101
|
EZH2 in Bladder Cancer, a Promising Therapeutic Target. Int J Mol Sci 2015; 16:27107-32. [PMID: 26580594 PMCID: PMC4661858 DOI: 10.3390/ijms161126000] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 10/28/2015] [Accepted: 11/02/2015] [Indexed: 01/17/2023] Open
Abstract
Bladder Cancer (BC) represents a current clinical and social challenge. The recent studies aimed to describe the genomic landscape of BC have underscored the relevance of epigenetic alterations in the pathogenesis of these tumors. Among the epigenetic alterations, histone modifications occupied a central role not only in cancer, but also in normal organism homeostasis and development. EZH2 (Enhancer of Zeste Homolog 2) belongs to the Polycomb repressive complex 2 as its catalytic subunit, which through the trimethylation of H3 (Histone 3) on K27 (Lysine 27), produces gene silencing. EZH2 is frequently overexpressed in multiple tumor types, including BC, and plays multiple roles besides the well-recognized histone mark generation. In this review, we summarize the present knowledge on the oncogenic roles of EZH2 and its potential use as a therapeutic target, with special emphasis on BC pathogenesis and management.
Collapse
|
102
|
Li Y, Sarkar FH. Role of BioResponse 3,3'-Diindolylmethane in the Treatment of Human Prostate Cancer: Clinical Experience. Med Princ Pract 2015; 25 Suppl 2:11-7. [PMID: 26501150 PMCID: PMC4848191 DOI: 10.1159/000439307] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 08/11/2015] [Indexed: 01/09/2023] Open
Abstract
Castration-resistant prostate cancer (CRPC) progression after androgen deprivation therapy shows upregulated expression of androgen receptor (AR) splice variants, induced epithelial-to-mesenchymal transition phenotypes and enhanced stem cell characteristics, all of which are associated with resistance to enzalutamide. Since there is no curative treatment for CRPC, innovative treatments are urgently needed. In our recent study, we found that resistance to enzalutamide was partly due to deregulated expression of microRNAs such as miR-34a, miR-124, miR-27b, miR-320 and let-7, which play important roles in regulating AR and stem cell marker gene expression that appears to be linked with resistance to enzalutamide. Importantly, we found that BioResponse 3,3'-diindolylmethane (BR-DIM) treatment in vitro and in vivo caused downregulation in the expression of wild-type AR. The AR splice variants, Lin28B and EZH2, appear to be deregulated through the re-expression of let-7, miR-27b, miR-320 and miR-34a in human prostate cancer (PCa). BR-DIM administered in clinical trials was well tolerated, and 93% of patients had detectable prostatic DIM levels. The inhibitory effects of BR-DIM on AR and AR target gene such as prostate-specific antigen were also observed in the clinical trial. Our preclinical and clinical studies provide the scientific basis for a 'proof-of-concept' clinical trial in CRPC patients treated with enzalutamide in combination with BR-DIM. This strategy could be expanded in future clinical trials in patients with PCa to determine whether or not they could achieve a better treatment outcome which could be partly mediated by delaying or preventing the development of CRPC.
Collapse
Affiliation(s)
- Yiwei Li
- Department of University School of Medicine, Detroit, Mich., USA
| | - Fazlul H. Sarkar
- Department of University School of Medicine, Detroit, Mich., USA
- Department of Oncology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Mich., USA
| |
Collapse
|
103
|
Garajová I, Giovannetti E, Caponi S, van Zweeden A, Peters GJ. MiRNAs and Their Interference with the Main Molecular Mechanisms Responsible for Drug Resistance in Pancreatic Cancer. CURRENT PHARMACOLOGY REPORTS 2015; 1:223-233. [DOI: 10.1007/s40495-014-0008-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2023]
|
104
|
Yang C, Jin K, Tong Y, Cho WC. Therapeutic potential of cancer stem cells. Med Oncol 2015; 32:619. [PMID: 25920610 DOI: 10.1007/s12032-015-0619-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 04/10/2015] [Indexed: 01/06/2023]
Abstract
Cancer stem cells (CSCs) play an important role in cancer growth, self-renewal, metastasis, recurrence and radio/chemotherapy. However, the underlying mechanisms remain elusive. In this review, we explore the roles of CSCs in cancer's relapse and progression and discuss the biomarkers of CSCs to predict clinical outcome and their diagnostic potential. The different approaches of CSC therapies are also reviewed, including cytotoxic, radiation, differentiation and targeting signaling pathways. We also discuss the challenge of targeting CSCs in cancer therapy. In addition, non-coding RNAs in CSC therapies are also discussed.
Collapse
Affiliation(s)
- Chunguang Yang
- Department of Otorhinolaryngology, Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | | | | | | |
Collapse
|
105
|
Xie C, Chen W, Zhang M, Cai Q, Xu W, Li X, Jiang S. MDM4 regulation by the let-7 miRNA family in the DNA damage response of glioma cells. FEBS Lett 2015; 589:1958-65. [PMID: 26028311 DOI: 10.1016/j.febslet.2015.05.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Revised: 05/07/2015] [Accepted: 05/15/2015] [Indexed: 12/31/2022]
Abstract
Despite extensive investigation into the role of let-7 miRNAs in pathological tumor processes, their involvement in the DNA damage response remains unclear. Here we show that most let-7 family members down-regulate MDM4 expression via binding to MDM4 mRNA at a conserved DNA sequence. Expression of exogenous let-7 miRNA mimics decreased MDM4 protein but not mRNA levels. Several DNA damage reagents increased let-7 expression, thereby decreasing MDM4 protein levels in glioma cells. Inhibition of endogenous let-7 with antisense RNAs rescued MDM4 protein levels with or without MG132, a proteasome-dependent degradation inhibitor. An MDM4 mutation identified in a glioma patient was associated with loss of the putative MDM4 target site. Therefore, let-7 binding to MDM4 is implicated in the DNA damage response.
Collapse
Affiliation(s)
- Chen Xie
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China; Shenzhen Weiguang Biological Products Co., Ltd., Shenzhen 518107, China
| | - Wei Chen
- Department of Gynecology, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China; Gene Science & Health Company, Shenzhen 518048, China
| | - Mengdie Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Qiuxian Cai
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Weiyi Xu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiaodi Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Songshan Jiang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
106
|
Abstract
Prostate cancer is a frequently diagnosed cancer in males with high mortality in the world. As a heterogeneous tissue, the tumor mass contains a subpopulation that is called as cancer stem cells and displays stem-like properties such as self-renewal, epithelial-mesenchymal transition, metastasis, and drug resistance. Cancer stem cells have been identified in variant tumors and shown to be regulated by various molecules including microRNAs. MicroRNAs are a class of small non-coding RNAs, which can influence tumorigenesis via different mechanisms. In this review, we focus on the functions of microRNAs on regulating the stemness of prostate cancer stem cells with different mechanisms and propose the potential roles of microRNAs in prostate cancer therapy.
Collapse
Affiliation(s)
- Yu-Xiang Fang
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Clinical Stem Cell Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yun-Li Chang
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Clinical Stem Cell Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Wei-Qiang Gao
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Clinical Stem Cell Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China
| |
Collapse
|
107
|
Adhikary G, Grun D, Balasubramanian S, Kerr C, Huang JM, Eckert RL. Survival of skin cancer stem cells requires the Ezh2 polycomb group protein. Carcinogenesis 2015; 36:800-10. [PMID: 25969142 DOI: 10.1093/carcin/bgv064] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 05/06/2015] [Indexed: 01/01/2023] Open
Abstract
Polycomb group proteins, including Ezh2, are important candidate stem cell maintenance proteins in epidermal squamous cell carcinoma. We previously showed that epidermal cancer stem cells (ECS cells) represent a minority of cells in tumors, are highly enriched in Ezh2 and drive aggressive tumor formation. We now show that Ezh2 is required for ECS cell survival, migration, invasion and tumor formation and that this is associated with increased histone H3 trimethylation on lysine 27, a mark of Ezh2 action. We also show that Ezh2 knockdown or treatment with Ezh2 inhibitors, GSK126 or EPZ-6438, reduces Ezh2 level and activity, leading to reduced ECS cell spheroid formation, migration, invasion and tumor growth. These studies indicate that epidermal squamous cell carcinoma cells contain a subpopulation of cancer stem (tumor-initiating) cells that are enriched in Ezh2, that Ezh2 is required for optimal ECS cell survival and tumor formation and that treatment with Ezh2 inhibitors may be a strategy for reducing ECS cell survival and suppressing tumor formation.
Collapse
Affiliation(s)
- Gautam Adhikary
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 N. Greene Street, Baltimore, MD 21201, USA
| | - Daniel Grun
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 N. Greene Street, Baltimore, MD 21201, USA
| | - Sivaprakasam Balasubramanian
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 N. Greene Street, Baltimore, MD 21201, USA
| | - Candace Kerr
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 N. Greene Street, Baltimore, MD 21201, USA, Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine
| | - Jennifer M Huang
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 N. Greene Street, Baltimore, MD 21201, USA
| | - Richard L Eckert
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 N. Greene Street, Baltimore, MD 21201, USA, Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Department of Dermatology, University of Maryland School of Medicine and Department of Reproductive Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
108
|
Abstract
Recently, nutraceuticals have received increasing attention as the agents for cancer prevention and supplement with conventional therapy. Prostate cancer (PCa) is the most frequently diagnosed cancer and second leading cause of cancer-related death in men in the US. Growing evidences from epidemiological studies, in vitro experimental studies, animal studies, and clinical trials have shown that nutraceuticals could be very useful for the prevention and treatment of PCa. Several nutraceuticals including isoflavone, indole-3-carbinol, 3,3'-diindolylmethane, lycopene, (-)-epigallocatechin-3-gallate, and curcumin are known to downregulate the signal transductions in AR, Akt, NF-κB, and other signal transduction pathways which are vital for the development of PCa and the progression of PCa from androgen-sensitive to castrate-resistant PCa. Therefore, nutraceutical treatment in combination with conventional therapeutics could achieve better treatment outcome in prostate cancer therapy. Interestingly, some nutraceuticals could regulate the function of cancer stem cell (CSC)-related miRNAs and associated molecules, leading to the inhibition of prostatic CSCs which are responsible for drug resistance, tumor progression, and recurrence of PCa. Hence, nutraceuticals may serve as powerful agents for the prevention of PCa progression and they could also be useful in combination with chemotherapeutics or radiotherapy. Such strategy could become a promising newer approach for the treatment of metastatic PCa with better treatment outcome by improving overall survival.
