101
|
Role of NAD + and mitochondrial sirtuins in cardiac and renal diseases. Nat Rev Nephrol 2017; 13:213-225. [PMID: 28163307 DOI: 10.1038/nrneph.2017.5] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The coenzyme nicotinamide adenine dinucleotide (NAD+) has key roles in the regulation of redox status and energy metabolism. NAD+ depletion is emerging as a major contributor to the pathogenesis of cardiac and renal diseases and NAD+ repletion strategies have shown therapeutic potential as a means to restore healthy metabolism and physiological function. The pleotropic roles of NAD+ enable several possible avenues by which repletion of this coenzyme could have therapeutic efficacy. In particular, NAD+ functions as a co-substrate in deacylation reactions carried out by the sirtuin family of enzymes. These NAD+-dependent deacylases control several aspects of metabolism and a wealth of data suggests that boosting sirtuin activity via NAD+ supplementation might be a promising therapy for cardiac and renal pathologies. This Review summarizes the role of NAD+ metabolism in the heart and kidney, and highlights the mitochondrial sirtuins as mediators of some of the beneficial effects of NAD+-boosting therapies in preclinical animal models. We surmise that modulating the NAD+-sirtuin axis is a clinically relevant approach to develop new therapies for cardiac and renal diseases.
Collapse
|
102
|
James EL, Lane JAE, Michalek RD, Karoly ED, Parkinson EK. Replicatively senescent human fibroblasts reveal a distinct intracellular metabolic profile with alterations in NAD+ and nicotinamide metabolism. Sci Rep 2016; 6:38489. [PMID: 27924925 PMCID: PMC5141431 DOI: 10.1038/srep38489] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 11/11/2016] [Indexed: 12/30/2022] Open
Abstract
Cellular senescence occurs by proliferative exhaustion (PEsen) or following multiple cellular stresses but had not previously been subject to detailed metabolomic analysis. Therefore, we compared PEsen fibroblasts with proliferating and transiently growth arrested controls using a combination of different mass spectroscopy techniques. PEsen cells showed many specific alterations in both the NAD+ de novo and salvage pathways including striking accumulations of nicotinamide mononucleotide (NMN) and nicotinamide riboside (NR) in the amidated salvage pathway despite no increase in nicotinamide phosphoribosyl transferase or in the NR transport protein, CD73. Extracellular nicotinate was depleted and metabolites of the deamidated salvage pathway were reduced but intracellular NAD+ and nicotinamide were nevertheless maintained. However, sirtuin 1 was downregulated and so the accumulation of NMN and NR was best explained by reduced flux through the amidated arm of the NAD+ salvage pathway due to reduced sirtuin activity. PEsen cells also showed evidence of increased redox homeostasis and upregulated pathways used to generate energy and cellular membranes; these included nucleotide catabolism, membrane lipid breakdown and increased creatine metabolism. Thus PEsen cells upregulate several different pathways to sustain their survival which may serve as pharmacological targets for the elimination of senescent cells in age-related disease.
Collapse
Affiliation(s)
- Emma L James
- Centre for Clinical &Diagnostic Oral Sciences, Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Turner Street, London, E1 2AD, UK
| | - James A E Lane
- Centre for Clinical &Diagnostic Oral Sciences, Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Turner Street, London, E1 2AD, UK
| | - Ryan D Michalek
- Metabolon, Inc. 617 Davis Drive, Suite 400, Durham, NC, 27713, USA
| | - Edward D Karoly
- Metabolon, Inc. 617 Davis Drive, Suite 400, Durham, NC, 27713, USA
| | - E Kenneth Parkinson
- Centre for Clinical &Diagnostic Oral Sciences, Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Turner Street, London, E1 2AD, UK
| |
Collapse
|
103
|
Sociali G, Raffaghello L, Magnone M, Zamporlini F, Emionite L, Sturla L, Bianchi G, Vigliarolo T, Nahimana A, Nencioni A, Raffaelli N, Bruzzone S. Antitumor effect of combined NAMPT and CD73 inhibition in an ovarian cancer model. Oncotarget 2016; 7:2968-84. [PMID: 26658104 PMCID: PMC4823084 DOI: 10.18632/oncotarget.6502] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 11/16/2015] [Indexed: 12/02/2022] Open
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) is a crucial enzyme in the biosynthesis of intracellular NAD+. NAMPT inhibitors have potent anticancer activity in several preclinical models by depleting NAD+ and ATP levels. Recently, we demonstrated that CD73 enables the utilization of extracellular NAD+/nicotinamide mononucleotide (NMN) by converting them to Nicotinamide riboside (NR), which can cross the plasmamembrane and fuel intracellular NAD+ biosynthesis in human cells. These processes are herein confirmed to also occur in a human ovarian carcinoma cell line (OVCAR-3), by means of CD73 or NRK1 specific silencing. Next, we investigated the anti-tumor activity of the simultaneous inhibition of NAMPT (with FK866) and CD73 (with α, β-methylene adenosine 5′-diphosphate, APCP), in an in vivo human ovarian carcinoma model. Interestingly, the combined therapy was found to significantly decrease intratumor NAD+, NMN and ATP levels, compared with single treatments. In addition, the concentration of these nucleotides in ascitic exudates was more remarkably reduced in animals treated with both FK866 and APCP compared with single treatments. Importantly, tumors treated with FK866 in combination with APCP contained a statistically significant lower proportion of Ki67 positive proliferating cells and a higher percentage of necrotic area. Finally, a slight but significant increase in animal survival in response to the combined therapy, compared to the single agents, could be demonstrated. Our results indicate that the pharmacological inhibition of CD73 enzymatic activity could be considered as a means to potentiate the anti-cancer effects of NAMPT inhibitors.
