101
|
Turissini DA, Gamez S, White BJ. Genome-wide patterns of polymorphism in an inbred line of the African malaria mosquito Anopheles gambiae. Genome Biol Evol 2014; 6:3094-104. [PMID: 25377942 PMCID: PMC4255774 DOI: 10.1093/gbe/evu243] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2014] [Indexed: 12/21/2022] Open
Abstract
Anopheles gambiae is a major mosquito vector of malaria in Africa. Although increased use of insecticide-based vector control tools has decreased malaria transmission, elimination is likely to require novel genetic control strategies. It can be argued that the absence of an A. gambiae inbred line has slowed progress toward genetic vector control. In order to empower genetic studies and enable precise and reproducible experimentation, we set out to create an inbred line of this species. We found that amenability to inbreeding varied between populations of A. gambiae. After full-sib inbreeding for ten generations, we genotyped 112 individuals--56 saved prior to inbreeding and 56 collected after inbreeding--at a genome-wide panel of single nucleotide polymorphisms (SNPs). Although inbreeding dramatically reduced diversity across much of the genome, we discovered numerous, discrete genomic blocks that maintained high heterozygosity. For one large genomic region, we were able to definitively show that high diversity is due to the persistent polymorphism of a chromosomal inversion. Inbred lines in other eukaryotes often exhibit a qualitatively similar retention of polymorphism when typed at a small number of markers. Our whole-genome SNP data provide the first strong, empirical evidence supporting associative overdominance as the mechanism maintaining higher than expected diversity in inbred lines. Although creation of A. gambiae lines devoid of nearly all polymorphism may not be feasible, our results provide critical insights into how more fully isogenic lines can be created.
Collapse
Affiliation(s)
| | - Stephanie Gamez
- Department of Entomology, University of California, Riverside
| | - Bradley J White
- Department of Entomology, University of California, Riverside Center for Disease Vector Research, Institute for Integrative Genome Biology, University of California, Riverside
| |
Collapse
|
102
|
Coevolutionary patterns and diversification of avian malaria parasites in African sunbirds (Family Nectariniidae). Parasitology 2014; 142:635-47. [DOI: 10.1017/s0031182014001681] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
SUMMARYThe coevolutionary relationships between avian malaria parasites and their hosts influence the host specificity, geographical distribution and pathogenicity of these parasites. However, to understand fine scale coevolutionary host–parasite relationships, robust and widespread sampling from closely related hosts is needed. We thus sought to explore the coevolutionary history of avianPlasmodiumand the widespread African sunbirds, family Nectariniidae. These birds are distributed throughout Africa and occupy a variety of habitats. Considering the role that habitat plays in influencing host-specificity and the role that host-specificity plays in coevolutionary relationships, African sunbirds provide an exceptional model system to study the processes that govern the distribution and diversity of avian malaria. Here we evaluated the coevolutionary histories using a multi-gene phylogeny for Nectariniidae and avianPlasmodiumfound in Nectariniidae. We then assessed the host–parasite biogeography and the structuring of parasite assemblages. We recoveredPlasmodiumlineages concurrently in East, West, South and Island regions of Africa. However, severalPlasmodiumlineages were recovered exclusively within one respective region, despite being found in widely distributed hosts. In addition, we inferred the biogeographic history of these parasites and provide evidence supporting a model of biotic diversification in avianPlasmodiumof African sunbirds.
Collapse
|
103
|
Gimonneau G, Tchioffo MT, Abate L, Boissière A, Awono-Ambéné PH, Nsango SE, Christen R, Morlais I. Composition of Anopheles coluzzii and Anopheles gambiae microbiota from larval to adult stages. INFECTION GENETICS AND EVOLUTION 2014; 28:715-24. [PMID: 25283802 DOI: 10.1016/j.meegid.2014.09.029] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 09/22/2014] [Accepted: 09/24/2014] [Indexed: 01/04/2023]
Abstract
During their immature life stages, malaria mosquitoes are exposed to a wide array of microbes and contaminants from the aquatic habitats. Although prior studies have suggested that environmental exposure shapes the microbial community structure in the adult mosquito, most reports have focused on laboratory-based experiments and on a single mosquito epithelium, the gut. In this study, we investigated the influence of the breeding site on the development of the Anopheles coluzzii and Anopheles gambiae microbiota in natural conditions. We characterized bacterial communities from aquatic habitats, at surface microlayer and subsurface water levels, to freshly emerge adult mosquitoes using multiplexed 16S rRNA gene pyrosequencing and we separately analyzed the microbiota associated with the different epithelia of adult individual, midguts, ovaries and salivary glands. We found that the distribution of bacterial communities in the aquatic habitats differed according to the depth of water collections. Inter-individual variation of bacterial composition was large in larvae guts but adult mosquitoes from a same breeding site shared quite similar microbiota. Although some differences in bacterial abundances were highlighted between the different epithelia of freshly emerged An. coluzzii and An. gambiae, an intriguing feature from our study is the particular similarity of the overall bacterial communities. Our results call for further investigations on the bacterial population dynamics in the different tissues to determine the distinctive characteristics of each microbiota during the mosquito lifespan and to identify specific interactions between certain key phyla or species and the insect life history traits.