Collapse
Affiliation(s)
- Yiwei Li
- Department of Pathology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, 740 Hudson Webber Cancer Research Center, 4100 John R, Detroit, MI, 48201, USA
| | | | | | | | | |
Collapse
|
109
|
Ayub SG, Kaul D, Ayub T. Microdissecting the role of microRNAs in the pathogenesis of prostate cancer. Cancer Genet 2015; 208:289-302. [PMID: 26004033 DOI: 10.1016/j.cancergen.2015.02.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 02/16/2015] [Accepted: 02/21/2015] [Indexed: 12/18/2022]
Abstract
MicroRNAs (miRNAs) are naturally occurring, small, non-coding RNA molecules that post-transcriptionally regulate the expression of a large number of genes involved in various biological processes, either through mRNA degradation or through translation inhibition. Since the discovery of miRNAs, a vast amount of research has implicated the deregulated expression of miRNAs in different malignancies, including prostate cancer (PCa). Different miRNA expression profiles are reportedly associated with the development, progression, and emergence of castration-resistant PCa (CRPC), suggesting their use in the diagnosis, prognosis, and development of anti-cancer treatment models directed against this disease. However, before their exploitation in terms of therapeutics, a thorough understanding and in-depth mechanistic studies of these miRNAs and the gene networks they orchestrate are necessary for ascertaining their definitive role in the development and progression of PCa. This review attempts to extensively summarize the current knowledge of aberrantly expressed miRNAs and their mode of action in PCa, while highlighting the existing discrepancies and future research warranted.
Collapse
Affiliation(s)
- Shiekh Gazalla Ayub
- Department of Experimental Medicine and Biotechnology, Post-Graduate Institute of Medical Sciences and Research, Chandigarh, India.
| | - Deepak Kaul
- Department of Experimental Medicine and Biotechnology, Post-Graduate Institute of Medical Sciences and Research, Chandigarh, India
| | - Taha Ayub
- Department of Social and Preventive Medicine, Government Medical College, Srinagar, Jammu and Kashmir, India
| |
Collapse
|
110
|
Bauderlique-Le Roy H, Vennin C, Brocqueville G, Spruyt N, Adriaenssens E, Bourette RP. Enrichment of Human Stem-Like Prostate Cells with s-SHIP Promoter Activity Uncovers a Role in Stemness for the Long Noncoding RNA H19. Stem Cells Dev 2015; 24:1252-62. [PMID: 25567531 DOI: 10.1089/scd.2014.0386] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Understanding normal and cancer stem cells should provide insights into the origin of prostate cancer and their mechanisms of resistance to current treatment strategies. In this study, we isolated and characterized stem-like cells present in the immortalized human prostate cell line, RWPE-1. We used a reporter system with green fluorescent protein (GFP) driven by the promoter of s-SHIP (for stem-SH2-domain-containing 5'-inositol phosphatase) whose stem cell-specific expression has been previously shown. We observed that s-SHIP-GFP-expressing RWPE-1 cells showed stem cell characteristics such as increased expression of stem cell surface markers (CD44, CD166, TROP2) and pluripotency transcription factors (Oct4, Sox2), and enhanced sphere-forming capacity and resistance to arsenite-induced cell death. Concomitant increased expression of the long noncoding RNA H19 was observed, which prompted us to investigate a putative role in stemness for this oncofetal gene. Targeted suppression of H19 with siRNA decreased Oct4 and Sox2 gene expression and colony-forming potential in RWPE-1 cells. Conversely, overexpression of H19 significantly increased gene expression of these two transcription factors and the sphere-forming capacity of RWPE-1 cells. Analysis of H19 expression in various prostate and mammary human cell lines revealed similarities with Sox2 expression, suggesting that a functional relationship may exist between H19 and Sox2. Collectively, we provide the first evidence that s-SHIP-GFP promoter reporter offers a unique marker for the enrichment of human stem-like cell populations and highlight a role in stemness for the long noncoding RNA H19.
Collapse
Affiliation(s)
- Hélène Bauderlique-Le Roy
- 1 UMR 8161 CNRS, Institut de Biologie de Lille, SIRIC ONCOLille, Institut Pasteur de Lille , Lille, France
| | | | | | | | | | | |
Collapse
|
111
|
Völkel P, Dupret B, Le Bourhis X, Angrand PO. Diverse involvement of EZH2 in cancer epigenetics. Am J Transl Res 2015; 7:175-193. [PMID: 25901190 PMCID: PMC4399085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Accepted: 01/09/2015] [Indexed: 06/04/2023]
Abstract
EZH2 is the catalytic subunit of Polycomb Repressor Complex 2 (PRC2) which catalyzes methylation of histone H3 at lysine 27 (H3K27me) and mediates gene silencing of target genes via local chromatin reorganization. Numerous evidences show that EZH2 plays a critical role in cancer initiation, progression and metastasis, as well as in cancer stem cell biology. Indeed, EZH2 dysregulation alters gene expression programs in various cancer types. The molecular mechanisms responsible for EZH2 alteration appear to be diverse and depending on the type of cancer. Furthermore, accumulating evidences indicate that EZH2 could also act as a PRC2-independent transcriptional activator in cancer. In this review, we address the current understanding of the oncogenic role of EZH2, including the mechanisms of EZH2 dysregulation in cancer and progresses in therapeutic approaches targeting EZH2.
Collapse
Affiliation(s)
- Pamela Völkel
- Cell Plasticity & Cancer - Inserm U908, University of LilleBâtiment SN3, Cité Scientifique, F-59655 Villeneuve d’Ascq, France
- Interdisciplinary Research Institute - CNRS USR3078/University of LilleParc de la Haute Borne, 50 avenue de Halley, F-59658 Villeneuve d’Ascq, France
| | - Barbara Dupret
- Cell Plasticity & Cancer - Inserm U908, University of LilleBâtiment SN3, Cité Scientifique, F-59655 Villeneuve d’Ascq, France
| | - Xuefen Le Bourhis
- Cell Plasticity & Cancer - Inserm U908, University of LilleBâtiment SN3, Cité Scientifique, F-59655 Villeneuve d’Ascq, France
| | - Pierre-Olivier Angrand
- Cell Plasticity & Cancer - Inserm U908, University of LilleBâtiment SN3, Cité Scientifique, F-59655 Villeneuve d’Ascq, France
| |
Collapse
|
112
|
Guo Y, Su ZY, Kong ANT. Current Perspectives on Epigenetic Modifications by Dietary Chemopreventive and Herbal Phytochemicals. ACTA ACUST UNITED AC 2015; 1:245-257. [PMID: 26328267 DOI: 10.1007/s40495-015-0023-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Studies during the last two decades have revealed the involvement of epigenetic modifications in the development of human cancer. It is now recognized that the interplay of DNA methylation, post-translational histone modification, and non-coding RNAs can interact with genetic defects to drive tumorigenesis. The early onset, reversibility, and dynamic nature of such epigenetic modifications enable them to be developed as promising cancer biomarkers and preventive/therapeutic targets. In addition to the recent approval of several epigenetic therapies in the treatment of human cancer, emerging studies have indicated that dietary phytochemicals might exert cancer chemopreventive effects by targeting epigenetic mechanisms. In this review, we will present the current understanding of the epigenetic alterations in carcinogenesis and highlight the potential of targeting these mechanisms to treat/prevent cancer. The latest findings, published in the past three years regarding the effects of dietary phytochemicals in modulating epigenetic mechanisms will also be discussed.
Collapse
Affiliation(s)
- Yue Guo
- Graduate Program in Pharmaceutical Sciences, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA ; Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Zheng-Yuan Su
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Ah-Ng Tony Kong
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
113
|
Kong D, Sethi S, Li Y, Chen W, Sakr WA, Heath E, Sarkar FH. Androgen receptor splice variants contribute to prostate cancer aggressiveness through induction of EMT and expression of stem cell marker genes. Prostate 2015; 75:161-74. [PMID: 25307492 PMCID: PMC4270852 DOI: 10.1002/pros.22901] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 08/25/2014] [Indexed: 11/07/2022]
Abstract
BACKGROUND The mechanism(s) by which androgen receptor (AR) splice variants contribute to castration-resistant prostate cancer (CRPC) is still lacking. METHODS Expressions of epithelial-to-mesenchymal transition (EMT) and stem cell markers were molecularly tested using prostate cancer (PCa) cells transfected with AR and AR3 (also known as AR-V7) plasmids or siRNA, and also cultured cells under androgen deprivation therapy (ADT) condition. Cell migration, clonogenicity, sphere-forming capacity was assessed using PCa cells under all experimental conditions and 3,3'-diindolylmethane (DIM; BR-DIM) treatment. Human PCa samples from BR-DIM untreated or treated patients were also used for assessing the expression of AR3 and stem cell markers. RESULTS Overexpression of AR led to the induction of EMT phenotype, while overexpression of AR3 not only induced EMT but also led to the expression of stem cell signature genes. More importantly, ADT enhanced the expression of AR and AR3 concomitant with up-regulated expression of EMT and stem cell marker genes. Dihydrotestosterone (DHT) treatment decreased the expression of AR and AR3, and reversed the expression of these EMT and stem cell marker genes. BR-DIM administered to PCa patients prior to radical prostatectomy inhibited the expression of cancer stem cell markers consistent with inhibition of self-renewal of PCa cells after BR-DIM treatment. CONCLUSION AR variants could contribute to PCa progression through induction of EMT and acquisition of stem cell characteristics, which could be attenuated by BR-DIM, suggesting that BR-DIM could become a promising agent for the prevention of CRPC and/or for the treatment of PCa.
