101
|
Phadke M, Remsing Rix LL, Smalley I, Bryant AT, Luo Y, Lawrence HR, Schaible BJ, Chen YA, Rix U, Smalley KSM. Dabrafenib inhibits the growth of BRAF-WT cancers through CDK16 and NEK9 inhibition. Mol Oncol 2017; 12:74-88. [PMID: 29112787 PMCID: PMC5748485 DOI: 10.1002/1878-0261.12152] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 10/23/2017] [Indexed: 12/22/2022] Open
Abstract
Although the BRAF inhibitors dabrafenib and vemurafenib have both proven successful against BRAF-mutant melanoma, there seem to be differences in their mechanisms of action. Here, we show that dabrafenib is more effective at inhibiting the growth of NRAS-mutant and KRAS-mutant cancer cell lines than vemurafenib. Using mass spectrometry-based chemical proteomics, we identified NEK9 and CDK16 as unique targets of dabrafenib. Both NEK9 and CDK16 were highly expressed in specimens of advanced melanoma, with high expression of both proteins correlating with a worse overall survival. A role for NEK9 in the growth of NRAS- and KRAS-mutant cell lines was suggested by siRNA studies in which silencing was associated with decreased proliferation, cell cycle arrest associated with increased p21 expression, inhibition of phospho-CHK1, decreased CDK4 expression, and the initiation of a senescence response. Inhibition of CDK4 but not CHK1 recapitulated the effects of NEK9 silencing, indicating this to be the likely mechanism of growth inhibition. We next turned our attention to CDK16 and found that its knockdown inhibited the phosphorylation of the Rb protein at S780 and increased expression of p27. Both of these effects were phenocopied in NRAS- and KRAS-mutant cancer cells by dabrafenib, but not vemurafenib. Combined silencing of NEK9 and CDK16 was associated with enhanced inhibition of melanoma cell proliferation. In summary, we have identified dabrafenib as a potent inhibitor of NEK9 and CDK16, and our studies suggest that inhibition of these kinases may have activity against cancers that do not harbor BRAF mutations.
Collapse
Affiliation(s)
- Manali Phadke
- The Department of Tumor Biology, The Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Lily L Remsing Rix
- The Department of Drug Discovery, The Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Inna Smalley
- The Department of Tumor Biology, The Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Annamarie T Bryant
- The Department of Drug Discovery, The Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Yunting Luo
- The Chemical Biology Core, The Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Harshani R Lawrence
- The Chemical Biology Core, The Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Braydon J Schaible
- The Department of Biostatistics and Bioinformatics, The Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Yian A Chen
- The Department of Biostatistics and Bioinformatics, The Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Uwe Rix
- The Department of Drug Discovery, The Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Keiran S M Smalley
- The Department of Tumor Biology, The Moffitt Cancer Center & Research Institute, Tampa, FL, USA.,The Department of Cutaneous Oncology, The Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| |
Collapse
|
102
|
Smalley KSM, Forsyth PA. The Blood Brain Barrier and BRAF inhibitors: Implications for patients with melanoma brain metastases. Pharmacol Res 2017; 135:265-267. [PMID: 29146209 DOI: 10.1016/j.phrs.2017.11.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Keiran S M Smalley
- The Department of Tumor Biology, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA; The Department of Cutaneous Oncology, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA.
| | - Peter A Forsyth
- The Department of Neurooncology, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| |
Collapse
|
103
|
Dhillon S. Dabrafenib plus Trametinib: a Review in Advanced Melanoma with a BRAF (V600) Mutation. Target Oncol 2017; 11:417-28. [PMID: 27246822 DOI: 10.1007/s11523-016-0443-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The BRAF inhibitor dabrafenib (Tafinlar(®)) and the MEK inhibitor trametinib (Mekinist(®)) are indicated, as monotherapy or in combination with each other, for the treatment of patients with unresectable or metastatic melanoma with a BRAF (V600) mutation. This article reviews the therapeutic efficacy and tolerability of combination treatment with dabrafenib and trametinib in this indication and summarizes relevant pharmacological data. Dabrafenib plus trametinib significantly prolonged progression-free survival (PFS) and overall survival (OS), improved objective response rates (ORRs) and preserved health-related quality of life (HR-QOL) to a greater extent than dabrafenib (in the double-blind COMBI-d study) and vemurafenib (in the open-label COMBI-v study) in two large, randomized, phase III studies in treatment-naïve patients with unresectable or metastatic melanoma with BRAF (V600E/K) mutation. Limited treatment benefit with the combination was also seen in patients who had progressed on prior BRAF inhibitor therapy, as indicated by ORRs of ≤ 15 % and stable disease in ≤ 50 % of patients in small phase I and II studies. Combination therapy did not increase overall toxicity relative to dabrafenib or vemurafenib monotherapy, with most adverse events (AEs) mild or moderate in severity and generally manageable. Fewer skin-related AEs (e.g. cutaneous malignancies, hyperkeratinosis and hand-foot syndrome) were reported with combination therapy than with dabrafenib or vemurafenib, probably because of reduced paradoxical activation of the MAPK pathway. Thus, dabrafenib plus trametinib provides an important treatment option for patients with BRAF (V600) mutation-positive unresectable or metastatic melanoma.
Collapse
Affiliation(s)
- Sohita Dhillon
- Springer, Private Bag 65901, Mairangi Bay, 0754, Auckland, New Zealand.
| |
Collapse
|
104
|
Chen SH, Gong X, Zhang Y, Van Horn RD, Yin T, Huber L, Burke TF, Manro J, Iversen PW, Wu W, Bhagwat SV, Beckmann RP, Tiu RV, Buchanan SG, Peng SB. RAF inhibitor LY3009120 sensitizes RAS or BRAF mutant cancer to CDK4/6 inhibition by abemaciclib via superior inhibition of phospho-RB and suppression of cyclin D1. Oncogene 2017; 37:821-832. [PMID: 29059158 DOI: 10.1038/onc.2017.384] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 08/21/2017] [Accepted: 09/07/2017] [Indexed: 12/15/2022]
Abstract
KRAS, NRAS and BRAF mutations are among the most important oncogenic drivers in many major cancer types, such as melanoma, lung, colorectal and pancreatic cancer. There is currently no effective therapy for the treatment of RAS mutant cancers. LY3009120, a pan-RAF and RAF dimer inhibitor advanced to clinical study has been shown to inhibit both RAS and BRAF mutant cell proliferation in vitro and xenograft tumor growth in vivo. Abemaciclib, a CDK4/6-selective inhibitor, is currently in phase III studies for ER-positive breast cancer and KRAS mutant lung cancer. In this study, we found that combinatory treatment with LY3009120 and abemaciclib synergistically inhibited proliferation of tumor cells in vitro and led to tumor growth regression in xenograft models with a KRAS, NRAS or BRAF mutation at the doses of two drugs that were well tolerated in combination. Further in vitro screen in 328 tumor cell lines revealed that tumor cells with KRAS, NRAS or BRAF mutation, or cyclin D activation are more sensitive, whereas tumor cells with PTEN, PIK3CA, PIK3R1 or retinoblastoma (Rb) mutation are more resistant to this combination treatment. Molecular analysis revealed that abemaciclib alone inhibited Rb phosphorylation partially and caused an increase of cyclin D1. The combinatory treatment cooperatively demonstrated more complete inhibition of Rb phosphorylation, and LY3009120 suppressed the cyclin D1 upregulation mediated by abemaciclib. These results were further verified by CDK4/6 siRNA knockdown. Importantly, the more complete phospho-Rb inhibition and cyclin D1 suppression by LY3009120 and abemaciclib combination led to more significant cell cycle G0/G1 arrest of tumor cells. These preclinical findings suggest that combined inhibition of RAF and d-cyclin-dependent kinases might provide an effective approach to treat patients with tumors harboring mutations in RAS or RAF genes.
Collapse
Affiliation(s)
- S-H Chen
- Oncology Research, Eli Lilly and Company, Indianapolis, IN, USA
| | - X Gong
- Oncology Research, Eli Lilly and Company, Indianapolis, IN, USA
| | - Y Zhang
- Oncology Research, Eli Lilly and Company, Indianapolis, IN, USA
| | - R D Van Horn
- Oncology Research, Eli Lilly and Company, Indianapolis, IN, USA
| | - T Yin
- Oncology Research, Eli Lilly and Company, Indianapolis, IN, USA
| | - L Huber
- Oncology Research, Eli Lilly and Company, Indianapolis, IN, USA
| | - T F Burke
- Oncology Research, Eli Lilly and Company, Indianapolis, IN, USA
| | - J Manro
- Statistics, Eli Lilly and Company, Indianapolis, IN, USA
| | - P W Iversen
- Statistics, Eli Lilly and Company, Indianapolis, IN, USA
| | - W Wu
- Oncology Research, Eli Lilly and Company, Indianapolis, IN, USA
| | - S V Bhagwat
- Oncology Research, Eli Lilly and Company, Indianapolis, IN, USA
| | - R P Beckmann
- Oncology Research, Eli Lilly and Company, Indianapolis, IN, USA
| | - R V Tiu
- Early Phase Oncology and Oncology Business Unit, Eli Lilly and Company, Indianapolis, IN, USA
| | - S G Buchanan
- Oncology Research, Eli Lilly and Company, Indianapolis, IN, USA
| | - S-B Peng
- Oncology Research, Eli Lilly and Company, Indianapolis, IN, USA
| |
Collapse
|
105
|
Knispel S, Zimmer L, Kanaki T, Ugurel S, Schadendorf D, Livingstone E. The safety and efficacy of dabrafenib and trametinib for the treatment of melanoma. Expert Opin Drug Saf 2017; 17:73-87. [PMID: 29050517 DOI: 10.1080/14740338.2018.1390562] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION The introduction of BRAF and MEK inhibitors into clinical practice improved the prognosis of metastatic melanoma patients. The combination of BRAF inhibitor dabrafenib with MEK inhibitor trametinib has shown its superiority to single agent therapy and is characterized by a tolerable spectrum of adverse events which shows a decrease in incidence over time on treatment. Areas covered: The current scientific literature on safety and adverse events (AEs) related to BRAF and MEK-inhibition has been investigated with special focus on the large phase 3 studies (COMBI-v, COMBI-d and CoBRIM) as well as recent updates presented at oncology and melanoma meetings. Additionally, published case series/case reports were screened for information on AEs. Expert opinion: Even though almost every patient (98%) under combination therapy with dabrafenib and trametinib experiences at least one adverse event, these are generally mild to moderate, reversible and can be managed with dose reductions or interruptions. However, due to an increased life expectancy, there is a substantial need to prevent and treat also mild adverse events, as they play a central role for the quality of life of patients. Ongoing clinical trials will have to demonstrate the efficacy as well as safety of triple combination with anti-PD-1/anti-PD-L1 antibodies.