Collapse
Affiliation(s)
- Geoffrey Gimonneau
- UMR MIVEGEC (IRD 224-CNRS 5290-UM1-UM2), Institut de Recherche pour le Développement, Montpellier, France; Laboratoire d'Entomologie Médicale, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale, Yaoundé, Cameroon.
| | - Majoline T Tchioffo
- UMR MIVEGEC (IRD 224-CNRS 5290-UM1-UM2), Institut de Recherche pour le Développement, Montpellier, France; Laboratoire d'Entomologie Médicale, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale, Yaoundé, Cameroon.
| | - Luc Abate
- UMR MIVEGEC (IRD 224-CNRS 5290-UM1-UM2), Institut de Recherche pour le Développement, Montpellier, France.
| | - Anne Boissière
- UMR MIVEGEC (IRD 224-CNRS 5290-UM1-UM2), Institut de Recherche pour le Développement, Montpellier, France.
| | - Parfait H Awono-Ambéné
- Laboratoire d'Entomologie Médicale, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale, Yaoundé, Cameroon.
| | - Sandrine E Nsango
- Laboratoire d'Entomologie Médicale, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale, Yaoundé, Cameroon; Université de Douala, Faculté de Médecine et des Sciences Pharmaceutiques, Douala, Cameroon.
| | - Richard Christen
- CNRS UMR 7138, Université de Nice, Faculté des Sciences, Nice, France; Laboratoire de Biologie Virtuelle, UMR 713, Université de Nice, Faculté des Sciences, Nice, France.
| | - Isabelle Morlais
- UMR MIVEGEC (IRD 224-CNRS 5290-UM1-UM2), Institut de Recherche pour le Développement, Montpellier, France; Laboratoire d'Entomologie Médicale, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale, Yaoundé, Cameroon.
| |
Collapse
|
104
|
Niang EHA, Konaté L, Diallo M, Faye O, Dia I. Reproductive isolation among sympatric molecular forms of An. gambiae from inland areas of south-eastern Senegal. PLoS One 2014; 9:e104622. [PMID: 25098711 PMCID: PMC4123975 DOI: 10.1371/journal.pone.0104622] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 07/11/2014] [Indexed: 12/02/2022] Open
Abstract
The Anopheles gambiae species complex includes at least seven morphologically indistinguishable species, one of which, Anopheles gambiae sensu stricto, is the primary mosquito vector responsible for the transmission of malaria across sub-Saharan Africa. Sympatric ecological diversification of An. gambiae s.s. is in progress within this complex, leading to the emergence of at least two incipient species (the M and S molecular forms now recognized as good species and named An. coluzzii and An. gambiae respectively) that show heterogeneous levels of divergence in most parts of Africa. However, this process seems to have broken down in coastal areas of West Africa at the extreme edge of the distribution. We undertook a longitudinal study to describe An. gambiae s.s. populations collected from two inland transects with different ecological characteristics in south-eastern Senegal. Analysis of samples collected from 20 sites across these two transects showed the M and S molecular forms coexisted at almost all sampled sites. Overall, similar hybridization rates (2.16% and 1.86%) were recorded in the two transects; sites with relatively high frequencies of M/S hybrids (up to 7%) were clustered toward the north-western part of both transects, often near urban settings. Estimated inbreeding indices for this putative speciation event varied spatially (range: 0.52-1), with hybridization rates being generally lower than expected under panmictic conditions. Such observations suggest substantial reproductive isolation between the M and S molecular forms, and further support the ongoing process of speciation in these inland areas. According to a recent reclassification of the An. gambiae complex, the M and S molecular forms from this zone correspond to An. coluzzii and An. gambiae, respectively. There is considerable evidence that these molecular forms differ in their behavioural and ecological characteristics. Detailed study of these characteristics will allow the development and implementation of better insect control strategies for combating malaria.
Collapse
Affiliation(s)
- El Hadji Amadou Niang
- Unité d’Entomologie Médicale, Institut Pasteur de Dakar, Dakar, Sénégal
- Laboratoire d’Ecologie Vectorielle et Parasitaire, Université Cheikh Anta Diop de Dakar, Dakar, Sénégal
| | - Lassana Konaté
- Laboratoire d’Ecologie Vectorielle et Parasitaire, Université Cheikh Anta Diop de Dakar, Dakar, Sénégal
| | - Mawlouth Diallo
- Unité d’Entomologie Médicale, Institut Pasteur de Dakar, Dakar, Sénégal
| | - Ousmane Faye
- Laboratoire d’Ecologie Vectorielle et Parasitaire, Université Cheikh Anta Diop de Dakar, Dakar, Sénégal
| | - Ibrahima Dia
- Unité d’Entomologie Médicale, Institut Pasteur de Dakar, Dakar, Sénégal
| |
Collapse
|
105
|
Exposure to disinfectants (soap or hydrogen peroxide) increases tolerance to permethrin in Anopheles gambiae populations from the city of Yaoundé, Cameroon. Malar J 2014; 13:296. [PMID: 25086741 PMCID: PMC4122672 DOI: 10.1186/1475-2875-13-296] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 07/27/2014] [Indexed: 11/25/2022] Open
Abstract
Background The rapid expansion of insecticide resistance is limiting the efficiency of malaria vector control interventions. However, current knowledge of factors inducing pyrethroid resistance remains incomplete. In the present study, the role of selection at the larval stage by disinfectants, such as soap and hydrogen peroxide (H2O2), on adult mosquito resistance to permethrin was investigated. Methods Field Anopheles gambiae sensu lato larvae, were exposed to variable concentrations of soap and H2O2. Larvae surviving to acute toxicity assays after 24 hours were reared to the adult stage and exposed to permethrin. The susceptibility level of adults was compared to the untreated control group. The effect of soap or hydrogen peroxide selection on the length of larval development and emergence rate was assessed. Result Larval bioassays analysis showed a more acute effect of hydrogen peroxide on mosquito larvae compared to soap. The regression lines describing the dose mortality profile showed higher mean and variance to hydrogen peroxide than to soap. The duration of larval development (<5 days) and adults emergence rates (1 to 77%) were shorter and lower compare to control. Anopheles gambiae s.l. larvae surviving to selection with either soap or hydrogen peroxide or both, produced adults who were up to eight-times more resistant to permethrin than mosquitoes from the untreated control group. Conclusion The present study shows that selective pressure exerted by non-insecticidal compounds such as soap and hydrogen peroxide affect An. gambiae s.l. tolerance to pyrethroids. This requires further studies with regard to the adaptation of An. gambiae s.l. to polluted habitats across sub-Saharan Africa cities.