Collapse
Affiliation(s)
- Dejuan Kong
- Department of Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan
| | | | | | | | | | | | | |
Collapse
|
114
|
Dietary Glucosinolates Sulforaphane, Phenethyl Isothiocyanate, Indole-3-Carbinol/3,3'-Diindolylmethane: Anti-Oxidative Stress/Inflammation, Nrf2, Epigenetics/Epigenomics and In Vivo Cancer Chemopreventive Efficacy. ACTA ACUST UNITED AC 2015; 1:179-196. [PMID: 26457242 DOI: 10.1007/s40495-015-0017-y] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Glucosinolates are a group of sulfur-containing glycosides found in many plant species, including cruciferous vegetables such as broccoli, cabbage, brussels sprouts, and cauliflower. Accumulating evidence increasingly supports the beneficial effects of dietary glucosinolates on overall health, including as potential anti-cancer agents, because of their role in the prevention of the initiation of carcinogenesis via the induction of cellular defense detoxifying/antioxidant enzymes and their epigenetic mechanisms, including modification of the CpG methylation of cancer-related genes, histone modification regulation and changes in the expression of miRNAs. In this context, the defense mechanism mediated by Nrf2-antioxidative stress and anti-inflammatory signaling pathways can contribute to cellular protection against oxidative stress and reactive metabolites of carcinogens. In this review, we summarize the cancer chemopreventive role of naturally occurring glucosinolate derivatives as inhibitors of carcinogenesis, with particular emphasis on specific molecular targets and epigenetic alterations in in vitro and in vivo human cancer animal models.
Collapse
|
115
|
Baskar V, Park SW, Nile SH. An Update on Potential Perspectives of Glucosinolates on Protection against Microbial Pathogens and Endocrine Dysfunctions in Humans. Crit Rev Food Sci Nutr 2015; 56:2231-49. [DOI: 10.1080/10408398.2014.910748] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
116
|
Role of MicroRNAs in Prostate Cancer Pathogenesis. Clin Genitourin Cancer 2015; 13:261-270. [PMID: 25733057 DOI: 10.1016/j.clgc.2015.01.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 01/09/2015] [Accepted: 01/16/2015] [Indexed: 02/07/2023]
Abstract
Prostate cancer (PCa) remains the most commonly diagnosed malignant tumor in men, and is the second highest cause of cancer mortality after lung tumors in the United States. Accumulating research indicates that microRNAs (miRNAs) are increasingly being implicated in PCa. miRNAs are conserved small noncoding RNAs that control gene expression posttranscriptionally. Recent profiling research suggests that miRNAs are aberrantly expressed in PCa, and these have been implicated in the regulation of apoptosis, cell cycle, epithelial to mesenchymal transition, PCa stem cells, and androgen receptor pathway. All of these might provide the basis for new approaches for PCa. Here, we review current findings regarding miRNA research in PCa to provide a strong basis for future study aimed at promising contributions of miRNA in PCa.
Collapse
|
117
|
Kachakova D, Mitkova A, Popov E, Popov I, Vlahova A, Dikov T, Christova S, Mitev V, Slavov C, Kaneva R. Combinations of serum prostate-specific antigen and plasma expression levels of let-7c, miR-30c, miR-141, and miR-375 as potential better diagnostic biomarkers for prostate cancer. DNA Cell Biol 2014; 34:189-200. [PMID: 25521481 DOI: 10.1089/dna.2014.2663] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In the current study, expression levels of let-7c, miR-30c, miR-141, and miR-375 in plasma from 59 prostate cancer (PC) patients with different clinicopathological characteristics and two groups of controls: 16 benign prostatic hyperplasia (BPH) samples and 11 young asymptomatic men (YAM) were analyzed to evaluate their diagnostic and prognostic value in comparison to prostate-specific antigen (PSA). miR-375 was significantly downregulated in 83.5% of patients compared to BPH controls and showed stronger diagnostic accuracy (area under the curve [AUC]=0.809, 95% CI: 0.697-0.922, p=0.00016) compared with PSA (AUC=0.710, 95% CI: 0.559-0.861, p=0.013). Expression levels of let-7c showed potential to distinguish PC patients from BPH controls with AUC=0.757, but the result did not reach significance. Better discriminating performance was observed when combinations of studied biomarkers were used. Sensitivity of 86.8% and specificity of 81.8% were reached when all biomarkers were combined (AUC=0.877) and YAM were used as calibrators. None of the studied microRNAs (miRNAs) showed correlation with clinicopathological characteristics. PSA levels were significantly correlated with the Gleason score, tumor stage, and lymph node metastasis with Spearman correlation coefficients: 0.612, 0.576, and 0.458. In conclusion, the combination of the studied circulating plasma miRNAs and serum PSA has the potential to be used as a noninvasive diagnostic biomarker for PC screening outperforming the PSA testing alone.
Collapse
Affiliation(s)
- Darina Kachakova
- 1 Department of Medical Chemistry and Biochemistry, Molecular Medicine Center , Medical University-Sofia, Sofia, Bulgaria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
118
|
Wu XQ, Huang C, Liu XH, Li J. MicroRNA let-7a: a novel therapeutic candidate in prostate cancer. Asian J Androl 2014; 16:327-8. [PMID: 24480926 PMCID: PMC3955350 DOI: 10.4103/1008-682x.123680] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
| | | | | | - Jun Li
- School of Pharmacy, Anhui Medical University; Institute for Liver Diseases of Anhui Medical University (AMU); Key Laboratory of Antiinflammatory and Immune Medicine (Anhui Medical University), Ministry of Education, Hefei, China
| |
Collapse
|
119
|
Bao B, Azmi AS, Ali S, Zaiem F, Sarkar FH. Metformin may function as anti-cancer agent via targeting cancer stem cells: the potential biological significance of tumor-associated miRNAs in breast and pancreatic cancers. ANNALS OF TRANSLATIONAL MEDICINE 2014; 2:59. [PMID: 25333034 DOI: 10.3978/j.issn.2305-5839.2014.06.05] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 05/27/2014] [Indexed: 12/13/2022]
Abstract
Metformin is one of the most used diabetic drugs for the management of type II diabetes mellitus (DM) in the world. Increased numbers of epidemiological and clinical studies have provided convincing evidence supporting the role of metformin in the development and progression of a variety of human tumors including breast and pancreatic cancer. Substantial pre-clinical evidence from in vitro and in vivo experimental studies strongly suggests that metformin has an anti-cancer activity mediated through the regulation of several cell signaling pathways including activation of AMP kinase (AMPK), and other direct and indirect mechanisms; however, the detailed mechanism(s) has not yet been fully understood. The concept of cancer stem cells (CSCs) has gained significant attention in recent years due its identification and defining its clinical implications in many different tumors including breast cancer and pancreatic cancer. In this review, we will discuss the protective role of metformin in the development of breast and pancreatic cancers. We will further discuss the role of metformin as an anti-cancer agent, which is in part mediated through targeting CSCs. Finally, we will discuss the potential role of metformin in the modulation of tumor-associated or CSC-associated microRNAs (miRNAs) as part of the novel mechanism of action of metformin in the development and progression of breast and pancreatic cancers.
Collapse
Affiliation(s)
- Bin Bao
- 1 Department of Pathology, 2 Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Asfar S Azmi
- 1 Department of Pathology, 2 Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Shadan Ali
- 1 Department of Pathology, 2 Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Feras Zaiem
- 1 Department of Pathology, 2 Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Fazlul H Sarkar
- 1 Department of Pathology, 2 Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
120
|
Wen X, Deng FM, Wang J. MicroRNAs as predictive biomarkers and therapeutic targets in prostate cancer. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2014; 2:219-230. [PMID: 25374924 PMCID: PMC4219315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 09/30/2014] [Indexed: 06/04/2023]
Abstract
Prostatectomy or irradiation is the most common traditional treatments for localized prostate cancer. In the event of recurrence and/or metastasis, androgen ablation therapy has been the mainstay treatment for many years. Although initially effective, the cancer inevitably recurs as androgen-independent PCa, a disease with limited effective treatments. Enhanced predictive biomarkers are needed at the time of diagnosis to better tailor therapies for patients. MicroRNAs are short nucleotide sequences which can complementary bind to and control gene expression at the post-transcriptional level. Recent studies have demonstrated that many miRNAs are variably expressed in cancers vs. normal tissues, including PCa. In this review, we summarize PCa-specific miRNAs that show potential for their utilization as identifiers of aggressive disease and predictors for risk of recurrence. Additionally, we discuss their potential clinical applications as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Xin Wen
- Center for Health Informatics and Bioinformatics, New York University School of MedicineNew York, NY 10016
- Laura and Isaac Perlmutter Cancer Center, New York University School of MedicineNew York, NY 10016
| | - Fang-Ming Deng
- Department of Pathology, New York University School of MedicineNew York, NY 10016
| | - Jinhua Wang
- Center for Health Informatics and Bioinformatics, New York University School of MedicineNew York, NY 10016
- Laura and Isaac Perlmutter Cancer Center, New York University School of MedicineNew York, NY 10016
- Department of Pediatrics, New York University School of MedicineNew York, NY 10016
| |
Collapse
|
121
|
Regulation of microRNAs by natural agents: new strategies in cancer therapies. BIOMED RESEARCH INTERNATIONAL 2014; 2014:804510. [PMID: 25254214 PMCID: PMC4165563 DOI: 10.1155/2014/804510] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 08/14/2014] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs) are short noncoding RNA which regulate gene expression by messenger RNA (mRNA) degradation or translation repression. The plethora of published reports in recent years demonstrated that they play fundamental roles in many biological processes, such as carcinogenesis, angiogenesis, programmed cell death, cell proliferation, invasion, migration, and differentiation by acting as tumour suppressor or oncogene, and aberrations in their expressions have been linked to onset and progression of various cancers. Furthermore, each miRNA is capable of regulating the expression of many genes, allowing them to simultaneously regulate multiple cellular signalling pathways. Hence, miRNAs have the potential to be used as biomarkers for cancer diagnosis and prognosis as well as therapeutic targets. Recent studies have shown that natural agents such as curcumin, resveratrol, genistein, epigallocatechin-3-gallate, indole-3-carbinol, and 3,3′-diindolylmethane exert their antiproliferative and/or proapoptotic effects through the regulation of one or more miRNAs. Therefore, this review will look at the regulation of miRNAs by natural agents as a means to potentially enhance the efficacy of conventional chemotherapy through combinatorial therapies. It is hoped that this would provide new strategies in cancer therapies to improve overall response and survival outcome in cancer patients.