Collapse
Affiliation(s)
- Sarah Knispel
- a Skin Cancer Unit, Department of Dermatology , University Hospital Essen, University of Duisburg-Essen , Essen , Germany
| | - Lisa Zimmer
- a Skin Cancer Unit, Department of Dermatology , University Hospital Essen, University of Duisburg-Essen , Essen , Germany
| | - Theodora Kanaki
- a Skin Cancer Unit, Department of Dermatology , University Hospital Essen, University of Duisburg-Essen , Essen , Germany
| | - Selma Ugurel
- a Skin Cancer Unit, Department of Dermatology , University Hospital Essen, University of Duisburg-Essen , Essen , Germany
| | - Dirk Schadendorf
- a Skin Cancer Unit, Department of Dermatology , University Hospital Essen, University of Duisburg-Essen , Essen , Germany
| | - Elisabeth Livingstone
- a Skin Cancer Unit, Department of Dermatology , University Hospital Essen, University of Duisburg-Essen , Essen , Germany
| |
Collapse
|
106
|
Ryu S, Youn C, Moon AR, Howland A, Armstrong CA, Song PI. Therapeutic Inhibitors against Mutated BRAF and MEK for the Treatment of Metastatic Melanoma. Chonnam Med J 2017; 53:173-177. [PMID: 29026704 PMCID: PMC5636755 DOI: 10.4068/cmj.2017.53.3.173] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/09/2017] [Accepted: 08/14/2017] [Indexed: 12/26/2022] Open
Abstract
Melanoma is one of the most aggressive cancers in the world and is responsible for the majority of skin cancer deaths. Recent advances in the field of immunotherapy using active, adoptive, and antigen-specific therapeutic approaches, have generated the expectation that these technologies have the potential to improve the treatment of advanced malignancies, including melanoma. Treatment options for metastatic melanoma patients have been dramatically improved by the FDA approval of new therapeutic agents including vemurafenib, dabrafenib, and sorafenib. These kinase inhibitors have the potential to work in tandem with MEK, PI3K/AKT, and mTOR to inhibit the activity of melanoma inducing BRAF mutations. This review summarizes the effects of the new therapeutic agents against melanoma and the underlying biology of these BRAF inhibitors.
Collapse
Affiliation(s)
- Sunhyo Ryu
- Department of Dermatology, University of Colorado Denver Medical School, Aurora, Colorado, USA
| | - Chakyung Youn
- Department of Premedical Sciences, Chosun University School of Medicine, Gwangju, Korea
| | - Ae Ran Moon
- Department of Premedical Sciences, Chosun University School of Medicine, Gwangju, Korea
| | - Amanda Howland
- Department of Dermatology, University of Colorado Denver Medical School, Aurora, Colorado, USA
| | - Cheryl A Armstrong
- Department of Dermatology, University of Colorado Denver Medical School, Aurora, Colorado, USA
| | - Peter I Song
- Department of Dermatology, University of Colorado Denver Medical School, Aurora, Colorado, USA
| |
Collapse
|
107
|
Lee H, Shin EA, Lee JH, Ahn D, Kim CG, Kim JH, Kim SH. Caspase inhibitors: a review of recently patented compounds (2013-2015). Expert Opin Ther Pat 2017; 28:47-59. [DOI: 10.1080/13543776.2017.1378426] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Hyemin Lee
- Cancer Molecular Targeted Herbal Research Center, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Eun Ah Shin
- Cancer Molecular Targeted Herbal Research Center, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Jae Hee Lee
- Department of East West Medical Science, Graduate School of East West Medical Science Kyung Hee University, Yongin, South Korea
| | - Deoksoo Ahn
- Cancer Molecular Targeted Herbal Research Center, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Chang Geun Kim
- Cancer Molecular Targeted Herbal Research Center, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Ju-Ha Kim
- Cancer Molecular Targeted Herbal Research Center, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Sung-Hoon Kim
- Cancer Molecular Targeted Herbal Research Center, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
108
|
Kessel S, Cribbes S, Bonasu S, Qiu J, Chan LLY. Real-Time Apoptosis and Viability High-Throughput Screening of 3D Multicellular Tumor Spheroids Using the Celigo Image Cytometer. SLAS DISCOVERY 2017; 23:202-210. [PMID: 28915356 DOI: 10.1177/2472555217731076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Three-dimensional tumor spheroid models have been increasingly used to investigate and characterize cancer drug compounds. Previously, the Celigo image cytometer has demonstrated its utility in a high-throughput screening manner for evaluating potential drug candidates in a 3D multicellular tumor spheroid (MCTS) primary screen. In addition, we have developed real-time kinetic caspase 3/7 apoptosis and propidium iodide viability 3D MCTS assays, both of which can be used in a secondary screen to better characterize the hit compounds. In this work, we monitored the kinetic apoptotic and cytotoxic effects of 14 compounds in 3D MCTS produced from the glioblastoma cell line U87MG in 384-well plates for 9 days. The kinetic results allowed the categorization of the effects from 14 drug compounds into early and late cytotoxic, apoptotic, cytostatic, and no effects. The real-time apoptosis and viability screening method can serve as an improved secondary screen to better understand the mechanism of action of these potential drug candidates identified from the primary screen, allowing one to identify a more qualified drug candidate and streamline the drug discovery process of research and development.
Collapse
Affiliation(s)
- Sarah Kessel
- 1 Department of Technology R&D, Nexcelom Bioscience LLC, Lawrence, MA, USA
| | - Scott Cribbes
- 1 Department of Technology R&D, Nexcelom Bioscience LLC, Lawrence, MA, USA
| | - Surekha Bonasu
- 1 Department of Technology R&D, Nexcelom Bioscience LLC, Lawrence, MA, USA
| | - Jean Qiu
- 1 Department of Technology R&D, Nexcelom Bioscience LLC, Lawrence, MA, USA
| | - Leo Li-Ying Chan
- 1 Department of Technology R&D, Nexcelom Bioscience LLC, Lawrence, MA, USA
| |
Collapse
|
109
|
Safety, tolerability, and pharmacokinetic profile of dabrafenib in Japanese patients with BRAF V600 mutation-positive solid tumors: a phase 1 study. Invest New Drugs 2017; 36:259-268. [PMID: 28879519 DOI: 10.1007/s10637-017-0502-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 08/11/2017] [Indexed: 01/12/2023]
Abstract
Background Dabrafenib is a BRAF inhibitor that has demonstrated clinical activity with a good tolerability profile in patients with BRAF V600E mutated metastatic melanoma. This study evaluated the safety and tolerability, pharmacokinetics and preliminary efficacy of dabrafenib in Japanese patients. Methods This phase I, open-label, dose escalation study was conducted in 12 Japanese patients with BRAF V600 mutation positive solid tumours. Primary endpoint was safety, assessed by monitoring and recording of all adverse events (AEs), serious AEs, drug-related AEs; secondary endpoints were pharmacokinetic profiles and efficacy measured by tumour response. This study is registered with ClinicalTrials.gov, number NCT01582997. Results Of the 12 patients enrolled, 3 each received 75 mg and 100 mg dabrafenib while 6 received 150 mg dabrafenib twice daily orally. Melanoma and thyroid cancer were the primary tumours reported in 11 (92%) and 1 (8%) patients respectively. Most AEs were grade 1 or 2 and considered related to study treatment. Most common AEs reported in the 12 patients were alopecia in 7 (58%); pyrexia, arthralgia and leukopenia in 6 (50%) each, hyperkeratosis and nausea in 4 (33%) each. Partial response as best overall response was reported in 7 of 12 (58%) patients and in 6 (55%) with malignant melanoma. No dose-limiting toxicity (DLTs) were reported during the DLT evaluation periods. Conclusions Dabrafenib was well tolerated and rapidly absorbed administered as single- or multiple dose. Comparable safety and pharmacokinetic profiles were observed compared with non-Japanese patients. Dabrafenib has promising clinical activity in Japanese patients with BRAF mutated malignant melanoma.
Collapse
|
110
|
Baik CS, Myall NJ, Wakelee HA. Targeting BRAF-Mutant Non-Small Cell Lung Cancer: From Molecular Profiling to Rationally Designed Therapy. Oncologist 2017; 22:786-796. [PMID: 28487464 PMCID: PMC5507646 DOI: 10.1634/theoncologist.2016-0458] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 02/06/2017] [Indexed: 12/28/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) remains the leading cause of cancer-related deaths globally. However, the identification of oncogenic driver alterations involved in the initiation and maintenance of NSCLC, such as epidermal growth factor receptor mutations and anaplastic lymphoma kinase translocation, has led to the development of novel therapies that directly target mutant proteins and associated signaling pathways, resulting in improved clinical outcomes. As sequencing techniques have improved, the molecular heterogeneity of NSCLC has become apparent, leading to the identification of a number of potentially actionable oncogenic driver mutations. Of these, one of the most promising therapeutic targets is B-Raf proto-oncogene, serine/threonine kinase (BRAF). Mutations in BRAF, observed in 2%-4% of NSCLCs, typically lead to constitutive activation of the protein and, as a consequence, lead to activation of the mitogen-activated protein kinase signaling pathway. Direct inhibition of mutant BRAF and/or the downstream mitogen-activated protein kinase kinase (MEK) has led to prolonged survival in patients with BRAF-mutant metastatic melanoma. This comprehensive review will discuss the clinical characteristics and prognostic implications of BRAF-mutant NSCLC, the clinical development of BRAF and MEK inhibitors from melanoma to NSCLC, and practical considerations for clinicians involving BRAF mutation screening and the choice of targeted therapy. IMPLICATIONS FOR PRACTICE Personalized medicine has begun to provide substantial benefit to patients with oncogene-driven non-small cell lung cancer (NSCLC). However, treatment options for patients with oncogenic driver mutations lacking targeted treatment strategies remain limited. Direct inhibition of mutant B-Raf proto-oncogene, serine/threonine kinase (BRAF) and/or downstream mitogen-activated protein kinase kinase (MEK) has the potential to change the course of the disease for patients with BRAF-mutant NSCLC, as it has in BRAF-mutant melanoma. Optimization of screening strategies for rare mutations and the choice of appropriate agents on an individual basis will be key to providing timely and successful intervention.
Collapse
Affiliation(s)
- Christina S Baik
- Fred Hutchinson Cancer Research Center, University of Washington, Seattle, Washington, USA
| | | | | |
Collapse
|
111
|
Harris AL, Joseph RW, Copland JA. Patient-derived tumor xenograft models for melanoma drug discovery. Expert Opin Drug Discov 2017; 11:895-906. [PMID: 27454070 DOI: 10.1080/17460441.2016.1216968] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Cutaneous metastatic melanoma (MM) is an aggressive form of skin cancer, with treatment providing cures to a minority of patients. The multiple risk factors that contribute to MM development suggest that cutaneous melanomas embody a repertoire of altered genetic events requiring studies to better understand its biology in order to develop novel therapies. AREAS COVERED Patient-derived tumor xenograft (PDTX) mouse models are noted to be superior for novel drug discovery and tumor biology studies due to their ability to maintain tumor heterogeneity and their use as real-time individualized patient models. In this review, the authors highlight the utility of PDTX models in advancing treatment options for patients with MM by creating invaluable preclinical models that exhibit patient-relevant treatment outcomes. EXPERT OPINION There is a strong necessity to reassess current approaches in which preclinical experiments are designed and executed in order to minimize unwarranted clinical trials. With rigorously performed preclinical studies, PDTX models have the capability to effectively confirm or deny drug effective outcomes. The ability to do this, however, will demand better aids to guide experimental design, the redefining of preclinical efficacy, and the understanding that these models should be viewed as complementary to other drug prediction and efficacy tools.