Collapse
|
106
|
Angêlla AF, Salgueiro P, Gil LHS, Vicente JL, Pinto J, Ribolla PEM. Seasonal genetic partitioning in the neotropical malaria vector, Anopheles darlingi. Malar J 2014; 13:203. [PMID: 24885508 PMCID: PMC4059831 DOI: 10.1186/1475-2875-13-203] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 05/21/2014] [Indexed: 11/10/2022] Open
Abstract
Background Anopheles darlingi is the main malaria mosquito vector in the Amazonia region. In spite of being considered a riverine, forest-dwelling species, this mosquito is becoming more abundant in peri-urban areas, increasing malaria risk. This has been associated with human-driven environmental changes such as deforestation. Methods Microsatellites were used to characterize A. darlingi from seven localities along the Madeira River, Rondônia (Brazil), collected in the early and late periods of the rainy season. Results Two genetically distinct subpopulations were detected: one (subpopulation A) was associated with the late rainfall period and seems to be ecologically closer to the typical forest A. darlingi; the other (subpopulation B) was associated with the early rainfall period and is probably more adapted to drier conditions by exploiting permanent anthropogenic breeding sites. Results suggest also a pattern of asymmetric introgression, with more subpopulation A alleles introgressed into subpopulation B. Both subpopulations (and admixed mosquitoes) presented similar malaria infection rates, highlighting the potential for perennial malaria transmission in the region. Conclusions The co-occurrence of two genetically distinct subpopulations of A. darlingi adapted to different periods of rainfall may promote a more perennial transmission of malaria throughout the year. These findings, in a context of strong environmental impact due to deforestation and dam construction, have serious implications for malaria epidemiology and control in the Amazonian region.
Collapse
Affiliation(s)
| | | | | | | | | | - Paulo E M Ribolla
- Departamento de Parasitologia, Instituto de Biociências, Universidade Estadual Paulista "Júlio de Mesquita Neto", Botucatu, SP, Brasil.
| |
Collapse
|
107
|
Cassone BJ, Kamdem C, Cheng C, Tan JC, Hahn MW, Costantini C, Besansky NJ. Gene expression divergence between malaria vector sibling species Anopheles gambiae and An. coluzzii from rural and urban Yaoundé Cameroon. Mol Ecol 2014; 23:2242-59. [PMID: 24673723 DOI: 10.1111/mec.12733] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 03/05/2014] [Accepted: 03/05/2014] [Indexed: 01/07/2023]
Abstract
Divergent selection based on aquatic larval ecology is a likely factor in the recent isolation of two broadly sympatric and morphologically identical African mosquito species, the malaria vectors Anopheles gambiae and An. coluzzii. Population-based genome scans have revealed numerous candidate regions of recent positive selection, but have provided few clues as to the genetic mechanisms underlying behavioural and physiological divergence between the two species, phenotypes which themselves remain obscure. To uncover possible genetic mechanisms, we compared global transcriptional profiles of natural and experimental populations using gene-based microarrays. Larvae were sampled as second and fourth instars from natural populations in and around the city of Yaoundé, capital of Cameroon, where the two species segregate along a gradient of urbanization. Functional enrichment analysis of differentially expressed genes revealed that An. coluzzii--the species that breeds in more stable, biotically complex and potentially polluted urban water bodies--overexpresses genes implicated in detoxification and immunity relative to An. gambiae, which breeds in more ephemeral and relatively depauperate pools and puddles in suburbs and rural areas. Moreover, our data suggest that such overexpression by An. coluzzii is not a transient result of induction by xenobiotics in the larval habitat, but an inherent and presumably adaptive response to repeatedly encountered environmental stressors. Finally, we find no significant overlap between the differentially expressed loci and previously identified genomic regions of recent positive selection, suggesting that transcriptome divergence is regulated by trans-acting factors rather than cis-acting elements.
Collapse
Affiliation(s)
- Bryan J Cassone
- Eck Institute for Global Health & Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556-0369, USA
| | | | | | | | | | | | | |
Collapse
|
108
|
Gonzalez-Quevedo C, Davies RG, Richardson DS. Predictors of malaria infection in a wild bird population: landscape-level analyses reveal climatic and anthropogenic factors. J Anim Ecol 2014; 83:1091-102. [DOI: 10.1111/1365-2656.12214] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 02/07/2014] [Indexed: 01/07/2023]
Affiliation(s)
| | - Richard G. Davies
- School of Biological Sciences; University of East Anglia; Norwich Research Park Norwich UK
| | - David S. Richardson
- School of Biological Sciences; University of East Anglia; Norwich Research Park Norwich UK
| |
Collapse
|
109
|
Roux O, Diabaté A, Simard F. Divergence in threat sensitivity among aquatic larvae of cryptic mosquito species. J Anim Ecol 2013; 83:702-11. [PMID: 24138173 DOI: 10.1111/1365-2656.12163] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 10/13/2013] [Indexed: 11/29/2022]
Abstract
Predation is a major evolutionary force driving speciation. The threat-sensitive response hypothesis predicts that prey adjust and balance the time spent on a costly antipredator response with other activities that enhance their fitness. Thus, prey able to develop an antipredator response proportional to risk intensity should have a selective advantage. Knowledge on how evolution has shaped threat sensitivity among closely related species exposed to different predation pressures is scarce, prompting investigations to better predict and explain its effect on communities. We explored and compared the antipredator response of aquatic mosquito larvae in three sibling species of the Anopheles gambiae complex, with contrasting larval biologies in Burkina Faso. Anopheles arabiensis and An. gambiae sensu stricto breed in temporary water collections where predator densities are low, whereas Anopheles coluzzii is able to thrive in permanent pools where the predation pressure is much higher. We hypothesized that the increase and decline of behavioural antipredator responses might differ between the three species over time. To test this hypothesis, progenies of field-collected mosquitoes were experimentally exposed to a range of soluble predation cues and their response was monitored for up to 48 h. The three species were all threat sensitive but their reaction norms differed. For the range of concentrations tested, An. coluzzii larvae gradually increased in antipredator response, whereas An. gambiae larvae readily displayed antipredator behaviour at low concentrations leading to a saturation of the response for high cue concentrations. An. arabiensis displayed a narrower reaction norm with low response intensity. Larval instars did not differ in their threat sensitivity. The antipredator behaviour of the three species waned after about 1 h of exposure. Early instars tended to express antipredation behaviour for longer than did older instars. This study provides information on how aquatic prey species with an aerial adult stage manage larval predation risk over time according to cue concentrations and suggests that different predation pressures might play a role as a disruptive selective force fostering habitat segregation and speciation within the An. gambiae complex. The evolution of phenotypic plasticity is further discussed in the light of divergent predation pressures.