Collapse
|
122
|
Garajová I, Le Large TY, Frampton AE, Rolfo C, Voortman J, Giovannetti E. Molecular mechanisms underlying the role of microRNAs in the chemoresistance of pancreatic cancer. BIOMED RESEARCH INTERNATIONAL 2014; 2014:678401. [PMID: 25250326 PMCID: PMC4163377 DOI: 10.1155/2014/678401] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 07/28/2014] [Indexed: 01/17/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an extremely severe disease where the mortality and incidence rates are almost identical. This is mainly due to late diagnosis and limited response to current treatments. The tumor macroenvironment/microenvironment have been frequently reported as the major contributors to chemoresistance in PDAC, preventing the drugs from reaching their intended site of action (i.e., the malignant duct cells). However, the recent discovery of microRNAs (miRNAs) has provided new directions for research on mechanisms underlying response to chemotherapy. Due to their tissue-/disease-specific expression and high stability in tissues and biofluids, miRNAs represent new promising diagnostic and prognostic/predictive biomarkers and therapeutic targets. Furthermore, several studies have documented that selected miRNAs, such as miR-21 and miR-34a, may influence response to chemotherapy in several tumor types, including PDAC. In this review, we summarize the current knowledge on the role of miRNAs in PDAC and recent advances in understanding their role in chemoresistance through multiple molecular mechanisms.
Collapse
Affiliation(s)
- Ingrid Garajová
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
- Department of Experimental, Diagnostic and Speciality Medicine, University of Bologna, Sant'Orsola-Malpighi Hospital, Via Massarenti 9, 40138 Bologna, Italy
| | - Tessa Y. Le Large
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Adam E. Frampton
- HPB Surgical Unit, Department of Surgery & Cancer, Imperial College, Hammersmith Hospital Campus, White City, London W12 0NN, UK
| | - Christian Rolfo
- Phase I-Early Clinical Trials Unit, Department of Medical Oncology, Antwerp University Hospital, Wilrijkstraat 10, 2650 Edegem, Belgium
| | - Johannes Voortman
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Elisa Giovannetti
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
- Start-Up Unit, University of Pisa, Lungarno Pacinotti 43, 56126 Pisa, Italy
| |
Collapse
|
123
|
Dong P, Konno Y, Watari H, Hosaka M, Noguchi M, Sakuragi N. The impact of microRNA-mediated PI3K/AKT signaling on epithelial-mesenchymal transition and cancer stemness in endometrial cancer. J Transl Med 2014; 12:231. [PMID: 25141911 PMCID: PMC4145234 DOI: 10.1186/s12967-014-0231-0] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Accepted: 08/12/2014] [Indexed: 02/06/2023] Open
Abstract
Activation of the PI3K/AKT pathway, a common mechanism in all subtypes of endometrial cancers (endometrioid and non-endometrioid tumors), has important roles in contributing to epithelial-mesenchymal transition (EMT) and cancer stem cell (CSC) features. MicroRNAs (miRNAs) are small non-coding RNA molecules that concurrently affect multiple target genes, and regulate a wide range of genes involved in modulating EMT and CSC properties. Here we overview the recent advances revealing the impact of miRNAs on EMT and CSC phenotypes in tumors including endometrial cancer via regulating PI3K/AKT pathway. MiRNAs are crucial mediators of EMT and CSC through targeting PTEN-PI3K-AKT-mTOR axis. In endometrial cancer cells, miRNAs can activate or attenuate EMT and CSC by targeting PTEN and other EMT-associated genes, such as Twist1, ZEB1 and BMI-1. More detailed studies of miRNAs will deepen our understanding of the molecular basis underlying PI3K/AKT-induced endometrial cancer initiation and progression. Targeting key signaling components of PI3K/AKT pathway by restoring or inhibiting miRNA function holds promise as a potential therapeutic approach to suppress EMT and CSC in endometrial cancer.
Collapse
Affiliation(s)
- Peixin Dong
- Department of Women's Health Educational System, Hokkaido University School of Medicine, Hokkaido University, N15, W7, Sapporo 0608638, Japan.
| | | | | | | | | | | |
Collapse
|
124
|
MiR-136 targets E2F1 to reverse cisplatin chemosensitivity in glioma cells. J Neurooncol 2014; 120:43-53. [DOI: 10.1007/s11060-014-1535-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 06/28/2014] [Indexed: 11/26/2022]
|
125
|
Bian EB, Li J, He XJ, Zong G, Jiang T, Li J, Zhao B. Epigenetic modification in gliomas: role of the histone methyltransferase EZH2. Expert Opin Ther Targets 2014; 18:1197-206. [PMID: 25046371 DOI: 10.1517/14728222.2014.941807] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Gliomas are characterized by increased anaplasia, malignization, proliferation and invasion. They exhibit high resistance to standard treatment with combinations of radiotherapy and chemotherapy. They are currently the most common primary malignancy tumors in the brain that is related to a high mortality rate. Recently, increasing evidence suggests that EZH2 is involved in a number of glioma cell processes, including proliferation, apoptosis, invasion and angiogenesis. AREAS COVERED In this review, we emphasize the role of EZH2 in gliomas. We also address that EZH2 interacting with DNA methylation mediates transcriptional repression of specific genes in gliomas, and the regulation of EZH2 by microRNAs in gliomas. EXPERT OPINION Although the exact role of EZH2 in gliomas has not been fully elucidated, to understand the role of EZH2 proteins in epigenetic modification will provide valuable insights into the causes of gliomas, and pave the way to the potential future applications of EZH2 in the treatment of gliomas.
Collapse
Affiliation(s)
- Er-Bao Bian
- The Second Affiliated Hospital of Anhui Medical University, Department of Neurosurgery , Hefei 230601 , China
| | | | | | | | | | | | | |
Collapse
|
126
|
Yamaguchi H, Hung MC. Regulation and Role of EZH2 in Cancer. Cancer Res Treat 2014; 46:209-22. [PMID: 25038756 PMCID: PMC4132442 DOI: 10.4143/crt.2014.46.3.209] [Citation(s) in RCA: 230] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 06/05/2014] [Indexed: 12/11/2022] Open
Abstract
Polycomb repressive complex 2 (PRC2) is the epigenetic regulator that induces histone H3 lysine 27 methylation (H3K27me3) and silences specific gene transcription. Enhancer of zeste homolog 2 (EZH2) is an enzymatic subunit of PRC2, and evidence shows that EZH2 plays an essential role in cancer initiation, development, progression, metastasis, and drug resistance. EZH2 expression is indeed regulated by various oncogenic transcription factors, tumor suppressor miRNAs, and cancer-associated non-coding RNA. EZH2 activity is also controlled by post-translational modifications, which are deregulated in cancer. The canonical role of EZH2 is gene silencing through H3K27me3, but accumulating evidence shows that EZH2 methlyates substrates other than histone and has methylase-independent functions. These non-canonical functions of EZH2 are shown to play a role in cancer progression. In this review, we summarize current information on the regulation and roles of EZH2 in cancer. We also discuss various therapeutic approaches to targeting EZH2.
Collapse
Affiliation(s)
- Hirohito Yamaguchi
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | |
Collapse
|
127
|
Appari M, Babu KR, Kaczorowski A, Gross W, Herr I. Sulforaphane, quercetin and catechins complement each other in elimination of advanced pancreatic cancer by miR-let-7 induction and K-ras inhibition. Int J Oncol 2014; 45:1391-400. [PMID: 25017900 PMCID: PMC4151818 DOI: 10.3892/ijo.2014.2539] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 06/19/2014] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDA) has the worst prognosis of all malignancies, and current therapeutic options do not target cancer stem cells (CSCs), which may be the reason for the extreme aggressiveness. The dietary agents sulforaphane and quercetin enriched e.g., in broccoli, and the main and best studied green tea catechin EGCG hold promise as anti-CSC agents in PDA. We examined the efficacy of additional catechins and the combination of these bioactive agents to stem cell features and miRNA signaling. Two established and one primary PDA cell line and non-malignant pancreatic ductal cells were used. Whereas each agent strongly inhibited colony formation, the catechins ECG and CG were more effective than EGCG. A mixture of green tea catechins (GTCs) significantly inhibited viability, migration, expression of MMP-2 and -9, ALDH1 activity, colony and spheroid formation and induced apoptosis, but the combination of GTCs with sulforaphane or quercetin was superior. Following treatment with bioactive agents, the expression of miR-let7-a was specifically induced in cancer cells but not in normal cells and it was associated with K-ras inhibition. These data demonstrate that sulforaphane, quercetin and GTC complement each other in inhibition of PDA progression by induction of miR-let7-a and inhibition of K-ras.
Collapse
Affiliation(s)
- Mahesh Appari
- Molecular Oncosurgery, University Clinic of Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kamesh R Babu
- Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, University of Heidelberg, Heidelberg, Germany
| | - Adam Kaczorowski
- Molecular Oncosurgery, University Clinic of Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Wolfgang Gross
- Molecular Oncosurgery, University Clinic of Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ingrid Herr
- Molecular Oncosurgery, University Clinic of Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
128
|
Benoit YD, Guezguez B, Boyd AL, Bhatia M. Molecular pathways: epigenetic modulation of Wnt-glycogen synthase kinase-3 signaling to target human cancer stem cells. Clin Cancer Res 2014; 20:5372-8. [PMID: 25006223 DOI: 10.1158/1078-0432.ccr-13-2491] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aberrant regulation of the canonical Wnt signaling pathway (Wnt-β-catenin-GSK3 axis) has been a prevalent theme in cancer biology since earlier observations until recent genetic discoveries gleaned from tumor genome sequencing. During the last few decades, a large body of work demonstrated the involvement of the Wnt-β-catenin-GSK3 signaling axis in the formation and maintenance of cancer stem cells (CSC) responsible for tumor growth in several types of human malignancies. Recent studies have elucidated epigenetic mechanisms that control pluripotency and stemness, and allow a first assessment on how embryonic and normal tissue stem cells are dysregulated in cancer to give rise to CSCs, and how canonical Wnt signaling might be involved. Here, we review emerging concepts highlighting the critical role of epigenetics in CSC development through abnormal canonical Wnt signaling. Finally, we refer to the characterization of novel and powerful inhibitors of chromatin organization machinery that, in turn, restore the Wnt-β-catenin-GSK3 signaling axis in malignant cells, and describe attempts/relevance to bring these compounds into preclinical and clinical studies.