Collapse
Affiliation(s)
- Antoneicka L Harris
- a Center for Clinical and Translational Sciences , Mayo Clinic College of Medicine , Rochester , MN , USA
| | - Richard W Joseph
- b Division of Hematology/Oncology, Department of Medicine , Mayo Clinic , Jacksonville , FL , USA
| | - John A Copland
- c Department of Cancer Biology , Mayo Clinic Florida , Jacksonville , FL , USA
| |
Collapse
|
112
|
Lim SY, Menzies AM, Rizos H. Mechanisms and strategies to overcome resistance to molecularly targeted therapy for melanoma. Cancer 2017; 123:2118-2129. [DOI: 10.1002/cncr.30435] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 09/22/2016] [Accepted: 09/22/2016] [Indexed: 12/19/2022]
Affiliation(s)
- Su Yin Lim
- Faculty of Medicine and Health Sciences; Macquarie University; Sydney New South Wales Australia
- Melanoma Institute Australia; Sydney New South Wales Australia
| | - Alexander M. Menzies
- Melanoma Institute Australia; Sydney New South Wales Australia
- Sydney Medical School; University of Sydney; Sydney New South Wales Australia
- Royal North Shore Hospital; Sydney New South Wales Australia
| | - Helen Rizos
- Faculty of Medicine and Health Sciences; Macquarie University; Sydney New South Wales Australia
- Melanoma Institute Australia; Sydney New South Wales Australia
| |
Collapse
|
113
|
Campbell CT, Haladyna JN, Drubin DA, Thomson TM, Maria MJ, Yamauchi T, Waters NJ, Olhava EJ, Pollock RM, Smith JJ, Copeland RA, Blakemore SJ, Bernt KM, Daigle SR. Mechanisms of Pinometostat (EPZ-5676) Treatment-Emergent Resistance in MLL-Rearranged Leukemia. Mol Cancer Ther 2017; 16:1669-1679. [PMID: 28428443 DOI: 10.1158/1535-7163.mct-16-0693] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 02/03/2017] [Accepted: 04/14/2017] [Indexed: 11/16/2022]
Abstract
DOT1L is a protein methyltransferase involved in the development and maintenance of MLL-rearranged (MLL-r) leukemia through its ectopic methylation of histones associated with well-characterized leukemic genes. Pinometostat (EPZ-5676), a selective inhibitor of DOT1L, is in clinical development in relapsed/refractory acute leukemia patients harboring rearrangements of the MLL gene. The observation of responses and subsequent relapses in the adult trial treating MLL-r patients motivated preclinical investigations into potential mechanisms of pinometostat treatment-emergent resistance (TER) in cell lines confirmed to have MLL-r. TER was achieved in five MLL-r cell lines, KOPN-8, MOLM-13, MV4-11, NOMO-1, and SEM. Two of the cell lines, KOPN-8 and NOMO-1, were thoroughly characterized to understand the mechanisms involved in pinometostat resistance. Unlike many other targeted therapies, resistance does not appear to be achieved through drug-induced selection of mutations of the target itself. Instead, we identified both drug efflux transporter dependent and independent mechanisms of resistance to pinometostat. In KOPN-8 TER cells, increased expression of the drug efflux transporter ABCB1 (P-glycoprotein, MDR1) was the primary mechanism of drug resistance. In contrast, resistance in NOMO-1 cells occurs through a mechanism other than upregulation of a specific efflux pump. RNA-seq analysis performed on both parental and resistant KOPN-8 and NOMO-1 cell lines supported two unique candidate pathway mechanisms that may explain the pinometostat resistance observed in these cell lines. These results are the first demonstration of TER models of the DOT1L inhibitor pinometostat and may provide useful tools for investigating clinical resistance. Mol Cancer Ther; 16(8); 1669-79. ©2017 AACR.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Kathrin M Bernt
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | | |
Collapse
|
114
|
O'Brien O, Lyons T, Murphy S, Feeley L, Power D, Heffron CCBB. BRAF V600 mutation detection in melanoma: a comparison of two laboratory testing methods. J Clin Pathol 2017; 70:935-940. [DOI: 10.1136/jclinpath-2017-204367] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 03/24/2017] [Indexed: 12/19/2022]
Abstract
AimsThe assessment of B-raf proto-oncogene, serine/threonine kinase (BRAF) gene status is now standard practice in patients diagnosed with metastatic melanoma with its presence predicting a clinical response to treatment with BRAF inhibitors. The gold standard in determining BRAF status is currently by DNA-based methods. More recently, a BRAF V600E antibody has been developed. We aim to investigate whether immunohistochemical detection of BRAF mutation is a suitable alternative to molecular testing by polymerase chain reaction (PCR).MethodsWe assessed the incidence of BRAF mutation in our cohort of 132 patients, as determined by PCR, as well as examining clinical and histopathological features. We investigated the sensitivity and specificity of the anti-BRAF V600E VE1 clone antibody in detecting the presence of the BRAF V600E mutation in 122 cases deemed suitable for testing.ResultsThe incidence of BRAF mutation in our cohort was 28.8% (38/132). Patients with the BRAF mutation were found to be significantly younger at age of diagnosis. BRAF-mutated melanomas tended to be thinner and more mitotically active. The antibody showed a sensitivity of 86.1% with a specificity of 96.9%. The positive predictive value was 96.9%; the negative predictive value was 94.4%. The concordance rate between PCR and immunohistochemical BRAF status was 95.1% (116/122).ConclusionsThe rate of BRAF mutation in our cohort (28.8%) was lower than international published rates of 40%–60%. This may reflect ethnic or geographic differences within population cohorts. The high concordance rate of PCR and immunohistochemical methods in determining BRAF status suggests that immunohistochemistry is potentially a viable, cost-effective alternative to PCR testing and suitable as a screening test for the BRAF mutation.
Collapse
|
115
|
Sankhala KK. Clinical development landscape in GIST: from novel agents that target accessory pathways to revisiting non-targeted therapies. Expert Opin Investig Drugs 2017; 26:427-443. [PMID: 28267385 DOI: 10.1080/13543784.2017.1303045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Activating mutations in the genes encoding the tyrosine receptor kinases KIT and platelet-derived growth factor receptor occur in 85%-90% of patients with gastrointestinal stromal tumors (GIST). Although imatinib and other tyrosine kinase inhibitors have revolutionized the treatment of GIST, most patients progress within a few years. Areas covered: Monoclonal antibodies and small-molecule inhibitors targeting specific signaling pathways or proteins associated with resistance to existing treatments are being explored as alternative treatment approaches for GIST. Other alternative approaches include inhibiting more general regulators of protein folding, chromatin packaging, and cell-cycle regulation; nontargeted approaches are also being evaluated in select patient populations. This review summarizes preclinical and clinical data from agents using these accessory pathways. Expert opinion: As we learn more about GIST biology, it is becoming clear that treatment strategies will become more personalized, as reflected by the fact that several trials are enrolling specific subpopulations of patients with GIST. Going forward, researchers should evaluate these new drugs alone or in combination with other types of drugs to better meet patient needs.
Collapse
Affiliation(s)
- Kamalesh K Sankhala
- a Translational and Clinical Research , Sarcoma Oncology Center , Santa Monica , CA , USA
| |
Collapse
|
116
|
Abstract
Targeted protein degradation using the PROTAC technology is emerging as a novel therapeutic method to address diseases driven by the aberrant expression of a disease-causing protein. PROTAC molecules are bifunctional small molecules that simultaneously bind a target protein and an E3-ubiquitin ligase, thus causing ubiquitination and degradation of the target protein by the proteasome. Like small molecules, PROTAC molecules possess good tissue distribution and the ability to target intracellular proteins. Herein, we highlight the advantages of protein degradation using PROTACs, and provide specific examples where degradation offers therapeutic benefit over classical enzyme inhibition. Foremost, PROTACs can degrade proteins regardless of their function. This includes the currently "undruggable" proteome, which comprises approximately 85% of all human proteins. Other beneficial aspects of protein degradation include the ability to target overexpressed and mutated proteins, as well as the potential to demonstrate prolonged pharmacodynamics effect beyond drug exposure. Lastly, due to their catalytic nature and the pre-requisite ubiquitination step, an exquisitely potent molecules with a high degree of degradation selectivity can be designed. Impressive preclinical in vitro and in vivo PROTAC data have been published, and these data have propelled the development of clinically viable PROTACs. With the molecular weight falling in the 700-1000Da range, the delivery and bioavailability of PROTACs remain the largest hurdles on the way to the clinic. Solving these issues and demonstrating proof of concept clinical data will be the focus of many labs over the next few years.
Collapse
|
117
|
Cribbes S, Kessel S, McMenemy S, Qiu J, Chan LLY. A Novel Multiparametric Drug-Scoring Method for High-Throughput Screening of 3D Multicellular Tumor Spheroids Using the Celigo Image Cytometer. SLAS DISCOVERY 2017; 22:547-557. [PMID: 28346096 DOI: 10.1177/2472555217689884] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Three-dimensional (3D) tumor models have been increasingly used to investigate and characterize cancer drug compounds. The ability to perform high-throughput screening of 3D multicellular tumor spheroids (MCTS) can highly improve the efficiency and cost-effectiveness of discovering potential cancer drug candidates. Previously, the Celigo Image Cytometer has demonstrated a novel method for high-throughput screening of 3D multicellular tumor spheroids. In this work, we employed the Celigo Image Cytometer to examine the effects of 14 cancer drug compounds on 3D MCTS of the glioblastoma cell line U87MG in 384-well plates. Using parameters such as MCTS diameter and invasion area, growth and invasion were monitored for 9 and 3 d, respectively. Furthermore, fluorescent staining with calcein AM, propidium iodide, Hoechst 33342, and caspase 3/7 was performed at day 9 posttreatment to measure viability and apoptosis. Using the kinetic and endpoint data generated, we created a novel multiparametric drug-scoring system for 3D MCTS that can be used to identify and classify potential drug candidates earlier in the drug discovery process. Furthermore, the combination of quantitative and qualitative image data can be used to delineate differences between drugs that induce cytotoxic and cytostatic effects. The 3D MCTS-based multiparametric scoring method described here can provide an alternative screening method to better qualify tested drug compounds.
Collapse
Affiliation(s)
- Scott Cribbes
- 1 Department of Technology R&D, Nexcelom Bioscience LLC, Lawrence, MA, USA
| | - Sarah Kessel
- 1 Department of Technology R&D, Nexcelom Bioscience LLC, Lawrence, MA, USA
| | - Scott McMenemy
- 1 Department of Technology R&D, Nexcelom Bioscience LLC, Lawrence, MA, USA
| | - Jean Qiu
- 1 Department of Technology R&D, Nexcelom Bioscience LLC, Lawrence, MA, USA
| | - Leo Li-Ying Chan
- 1 Department of Technology R&D, Nexcelom Bioscience LLC, Lawrence, MA, USA
| |
Collapse
|
118
|
Potential therapeutic targets of epithelial-mesenchymal transition in melanoma. Cancer Lett 2017; 391:125-140. [PMID: 28131904 DOI: 10.1016/j.canlet.2017.01.029] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 01/02/2017] [Accepted: 01/18/2017] [Indexed: 12/16/2022]
Abstract
Melanoma is a cutaneous neoplastic growth of melanocytes with great potential to invade and metastasize, especially when not treated early and effectively. Epithelial-mesenchymal transition (EMT) is the process by which melanocytes lose their epithelial characteristics and acquire mesenchymal phenotypes. Mesenchymal protein expression increases the motility, invasiveness, and metastatic potential of melanoma. Many pathways play a role in promotion of mesenchymal protein expression including RAS/RAF/MEK/ERK, PI3K/AKT/mTOR, Wnt/β-catenin, and several others. Downstream effectors of these pathways induce expression of EMT transcription factors including Snail, Slug, Twist, and Zeb that promote repression of epithelial and induction of mesenchymal character. Emerging research has demonstrated that a variety of small molecule inhibitors as well as phytochemicals can influence the progression of EMT and may even reverse the process, inducing re-expression of epithelial markers. Phytochemicals are of particular interest as supplementary treatment options because of their relatively low toxicities and anti-EMT properties. Modulation of EMT signaling pathways using synthetic small molecules and phytochemicals is a potential therapeutic strategy for reducing the aggressive progression of metastatic melanoma. In this review, we discuss the emerging pathways and transcription factor targets that regulate EMT and evaluate potential synthetic small molecules and naturally occurring compounds that may reduce metastatic melanoma progression.