Collapse
Affiliation(s)
- Olivier Roux
- Institut de Recherche pour le Développement, UMR IRD224-CNRS5290-UM1-UM2 MiVEGEC (Infectious Diseases and Vectors: Ecology, Genetics, Evolution, and Control), 911 Avenue Agropolis, BP 64501, 34394, Montpellier, France.,Institut de Recherche en Sciences de la Santé (IRSS), Direction Régionale de l'Ouest (DRO), BP 390, Bobo Dioulasso, Burkina Faso
| | - Abdoulaye Diabaté
- Institut de Recherche en Sciences de la Santé (IRSS), Direction Régionale de l'Ouest (DRO), BP 390, Bobo Dioulasso, Burkina Faso
| | - Frédéric Simard
- Institut de Recherche pour le Développement, UMR IRD224-CNRS5290-UM1-UM2 MiVEGEC (Infectious Diseases and Vectors: Ecology, Genetics, Evolution, and Control), 911 Avenue Agropolis, BP 64501, 34394, Montpellier, France
| |
Collapse
|
110
|
Tchioffo MT, Boissière A, Churcher TS, Abate L, Gimonneau G, Nsango SE, Awono-Ambéné PH, Christen R, Berry A, Morlais I. Modulation of malaria infection in Anopheles gambiae mosquitoes exposed to natural midgut bacteria. PLoS One 2013; 8:e81663. [PMID: 24324714 PMCID: PMC3855763 DOI: 10.1371/journal.pone.0081663] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Accepted: 10/15/2013] [Indexed: 12/15/2022] Open
Abstract
The development of Plasmodium falciparum within the Anopheles gambiae mosquito relies on complex vector-parasite interactions, however the resident midgut microbiota also plays an important role in mediating parasite infection. In natural conditions, the mosquito microbial flora is diverse, composed of commensal and symbiotic bacteria. We report here the isolation of culturable midgut bacteria from mosquitoes collected in the field in Cameroon and their identification based on the 16S rRNA gene sequencing. We next measured the effect of selected natural bacterial isolates on Plasmodium falciparum infection prevalence and intensity over multiple infectious feedings and found that the bacteria significantly reduced the prevalence and intensity of infection. These results contrast with our previous study where the abundance of Enterobacteriaceae positively correlated with P. falciparum infection (Boissière et al. 2012). The oral infection of bacteria probably led to the disruption of the gut homeostasis and activated immune responses, and this pinpoints the importance of studying microbe-parasite interactions in natural conditions. Our results indicate that the effect of bacterial exposure on P. falciparum infection varies with factors from the parasite and the human host and calls for deeper dissection of these parameters for accurate interpretation of bacterial exposure results in laboratory settings.
Collapse
Affiliation(s)
- Majoline T. Tchioffo
- UMR MIVEGEC (IRD 224- CNRS 5290- UM1- UM2), Institut de Recherche pour le Développement, Montpellier, France
- Laboratoire d'entomologie médicale, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale, Yaoundé, Cameroon
| | - Anne Boissière
- UMR MIVEGEC (IRD 224- CNRS 5290- UM1- UM2), Institut de Recherche pour le Développement, Montpellier, France
| | - Thomas S. Churcher
- Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| | - Luc Abate
- UMR MIVEGEC (IRD 224- CNRS 5290- UM1- UM2), Institut de Recherche pour le Développement, Montpellier, France
| | - Geoffrey Gimonneau
- UMR MIVEGEC (IRD 224- CNRS 5290- UM1- UM2), Institut de Recherche pour le Développement, Montpellier, France
- Laboratoire d'entomologie médicale, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale, Yaoundé, Cameroon
| | - Sandrine E. Nsango
- Laboratoire d'entomologie médicale, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale, Yaoundé, Cameroon
- Université de Douala, Faculté de Médecine et des Sciences Pharmaceutiques, Douala, Cameroon
| | - Parfait H. Awono-Ambéné
- Laboratoire d'entomologie médicale, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale, Yaoundé, Cameroon
| | - Richard Christen
- CNRS UMR 7138, Université de Nice, Faculté des Sciences, Nice, France
- Laboratoire de Biologie Virtuelle, UMR 713, Université de Nice, Faculté des Sciences, Nice, France
| | - Antoine Berry
- Service de Parasitologie-Mycologie, Centre Hospitalier Universitaire de Toulouse, Hôpital Rangueil, Toulouse, France
| | - Isabelle Morlais
- UMR MIVEGEC (IRD 224- CNRS 5290- UM1- UM2), Institut de Recherche pour le Développement, Montpellier, France
- Laboratoire d'entomologie médicale, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale, Yaoundé, Cameroon
- * E-mail:
| |
Collapse
|
111
|
Essandoh J, Yawson AE, Weetman D. Acetylcholinesterase (Ace-1) target site mutation 119S is strongly diagnostic of carbamate and organophosphate resistance in Anopheles gambiae s.s. and Anopheles coluzzii across southern Ghana. Malar J 2013; 12:404. [PMID: 24206629 PMCID: PMC3842805 DOI: 10.1186/1475-2875-12-404] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 11/03/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND With high DDT resistance present throughout much of West Africa, carbamates and organophosphates are increasingly important alternatives to pyrethroids for indoor residual spraying (IRS). Though less widespread, resistance to both of these alternative insecticide classes has also been documented within the Anopheles gambiae species pair (formerly the M and S molecular forms) in West Africa. To manage insecticide efficacy, it is important to predict how and where resistance is likely to occur and spread, which could be aided by using molecular diagnostics with high predictive value. METHODS Anopheles coluzzii and An. gambiae s.s. were collected from 18 sites throughout southern Ghana and bioassayed with bendiocarb, the most commonly applied carbamate, and an organophosphate, fenitrothion. The Ace-1 target site substitution G119S was genotyped by qPCR. RESULTS Fenitrothion induced