Collapse
Affiliation(s)
- Yannick D Benoit
- Stem Cell and Cancer Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Borhane Guezguez
- Stem Cell and Cancer Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Allison L Boyd
- Stem Cell and Cancer Research Institute, McMaster University, Hamilton, Ontario, Canada. Department of Biochemistry, McMaster University, Hamilton, Ontario, Canada
| | - Mickie Bhatia
- Stem Cell and Cancer Research Institute, McMaster University, Hamilton, Ontario, Canada. Department of Biochemistry, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
129
|
Hoogland AM, Verhoef EI, Roobol MJ, Schröder FH, Wildhagen MF, van der Kwast TH, Jenster G, van Leenders GJLH. Validation of stem cell markers in clinical prostate cancer: α6-integrin is predictive for non-aggressive disease. Prostate 2014; 74:488-96. [PMID: 24375374 DOI: 10.1002/pros.22768] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 12/02/2013] [Indexed: 11/11/2022]
Abstract
BACKGROUND Stem cells are postulated to mediate prostate cancer progression, and represent a small fraction of the entire tumor. Various proteins (α2-integrin, α6-integrin, CD117, CD133, EZH2, OCT3/4) are associated with a prostate cancer stem cell phenotype in cell lines and xenografts. Our objective was to investigate expression of stem cell markers in clinical prostate cancer in relation to outcome. METHODS We validated immunohistochemical expression of stem cell markers in 481 prostate cancer patients and correlated expression with clinicopathologic parameters. RESULTS Sporadic expression of α2-integrin was present in a fraction of tumor cells (<5%) in 94.7% of tumors and associated with PSA > 10 ng/ml (P = 0.04). α6-Integrin expression (<5%) occurred in 28.4% patients, while ≥5% α6-integrin expression was associated with PSA≤10 ng/ml (P = 0.01), Gleason score <7 (P < 0.01) and pT2-disease (P = 0.02). α6-integrin was predictive for biochemical recurrence (P < 0.01), local recurrence (P = 0.03) and disease specific death (P = 0.03). EZH2 expression was generally low with 2.6% of tumors showing ≥1% positive cells. EZH2 was associated with Gleason score ≥7 (P = 0.01) and biochemical recurrence (P = 0.01). We did not identify expression of CD117, CD133, and OCT3/4 in prostate cancer samples. CONCLUSIONS Expression of α2-integrin and EZH2 in a small fraction of prostate cancer cells is supportive for their role as stem cell marker. Although α6-integrin was not a unique stem cell marker, it was predictive for prostate cancer biochemical and local recurrence, and disease specific death. The validity of CD117, CD133, and OCT3/4 as prostate cancer stem cell marker is questionable since these proteins were not expressed in clinical prostate cancer.
Collapse
Affiliation(s)
- A Marije Hoogland
- Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
130
|
Xia Y, Zhu Y, Zhou X, Chen Y. Low expression of let-7 predicts poor prognosis in patients with multiple cancers: a meta-analysis. Tumour Biol 2014; 35:5143-8. [PMID: 24756756 DOI: 10.1007/s13277-014-1663-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 01/14/2014] [Indexed: 01/09/2023] Open
Abstract
The connection between microRNA expression and cancers has been identified, and microRNAs may be considered as important prognostic biomarkers. However, it is still inconsistent whether expression of let-7 can predict prognosis in patients with multiple cancers. A meta-analysis was performed by searching PubMed, EMBASE, and ISI Web of Science databases. All data were extracted from articles comparing prognosis in patients with multiple cancers having low expression of let-7 with those having high expression. Pooled hazard ratios (HRs) and corresponding 95 % confidence intervals (CIs) were calculated. Subgroup analyses were conducted for cancer type and ethnicity. A total of 1,757 cases of multiple cancers were involved for this meta-analysis. The HR of low let-7 expression in multiple cancers was 1.80 (95 % CI 1.18-2.76), and that in lung cancer was 1.99 (95 % CI 1.17-3.40). A subgroup analysis was performed on ethnicity; combined HR was 1.61 (95 % CI 0.84-3.11) for Asians and 1.94 (95 % CI 1.11-3.39) for non-Asians. Low expression of let-7 might predict poor prognosis in patients with multiple cancers, especially in lung cancer. Furthermore, let-7 might be a biomarker in non-Asian patients with favorable prognosis.
Collapse
Affiliation(s)
- Yang Xia
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210000, China
| | | | | | | |
Collapse
|
131
|
Zhang WW, Feng Z, Narod SA. Multiple therapeutic and preventive effects of 3,3'-diindolylmethane on cancers including prostate cancer and high grade prostatic intraepithelial neoplasia. J Biomed Res 2014; 28:339-48. [PMID: 25332705 PMCID: PMC4197384 DOI: 10.7555/jbr.28.20140008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 02/07/2014] [Accepted: 02/22/2014] [Indexed: 12/20/2022] Open
Abstract
Cruciferous vegetables belong to the plant family that has flowers with four equal-sized petals in the pattern of a crucifer cross. These vegetables are an abundant source of dietary phytochemicals, including glucosinolates and their hydrolysis products such as indole-3-carbinol (I3C) and 3,3′-diindolylmethane (DIM). By 2013, the total number of natural glucosinolates that have been documented is estimated to be 132. Recently, cruciferous vegetable intake has garnered great interest for its multiple health benefits such as anticancer, antiviral infections, human sex hormone regulation, and its therapeutic and preventive effects on prostate cancer and high grade prostatic intraepithelial neoplasia (HGPIN). DIM is a hydrolysis product of glucosinolates and has been used in various trials. This review is to provide an insight into the latest developments of DIM in treating or preventing both prostate cancer and HGPIN.
Collapse
Affiliation(s)
- William Weiben Zhang
- Division of Urology, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario M4N 3M5, Canada
| | - Zhenqing Feng
- Department of Pathology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Steven A Narod
- Department of Public Health Sciences, Women's College Hospital, Women's College Research Institute, University of Toronto, Toronto, Ontario M4N 3M5, Canada
| |
Collapse
|
132
|
Farooqi AA, Hou MF, Chen CC, Wang CL, Chang HW. Androgen receptor and gene network: Micromechanics reassemble the signaling machinery of TMPRSS2-ERG positive prostate cancer cells. Cancer Cell Int 2014; 14:34. [PMID: 24739220 PMCID: PMC4002202 DOI: 10.1186/1475-2867-14-34] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Accepted: 04/08/2014] [Indexed: 12/12/2022] Open
Abstract
Prostate cancer is a gland tumor in the male reproductive system. It is a multifaceted and genomically complex disease. Transmembrane protease, serine 2 and v-ets erythroblastosis virus E26 homolog (TMPRSS2-ERG) gene fusions are the common molecular signature of prostate cancer. Although tremendous advances have been made in unraveling various facets of TMPRSS2-ERG-positive prostate cancer, many research findings must be sequentially collected and re-interpreted. It is important to understand the activation or repression of target genes and proteins in response to various stimuli and the assembly in signal transduction in TMPRSS2-ERG fusion-positive prostate cancer cells. Accordingly, we divide this multi-component review ofprostate cancer cells into several segments: 1) The role of TMPRSS2-ERG fusion in genomic instability and methylated regulation in prostate cancer and normal cells; 2) Signal transduction cascades in TMPRSS2-ERG fusion-positive prostate cancer; 3) Overexpressed genes in TMPRSS2-ERG fusion-positive prostate cancer cells; 4) miRNA mediated regulation of the androgen receptor (AR) and its associated protein network; 5) Quantitative control of ERG in prostate cancer cells; 6) TMPRSS2-ERG encoded protein targeting; In conclusion, we provide a detailed understanding of TMPRSS2-ERG fusion related information in prostate cancer development to provide a rationale for exploring TMPRSS2-ERG fusion-mediated molecular network machinery.
Collapse
Affiliation(s)
- Ammad Ahmad Farooqi
- Laboratory for Translational Oncology and Personalized Medicine, Rashid Latif Medical College, 35 Km Ferozepur Road, Lahore, Pakistan
| | - Ming-Feng Hou
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan ; Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan ; Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan
| | - Chien-Chi Chen
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu, Taiwan
| | - Chun-Lin Wang
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu, Taiwan
| | - Hsueh-Wei Chang
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan ; Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan ; Translational Research Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan ; Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
133
|
Epigenetically regulated microRNAs in Alzheimer's disease. Neurobiol Aging 2014; 35:731-45. [DOI: 10.1016/j.neurobiolaging.2013.10.082] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 10/09/2013] [Accepted: 10/16/2013] [Indexed: 12/12/2022]
|
134
|
Sethi S, Ali S, Sethi S, Sarkar FH. MicroRNAs in personalized cancer therapy. Clin Genet 2014; 86:68-73. [PMID: 24635652 DOI: 10.1111/cge.12362] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 02/12/2014] [Accepted: 02/12/2014] [Indexed: 01/02/2023]
Abstract
MicroRNAs (miRNAs) are small endogenous noncoding single-stranded RNAs. They critically regulate the post-transcriptional activity of several key physiological and pathological cell processes including cancer. Through their transcriptional regulatory functions, miRNAs control tumor proliferation, invasion and metastasis. The expression of miRNAs is altered in malignancies. It could be either upregulated or downregulated depending upon the role of a particular miRNA in the pathogenetic development of the tumor. The upregulated miRNAs exert an 'oncogenic' effect leading to tumor proliferation and metastasis. The downregulated miRNAs have 'tumor suppressor' effects. Recent studies have demonstrated that miRNAs have a role in the early diagnosis, prognosis and treatment outcome assessment of cancers. Every tumor has specific miRNA alterations, i.e. some are overexpressed and others are downregulated. These altered miRNAs can be used as a tumor-specific 'signature' for potential clinical use in improving the accuracy of diagnosis, determining prognosis and as therapeutic targets for therapy. Specific miRNAs can be targeted using oligonucleotide sequences corresponding to the altered miRNAs. These are referred to as 'antagomirs'. Depending upon the miRNA alterations in the tumor of an individual patient, one could design targeted therapies for personalized medicine in patients. Hence, miRNAs have an immense role in personalized cancer therapy.