Collapse
|
119
|
Madorsky Rowdo FP, Barón A, von Euw EM, Mordoh J. In vitro long-term treatment with MAPK inhibitors induces melanoma cells with resistance plasticity to inhibitors while retaining sensitivity to CD8 T cells. Oncol Rep 2017; 37:1367-1378. [PMID: 28098866 PMCID: PMC5364845 DOI: 10.3892/or.2017.5363] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 09/10/2016] [Indexed: 11/05/2022] Open
Abstract
The development of BRAF V600 and MEK inhibitors constitutes a breakthrough in the treatment of patients with BRAF-mutated metastatic melanoma. However, although there is an increase in overall survival, these patients generally confront recurrence, and several resistance mechanisms have already been described. In the present study we describe a different resistance mechanism. After several weeks of long‑term in vitro treatment of two different V600E BRAF‑mutated melanoma cell lines with MARK inhibitors, PLX4032 and/or GDC-0973, the majority of the cells died whereas some remained viable and quiescent (SUR). Markedly, discontinuing treatment of SUR cells with MAPK inhibitors allowed the population to regrow and these cells retained drug sensitivity equal to that of the parental cells. SUR cells had increased expression levels of CD271 and ABCB5 and presented senescence-associated characteristics. Notably, SUR cells were efficiently lysed by cytotoxic T lymphocytes recognizing MART-1 and gp100 melanoma differentiation antigens. We propose quiescent plasticity as a mechanism of resistance to BRAF and MEK inhibitors while retaining sensitivity to immune effectors.
Collapse
Affiliation(s)
| | - Antonela Barón
- Leloir Institute, IIBBA-CONICET, Buenos Aires, Argentina
| | - Erika María von Euw
- Department of Medicine, Division of Hematology-Oncology, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA
| | - José Mordoh
- Leloir Institute, IIBBA-CONICET, Buenos Aires, Argentina
| |
Collapse
|
120
|
Grasso M, Estrada MA, Ventocilla C, Samanta M, Maksimoska J, Villanueva J, Winkler JD, Marmorstein R. Chemically Linked Vemurafenib Inhibitors Promote an Inactive BRAF V600E Conformation. ACS Chem Biol 2016; 11:2876-2888. [PMID: 27571413 PMCID: PMC5108658 DOI: 10.1021/acschembio.6b00529] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The BRAF kinase, within the mitogen activated protein kinase (MAPK) signaling pathway, harbors activating mutations in about half of melanomas and to a significant extent in many other cancers. A single valine to glutamic acid substitution at residue 600 (BRAFV600E) accounts for about 90% of these activating mutations. While BRAFV600E-selective small molecule inhibitors, such as debrafenib and vemurafenib, have shown therapeutic benefit, almost all patients develop resistance. Resistance often arises through reactivation of the MAPK pathway, typically through mutation of upstream RAS, downstream MEK, or splicing variants. RAF kinases signal as homo- and heterodimers, and another complication associated with small molecule BRAFV600E inhibition is drug-induced allosteric activation of a wild-type RAF subunit (BRAF or CRAF) of the kinase dimer, a process called "transactivation" or "paradoxical activation." Here, we used BRAFV600E and vemurafenib as a model system to develop chemically linked kinase inhibitors to lock RAF dimers in an inactive conformation that cannot undergo transactivation. This structure-based design effort resulted in the development of Vem-BisAmide-2, a compound containing two vemurafenib molecules connected by a bis amide linker. We show that Vem-BisAmide-2 has comparable inhibitory potency as vemurafenib to BRAFV600E both in vitro and in cells but promotes an inactive dimeric BRAFV600E conformation unable to undergo transactivation. The crystal structure of a BRAFV600E/Vem-BisAmide-2 complex and associated biochemical studies reveal the molecular basis for how Vem-BisAmide-2 mediates selectivity for an inactive over an active dimeric BRAFV600E conformation. These studies have implications for targeting BRAFV600E/RAF heterodimers and other kinase dimers for therapy.
Collapse
Affiliation(s)
- Michael Grasso
- Department of Biochemistry and Biophysics and the Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, 421 Curie Blvd., Philadelphia, PA 19104, USA,Department of Chemistry, University of Pennsylvania, 231 S. 34th Street, Philadelphia, PA 19104, USA
| | - Michelle A. Estrada
- Department of Chemistry, University of Pennsylvania, 231 S. 34th Street, Philadelphia, PA 19104, USA
| | - Christian Ventocilla
- Department of Chemistry, University of Pennsylvania, 231 S. 34th Street, Philadelphia, PA 19104, USA
| | - Minu Samanta
- Wistar Institute, Philadelphia, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | - Jasna Maksimoska
- Department of Chemistry, University of Pennsylvania, 231 S. 34th Street, Philadelphia, PA 19104, USA
| | - Jessie Villanueva
- Wistar Institute, Philadelphia, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | - Jeffrey D. Winkler
- Department of Chemistry, University of Pennsylvania, 231 S. 34th Street, Philadelphia, PA 19104, USA
| | - Ronen Marmorstein
- Department of Biochemistry and Biophysics and the Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, 421 Curie Blvd., Philadelphia, PA 19104, USA,Department of Chemistry, University of Pennsylvania, 231 S. 34th Street, Philadelphia, PA 19104, USA
| |
Collapse
|
121
|
Müller E, Bauer S, Stühmer T, Mottok A, Scholz CJ, Steinbrunn T, Brünnert D, Brandl A, Schraud H, Kreßmann S, Beilhack A, Rosenwald A, Bargou RC, Chatterjee M. Pan-Raf co-operates with PI3K-dependent signalling and critically contributes to myeloma cell survival independently of mutated RAS. Leukemia 2016; 31:922-933. [DOI: 10.1038/leu.2016.264] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 07/28/2016] [Accepted: 09/01/2016] [Indexed: 12/20/2022]
|
122
|
Millet A, Martin AR, Ronco C, Rocchi S, Benhida R. Metastatic Melanoma: Insights Into the Evolution of the Treatments and Future Challenges. Med Res Rev 2016; 37:98-148. [PMID: 27569556 DOI: 10.1002/med.21404] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 06/28/2016] [Accepted: 07/06/2016] [Indexed: 02/06/2023]
Abstract
Melanoma is the deadliest form of skin cancer. While associated survival prognosis is good when diagnosed early, it dramatically drops when melanoma progresses into its metastatic form. Prior to 2011, the favored therapies include interleukin-2 and chemotherapies, regardless of their low efficiency and their toxicity. Following key biological findings, two new types of therapy have been approved. First, there are the targeted therapies, which rely on small molecule B-Raf and MEK inhibitors and allow the treatment of patients with B-Raf mutated melanoma. Second, there are the immunotherapies, with anti-CTLA-4 and anti-PD-1 antibodies that are used for patients harboring a B-Raf wild-type status. Both approaches have significantly improved patient survival, compared with alkylating agents, in the treatment of unresectable melanoma. Herein, we review the evolution of the treatment of melanoma starting from early discoveries to current therapies. A focus will be provided on drug discovery, synthesis, and mode of action of relevant drugs and the future directions of the domain to overcome the emergence of the resistance events.
Collapse
Affiliation(s)
- Antoine Millet
- Institut de Chimie de Nice UMR UNS-CNRS 7272, Nice, France
| | | | - Cyril Ronco
- Institut de Chimie de Nice UMR UNS-CNRS 7272, Nice, France
| | - Stéphane Rocchi
- INSERM, U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Equipe Biologie et Pathologie des cellules mélanocytaires: de la pigmentation cutanée au mélanome, Nice, France.,Université de Nice Sophia Antipolis, UFR de Médecine, Nice, France.,Service de Dermatologie, Hôpital Archet II, CHU Nice, France
| | - Rachid Benhida
- Institut de Chimie de Nice UMR UNS-CNRS 7272, Nice, France
| |
Collapse
|
123
|
Papale A, Morella IM, Indrigo MT, Bernardi RE, Marrone L, Marchisella F, Brancale A, Spanagel R, Brambilla R, Fasano S. Impairment of cocaine-mediated behaviours in mice by clinically relevant Ras-ERK inhibitors. eLife 2016; 5. [PMID: 27557444 PMCID: PMC4996650 DOI: 10.7554/elife.17111] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 08/04/2016] [Indexed: 12/30/2022] Open
Abstract
Ras-ERK signalling in the brain plays a central role in drug addiction. However, to date, no clinically relevant inhibitor of this cascade has been tested in experimental models of addiction, a necessary step toward clinical trials. We designed two new cell-penetrating peptides - RB1 and RB3 - that penetrate the brain and, in the micromolar range, inhibit phosphorylation of ERK, histone H3 and S6 ribosomal protein in striatal slices. Furthermore, a screening of small therapeutics currently in clinical trials for cancer therapy revealed PD325901 as a brain-penetrating drug that blocks ERK signalling in the nanomolar range. All three compounds have an inhibitory effect on cocaine-induced ERK activation and reward in mice. In particular, PD325901 persistently blocks cocaine-induced place preference and accelerates extinction following cocaine self-administration. Thus, clinically relevant, systemically administered drugs that attenuate Ras-ERK signalling in the brain may be valuable tools for the treatment of cocaine addiction. DOI:http://dx.doi.org/10.7554/eLife.17111.001
Collapse
Affiliation(s)
- Alessandro Papale
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom.,School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Ilaria Maria Morella
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom.,School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | | | - Rick Eugene Bernardi
- Institute of Psychopharmacology, Heidelberg University, Heidelberg, Germany.,Central Institute of Mental Health, Heidelberg University, Heidelberg, Germany.,Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Livia Marrone
- Institute of Experimental Neurology, Division of Neuroscience, IRCCS-San Raffaele Scientific Institute, Milan, Italy
| | - Francesca Marchisella
- Institute of Experimental Neurology, Division of Neuroscience, IRCCS-San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Brancale
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, United Kingdom
| | - Rainer Spanagel
- Institute of Psychopharmacology, Heidelberg University, Heidelberg, Germany.,Central Institute of Mental Health, Heidelberg University, Heidelberg, Germany.,Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Riccardo Brambilla
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom.,School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Stefania Fasano
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom.,School of Biosciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
124
|
Abstract
With the rapid succession of new effective agents for melanoma in the recent years, the paradigm for treatment of metastatic melanoma is changing. The success of combining multiple effective agents compared with outcomes of monotherapy also brings increasing complexity in the treatment algorithm for various subsets of metastatic melanoma patients. We reviewed the recent reports on novel melanoma therapy to shed light on rational decision-making in treating these patients.
Collapse
|
125
|
Paradoxical activation of MEK/ERK signaling induced by B-Raf inhibition enhances DR5 expression and DR5 activation-induced apoptosis in Ras-mutant cancer cells. Sci Rep 2016; 6:26803. [PMID: 27222248 PMCID: PMC4879700 DOI: 10.1038/srep26803] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 05/10/2016] [Indexed: 12/19/2022] Open
Abstract
B-Raf inhibitors have been used for the treatment of some B-Raf–mutated cancers. They effectively inhibit B-Raf/MEK/ERK signaling in cancers harboring mutant B-Raf, but paradoxically activates MEK/ERK in Ras-mutated cancers. Death receptor 5 (DR5), a cell surface pro-apoptotic protein, triggers apoptosis upon ligation with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) or aggregation. This study focused on determining the effects of B-Raf inhibition on DR5 expression and DR5 activation-induced apoptosis in Ras-mutant cancer cells. Using chemical and genetic approaches, we have demonstrated that the B-Raf inhibitor PLX4032 induces DR5 upregulation exclusively in Ras-mutant cancer cells; this effect is dependent on Ras/c-Raf/MEK/ERK signaling activation. PLX4032 induces DR5 expression at transcriptional levels, largely due to enhancing CHOP/Elk1-mediated DR5 transcription. Pre-exposure of Ras-mutated cancer cells to PLX4032 sensitizes them to TRAIL-induced apoptosis; this is also a c-Raf/MEK/ERK-dependent event. Collectively, our findings highlight a previously undiscovered effect of B-Raf inhibition on the induction of DR5 expression and the enhancement of DR5 activation-induced apoptosis in Ras-mutant cancer cells and hence may suggest a novel therapeutic strategy against Ras-mutated cancer cells by driving their death due to DR5-dependent apoptosis through B-Raf inhibition.