higher mortality than bendiocarb, though phenotypes correlated strongly across populations. Ace-1 119S was found at much higher frequency in An. gambiae s.s than An. coluzzii, exceeding 90% in a population from Greater Accra, the highest frequency reported to date. Ace-1 G119S was very strongly associated with resistance to both insecticides, providing high predictive power for diagnosis, though with some evidence for a differential effect between molecular forms for bendiocarb. Sequencing of the gene revealed a lack of variation in resistant alleles precluding determination of origin, but Ace-1 copy number variation was detected for the first time in Ghana. CONCLUSIONS The results validate G119S as a useful diagnostic of organophosphate and carbamate resistance within and among populations, whilst highlighting the potential for an aggregate nature of Ace-1 genotypes, which may comprise both single-copy and duplicated genes. Further work is now required to determine the distribution and resistance-association of Ace-1 duplication.
Collapse
Affiliation(s)
| | | | - David Weetman
- Liverpool School of Tropical Medicine, Liverpool, UK.
| |
Collapse
|
112
|
Mereta ST, Yewhalaw D, Boets P, Ahmed A, Duchateau L, Speybroeck N, Vanwambeke SO, Legesse W, De Meester L, Goethals PLM. Physico-chemical and biological characterization of anopheline mosquito larval habitats (Diptera: Culicidae): implications for malaria control. Parasit Vectors 2013; 6:320. [PMID: 24499518 PMCID: PMC4029358 DOI: 10.1186/1756-3305-6-320] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 10/25/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A fundamental understanding of the spatial distribution and ecology of mosquito larvae is essential for effective vector control intervention strategies. In this study, data-driven decision tree models, generalized linear models and ordination analysis were used to identify the most important biotic and abiotic factors that affect the occurrence and abundance of mosquito larvae in Southwest Ethiopia. METHODS In total, 220 samples were taken at 180 sampling locations during the years 2010 and 2012. Sampling sites were characterized based on physical, chemical and biological attributes. The predictive performance of decision tree models was evaluated based on correctly classified instances (CCI), Cohen's kappa statistic (κ) and the determination coefficient (R2). A conditional analysis was performed on the regression tree models to test the relation between key environmental and biological parameters and the abundance of mosquito larvae. RESULTS The decision tree model developed for anopheline larvae showed a good model performance (CCI = 84 ± 2%, and κ = 0.66 ± 0.04), indicating that the genus has clear habitat requirements. Anopheline mosquito larvae showed a widespread distribution and especially occurred in small human-made aquatic habitats. Water temperature, canopy cover, emergent vegetation cover, and presence of predators and competitors were found to be the main variables determining the abundance and distribution of anopheline larvae. In contrast, anopheline mosquito larvae were found to be less prominently present in permanent larval habitats. This could be attributed to the high abundance and diversity of natural predators and competitors suppressing the mosquito population densities. CONCLUSIONS The findings of this study suggest that targeting smaller human-made aquatic habitats could result in effective larval control of anopheline mosquitoes in the study area. Controlling the occurrence of mosquito larvae via drainage of permanent wetlands may not be a good management strategy as it negatively affects the occurrence and abundance of mosquito predators and competitors and promotes an increase in anopheline population densities.
Collapse
Affiliation(s)
| | | | - Pieter Boets
- Laboratory of Environmental Toxicology and Aquatic Ecology, Ghent University, J, Plateaustraat 22, B-9000 Ghent, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
113
|
Carvalho GMDL, Brazil RP, Ramos MCDNF, Serra e Meira PCL, Zenóbio APLDA, Botelho HA, Sanguinette CDC, Saraiva L, Andrade Filho JD. Ecological aspects of phlebotomine sandflies (Diptera: Psychodidae) from a cave of the speleological province of Bambuí, Brazil. PLoS One 2013; 8:e77158. [PMID: 24130847 PMCID: PMC3793969 DOI: 10.1371/journal.pone.0077158] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 08/30/2013] [Indexed: 11/25/2022] Open
Abstract
Phlebotomines are invertebrate hosts of Leishmania genus species which are etiological agents of leishmaniases in humans and other mammals. Sandflies are often collected in entomological studies of caves both in the inner area and the adjacent environments. Caves are ecotypes clearly different from the external environment. Several caves have been opened to public visitation before any studies were performed and the places do not have scientific monitoring of the fauna, flora, geological and geographical characteristics. These events can lead to the loss of geological and biological information. Considering these aspects, this study aimed to describe the sand fly fauna, including the ecological features, in a limestone cave at the Speleological Province of Bambuí (Minas Gerais State, Brazil). A total of 8,354 specimens of sandflies belonging to 29 species were analyzed: Lutzomyia cavernicola (20%), Nyssomyia intermedia (15%), Martinsmyia oliveirai (13%), Evandromyia spelunca (12%), Evandromyia sallesi (11%), Migonemyia migonei (9%), Nyssomyia whitmani (9%), Sciopemyia sordellii (4%) and Lutzomyia longipalpis (2%). The others species represent 5% of the total. This manuscript presents data found on richness, diversity, evenness and seasonality, comparing the sand fly fauna trapped in the cave and its surroundings.
