungal Genet Biol 2017; 101:20-30. [PMID: 28214601 DOI: 10.1016/j.fgb.2017.02.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 01/23/2017] [Accepted: 02/13/2017] [Indexed: 12/15/2022]
Abstract
Light is an environmental signal that influences reproduction in the Mucoromycotina fungi, as it does in many other species of fungi. Mating in Phycomyces blakesleeanus is inhibited by light, but the molecular mechanisms for this inhibition are uncharacterized. In this analysis, the role of the light-sensing MadA-MadB complex in mating was tested. The MadA-MadB complex is homologous to the Neurospora crassa White Collar complex. Three genes required for cell type determination in the sex locus or pheromone biosynthesis are transcriptionally-regulated by light and are controlled by MadA and MadB. This regulation acts through the plus partner, indicating that the inhibitory effect of light on mating is executed through only one of the two sexes. These results are an example whereby the mating types of fungi have acquired sex-specific properties beyond their role in conferring cell-type identity, and provide insight into how sex-determining chromosomal regions can expand the traits they control.
Collapse
|