Collapse
|
126
|
Smalley KSM, Fedorenko IV, Kenchappa RS, Sahebjam S, Forsyth PA. Managing leptomeningeal melanoma metastases in the era of immune and targeted therapy. Int J Cancer 2016; 139:1195-201. [PMID: 27084046 DOI: 10.1002/ijc.30147] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 03/24/2016] [Accepted: 04/08/2016] [Indexed: 12/11/2022]
Abstract
Melanoma frequently metastasizes to the brain, with CNS involvement being clinically evident in ∼30% of patients (as high as 75% at autopsy). In ∼5% cases melanoma cells also metastasize to the leptomeninges, the sub-arachnoid space and cerebrospinal fluid (CSF). Patients with leptomeningeal melanoma metastases (LMM) have the worst prognosis and are characterized by rapid disease progression (mean survival 8-10 weeks) and a death from neurological causes. The recent years have seen tremendous progress in the development of targeted and immune therapies for melanoma that has translated into an increased survival benefit. Despite these gains, the majority of patients fail therapy and there is a suspicion that the brain and the leptomeninges are a "sanctuary" sites for melanoma cells that escape both targeted therapy and immunologic therapies. Emerging evidence suggests that (1) Cancer cells migrating to the CNS may have unique molecular properties and (2) the CNS/leptomeningeal microenvironment represents a pro-survival niche that influences therapeutic response. In this Mini-Review, we will outline the clinical course of LMM development and will describe how the intracranial immune and cellular microenvironments offer both opportunities and challenges for the successful management of this disease. We will further discuss the latest data demonstrating the potential use of BRAF inhibitors and immune therapy in the management of LMM, and will review future potential therapeutic strategies for the management of this most devastating complication of advanced melanoma.
Collapse
Affiliation(s)
- Keiran S M Smalley
- The Department of Tumor Biology, Moffitt Cancer Center & Research Institute, Tampa, FL.,Department of Cutaneous Oncology, Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Inna V Fedorenko
- The Department of Tumor Biology, Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Rajappa S Kenchappa
- The Department of Tumor Biology, Moffitt Cancer Center & Research Institute, Tampa, FL.,Department of NeuroOncology, Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Solmaz Sahebjam
- Department of NeuroOncology, Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Peter A Forsyth
- The Department of Tumor Biology, Moffitt Cancer Center & Research Institute, Tampa, FL.,Department of NeuroOncology, Moffitt Cancer Center & Research Institute, Tampa, FL.,Department of Oncology, Tom Baker Cancer Center & University of Calgary, Calgary, AB, Canada
| |
Collapse
|
127
|
Wick MR, Gru AA. Metastatic melanoma: Pathologic characterization, current treatment, and complications of therapy. Semin Diagn Pathol 2016; 33:204-18. [PMID: 27234321 DOI: 10.1053/j.semdp.2016.04.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Metastatic melanoma (MM) has the potential to involve virtually any anatomical site, and it also has a wide spectrum of histological appearances. General clinicopathologic data pertaining to MM are presented in this review, together with a discussion of its differential diagnosis and therapy. "Biological" agents used in the treatment of melanoma are considered, along with the pathological features of the complications that they may cause.
Collapse
Affiliation(s)
- Mark R Wick
- Division of Surgical Pathology & Cytopathology, University of Virginia Medical Center, Charlottesville, Virginia.
| | - Alejandro A Gru
- Division of Surgical Pathology & Cytopathology, University of Virginia Medical Center, Charlottesville, Virginia
| |
Collapse
|
128
|
Planchard D, Kim TM, Mazieres J, Quoix E, Riely G, Barlesi F, Souquet PJ, Smit EF, Groen HJM, Kelly RJ, Cho BC, Socinski MA, Pandite L, Nase C, Ma B, D'Amelio A, Mookerjee B, Curtis CM, Johnson BE. Dabrafenib in patients with BRAF(V600E)-positive advanced non-small-cell lung cancer: a single-arm, multicentre, open-label, phase 2 trial. Lancet Oncol 2016; 17:642-50. [PMID: 27080216 DOI: 10.1016/s1470-2045(16)00077-2] [Citation(s) in RCA: 332] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 01/20/2016] [Accepted: 01/27/2016] [Indexed: 12/26/2022]
Abstract
BACKGROUND Activating BRAF(V600E) (Val600Glu) mutations are found in about 1-2% of lung adenocarcinomas, which might provide an opportunity for targeted treatment in these patients. Dabrafenib is an oral selective inhibitor of BRAF kinase. We did a trial to assess the clinical activity of dabrafenib in patients with advanced non-small-cell lung cancer (NSCLC) positive for the BRAF(V600E) mutation. METHODS In this phase 2, multicentre, non-randomised, open-label study, we enrolled previously treated and untreated patients with stage IV metastatic BRAF(V600E)-positive NSCLC. Patients received oral dabrafenib 150 mg twice daily. The primary endpoint was investigator-assessed overall response, which was assessed in patients who had received at least one dose of dabrafenib; safety was also assessed in this population. The study is ongoing but not enrolling patients in this cohort. This trial is registered with ClinicalTrials.gov, number NCT01336634. FINDINGS Between Aug 3, 2011, and Feb 25, 2014, 84 patients were enrolled, six of whom had not previously received systemic treatment for NSCLC. 26 of the 78 previously treated patients achieved an investigator-assessed overall response (33% [95% CI 23-45]). Four of the six previously untreated patients had an objective response. One patient died from an intracranial haemorrhage that was judged by the investigator to be due to the study drug. Serious adverse events were reported in 35 (42%) of 84 patients. The most frequent grade 3 or worse adverse events were cutaneous squamous-cell carcinoma in ten (12%), asthenia in four (5%), and basal-cell carcinoma in four (5%). INTERPRETATION Dabrafenib showed clinical activity in BRAF(V600E)-positive NSCLC. Our findings suggest that dabrafenib could represent a treatment option for a population of patients with limited therapeutic options. FUNDING GlaxoSmithKline.
Collapse
Affiliation(s)
- David Planchard
- Department of Medical Oncology, Gustave Roussy, Villejuif, France
| | - Tae Min Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Julien Mazieres
- Thoracic Oncology Unit, Rangueil-Larrey Hospital, Toulouse, France; Paul Sabatier University, Toulouse, France
| | - Elisabeth Quoix
- Pneumology Department, University Hospital of Strasbourg, Strasbourg, France
| | - Gregory Riely
- Department of Medicine, Thoracic Oncology Service, Division of Solid Tumor Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Joan and Sanfor I Weill Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Fabrice Barlesi
- Multidisciplinary Oncology and Therapeutic Innovations Department, Aix-Marseille University, Assistance Publique Hôpitaux de Marseille, Livon, Marseille, France
| | - Pierre-Jean Souquet
- Acute Respiratory Medicine and Thoracic Oncology Department, Centre Hospitalier Lyon-Sud, Pierre-Bénite, France
| | - Egbert F Smit
- Department of Pulmonary Diseases, Vrije Universiteit VU Medical Centre, Amsterdam, Netherlands
| | - Harry J M Groen
- Department of Pulmonary Diseases, University of Groningen, Groningen, Netherlands; University Medical Center Groningen, Groningen, Netherlands
| | - Ronan J Kelly
- Upper Aerodigestive Malignancies Division, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - B C Cho
- College of Medicine, Yonsei University, Seoul, South Korea
| | - Mark A Socinski
- Lung Cancer Section, Division of Hematology/Oncology, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | | | | | | | | - Bruce E Johnson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
| |
Collapse
|
129
|
Cooperative antiproliferative signaling by aspirin and indole-3-carbinol targets microphthalmia-associated transcription factor gene expression and promoter activity in human melanoma cells. Cell Biol Toxicol 2016; 32:103-19. [PMID: 27055402 DOI: 10.1007/s10565-016-9321-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 03/22/2016] [Indexed: 12/21/2022]
Abstract
Antiproliferative signaling of combinations of the nonsteroidal anti-inflammatory drug acetylsalicylic acid (aspirin) and indole-3-carbinol (I3C), a natural indolecarbinol compound derived from cruciferous vegetables, was investigated in human melanoma cells. Melanoma cell lines with distinct mutational profiles were sensitive to different extents to the antiproliferative response of aspirin, with oncogenic BRAF-expressing G361 cells and wild-type BRAF-expressing SK-MEL-30 cells being the most responsive. I3C triggered a strong proliferative arrest of G361 melanoma cells and caused only a modest decrease in the proliferation of SK-MEL-30 cells. In both cell lines, combinations of aspirin and I3C cooperatively arrested cell proliferation and induced a G1 cell cycle arrest, and nearly ablated protein and transcript levels of the melanocyte master regulator microphthalmia-associated transcription factor isoform M (MITF-M). In melanoma cells transfected with a -333/+120-bp MITF-M promoter-luciferase reporter plasmid, treatment with aspirin and I3C cooperatively disrupted MITF-M promoter activity, which accounted for the loss of MITF-M gene products. Mutational analysis revealed that the aspirin required the LEF1 binding site, whereas I3C required the BRN2 binding site to mediate their combined and individual effects on MITF-M promoter activity. Consistent with LEF1 being a downstream effector of Wnt signaling, aspirin, but not I3C, downregulated protein levels of the Wnt co-receptor LDL receptor-related protein-6 and β-catenin and upregulated the β-catenin destruction complex component Axin. Taken together, our results demonstrate that aspirin-regulated Wnt signaling and I3C-targeted signaling pathways converge at distinct DNA elements in the MITF-M promoter to cooperatively disrupt MITF-M expression and melanoma cell proliferation.
Collapse
|
130
|
Optogenetically controlled RAF to characterize BRAF and CRAF protein kinase inhibitors. Sci Rep 2016; 6:23713. [PMID: 27025703 PMCID: PMC4812324 DOI: 10.1038/srep23713] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 03/14/2016] [Indexed: 12/19/2022] Open
Abstract
Here, we applied optoRAF, an optogenetic tool for light-controlled clustering and activation of RAF proteins that mimics the natural occurring RAS-mediated dimerization. This versatile tool allows studying the effect on BRAF and CRAF homodimer- as well as heterodimer-induced RAF signaling. Vemurafenib and dabrafenib are two clinically approved inhibitors for BRAF that efficiently suppress the kinase activity of oncogenic BRAF (V600E). However in wild-type BRAF expressing cells, BRAF inhibitors can exert paradoxical activation of wild-type CRAF. Using optoRAF, vemurafenib was identified as paradoxical activator of BRAF and CRAF homo- and heterodimers. Dabrafenib enhanced activity of light-stimulated CRAF at low dose and inhibited CRAF signaling at high dose. Moreover, dabrafenib increased the protein level of CRAF proteins but not of BRAF proteins. Increased CRAF levels correlate with elevated RAF signaling in a dabrafenib-dependent manner, independent of light activation.