Collapse
Affiliation(s)
- Gustavo Mayr de Lima Carvalho
- Grupo de Estudos em Leishmanioses, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil
- Departamento de Fisiologia e Bioquímica de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Reginaldo Peçanha Brazil
- Departamento de Fisiologia e Bioquímica de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | - Helbert Antônio Botelho
- Grupo de Estudos em Leishmanioses, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil
| | | | - Lara Saraiva
- Grupo de Estudos em Leishmanioses, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil
| | - José Dilermando Andrade Filho
- Grupo de Estudos em Leishmanioses, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
114
|
Sanford MR, Ramsay S, Cornel AJ, Marsden CD, Norris LC, Patchoke S, Fondjo E, Lanzaro GC, Lee Y. A preliminary investigation of the relationship between water quality and Anopheles gambiae larval habitats in Western Cameroon. Malar J 2013; 12:225. [PMID: 23819866 PMCID: PMC3704728 DOI: 10.1186/1475-2875-12-225] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 06/24/2013] [Indexed: 11/16/2022] Open
Abstract
Background Water quality and anopheline habitat have received increasing attention due to the possibility that challenges during larval life may translate into adult susceptibility to malaria parasite infection and/or insecticide resistance. Methods A preliminary study of Anopheles gambiae s.s. larval habitats in the north-west and south-west regions of Cameroon was conducted in order to detect associations between An. gambiae s.s. molecular form and 2La inversion distributions with basic water quality parameters. Water quality was measured by temperature, pH, conductivity, total dissolved solids (TDS) at seven sites in Cameroon and one site in Selinkenyi, Mali. Results Principal components and correlation analyses indicated a complex relationship between 2La polymorphism, temperature, conductivity and TDS. Cooler water sites at more inland locations yielded more S form larvae with higher 2La inversion polymorphism while warmer water sites yielded more M form larvae with rare observations of the 2La inversion. Discussion More detailed studies that take into account the population genetics but also multiple life stages, environmental data relative to these life stages and interactions with both humans and the malaria parasite may help us to understand more about how and why this successful mosquito is able to adapt and diverge, and how it can be successfully managed.
Collapse
|
115
|
Pinto J, Egyir-Yawson A, Vicente J, Gomes B, Santolamazza F, Moreno M, Charlwood J, Simard F, Elissa N, Weetman D, Donnelly M, Caccone A, Della Torre A. Geographic population structure of the African malaria vector Anopheles gambiae suggests a role for the forest-savannah biome transition as a barrier to gene flow. Evol Appl 2013; 6:910-24. [PMID: 24062800 PMCID: PMC3779092 DOI: 10.1111/eva.12075] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 04/29/2013] [Indexed: 11/30/2022] Open
Abstract
The primary Afrotropical malaria mosquito vector Anopheles gambiae sensu stricto has a complex population structure. In west Africa, this species is split into two molecular forms and displays local and regional variation in chromosomal arrangements and behaviors. To investigate patterns of macrogeographic population substructure, 25 An. gambiae samples from 12 African countries were genotyped at 13 microsatellite loci. This analysis detected the presence of additional population structuring, with the M-form being subdivided into distinct west, central, and southern African genetic clusters. These clusters are coincident with the central African rainforest belt and northern and southern savannah biomes, which suggests restrictions to gene flow associated with the transition between these biomes. By contrast, geographically patterned population substructure appears much weaker within the S-form.
Collapse
Affiliation(s)
- J Pinto
- Unidade de Parasitologia Médica, Centro de Malária e outras Doenças Tropicais, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa Lisbon, Portugal
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Fossog Tene B, Poupardin R, Costantini C, Awono-Ambene P, Wondji CS, Ranson H, Antonio-Nkondjio C. Resistance to DDT in an urban setting: common mechanisms implicated in both M and S forms of Anopheles gambiae in the city of Yaoundé Cameroon. PLoS One 2013; 8:e61408. [PMID: 23626680 PMCID: PMC3634070 DOI: 10.1371/journal.pone.0061408] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 03/08/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND In the city of Yaoundé in Cameroon malaria is predominately transmitted by the M and S molecular forms of Anopheles gambiae and both are resistant to the pyrethroid insecticides and DDT. Mutations in the target site of these insecticides, present at a high frequency in malaria vectors in this city, contribute to this resistance profile. To identify additional resistance mechanisms, the expression profile of multiple DDT-resistant field populations of M and S molecular forms was compared to laboratory-susceptible populations. METHODOLOGY/PRINCIPAL FINDINGS The prevalence of DDT resistance was highest in the S form population originating from the cultivated site of Nkolondom (mortality after WHO bioassay = 4%). A high prevalence of DDT resistance was also found in two urban M form populations, Messa from a pristine unpolluted environment (DDT mortality = 54%), and Gare, where the breeding sites are heavily polluted with organic matter (DDT mortality = 38%). Microarray analysis showed that several transcripts coding for detoxification enzymes (P450s, GSTs and UDPGTs) and ABC transporters were upregulated in the three populations. Despite the presence of multiple detoxification genes over expressed in the DDT-resistant subset of these field populations, only three were commonly over expressed in resistant populations from all three environments. Two of these genes, CYP6M2 and GSTD1-6, encode enzymes that have been previously shown to metabolize DDT. CONCLUSION/SIGNIFICANCE Analogous to target site resistance, genes involved in metabolic resistance to DDT are also shared between the M and S forms of An gambiae. Alternative explanations for this occurrence are explored.