Collapse
Affiliation(s)
- S Sethi
- Department of Pathology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | | | | | | |
Collapse
|
135
|
Marchesi I, Giordano A, Bagella L. Roles of enhancer of zeste homolog 2: from skeletal muscle differentiation to rhabdomyosarcoma carcinogenesis. Cell Cycle 2014; 13:516-27. [PMID: 24496329 DOI: 10.4161/cc.27921] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Polycomb group proteins represent a global silencing system involved in embryonic development and stem-cell maintenance that regulates the transition from proliferation to differentiation during organogenesis. Two main complexes have been discovered: the polycomb repressive complex (PRC) 1 and 2, able to induce gene silencing by a synergistic mechanism or independently by each other. Enhancer of zeste homolog 2 (EZH2), the catalytic subunit of PRC2, represses gene transcription through the tri-methylation of histone H3 lysine 27. EZH2 deregulation is frequently associated with tumorigenesis, metastatic character, and poor prognosis in various cancer types. This review explores the role of EZH2 in normal development and in carcinogenesis. We reviewed the polycomb-mediated silencing mechanisms, the regulation of EZH2 activity and its recruitment to target genes. We also analyzed the role of EZH2 in normal muscle differentiation and in rhabdomyosarcoma, considering EZH2 blockade as a new strategy for developing specific therapies.
Collapse
Affiliation(s)
- Irene Marchesi
- Department of Biomedical Sciences; Division of Biochemistry and National Institute of Biostructures and Biosystems; University of Sassari; Sassari, Italy
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine; Center for Biotechnology; College of Science and Technology; Temple University; Philadelphia, PA USA; Human Pathology and Oncology Department; University of Siena; Siena, Italy
| | - Luigi Bagella
- Department of Biomedical Sciences; Division of Biochemistry and National Institute of Biostructures and Biosystems; University of Sassari; Sassari, Italy; Sbarro Institute for Cancer Research and Molecular Medicine; Center for Biotechnology; College of Science and Technology; Temple University; Philadelphia, PA USA
| |
Collapse
|
136
|
Identification of a population of epidermal squamous cell carcinoma cells with enhanced potential for tumor formation. PLoS One 2013; 8:e84324. [PMID: 24376802 PMCID: PMC3869846 DOI: 10.1371/journal.pone.0084324] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 11/17/2013] [Indexed: 01/07/2023] Open
Abstract
Epidermal squamous cell carcinoma is among the most common cancers in humans. These tumors are comprised of phenotypically diverse populations of cells that display varying potential for proliferation and differentiation. An important goal is identifying cells from this population that drive tumor formation. To enrich for tumor-forming cells, cancer cells were grown as spheroids in non-attached conditions. We show that spheroid-selected cells form faster growing and larger tumors in immune-compromised mice as compared to non-selected cells. Moreover, spheroid-selected cells gave rise to tumors following injection of as few as one hundred cells, suggesting these cells have enhanced tumor-forming potential. Cells isolated from spheroid-selected tumors retain an enhanced ability to grow as spheroids when grown in non-attached culture conditions. Thus, these tumor-forming cells retain their phenotype following in vivo passage as tumors. Detailed analysis reveals that spheroid-selected cultures are highly enriched for expression of epidermal stem cell and embryonic stem cell markers, including aldehyde dehydrogenase 1, keratin 15, CD200, keratin 19, Oct4, Bmi-1, Ezh2 and trimethylated histone H3. These studies indicate that a subpopulation of cells that possess stem cell-like properties and express stem cell markers can be derived from human epidermal cancer cells and that these cells display enhanced ability to drive tumor formation.
Collapse
|
137
|
Bao B, Ahmad A, Azmi AS, Ali S, Sarkar FH. Overview of cancer stem cells (CSCs) and mechanisms of their regulation: implications for cancer therapy. ACTA ACUST UNITED AC 2013; Chapter 14:Unit 14.25. [PMID: 23744710 DOI: 10.1002/0471141755.ph1425s61] [Citation(s) in RCA: 183] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The identification of small subpopulations of cancer stem cells (CSCs) from blood mononuclear cells in human acute myeloid leukemia (AML) in 1997 was a landmark observation that recognized the potential role of CSCs in tumor aggressiveness. Two critical properties contribute to the functional role of CSCs in the establishment and recurrence of cancerous tumors: their capacity for self-renewal and their potential to differentiate into unlimited heterogeneous populations of cancer cells. These findings suggest that CSCs may represent novel therapeutic targets for the treatment and/or prevention of tumor progression, since they appear to be involved in cell migration, invasion, metastasis, and treatment resistance-all of which lead to poor clinical outcomes. The identification of CSC-specific markers, the isolation and characterization of CSCs from malignant tissues, and targeting strategies for the destruction of CSCs provide a novel opportunity for cancer research. This overview describes the potential implications of several common CSC markers in the identification of CSC subpopulations that are restricted to common malignant diseases, e.g., leukemia, and breast, prostate, pancreatic, and lung cancers. The role of microRNAs (miRNAs) in the regulation of CSC function is also discussed, as are several methods commonly used in CSC research. The potential role of the antidiabetic drug metformin- which has been shown to have effects on CSCs, and is known to function as an antitumor agent-is discussed as an example of this new class of chemotherapeutics.
Collapse
Affiliation(s)
- Bin Bao
- Department of Pathology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | | | | | | | | |
Collapse
|
138
|
Suzuki H, Maruyama R, Yamamoto E, Kai M. Epigenetic alteration and microRNA dysregulation in cancer. Front Genet 2013; 4:258. [PMID: 24348513 PMCID: PMC3847369 DOI: 10.3389/fgene.2013.00258] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 11/11/2013] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) play pivotal roles in numerous biological processes, and their dysregulation is a common feature of human cancer. Thanks to recent advances in the analysis of the cancer epigenome, we now know that epigenetic alterations, including aberrant DNA methylation and histone modifications, are major causes of miRNA dysregulation in cancer. Moreover, the list of miRNA genes silenced in association with CpG island hypermethylation is rapidly growing, and various oncogenic miRNAs are now known to be upregulated via DNA hypomethylation. Histone modifications also play important roles in the dysregulation of miRNAs, and histone deacetylation and gain of repressive histone marks are strongly associated with miRNA gene silencing. Conversely, miRNA dysregulation is causally related to epigenetic alterations in cancer. Thus aberrant methylation of miRNA genes is a potentially useful biomarker for detecting cancer and predicting its outcome. Given that many of the silenced miRNAs appear to act as tumor suppressors through the targeting of oncogenes, re-expression of the miRNAs could be an effective approach to cancer therapy, and unraveling the relationship between epigenetic alteration and miRNA dysregulation may lead to the discovery of new therapeutic targets.
Collapse
Affiliation(s)
- Hiromu Suzuki
- Department of Molecular Biology, Sapporo Medical University Sapporo, Japan
| | - Reo Maruyama
- Department of Molecular Biology, Sapporo Medical University Sapporo, Japan
| | - Eiichiro Yamamoto
- Department of Molecular Biology, Sapporo Medical University Sapporo, Japan
| | - Masahiro Kai
- Department of Molecular Biology, Sapporo Medical University Sapporo, Japan
| |
Collapse
|
139
|
Sethi S, Ali S, Kong D, Philip PA, Sarkar FH. Clinical Implication of MicroRNAs in Molecular Pathology. Clin Lab Med 2013; 33:773-86. [DOI: 10.1016/j.cll.2013.08.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
140
|
Coppola A, Romito A, Borel C, Gehrig C, Gagnebin M, Falconnet E, Izzo A, Altucci L, Banfi S, Antonarakis SE, Minchiotti G, Cobellis G. Cardiomyogenesis is controlled by the miR-99a/let-7c cluster and epigenetic modifications. Stem Cell Res 2013; 12:323-37. [PMID: 24365598 DOI: 10.1016/j.scr.2013.11.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 11/18/2013] [Accepted: 11/20/2013] [Indexed: 01/24/2023] Open
Abstract
Understanding the molecular basis of cardiomyocyte development is critical for understanding the pathogenesis of pre- and post-natal cardiac disease. MicroRNAs (miRNAs) are post-transcriptional modulators of gene expression that play an important role in many developmental processes. Here, we show that the miR-99a/let-7c cluster, mapping on human chromosome 21, is involved in the control of cardiomyogenesis by altering epigenetic factors. By perturbing miRNA expression in mouse embryonic stem cells, we find that let-7c promotes cardiomyogenesis by upregulating genes involved in mesoderm specification (T/Bra and Nodal) and cardiac differentiation (Mesp1, Nkx2.5 and Tbx5). The action of let-7c is restricted to the early phase of mesoderm formation at the expense of endoderm and its late activation redirects cells toward other mesodermal derivatives. The Polycomb complex group protein Ezh2 is a direct target of let-7c, which promotes cardiac differentiation by modifying the H3K27me3 marks from the promoters of crucial cardiac transcription factors (Nkx2.5, Mef2c, Tbx5). In contrast, miR-99a represses cardiac differentiation via the nucleosome-remodeling factor Smarca5, attenuating the Nodal/Smad2 signaling. We demonstrated that the identified targets are underexpressed in human Down syndrome fetal heart specimens. By perturbing the expression levels of these miRNAs in embryonic stem cells, we were able to demonstrate that these miRNAs control lineage- and stage-specific transcription factors, working in concert with chromatin modifiers to direct cardiomyogenesis.