Collapse
|
131
|
Waizenegger IC, Baum A, Steurer S, Stadtmüller H, Bader G, Schaaf O, Garin-Chesa P, Schlattl A, Schweifer N, Haslinger C, Colbatzky F, Mousa S, Kalkuhl A, Kraut N, Adolf GR. A Novel RAF Kinase Inhibitor with DFG-Out-Binding Mode: High Efficacy in BRAF-Mutant Tumor Xenograft Models in the Absence of Normal Tissue Hyperproliferation. Mol Cancer Ther 2016; 15:354-65. [PMID: 26916115 DOI: 10.1158/1535-7163.mct-15-0617] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 12/30/2015] [Indexed: 11/16/2022]
Abstract
BI 882370 is a highly potent and selective RAF inhibitor that binds to the DFG-out (inactive) conformation of the BRAF kinase. The compound inhibited proliferation of human BRAF-mutant melanoma cells with 100× higher potency (1-10 nmol/L) than vemurafenib, whereas wild-type cells were not affected at 1,000 nmol/L. BI 882370 administered orally was efficacious in multiple mouse models of BRAF-mutant melanomas and colorectal carcinomas, and at 25 mg/kg twice daily showed superior efficacy compared with vemurafenib, dabrafenib, or trametinib (dosed to provide exposures reached in patients). To model drug resistance, A375 melanoma-bearing mice were initially treated with vemurafenib; all tumors responded with regression, but the majority subsequently resumed growth. Trametinib did not show any efficacy in this progressing population. BI 882370 induced tumor regression; however, resistance developed within 3 weeks. BI 882370 in combination with trametinib resulted in more pronounced regressions, and resistance was not observed during 5 weeks of second-line therapy. Importantly, mice treated with BI 882370 did not show any body weight loss or clinical signs of intolerability, and no pathologic changes were observed in several major organs investigated, including skin. Furthermore, a pilot study in rats (up to 60 mg/kg daily for 2 weeks) indicated lack of toxicity in terms of clinical chemistry, hematology, pathology, and toxicogenomics. Our results indicate the feasibility of developing novel compounds that provide an improved therapeutic window compared with first-generation BRAF inhibitors, resulting in more pronounced and long-lasting pathway suppression and thus improved efficacy.
Collapse
Affiliation(s)
- Irene C Waizenegger
- Department of Pharmacology and Translational Research, Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria.
| | - Anke Baum
- Department of Pharmacology and Translational Research, Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | - Steffen Steurer
- Department of Medicinal Chemistry, Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | - Heinz Stadtmüller
- Department of Medicinal Chemistry, Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | - Gerd Bader
- Department of Medicinal Chemistry, Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | - Otmar Schaaf
- Department of Discovery ADME, Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | - Pilar Garin-Chesa
- Department of Pharmacology and Translational Research, Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | - Andreas Schlattl
- Department of Pharmacology and Translational Research, Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | - Norbert Schweifer
- Department of Pharmacology and Translational Research, Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | - Christian Haslinger
- Department of Pharmacology and Translational Research, Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | - Florian Colbatzky
- Department of Non-clinical Drug Safety, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Sien Mousa
- Department of Non-clinical Drug Safety, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Arno Kalkuhl
- Department of Non-clinical Drug Safety, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Norbert Kraut
- Department of Pharmacology and Translational Research, Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | - Günther R Adolf
- Department of Pharmacology and Translational Research, Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| |
Collapse
|
132
|
Abstract
Care of the oncologic patient requires an integral understanding of the adverse reactions of chemotherapy. With the advent of targeted agents and immunomodulating therapies, reactions to these newer treatments are of clinical interest. Cutaneous side effects of chemotherapeutic agents, including toxic erythema and mucositis, are common and may require cessation of treatment if associated with discomfort, superinfection, or negative impact on quality of life. This article reviews the cutaneous adverse reactions and treatment options of both conventional cytotoxic chemotherapeutic agents and newer targeted, multikinase inhibitors and immunomodulating therapies. An understanding of possible cutaneous reactions by all providers involved in the care of the oncologic patient is critical for prompt recognition, allowing for appropriate treatment and referral to dermatologists when necessary.
Collapse
Affiliation(s)
- Veronica J Shi
- Department of Dermatology, Yale University School of Medicine, New Haven, CT
| | - Lauren L Levy
- Department of Dermatology, Yale University School of Medicine, New Haven, CT
| | - Jennifer N Choi
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL.
| |
Collapse
|
133
|
Singh BP, Salama AKS. Updates in Therapy for Advanced Melanoma. Cancers (Basel) 2016; 8:E17. [PMID: 26784231 PMCID: PMC4728464 DOI: 10.3390/cancers8010017] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 01/04/2016] [Accepted: 01/07/2016] [Indexed: 01/15/2023] Open
Abstract
Cutaneous melanoma is one of the most aggressive forms of skin cancer, and is correlated with a large proportion of skin cancer-related deaths. Therapy for cutaneous melanoma has advanced greatly through careful identification of therapeutic targets and the development of novel immunotherapeutic approaches. The identification of BRAF as well as other driver mutations, have allowed for a specialized approach to treatment. In addition, immune checkpoint inhibition has dramatically changed the treatment landscape over the past 5-10 years. The successful targeting of CTLA-4, as well as PD-1/PD-L1, has been translated into meaningful clinical benefit for patients, with multiple other potential agents in development. Systemic therapy for cutaneous melanoma is becoming more nuanced and often takes a multifaceted strategy. This review aims to discuss the benefits and limitations of current therapies in systemic melanoma treatment as well as areas of future development.
Collapse
Affiliation(s)
- Bhavana P Singh
- Department of Internal Medicine, Duke University Medical Center, Durham, NC 27710, USA.
| | - April K S Salama
- Division of Medical Oncology, Department of Internal Medicine, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
134
|
Chen SH, Zhang Y, Van Horn RD, Yin T, Buchanan S, Yadav V, Mochalkin I, Wong SS, Yue YG, Huber L, Conti I, Henry JR, Starling JJ, Plowman GD, Peng SB. Oncogenic BRAF Deletions That Function as Homodimers and Are Sensitive to Inhibition by RAF Dimer Inhibitor LY3009120. Cancer Discov 2016; 6:300-15. [PMID: 26732095 DOI: 10.1158/2159-8290.cd-15-0896] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 12/30/2015] [Indexed: 11/16/2022]
Abstract
UNLABELLED We have identified previously undiscovered BRAF in-frame deletions near the αC-helix region of the kinase domain in pancreatic, lung, ovarian, and thyroid cancers. These deletions are mutually exclusive with KRAS mutations and occur in 4.21% of KRAS wild-type pancreatic cancer. siRNA knockdown in cells harboring BRAF deletions showed that the MAPK activity and cell growth are BRAF dependent. Structurally, the BRAF deletions are predicted to shorten the β3/αC-helix loop and hinder its flexibility by locking the helix in the active αC-helix-in conformation that favors dimer formation. Expression of L485-P490-deleted BRAF is able to transform NIH/3T3 cells in a BRAF dimer-dependent manner. BRAF homodimer is confirmed to be the dominant RAF dimer by proximity ligation assays in BRAF deletion cells, which are resistant to the BRAF inhibitor vemurafenib and sensitive to LY3009120, a RAF dimer inhibitor. In tumor models with BRAF deletions, LY3009120 has shown tumor growth regression, whereas vemurafenib is inactive. SIGNIFICANCE This study discovered oncogenic BRAF deletions with a distinct activation mechanism dependent on the BRAF dimer formation in tumor cells. LY3009120 is active against these cells and represents a potential treatment option for patients with cancer with these BRAF deletions, or other atypical BRAF mutations where BRAF functions as a dimer.
Collapse
Affiliation(s)
- Shih-Hsun Chen
- Oncology Research, Eli Lilly and Company, Indianapolis, Indiana
| | - Youyan Zhang
- Oncology Research, Eli Lilly and Company, Indianapolis, Indiana
| | | | - Tinggui Yin
- Oncology Research, Eli Lilly and Company, Indianapolis, Indiana
| | - Sean Buchanan
- Oncology Research, Eli Lilly and Company, Indianapolis, Indiana
| | - Vipin Yadav
- Oncology Research, Eli Lilly and Company, Indianapolis, Indiana
| | - Igor Mochalkin
- Discovery Chemistry Research and Technologies, Eli Lilly and Company, Indianapolis, Indiana
| | - Swee Seong Wong
- Tailored Therapeutics, Eli Lilly and Company, Indianapolis, Indiana
| | - Yong Gang Yue
- Tailored Therapeutics, Eli Lilly and Company, Indianapolis, Indiana
| | - Lysiane Huber
- Oncology Research, Eli Lilly and Company, Indianapolis, Indiana
| | - Ilaria Conti
- Oncology Business Unit, Eli Lilly and Company, Indianapolis, Indiana
| | - James R Henry
- Discovery Chemistry Research and Technologies, Eli Lilly and Company, Indianapolis, Indiana
| | | | | | - Sheng-Bin Peng
- Oncology Research, Eli Lilly and Company, Indianapolis, Indiana.
| |
Collapse
|
135
|
Carlino MS, Long GV, Kefford RF, Rizos H. Targeting oncogenic BRAF and aberrant MAPK activation in the treatment of cutaneous melanoma. Crit Rev Oncol Hematol 2015; 96:385-98. [PMID: 26358420 DOI: 10.1016/j.critrevonc.2015.08.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Revised: 08/12/2015] [Accepted: 08/24/2015] [Indexed: 12/12/2022] Open
Abstract
BRAF and MEK inhibitors, alone or in combination, are highly active in the 40% of patients with BRAF mutant metastatic melanoma. Despite this activity resistance often develops in patients treated with these agents. This review summarises the biology of the mitogen activated protein kinase (MAPK) pathway, with particular reference to the effects of BRAF and MEK inhibitors in BRAF mutant melanoma. The clinical and molecular predictors of response and mechanisms of resistance are discussed in detail along with the biological rationale and evidence for future treatment strategies in both MAPK inhibitor naïve and resistant BRAF mutant melanoma.
Collapse
Affiliation(s)
- Matteo S Carlino
- Departments of Medical Oncology, Crown Princess Mary Cancer Centre, Westmead Hospital, Sydney, New South Wales, Australia; Centre for Cancer Research, Westmead Millennium Institute, Westmead, New South Wales, Australia; Melanoma Institute Australia, Sydney, New South Wales, Australia; The Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia.
| | - Georgina V Long
- Melanoma Institute Australia, Sydney, New South Wales, Australia; The Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia; The Mater Hospital, North Sydney, New South Wales, Australia
| | - Richard F Kefford
- Departments of Medical Oncology, Crown Princess Mary Cancer Centre, Westmead Hospital, Sydney, New South Wales, Australia; Centre for Cancer Research, Westmead Millennium Institute, Westmead, New South Wales, Australia; Melanoma Institute Australia, Sydney, New South Wales, Australia; Faculty of Medicine and Health Science, Macquarie University, New South Wales, Australia
| | - Helen Rizos
- Centre for Cancer Research, Westmead Millennium Institute, Westmead, New South Wales, Australia; Melanoma Institute Australia, Sydney, New South Wales, Australia; Faculty of Medicine and Health Science, Macquarie University, New South Wales, Australia
| |
Collapse
|
136
|
Metastatic melanoma treatment: Combining old and new therapies. Crit Rev Oncol Hematol 2015; 98:242-53. [PMID: 26616525 DOI: 10.1016/j.critrevonc.2015.11.011] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 10/16/2015] [Accepted: 11/12/2015] [Indexed: 01/04/2023] Open
Abstract
Metastatic melanoma is an aggressive form of cancer characterised by poor prognosis and a complex etiology. Until 2010, the treatment options for metastatic melanoma were very limited. Largely ineffective dacarbazine, temozolamide or fotemustine were the only agents in use for 35 years. In recent years, the development of molecularly targeted inhibitors in parallel with the development of checkpoint inhibition immunotherapies has rapidly improved the outcomes for metastatic melanoma patients. Despite these new therapies showing initial promise; resistance and poor duration of response have limited their effectiveness as monotherapies. Here we provide an overview of the history of melanoma treatment, as well as the current treatments in development. We also discuss the future of melanoma treatment as we go beyond monotherapies to a combinatorial approach. Combining older therapies with the new molecular and immunotherapies will be the most promising way forward for treatment of metastatic melanoma.
Collapse
|
137
|
Martin-Liberal J, Larkin J. Vemurafenib for the treatment of BRAF mutant metastatic melanoma. Future Oncol 2015; 11:579-89. [PMID: 25686114 DOI: 10.2217/fon.14.252] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Vemurafenib was the first selective BRAF inhibitor licensed in cancer. It is indicated for the treatment of patients affected by advanced melanoma with BRAF V600 mutation. It has shown successful results in terms of efficacy together with a favorable toxicity profile. Other compounds such as the BRAF inhibitor dabrafenib and the immunotherapeutic agent ipilimumab are also approved in the same group of patients. This article reviews the chemistry, pharmacokinetics, pharmacodynamics and clinical development of vemurafenib. Moreover, its efficacy and toxicity are compared with dabrafenib and ipilimumab. A number of trials with vemurafenib alone or in combination with other drugs are also analyzed. These trials will determine the role of vemurafenib in the treatment of BRAF mutant melanoma in forthcoming years.