Collapse
Affiliation(s)
- Billy Fossog Tene
- Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte Contre les Endémies en Afrique Centrale, Yaoundé, Cameroon
- Faculty of Sciences, University of Yaoundé I, Cameroon
| | - Rodolphe Poupardin
- Vector Group Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Carlo Costantini
- Institut de Recherche pour le Développement, UMR IRD 224 Centre national de la recherche scientifique 5290 Université de Montpellier 1 Université de Montpellier 2, Maladies Infectieuses et Vecteurs Écologie, Génétique, Évolution et Contrôle, Montpellier, France
| | - Parfait Awono-Ambene
- Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte Contre les Endémies en Afrique Centrale, Yaoundé, Cameroon
| | - Charles S. Wondji
- Vector Group Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Hilary Ranson
- Vector Group Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Christophe Antonio-Nkondjio
- Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte Contre les Endémies en Afrique Centrale, Yaoundé, Cameroon
- Vector Group Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| |
Collapse
|
117
|
Boissière A, Gimonneau G, Tchioffo MT, Abate L, Bayibeki A, Awono-Ambéné PH, Nsango SE, Morlais I. Application of a qPCR assay in the investigation of susceptibility to malaria infection of the M and S molecular forms of An. gambiae s.s. in Cameroon. PLoS One 2013; 8:e54820. [PMID: 23349974 PMCID: PMC3551906 DOI: 10.1371/journal.pone.0054820] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 12/17/2012] [Indexed: 12/16/2022] Open
Abstract
Plasmodium falciparum is the causative agent of malaria, a disease that kills almost one million persons each year, mainly in sub-Saharan Africa. P. falciparum is transmitted to the human host by the bite of an Anopheles female mosquito, and Anopheles gambiae sensus stricto is the most tremendous malaria vector in Africa, widespread throughout the afro-tropical belt. An. gambiae s.s. is subdivided into two distinct molecular forms, namely M and S forms. The two molecular forms are morphologically identical but they are distinct genetically, and differ by their distribution and their ecological preferences. The epidemiological importance of the two molecular forms in malaria transmission has been poorly investigated so far and gave distinct results in different areas. We have developed a real-time quantitative PCR (qPCR) assay, and used it to detect P. falciparum at the oocyst stage in wild An. gambiae s.s. mosquitoes experimentally infected with natural isolates of parasites. Mosquitoes were collected at immature stages in sympatric and allopatric breeding sites and further infected at the adult stage. We next measured the infection prevalence and intensity in female mosquitoes using the qPCR assay and correlated the infection success with the mosquito molecular forms. Our results revealed different prevalence of infection between the M and S molecular forms of An. gambiae s.s. in Cameroon, for both sympatric and allopatric populations of mosquitoes. However, no difference in the infection intensity was observed. Thus, the distribution of the molecular forms of An. gambiae s.s. may impact on the malaria epidemiology, and it will be important to monitor the efficiency of malaria control interventions on the two M and S forms.
Collapse
Affiliation(s)
- Anne Boissière
- Unité mixte de recherche MIVEGEC (IRD 224- CNRS 5290-UM1-UM2), Institut de Recherche pour le Développement, Montpellier, France
| | - Geoffrey Gimonneau
- Unité mixte de recherche MIVEGEC (IRD 224- CNRS 5290-UM1-UM2), Institut de Recherche pour le Développement, Montpellier, France
- Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale, Yaoundé, Cameroon
| | - Majoline T. Tchioffo
- Unité mixte de recherche MIVEGEC (IRD 224- CNRS 5290-UM1-UM2), Institut de Recherche pour le Développement, Montpellier, France
- Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale, Yaoundé, Cameroon
| | - Luc Abate
- Unité mixte de recherche MIVEGEC (IRD 224- CNRS 5290-UM1-UM2), Institut de Recherche pour le Développement, Montpellier, France
- Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale, Yaoundé, Cameroon
| | - Albert Bayibeki
- Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale, Yaoundé, Cameroon
| | - Parfait H. Awono-Ambéné
- Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale, Yaoundé, Cameroon
| | - Sandrine E. Nsango
- Unité mixte de recherche MIVEGEC (IRD 224- CNRS 5290-UM1-UM2), Institut de Recherche pour le Développement, Montpellier, France
- Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale, Yaoundé, Cameroon
| | - Isabelle Morlais
- Unité mixte de recherche MIVEGEC (IRD 224- CNRS 5290-UM1-UM2), Institut de Recherche pour le Développement, Montpellier, France
- Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale, Yaoundé, Cameroon
- * E-mail:
| |
Collapse
|
118
|
Tene Fossog B, Antonio-Nkondjio C, Kengne P, Njiokou F, Besansky NJ, Costantini C. Physiological correlates of ecological divergence along an urbanization gradient: differential tolerance to ammonia among molecular forms of the malaria mosquito Anopheles gambiae. BMC Ecol 2013; 13:1. [PMID: 23294940 PMCID: PMC3548750 DOI: 10.1186/1472-6785-13-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 12/27/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Limitations in the ability of organisms to tolerate environmental stressors affect their fundamental ecological niche and constrain their distribution to specific habitats. Evolution of tolerance, therefore, can engender ecological niche dynamics. Forest populations of the afro-tropical malaria mosquito Anopheles gambiae have been shown to adapt to historically unsuitable larval habitats polluted with decaying organic matter that are found in densely populated urban agglomerates of Cameroon. This process has resulted in niche expansion from rural to urban environments that is associated with cryptic speciation and ecological divergence of two evolutionarily significant units within this taxon, the molecular forms M and S, among which reproductive isolation is significant but still incomplete. Habitat segregation between the two forms results in a mosaic distribution of clinally parapatric patches, with the M form predominating in the centre of urban agglomerates and the S form in the surrounding rural localities. We hypothesized that development of tolerance to nitrogenous pollutants derived from the decomposition of organic matter, among which ammonia is the most toxic to aquatic organisms, may affect this pattern of distribution and process of niche expansion by the M form. RESULTS Acute toxicity bioassays indicated that populations of the two molecular forms occurring at the extremes of an urbanization gradient in Yaounde, the capital of Cameroon, differed in their response to ammonia. The regression lines best describing the dose-mortality profile differed in the scale of the explanatory variable (ammonia concentration log-transformed for the S form and linear for the M form), and in slope (steeper for the S form and shallower for the M form). These features reflected differences in the frequency distribution of individual tolerance thresholds in the two populations as assessed by probit analysis, with the M form exhibiting a greater mean and variance compared to the S form. CONCLUSIONS In agreement with expectations based on the pattern of habitat partitioning and exposure to ammonia in larval habitats in Yaounde, the M form showed greater tolerance to ammonia compared to the S form. This trait may be part of the physiological machinery allowing forest populations of the M form to colonize polluted larval habitats, which is at the heart of its niche expansion in densely populated human settlements in Cameroon.