Collapse
Affiliation(s)
- Antonietta Coppola
- Department of Biophysics, Biochemistry and General Pathology, Seconda Università di Napoli, 80138 Napoli, Italy
| | - Antonio Romito
- Telethon Institute of Genetics and Medicine (TIGEM), 80131 Napoli, Italy
| | - Christelle Borel
- Department of Genetic Medicine and Development, University of Geneva Medical School, 1211 Geneva, Switzerland
| | - Corinne Gehrig
- Department of Genetic Medicine and Development, University of Geneva Medical School, 1211 Geneva, Switzerland
| | - Maryline Gagnebin
- Department of Genetic Medicine and Development, University of Geneva Medical School, 1211 Geneva, Switzerland
| | - Emilie Falconnet
- Department of Genetic Medicine and Development, University of Geneva Medical School, 1211 Geneva, Switzerland
| | - Antonella Izzo
- Department of Molecular Medicine and Biotechnology, Università Federico II, 80131 Napoli, Italy
| | - Lucia Altucci
- Department of Biophysics, Biochemistry and General Pathology, Seconda Università di Napoli, 80138 Napoli, Italy
| | - Sandro Banfi
- Department of Biophysics, Biochemistry and General Pathology, Seconda Università di Napoli, 80138 Napoli, Italy; Telethon Institute of Genetics and Medicine (TIGEM), 80131 Napoli, Italy
| | - Stylianos E Antonarakis
- Department of Genetic Medicine and Development, University of Geneva Medical School, 1211 Geneva, Switzerland
| | - Gabriella Minchiotti
- Institute of Genetics and Biophysics "A. Buzzati-Traverso", CNR, 80131 Napoli, Italy
| | - Gilda Cobellis
- Department of Biophysics, Biochemistry and General Pathology, Seconda Università di Napoli, 80138 Napoli, Italy.
| |
Collapse
|
141
|
Molecular markers for prostate cancer in formalin-fixed paraffin-embedded tissues. BIOMED RESEARCH INTERNATIONAL 2013; 2013:283635. [PMID: 24371818 PMCID: PMC3859157 DOI: 10.1155/2013/283635] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 10/10/2013] [Indexed: 12/14/2022]
Abstract
Prostate cancer (PCa) is the most frequently diagnosed type of cancer in developed countries. The decisive method of diagnosis is based on the results of biopsies, morphologically evaluated to determine the presence or absence of cancer. Although this approach leads to a confident diagnosis in most cases, it can be improved by using the molecular markers present in the tissue. Both miRNAs and proteins are considered excellent candidates for biomarkers in formalin-fixed paraffin-embedded (FFPE) tissues, due to their stability over long periods of time. In the last few years, a concerted effort has been made to develop the necessary tools for their reliable measurement in these types of samples. Furthermore, the use of these kinds of markers may also help in establishing tumor grade and aggressiveness, as well as predicting the possible outcomes in each particular case for the different treatments available. This would aid clinicians in the decision-making process. In this review, we attempt to summarize and discuss the potential use of microRNA and protein profiles in FFPE tissue samples as markers to better predict PCa diagnosis, progression, and response to therapy.
Collapse
|
142
|
Ahmad A, Li Y, Bao B, Kong D, Sarkar FH. Epigenetic regulation of miRNA-cancer stem cells nexus by nutraceuticals. Mol Nutr Food Res 2013; 58:79-86. [PMID: 24272883 DOI: 10.1002/mnfr.201300528] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Revised: 10/06/2013] [Accepted: 10/08/2013] [Indexed: 01/15/2023]
Abstract
Nutraceuticals, the bioactive food components represented by many naturally occurring dietary compounds, have been investigated for a few decades for their numerous beneficial effects, including their anticancer properties. The initial interest in the cancer-preventing/therapeutic ability of these agents was based on their ability to affect multiple signaling pathways that are deregulated in cancer cells. With a shift in the focus of cancer research to the emerging areas such as epigenetic regulation, microRNAs (miRNAs) and the cancer stem cells (CSCs), nutraceuticals initially appeared out of place. However, research investigations over the last several years have slowly but firmly presented evidence that supports a relevance of these agents in modern day research. While nutraceuticals are increasingly being realized to alter miRNA/CSCs expression and function, the molecular mechanism(s) are not very clearly understood. Epigenetic regulation is one mechanism by which these agents exert their anticancer effects. In this focused mini review, we summarize our current understanding of epigenetic regulation of miRNAs and CSCs by nutraceuticals. We discuss both direct and indirect evidences that support such an activity of these compounds.
Collapse
Affiliation(s)
- Aamir Ahmad
- Department of Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | | | | | | | | |
Collapse
|
143
|
Bao B, Li Y, Ahmad A, Azmi AS, Bao G, Ali S, Banerjee S, Kong D, Sarkar FH. Targeting CSC-related miRNAs for cancer therapy by natural agents. Curr Drug Targets 2013; 13:1858-68. [PMID: 23140295 DOI: 10.2174/138945012804545515] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 10/09/2012] [Accepted: 11/03/2012] [Indexed: 12/22/2022]
Abstract
The theory of cancer stem cells (CSCs) has provided evidence on fundamental clinical implications because of the involvement of CSCs in cell migration, invasion, metastasis, and treatment resistance, which leads to the poor clinical outcome of cancer patients. Therefore, targeting CSCs will provide a novel therapeutic strategy for the treatment and/or prevention of tumors. However, the regulation of CSCs and its signaling pathways during tumorigenesis are not well understood. MicroRNAs (miRNAs) have been proved to act as key regulators of the post-transcriptional regulation of genes, which involve in a wide array of biological processes including tumorigenesis. The altered expressions of miRNAs are associated with poor clinical outcome of patients diagnosed with a variety of tumors. Therefore, emerging evidence strongly suggest that miRMAs play critical roles in tumor development and progression. Emerging evidence also suggest that miRNAs participate in the regulation of tumor cell growth, migration, invasion, angiogenesis, drug resistance, and metastasis. Moreover, miRNAs such as let-7, miR-21, miR-22, miR-34, miR-101, miR-146a, and miR-200 have been found to be associated with CSC phenotype and function mediated through targeting oncogenic signaling pathways. In this article, we will discuss the role of miRNAs in the regulation of CSC phenotype and function during tumor development and progression. We will also discuss the potential role of naturally occurring agents (nutraceuticals) as potent anti-tumor agents that are believed to function by targeting CSC-related miRNAs.
Collapse
Affiliation(s)
- Bin Bao
- Departments of Pathology, Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
144
|
Cai J, Yang C, Yang Q, Ding H, Jia J, Guo J, Wang J, Wang Z. Deregulation of let-7e in epithelial ovarian cancer promotes the development of resistance to cisplatin. Oncogenesis 2013; 2:e75. [PMID: 24100610 PMCID: PMC3816216 DOI: 10.1038/oncsis.2013.39] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 08/05/2013] [Accepted: 08/20/2013] [Indexed: 12/29/2022] Open
Abstract
Drug resistance remains a major clinical obstacle to successful treatment in ovarian cancer patients, and the evidence of microRNAs involvement in drug resistance has been emerging recently. In this report, we investigated the role of let-7e in the development of cisplatin-resistant ovarian cancer. On the cellular level, let-7e expression was significantly reduced in cisplatin-resistant human epithelial ovarian cancer (EOC) cell line A2780/CP compared with parental A2780 cell and decreased in a concentration-dependent manner in A2780, SKOV3 and ES2 cells treated with cisplatin. Overexpression of let-7e by transfection of agomir could resensitize A2780/CP and reduce the expression of cisplatin-resistant-related proteins enhancer of zeste 2 (EZH2) and cyclin D1 (CCND1), whereas let-7e inhibitors increased resistance to cisplatin in parental A2780 cells. Quantitative methylation-specific PCR analysis showed hypermethylation of the CpG island adjacent to let-7e in A2780/CP cells, and demethylation treatment with 5-aza-CdR or transfection of pYr-let-7e-shRNA plasmid containing unmethylated let-7e DNA sequence could restore let-7e expression and partly reduce the chemoresistance. In addition, cisplatin combined with let-7e agomirs inhibited the growth of A2780/CP xenograft more effectively than cisplatin alone. Diminished expression of EZH2 and CCND1 and higher cisplatin concentrations in tumor tissue of mice subjected to administration of let-7e agomirs in addition to cisplatin were revealed by immunohistochemistry and atomic absorption spectroscopy, respectively. Taken together, our findings suggest that let-7e may act as a promising therapeutic target for improvement of the sensibility to cisplatin in EOC.
Collapse
Affiliation(s)
- J Cai
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | | | | | | | |
Collapse
|
145
|
Ahmad A, Maitah MY, Ginnebaugh KR, Li Y, Bao B, Gadgeel SM, Sarkar FH. Inhibition of Hedgehog signaling sensitizes NSCLC cells to standard therapies through modulation of EMT-regulating miRNAs. J Hematol Oncol 2013; 6:77. [PMID: 24199791 PMCID: PMC3852827 DOI: 10.1186/1756-8722-6-77] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 09/30/2013] [Indexed: 12/14/2022] Open
Abstract
Background Epidermal growth factor receptor- tyrosine kinase inhibitors (EGFR-TKIs) benefit Non-small cell lung cancer (NSCLC) patients, and an EGFR-TKIi erlotinib, is approved for patients with recurrent NSCLC. However, resistance to erlotinib is a major clinical problem. Earlier we have demonstrated the role of Hedgehog (Hh) signaling in Epithelial-to-Mesenchymal transition (EMT) of NSCLC cells, leading to increased proliferation and invasion. Here, we investigated the role of Hh signaling in erlotinib resistance of TGF-β1-induced NSCLC cells that are reminiscent of EMT cells. Methods Hh signaling was inhibited by specific siRNA and by GDC-0449, a small molecule antagonist of G protein coupled receptor smoothened in the Hh pathway. Not all NSCLC patients are likely to benefit from EGFR-TKIs and, therefore, cisplatin was used to further demonstrate a role of inhibition of Hh signaling in sensitization of resistant EMT cells. Specific pre- and anti-miRNA preparations were used to study the mechanistic involvement of miRNAs in drug resistance mechanism. Results siRNA-mediated inhibition as well as pharmacological inhibition of Hh signaling abrogated resistance of NSCLC cells to erlotinib and cisplatin. It also resulted in re-sensitization of TGF-β1-induced A549 (A549M) cells as well the mesenchymal phenotypic H1299 cells to erlotinib and cisplatin treatment with concomitant up-regulation of cancer stem cell (CSC) markers (Sox2, Nanog and EpCAM) and down-regulation of miR-200 and let-7 family miRNAs. Ectopic up-regulation of miRNAs, especially miR-200b and let-7c, significantly diminished the erlotinib resistance of A549M cells. Inhibition of Hh signaling by GDC-0449 in EMT cells resulted in the attenuation of CSC markers and up-regulation of miR-200b and let-7c, leading to sensitization of EMT cells to drug treatment, thus, confirming a connection between Hh signaling, miRNAs and drug resistance. Conclusions We demonstrate that Hh pathway, through EMT-induction, leads to reduced sensitivity to EGFR-TKIs in NSCLCs. Therefore, targeting Hh pathway may lead to the reversal of EMT phenotype and improve the therapeutic efficacy of EGFR-TKIs in NSCLC patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Fazlul H Sarkar
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| |
Collapse
|
146
|
Targeted disruption of the EZH2-EED complex inhibits EZH2-dependent cancer. Nat Chem Biol 2013; 9:643-50. [PMID: 23974116 PMCID: PMC3778130 DOI: 10.1038/nchembio.1331] [Citation(s) in RCA: 282] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 07/24/2013] [Indexed: 01/05/2023]
Abstract
Enhancer of zeste homolog2 (EZH2) is the histone lysine N-methyltransferase component of the Polycomb repressive complex 2 (PRC2), which in conjunction with embryonic ectoderm development (EED) and suppressor of zeste 12 homolog (SUZ12), regulates cell lineage determination and homeostasis. Enzymatic hyperactivity has been linked to aberrant repression of tumor suppressor genes in diverse cancers. Here, we report the development of stabilized alpha-helix of EZH2 (SAH-EZH2) peptides that selectively inhibit H3 Lys27 trimethylation by dose-responsively disrupting the EZH2/EED complex and reducing EZH2 protein levels, a mechanism distinct from that reported for small molecule EZH2 inhibitors targeting the enzyme catalytic domain. MLL-AF9 leukemia cells, which are dependent on PRC2, undergo growth arrest and monocyte/macrophage differentiation upon treatment with SAH-EZH2, consistent with observed changes in expression of PRC2-regulated, lineage-specific marker genes. Thus, by dissociating the EZH2/EED complex, we pharmacologically modulate an epigenetic “writer” and suppress PRC2-dependent cancer cell growth.