Collapse
|
138
|
RAF inhibitors that evade paradoxical MAPK pathway activation. Nature 2015; 526:583-6. [DOI: 10.1038/nature14982] [Citation(s) in RCA: 268] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 07/28/2015] [Indexed: 12/12/2022]
|
139
|
Peng SB, Henry JR, Kaufman MD, Lu WP, Smith BD, Vogeti S, Rutkoski TJ, Wise S, Chun L, Zhang Y, Van Horn RD, Yin T, Zhang X, Yadav V, Chen SH, Gong X, Ma X, Webster Y, Buchanan S, Mochalkin I, Huber L, Kays L, Donoho GP, Walgren J, McCann D, Patel P, Conti I, Plowman GD, Starling JJ, Flynn DL. Inhibition of RAF Isoforms and Active Dimers by LY3009120 Leads to Anti-tumor Activities in RAS or BRAF Mutant Cancers. Cancer Cell 2015; 28:384-98. [PMID: 26343583 DOI: 10.1016/j.ccell.2015.08.002] [Citation(s) in RCA: 221] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 06/29/2015] [Accepted: 08/03/2015] [Indexed: 12/19/2022]
Abstract
LY3009120 is a pan-RAF and RAF dimer inhibitor that inhibits all RAF isoforms and occupies both protomers in RAF dimers. Biochemical and cellular analyses revealed that LY3009120 inhibits ARAF, BRAF, and CRAF isoforms with similar affinity, while vemurafenib or dabrafenib have little or modest CRAF activity compared to their BRAF activities. LY3009120 induces BRAF-CRAF dimerization but inhibits the phosphorylation of downstream MEK and ERK, suggesting that it effectively inhibits the kinase activity of BRAF-CRAF heterodimers. Further analyses demonstrated that LY3009120 also inhibits various forms of RAF dimers including BRAF or CRAF homodimers. Due to these unique properties, LY3009120 demonstrates minimal paradoxical activation, inhibits MEK1/2 phosphorylation, and exhibits anti-tumor activities across multiple models carrying KRAS, NRAS, or BRAF mutation.
Collapse
Affiliation(s)
| | | | | | - Wei-Ping Lu
- Deciphera Pharmaceuticals, LLC, Lawrence, KS 66044, USA
| | - Bryan D Smith
- Deciphera Pharmaceuticals, LLC, Lawrence, KS 66044, USA
| | - Subha Vogeti
- Deciphera Pharmaceuticals, LLC, Lawrence, KS 66044, USA
| | | | - Scott Wise
- Deciphera Pharmaceuticals, LLC, Lawrence, KS 66044, USA
| | - Lawrence Chun
- Emerald Biostructures, Bainbridge Island, WA 98110, USA
| | - Youyan Zhang
- Eli Lilly and Company, Indianapolis, IN 46285, USA
| | | | - Tinggui Yin
- Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Xiaoyi Zhang
- Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Vipin Yadav
- Eli Lilly and Company, Indianapolis, IN 46285, USA
| | | | - Xueqian Gong
- Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Xiwen Ma
- Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Yue Webster
- Eli Lilly and Company, Indianapolis, IN 46285, USA
| | | | | | | | - Lisa Kays
- Eli Lilly and Company, Indianapolis, IN 46285, USA
| | | | | | - Denis McCann
- Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Phenil Patel
- Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Ilaria Conti
- Eli Lilly and Company, Indianapolis, IN 46285, USA
| | | | | | | |
Collapse
|
140
|
Zia Y, Chen L, Daud A. Future of combination therapy with dabrafenib and trametinib in metastatic melanoma. Expert Opin Pharmacother 2015; 16:2257-63. [DOI: 10.1517/14656566.2015.1085509] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
141
|
Lugowska I, Koseła-Paterczyk H, Kozak K, Rutkowski P. Trametinib: a MEK inhibitor for management of metastatic melanoma. Onco Targets Ther 2015; 8:2251-9. [PMID: 26347206 PMCID: PMC4556032 DOI: 10.2147/ott.s72951] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
This review presents the current data on the efficacy and safety of the selective mitogen-activated extracellular signal-regulated kinase (MEK) inhibitor trametinib in patients with metastatic BRAF V600-positive melanoma. The pharmacological, safety, and efficacy data come from the Phase I, II, and III studies of trametinib monotherapy, as well as those in combination with the BRAF inhibitor dabrafenib. The most common adverse effects of trametinib therapy are rash, dermatitis, diarrhea, and fatigue. The Phase III METRIC study showed significant improvement in overall survival and progression-free survival in favor of trametinib over standard dacarbazine or paclitaxel chemotherapy. Therefore, trametinib was approved by the US Food and Drug Administration and European Medicines Agency as a single agent for the treatment of patients with V600E-mutated metastatic melanoma. Progression-free survival and response rates for trametinib monotherapy were lower than those noted with BRAF inhibitors. The second step in developing trametinib was to use the combination of trametinib with the BRAF inhibitor, eg, dabrafenib, to postpone the progression on MEK or BRAF inhibitors. The recently published data showed significant improvement in overall survival and progression-free survival in favor of the combination of trametinib and dabrafenib over vemurafenib therapy or dabrafenib alone, with good tolerance. The US Food and Drug Administration has approved the combination of dabrafenib (150 mg orally twice daily) and trametinib (2 mg orally once daily) for the treatment of patients with BRAF V600E/K-mutant metastatic melanoma, and their use seems to be currently the best approach. While BRAF-MEK inhibition is a standard, molecular targeted therapy in BRAF-mutated melanomas, its future utility has to be established in the rapidly changing landscape of immunotherapeutics.
Collapse
Affiliation(s)
- Iwona Lugowska
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie Memorial Cancer Centre and Institute of Oncology, Warsaw, Poland ; Department of Epidemiology, Institute of Mother and Child, Warsaw, Poland
| | - Hanna Koseła-Paterczyk
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie Memorial Cancer Centre and Institute of Oncology, Warsaw, Poland
| | - Katarzyna Kozak
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie Memorial Cancer Centre and Institute of Oncology, Warsaw, Poland
| | - Piotr Rutkowski
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie Memorial Cancer Centre and Institute of Oncology, Warsaw, Poland
| |
Collapse
|
142
|
Bowyer S, Lee R, Fusi A, Lorigan P. Dabrafenib and its use in the treatment of metastatic melanoma. Melanoma Manag 2015; 2:199-208. [PMID: 30190849 DOI: 10.2217/mmt.15.21] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Approximately 50% of melanomas have mutations in the gene encoding BRAF. In recent years, new targeted therapies have transformed the landscape of metastatic melanoma treatment. Dabrafenib, a potent kinase inhibitor of mutated BRAF, has been showed to have high response rates with a rapid onset of response, as well as improved overall and progression-free survival when compared with chemotherapy. Dabrafenib in combination with trametinib, a MEK inhibitor, has demonstrated higher responses and improved clinical efficacy compared with monotherapy. Toxicity is distinct compared with chemotherapy but manageable. This article summarizes the pharmacology, key clinical trial data as well as practical experience with dabrafenib in clinical practice, and future directions.
Collapse
Affiliation(s)
- Samantha Bowyer
- Christie NHS Foundation Trust, Wilmslow Road, Manchester, M20 4BX, UK.,Christie NHS Foundation Trust, Wilmslow Road, Manchester, M20 4BX, UK
| | - Rebecca Lee
- Christie NHS Foundation Trust, Wilmslow Road, Manchester, M20 4BX, UK.,Christie NHS Foundation Trust, Wilmslow Road, Manchester, M20 4BX, UK
| | - Alberto Fusi
- Christie NHS Foundation Trust, Wilmslow Road, Manchester, M20 4BX, UK.,Christie NHS Foundation Trust, Wilmslow Road, Manchester, M20 4BX, UK
| | - Paul Lorigan
- Christie NHS Foundation Trust, Wilmslow Road, Manchester, M20 4BX, UK.,Department of Medical Oncology, University of Manchester, Christie NHS Foundation Trust, 550 Wilmslow Road, Manchester, M20 4BX, UK.,Christie NHS Foundation Trust, Wilmslow Road, Manchester, M20 4BX, UK.,Department of Medical Oncology, University of Manchester, Christie NHS Foundation Trust, 550 Wilmslow Road, Manchester, M20 4BX, UK
| |
Collapse
|
143
|
Uehling DE, Harris PA. Recent progress on MAP kinase pathway inhibitors. Bioorg Med Chem Lett 2015; 25:4047-56. [PMID: 26298497 DOI: 10.1016/j.bmcl.2015.07.093] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 07/11/2015] [Accepted: 07/28/2015] [Indexed: 10/23/2022]
Abstract
The RAS-RAF-MEK-ERK, or ERK signaling pathway propagates signals through an intracellular signal transduction cascade. Since approximately one third of human cancers are impacted by mutations in the ERK signaling pathway, intensive efforts to develop drugs targeting members of this cascade are ongoing. While efforts to develop drugs aimed at inhibiting RAS are still at an early stage, substantial progress in discovering clinical drugs targeting RAF, MEK, and ERK have been made. This review will highlight the recent progress in this area.
Collapse
Affiliation(s)
- David E Uehling
- Department of Drug Discovery, Ontario Institute for Cancer Research, MaRS Centre, 661 University Avenue, Suite 510, Toronto, Ontario M5G 0A3, Canada.
| | - Philip A Harris
- Pattern Recognition Receptor DPU, GlaxoSmithKline, 1250 S. Collegeville Road, Collegeville, PA 19426-0989, United States
| |
Collapse
|
144
|
Uitdehaag JCM, de Roos JADM, van Doornmalen AM, Prinsen MBW, Spijkers-Hagelstein JAP, de Vetter JRF, de Man J, Buijsman RC, Zaman GJR. Selective Targeting of CTNBB1-, KRAS- or MYC-Driven Cell Growth by Combinations of Existing Drugs. PLoS One 2015; 10:e0125021. [PMID: 26018524 PMCID: PMC4446296 DOI: 10.1371/journal.pone.0125021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Accepted: 03/19/2015] [Indexed: 12/22/2022] Open
Abstract
The aim of combination drug treatment in cancer therapy is to improve response rate and to decrease the probability of the development of drug resistance. Preferably, drug combinations are synergistic rather than additive, and, ideally, drug combinations work synergistically only in cancer cells and not in non-malignant cells. We have developed a workflow to identify such targeted synergies, and applied this approach to selectively inhibit the proliferation of cell lines with mutations in genes that are difficult to modulate with small molecules. The approach is based on curve shift analysis, which we demonstrate is a more robust method of determining synergy than combination matrix screening with Bliss-scoring. We show that the MEK inhibitor trametinib is more synergistic in combination with the BRAF inhibitor dabrafenib than with vemurafenib, another BRAF inhibitor. In addition, we show that the combination of MEK and BRAF inhibitors is synergistic in BRAF-mutant melanoma cells, and additive or antagonistic in, respectively, BRAF-wild type melanoma cells and non-malignant fibroblasts. This combination exemplifies that synergistic action of drugs can depend on cancer genotype. Next, we used curve shift analysis to identify new drug combinations that specifically inhibit cancer cell proliferation driven by difficult-to-drug cancer genes. Combination studies were performed with compounds that as single agents showed preference for inhibition of cancer cells with mutations in either the CTNNB1 gene (coding for β-catenin), KRAS, or cancer cells expressing increased copy numbers of MYC. We demonstrate that the Wnt-pathway inhibitor ICG-001 and trametinib acted synergistically in Wnt-pathway-mutant cell lines. The ERBB2 inhibitor TAK-165 was synergistic with trametinib in KRAS-mutant cell lines. The EGFR/ERBB2 inhibitor neratinib acted synergistically with the spindle poison docetaxel and with the Aurora kinase inhibitor GSK-1070916 in cell lines with MYC amplification. Our approach can therefore efficiently discover novel drug combinations that selectively target cancer genes.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jos de Man
- Netherlands Translational Research Center B.V., Oss, The Netherlands
| | | | - Guido J. R. Zaman
- Netherlands Translational Research Center B.V., Oss, The Netherlands
| |
Collapse
|
145
|
Fabbro D, Cowan-Jacob SW, Moebitz H. Ten things you should know about protein kinases: IUPHAR Review 14. Br J Pharmacol 2015; 172:2675-700. [PMID: 25630872 DOI: 10.1111/bph.13096] [Citation(s) in RCA: 233] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Revised: 12/31/2014] [Accepted: 01/20/2015] [Indexed: 12/12/2022] Open
Abstract
Many human malignancies are associated with aberrant regulation of protein or lipid kinases due to mutations, chromosomal rearrangements and/or gene amplification. Protein and lipid kinases represent an important target class for treating human disorders. This review focus on 'the 10 things you should know about protein kinases and their inhibitors', including a short introduction on the history of protein kinases and their inhibitors and ending with a perspective on kinase drug discovery. Although the '10 things' have been, to a certain extent, chosen arbitrarily, they cover in a comprehensive way the past and present efforts in kinase drug discovery and summarize the status quo of the current kinase inhibitors as well as knowledge about kinase structure and binding modes. Besides describing the potentials of protein kinase inhibitors as drugs, this review also focus on their limitations, particularly on how to circumvent emerging resistance against kinase inhibitors in oncological indications.