Collapse
Affiliation(s)
- Billy Tene Fossog
- Institut de Recherche pour le Développement (IRD), Unité Mixte de Recherche MIVEGEC (UM1, UM2, CNRS 5290, IRD 224), Montpellier, France
- Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), Yaounde, Cameroon
- Faculty of Sciences, University of Yaounde I, Yaounde, Cameroon
| | - Christophe Antonio-Nkondjio
- Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), Yaounde, Cameroon
| | - Pierre Kengne
- Institut de Recherche pour le Développement (IRD), Unité Mixte de Recherche MIVEGEC (UM1, UM2, CNRS 5290, IRD 224), Montpellier, France
- Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), Yaounde, Cameroon
| | - Flobert Njiokou
- Faculty of Sciences, University of Yaounde I, Yaounde, Cameroon
| | - Nora J Besansky
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA
| | - Carlo Costantini
- Institut de Recherche pour le Développement (IRD), Unité Mixte de Recherche MIVEGEC (UM1, UM2, CNRS 5290, IRD 224), Montpellier, France
- Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), Yaounde, Cameroon
| |
Collapse
|
119
|
Reidenbach KR, Neafsey DE, Costantini C, Sagnon N, Simard F, Ragland GJ, Egan SP, Feder JL, Muskavitch MAT, Besansky NJ. Patterns of genomic differentiation between ecologically differentiated M and S forms of Anopheles gambiae in West and Central Africa. Genome Biol Evol 2012; 4:1202-12. [PMID: 23132896 PMCID: PMC3542583 DOI: 10.1093/gbe/evs095] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2012] [Indexed: 11/15/2022] Open
Abstract
Anopheles gambiae M and S are thought to be undergoing ecological speciation by adapting to different larval habitats. Toward an improved understanding of the genetic determinants and evolutionary processes shaping their divergence, we used a 400,000 single-nucleotide polymorphism (SNP) genotyping array to characterize patterns of genomic differentiation between four geographically paired M and S population samples from West and Central Africa. In keeping with recent studies based on more limited genomic or geographic sampling, divergence was not confined to a few isolated "speciation islands." Divergence was both widespread across the genome and heterogeneous. Moreover, we find consistent patterns of genomic divergence across sampling sites and mutually exclusive clustering of M and S populations using genetic distances based on all 400,000 SNPs, implying that M and S are evolving collectively across the study area. Nevertheless, the clustering of local M and S populations using genetic distances based on SNPs from genomic regions of low differentiation is consistent with recent gene flow and introgression. To account for these data and reconcile apparent paradoxes in reported patterns of M-S genomic divergence and hybridization, we propose that extrinsic ecologically based postmating barriers vary in strength as environmental conditions fluctuate or change.
Collapse
Affiliation(s)
- Kyanne R. Reidenbach
- Department of Biological Sciences, University of Notre
Dame
- Eck Institute for Global Health, University of Notre
Dame
| | - Daniel E. Neafsey
- Broad Institute, Genome Sequencing and Analysis Program,
Cambridge, Massachusetts
| | - Carlo Costantini
- Institut de Recherche pour le Développement (IRD),
UMR MIVEGEC, Montpellier, France
- Laboratoire de Recherche sur le Paludisme, Organisation de
Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC),
Yaoundé, Cameroon
| | - N’Fale Sagnon
- Centre National de Recherche et de Formation sur le
Paludisme, Avenue de l’Oubritenga, Ouagadougou, Burkina Faso
| | - Frédéric Simard
- Institut de Recherche pour le Développement (IRD),
UMR MIVEGEC, Montpellier, France
| | - Gregory J. Ragland
- Department of Biological Sciences, University of Notre
Dame
- Environmental Change Initiative, University of Notre
Dame
| | - Scott P. Egan
- Department of Biological Sciences, University of Notre
Dame
- Advanced Diagnostics & Therapeutics, University of Notre
Dame
| | - Jeffrey L. Feder
- Department of Biological Sciences, University of Notre
Dame
- Environmental Change Initiative, University of Notre
Dame
- Advanced Diagnostics & Therapeutics, University of Notre
Dame
- Eck Institute for Global Health, University of Notre
Dame
| | - Marc A. T. Muskavitch
- Broad Institute, Genome Sequencing and Analysis Program,
Cambridge, Massachusetts
- Biology Department, Boston College
- Department of Immunology and Infectious Diseases, Harvard
School of Public Health, Harvard University
| | - Nora J. Besansky
- Department of Biological Sciences, University of Notre
Dame
- Eck Institute for Global Health, University of Notre
Dame
| |
Collapse
|