Collapse
|
147
|
Ma Y, Liang D, Liu J, Wen JG, Servoll E, Waaler G, Sæter T, Axcrona K, Vlatkovic L, Axcrona U, Paus E, Yang Y, Zhang Z, Kvalheim G, Nesland JM, Suo Z. SHBG is an important factor in stemness induction of cells by DHT in vitro and associated with poor clinical features of prostate carcinomas. PLoS One 2013; 8:e70558. [PMID: 23936228 PMCID: PMC3728318 DOI: 10.1371/journal.pone.0070558] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2012] [Accepted: 06/24/2013] [Indexed: 11/18/2022] Open
Abstract
Androgen plays a vital role in prostate cancer development. However, it is not clear whether androgens influence stem-like properties of prostate cancer, a feature important for prostate cancer progression. In this study, we show that upon DHT treatment in vitro, prostate cancer cell lines LNCaP and PC-3 were revealed with higher clonogenic potential and higher expression levels of stemness related factors CD44, CD90, Oct3/4 and Nanog. Moreover, sex hormone binding globulin (SHBG) was also simultaneously upregulated in these cells. When the SHBG gene was blocked by SHBG siRNA knock-down, the induction of Oct3/4, Nanog, CD44 and CD90 by DHT was also correspondingly blocked in these cells. Immunohistochemical evaluation of clinical samples disclosed weakly positive, and areas negative for SHBG expression in the benign prostate tissues, while most of the prostate carcinomas were strongly positive for SHBG. In addition, higher levels of SHBG expression were significantly associated with higher Gleason score, more seminal vesicle invasions and lymph node metastases. Collectively, our results show a role of SHBG in upregulating stemness of prostate cancer cells upon DHT exposure in vitro, and SHBG expression in prostate cancer samples is significantly associated with poor clinicopathological features, indicating a role of SHBG in prostate cancer progression.
Collapse
Affiliation(s)
- Yuanyuan Ma
- Department of Pathology, The Norwegian Radium Hospital, Institute of Clinical Medicine, Oslo University Hospital, Faculty of Medicine, University of Oslo, Oslo, Norway
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Surgery II, Peking University Cancer Hospital & Institute, Beijing, China
| | - Dongming Liang
- Department of Pathology, The Norwegian Radium Hospital, Institute of Clinical Medicine, Oslo University Hospital, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Jian Liu
- Department of Pathology, The Norwegian Radium Hospital, Institute of Clinical Medicine, Oslo University Hospital, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Jian-Guo Wen
- Department of Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Henan, China
| | - Einar Servoll
- Department of Surgery, Soerlandet Hospital, Arendal, Norway
| | - Gudmund Waaler
- Department of Surgery, Soerlandet Hospital, Arendal, Norway
| | | | - Karol Axcrona
- Departments of Urology, The Norwegian Radium Hospital, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Ljiljana Vlatkovic
- Department of Pathology, The Norwegian Radium Hospital, Institute of Clinical Medicine, Oslo University Hospital, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Ulrika Axcrona
- Department of Pathology, The Norwegian Radium Hospital, Institute of Clinical Medicine, Oslo University Hospital, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Elisabeth Paus
- Department of Medical Biochemistry, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Yue Yang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Surgery II, Peking University Cancer Hospital & Institute, Beijing, China
| | - Zhiqian Zhang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Cell Biology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Gunnar Kvalheim
- Departments of Cell Therapy, The Norwegian Radium Hospital, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Jahn M. Nesland
- Department of Pathology, The Norwegian Radium Hospital, Institute of Clinical Medicine, Oslo University Hospital, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Zhenhe Suo
- Department of Pathology, The Norwegian Radium Hospital, Institute of Clinical Medicine, Oslo University Hospital, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Henan, China
- * E-mail:
| |
Collapse
|
148
|
Saurat N, Andersson T, Vasistha NA, Molnár Z, Livesey FJ. Dicer is required for neural stem cell multipotency and lineage progression during cerebral cortex development. Neural Dev 2013; 8:14. [PMID: 23895693 PMCID: PMC3737057 DOI: 10.1186/1749-8104-8-14] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 05/22/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND During cerebral cortex development, multipotent neural progenitor cells generate a variety of neuronal subtypes in a fixed temporal order. How a single neural progenitor cell generates the diversity of cortical projection neurons in a temporal sequence is not well understood. Based on their function in developmental timing in other systems, Dicer and microRNAs are potential candidate regulators of cellular pathways that control lineage progression in neural systems. RESULTS Cortex-specific deletion of Dicer results in a marked reduction in the cellular complexity of the cortex, due to a pronounced narrowing in the range of neuronal types generated by Dicer-null cortical stem and progenitor cells. Instead of generating different classes of lamina-specific neurons in order over the 6-day period of neurogenesis, Dicer null cortical stem and progenitor cells continually produce one class of deep layer projection neuron. However, gliogenesis in the Dicer-null cerebral cortex was not delayed, despite the loss of multipotency and the failure of neuronal lineage progression. CONCLUSIONS We conclude that Dicer is required for regulating cortical stem cell multipotency with respect to neuronal diversity, without affecting the larger scale switch from neurogenesis to gliogenesis. The differences in phenotypes reported from different timings of Dicer deletion indicate that the molecular pathways regulating developmental transitions are notably dosage sensitive.
Collapse
Affiliation(s)
- Nathalie Saurat
- Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | | | | | | | | |
Collapse
|
149
|
Clinical advances in molecular biomarkers for cancer diagnosis and therapy. Int J Mol Sci 2013; 14:14771-84. [PMID: 23863689 PMCID: PMC3742272 DOI: 10.3390/ijms140714771] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 06/28/2013] [Accepted: 07/03/2013] [Indexed: 12/20/2022] Open
Abstract
Cancer diagnosis is currently undergoing a paradigm shift with the incorporation of molecular biomarkers as part of routine diagnostic panel. The molecular alteration ranges from those involving the DNA, RNA, microRNAs (miRNAs) and proteins. The miRNAs are recently discovered small non-coding endogenous single-stranded RNAs that critically regulates the development, invasion and metastasis of cancers. They are altered in cancers and have the potential to serve as diagnostic markers for cancer. Moreover, deregulating their activity offers novel cancer therapeutic approaches. The availability of high throughput techniques for the identification of altered cellular molecules allowed their use in cancer diagnosis. Their application to a variety of body specimens from blood to tissues has been helpful for appreciating their use in the clinical context. The development of innovative antibodies for immunohistochemical detection of proteins also assists in diagnosis and risk stratification. Overall, the novel cancer diagnostic tools have extended their application as prognostic risk factors and can be used as targets for personalized medicine.
Collapse
|
150
|
W Watson G, M Beaver L, E Williams D, H Dashwood R, Ho E. Phytochemicals from cruciferous vegetables, epigenetics, and prostate cancer prevention. AAPS JOURNAL 2013; 15:951-61. [PMID: 23800833 DOI: 10.1208/s12248-013-9504-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 06/11/2013] [Indexed: 12/21/2022]
Abstract
Epidemiological evidence has demonstrated a reduced risk of prostate cancer associated with cruciferous vegetable intake. Follow-up studies have attributed this protective activity to the metabolic products of glucosinolates, a class of secondary metabolites produced by crucifers. The metabolic products of glucoraphanin and glucobrassicin, sulforaphane, and indole-3-carbinol respectively, have been the subject of intense investigation by cancer researchers. Sulforaphane and indole-3-carbinol inhibit prostate cancer by both blocking initiation and suppressing prostate cancer progression in vitro and in vivo. Research has largely focused on the anti-initiation and cytoprotective effects of sulforaphane and indole-3-carbinol through induction of phases I and II detoxification pathways. With regards to suppressive activity, research has focused on the ability of sulforaphane and indole-3-carbinol to antagonize cell signaling pathways known to be dysregulated in prostate cancer. Recent investigations have characterized the ability of sulforaphane and indole-3-carbinol derivatives to modulate the activity of enzymes controlling the epigenetic status of prostate cancer cells. In this review, we will summarize the well-established, "classic" non-epigenetic targets of sulforaphane and indole-3-carbinol, and highlight more recent evidence supporting these phytochemicals as epigenetic modulators for prostate cancer chemoprevention.
Collapse
Affiliation(s)
- Gregory W Watson
- Molecular and Cellular Biology, Oregon State University, Corvallis, Oregon, 97331, USA
| | | | | | | | | |
Collapse
|