Ghosh A, Kanthasamy A, Joseph J, Anantharam V, Srivastava P, Dranka BP, Kalyanaraman B, Kanthasamy AG. Anti-inflammatory and neuroprotective effects of an orally active apocynin derivative in pre-clinical models of Parkinson's disease.
J Neuroinflammation 2012;
9:241. [PMID:
23092448 PMCID:
PMC3488558 DOI:
10.1186/1742-2094-9-241]
[Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 10/06/2012] [Indexed: 12/02/2022] Open
Abstract
Background
Parkinson’s disease (PD) is a devastating neurodegenerative disorder characterized by progressive motor debilitation, which affects several million people worldwide. Recent evidence suggests that glial cell activation and its inflammatory response may contribute to the progressive degeneration of dopaminergic neurons in PD. Currently, there are no neuroprotective agents available that can effectively slow the disease progression. Herein, we evaluated the anti-inflammatory and antioxidant efficacy of diapocynin, an oxidative metabolite of the naturally occurring agent apocynin, in a pre-clinical 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD.
Methods
Both pre-treatment and post-treatment of diapocynin were tested in the MPTP mouse model of PD. Diapocynin was administered via oral gavage to MPTP-treated mice. Following the treatment, behavioral, neurochemical and immunohistological studies were performed. Neuroinflammatory markers, such as ionized calcium binding adaptor molecule 1 (Iba-1), glial fibrillary acidic protein (GFAP), gp91phox and inducible nitric oxide synthase (iNOS), were measured in the nigrostriatal system. Nigral tyrosine hydroxylase (TH)-positive neurons as well as oxidative markers 3-nitrotyrosine (3-NT), 4-hydroxynonenal (4-HNE) and striatal dopamine levels were quantified for assessment of the neuroprotective efficacy of diapocynin.
Results
Oral administration of diapocynin significantly attenuated MPTP-induced microglial and astroglial cell activation in the substantia nigra (SN). MPTP-induced expression of gp91phox and iNOS activation in the glial cells of SN was also completely blocked by diapocynin. Notably, diapocynin markedly inhibited MPTP-induced oxidative markers including 3-NT and 4-HNE levels in the SN. Treatment with diapocynin also significantly improved locomotor activity, restored dopamine and its metabolites, and protected dopaminergic neurons and their nerve terminals in this pre-clinical model of PD. Importantly, diapocynin administered 3 days after initiation of the disease restored the neurochemical deficits. Diapocynin also halted the disease progression in a chronic mouse model of PD.
Conclusions
Collectively, these results demonstrate that diapocynin exhibits profound neuroprotective effects in a pre-clinical animal model of PD by attenuating oxidative damage and neuroinflammatory responses. These findings may have important translational implications for treating PD patients.
Collapse