Collapse
Affiliation(s)
| | | | - Henrik Moebitz
- Novartis Institutes of Biomedical Research, Basel, Switzerland
| |
Collapse
|
146
|
Macdonald JB, Macdonald B, Golitz LE, LoRusso P, Sekulic A. Cutaneous adverse effects of targeted therapies: Part II: Inhibitors of intracellular molecular signaling pathways. J Am Acad Dermatol 2015; 72:221-36; quiz 237-8. [PMID: 25592339 DOI: 10.1016/j.jaad.2014.07.033] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 07/21/2014] [Accepted: 07/22/2014] [Indexed: 02/07/2023]
Abstract
The last decade has spawned an exciting new era of oncotherapy in dermatology, including the development of targeted therapies for metastatic melanoma and basal cell carcinoma. Along with skin cancer, deregulation of the PI3K-AKT-mTOR and RAS-RAF-MEK-ERK intracellular signaling pathways contributes to tumorigenesis of a multitude of other cancers, and inhibitors of these pathways are being actively studied. Similar to other classes of targeted therapies, cutaneous adverse effects are among the most frequent toxicities observed with mitogen-activated protein kinase pathway inhibitors, PI3K-AKT-mTOR inhibitors, hedgehog signaling pathway inhibitors, and immunotherapies. Given the rapid expansion of these families of targeted treatments, dermatologists will be essential in offering dermatologic supportive care measures to cancer patients being treated with these agents. Part II of this continuing medical education article reviews skin-related adverse sequelae, including the frequency of occurrence and the implications associated with on- and off-target cutaneous toxicities of inhibitors of the RAS-RAF-MEK-ERK pathway, PI3K-AKT-mTOR pathway, hedgehog signaling pathway, and immunotherapies.
Collapse
Affiliation(s)
- James B Macdonald
- Department of Dermatology, Central Utah Clinic, Provo, Utah; Department of Pathology, Central Utah Clinic, Provo, Utah.
| | | | - Loren E Golitz
- Department of Dermatology, University of Colorado-Denver, Aurora, Colorado; Department of Pathology, University of Colorado-Denver, Aurora, Colorado
| | - Patricia LoRusso
- Department of Oncology, Wayne State University, Detroit, Michigan
| | | |
Collapse
|
147
|
Strickland LR, Pal HC, Elmets CA, Afaq F. Targeting drivers of melanoma with synthetic small molecules and phytochemicals. Cancer Lett 2015; 359:20-35. [PMID: 25597784 DOI: 10.1016/j.canlet.2015.01.016] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 01/06/2015] [Accepted: 01/10/2015] [Indexed: 12/19/2022]
Abstract
Melanoma is the least common form of skin cancer, but it is responsible for the majority of skin cancer deaths. Traditional therapeutics and immunomodulatory agents have not shown much efficacy against metastatic melanoma. Agents that target the RAS/RAF/MEK/ERK (MAPK) signaling pathway - the BRAF inhibitors vemurafenib and dabrafenib, and the MEK1/2 inhibitor trametinib - have increased survival in patients with metastatic melanoma. Further, the combination of dabrafenib and trametinib has been shown to be superior to single agent therapy for the treatment of metastatic melanoma. However, resistance to these agents develops rapidly. Studies of additional agents and combinations targeting the MAPK, PI3K/AKT/mTOR (PI3K), c-kit, and other signaling pathways are currently underway. Furthermore, studies of phytochemicals have yielded promising results against proliferation, survival, invasion, and metastasis by targeting signaling pathways with established roles in melanomagenesis. The relatively low toxicities of phytochemicals make their adjuvant use an attractive treatment option. The need for improved efficacy of current melanoma treatments calls for further investigation of each of these strategies. In this review, we will discuss synthetic small molecule inhibitors, combined therapies and current progress in the development of phytochemical therapies.
Collapse
Affiliation(s)
- Leah Ray Strickland
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Harish Chandra Pal
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Craig A Elmets
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Farrukh Afaq
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
148
|
Suttle AB, Grossmann KF, Ouellet D, Richards-Peterson LE, Aktan G, Gordon MS, LoRusso PM, Infante JR, Sharma S, Kendra K, Patel M, Pant S, Arkenau HT, Middleton MR, Blackman SC, Botbyl J, Carson SW. Assessment of the drug interaction potential and single- and repeat-dose pharmacokinetics of the BRAF inhibitor dabrafenib. J Clin Pharmacol 2014; 55:392-400. [DOI: 10.1002/jcph.437] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 11/24/2014] [Indexed: 11/06/2022]
Affiliation(s)
| | | | | | | | | | | | | | - Jeffrey R. Infante
- Sarah Cannon Research Institute/Tennessee Oncology; PLLC; Nashville TN USA
| | - Sunil Sharma
- Huntsman Cancer Institute; University of Utah; Salt Lake City UT USA
| | | | - Manish Patel
- Sarah Cannon Research Institute/Florida Cancer Specialists; Sarasota FL USA
| | - Shubham Pant
- Sarah Cannon Research Institute/University of Oklahoma; Oklahoma City OK USA
| | - Hendrik-Tobias Arkenau
- Sarah Cannon Research Institute, United Kingdom and University College London; London UK
| | - Mark R. Middleton
- Department of Oncology; National Institute for Health Research Biomedical Research Centre; Oxford UK
| | | | | | | |
Collapse
|
149
|
Carlino MS, Fung C, Shahheydari H, Todd JR, Boyd SC, Irvine M, Nagrial AM, Scolyer RA, Kefford RF, Long GV, Rizos H. Preexisting MEK1P124 mutations diminish response to BRAF inhibitors in metastatic melanoma patients. Clin Cancer Res 2014; 21:98-105. [PMID: 25370473 DOI: 10.1158/1078-0432.ccr-14-0759] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND MEK1 mutations in melanoma can confer resistance to BRAF inhibitors, although preexisting MEK1(P124) mutations do not preclude clinical responses. We sought to determine whether recurrent, preexisting MEK1(P124) mutations affected clinical outcome in BRAF inhibitor-treated patients with melanoma. METHODS Data from four published datasets were analyzed to determine whether preexisting MEK1(P124) mutations affect radiologic response or progression-free survival (PFS) in patients with BRAF(V600)-mutant metastatic melanoma treated with vemurafenib or dabrafenib. The effects of MEK1(P124) mutations on MAPK pathway activity and response to BRAF inhibition were also investigated in a series of cell models. RESULTS In a pooled analysis of 123 patients, the presence of a pretreatment MEK1(P124) mutation (N = 12, 10%) was associated with a poorer RECIST response (33% vs. 72% in MEK1(P124Q/S) vs. MEK1(P124) wild-type, P = 0.018), and a shorter PFS (median 3.1 vs. 4.8 months, P = 0.004). Furthermore, MEK1(P124Q/S) mutations were shown to have independent kinase activity and introduction of these mutations into a BRAF-mutant melanoma cell line diminished inhibition of ERK phosphorylation by dabrafenib and enhanced clonogenic survival in the presence of dabrafenib compared with cells ectopically expressing wild-type MEK1. Consistent with these data, two BRAF-mutant cell lines with endogenous MEK1(P124) mutations showed intermediate sensitivity to dabrafenib, but were highly sensitive to downstream inhibition of MEK or ERK. CONCLUSION Taken together, our data indicate that preexisting MEK1(P124) mutations are associated with a reduced response to BRAF inhibitor therapy and identify a subset of patients with BRAF-mutant melanoma likely to benefit from combination therapies involving MEK or ERK inhibitors.
Collapse
Affiliation(s)
- Matteo S Carlino
- Westmead Institute for Cancer Research, University of Sydney at Westmead Millennium Institute, Westmead, New South Wales, Australia. Department of Medical Oncology, Crown Princess Mary Cancer Centre, Westmead and Blacktown Hospitals, New South Wales, Australia. Melanoma Institute Australia, Sydney, New South Wales, Australia
| | - Carina Fung
- Westmead Institute for Cancer Research, University of Sydney at Westmead Millennium Institute, Westmead, New South Wales, Australia. Australian School of Advanced Medicine, Macquarie University, New South Wales, Australia
| | - Hamideh Shahheydari
- Australian School of Advanced Medicine, Macquarie University, New South Wales, Australia
| | - Jason R Todd
- Westmead Institute for Cancer Research, University of Sydney at Westmead Millennium Institute, Westmead, New South Wales, Australia
| | - Suzanah C Boyd
- Australian School of Advanced Medicine, Macquarie University, New South Wales, Australia
| | - Mal Irvine
- Australian School of Advanced Medicine, Macquarie University, New South Wales, Australia
| | - Adnan M Nagrial
- The Kinghorn Cancer Centre, Cancer Research Program, Garvan Institute of Medical Research, Sydney, Australia
| | - Richard A Scolyer
- Melanoma Institute Australia, Sydney, New South Wales, Australia. Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia. Department of Tissue Pathology and Diagnostic Oncology Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Richard F Kefford
- Westmead Institute for Cancer Research, University of Sydney at Westmead Millennium Institute, Westmead, New South Wales, Australia. Australian School of Advanced Medicine, Macquarie University, New South Wales, Australia. Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Georgina V Long
- Melanoma Institute Australia, Sydney, New South Wales, Australia. Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Helen Rizos
- Westmead Institute for Cancer Research, University of Sydney at Westmead Millennium Institute, Westmead, New South Wales, Australia. Australian School of Advanced Medicine, Macquarie University, New South Wales, Australia. Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
150
|
Ribas A, Gonzalez R, Pavlick A, Hamid O, Gajewski TF, Daud A, Flaherty L, Logan T, Chmielowski B, Lewis K, Kee D, Boasberg P, Yin M, Chan I, Musib L, Choong N, Puzanov I, McArthur GA. Combination of vemurafenib and cobimetinib in patients with advanced BRAFV600-mutated melanoma: a phase 1b study. Lancet Oncol 2014; 15:954-65. [DOI: 10.1016/s1470-2045(14)70301-8] [Citation(s) in RCA: 201] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|