Collapse
Affiliation(s)
- Giovanna Sociali
- Department of Experimental Medicine, Section of Biochemistry, and CEBR, University of Genova, 16132 Genova, Italy
| | | | - Mirko Magnone
- Department of Experimental Medicine, Section of Biochemistry, and CEBR, University of Genova, 16132 Genova, Italy
| | - Federica Zamporlini
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Laura Emionite
- Animal Facility, IRCCS AOU San Martino - IST Istituto Nazionale per la Ricerca sul Cancro, 16132 Genova, Italy
| | - Laura Sturla
- Department of Experimental Medicine, Section of Biochemistry, and CEBR, University of Genova, 16132 Genova, Italy
| | - Giovanna Bianchi
- Laboratorio di Oncologia Istituto G. Gaslini, 16147 Genova, Italy
| | - Tiziana Vigliarolo
- Department of Experimental Medicine, Section of Biochemistry, and CEBR, University of Genova, 16132 Genova, Italy
| | - Aimable Nahimana
- Service and Central Laboratory of Hematology, University Hospital of Lausanne, 1011-CHUV, Lausanne, Switzerland
| | - Alessio Nencioni
- Department of Internal Medicine, University of Genova, 16132 Genova, Italy.,IRCCS A.O.U. San Martino IST, Istituto Nazionale per la Ricerca sul Cancro, 16132 Genova, Italy
| | - Nadia Raffaelli
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Santina Bruzzone
- Department of Experimental Medicine, Section of Biochemistry, and CEBR, University of Genova, 16132 Genova, Italy
| |
Collapse
|
104
|
Trammell SAJ, Schmidt MS, Weidemann BJ, Redpath P, Jaksch F, Dellinger RW, Li Z, Abel ED, Migaud ME, Brenner C. Nicotinamide riboside is uniquely and orally bioavailable in mice and humans. Nat Commun 2016; 7:12948. [PMID: 27721479 PMCID: PMC5062546 DOI: 10.1038/ncomms12948] [Citation(s) in RCA: 480] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 08/12/2016] [Indexed: 12/13/2022] Open
Abstract
Nicotinamide riboside (NR) is in wide use as an NAD+ precursor vitamin. Here we determine the time and dose-dependent effects of NR on blood NAD+ metabolism in humans. We report that human blood NAD+ can rise as much as 2.7-fold with a single oral dose of NR in a pilot study of one individual, and that oral NR elevates mouse hepatic NAD+ with distinct and superior pharmacokinetics to those of nicotinic acid and nicotinamide. We further show that single doses of 100, 300 and 1,000 mg of NR produce dose-dependent increases in the blood NAD+ metabolome in the first clinical trial of NR pharmacokinetics in humans. We also report that nicotinic acid adenine dinucleotide (NAAD), which was not thought to be en route for the conversion of NR to NAD+, is formed from NR and discover that the rise in NAAD is a highly sensitive biomarker of effective NAD+ repletion.
Collapse
Affiliation(s)
- Samuel A. J. Trammell
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | - Mark S. Schmidt
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | - Benjamin J. Weidemann
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | - Philip Redpath
- John King Laboratory, School of Pharmacy, Queens University Belfast, Belfast BT7 1NN, UK
| | - Frank Jaksch
- ChromaDex, Inc., 10005 Muirlands Blvd, Suite G, Irvine, California 92618, USA
| | - Ryan W. Dellinger
- ChromaDex, Inc., 10005 Muirlands Blvd, Suite G, Irvine, California 92618, USA
| | - Zhonggang Li
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | - E. Dale Abel
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | - Marie E. Migaud
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
- John King Laboratory, School of Pharmacy, Queens University Belfast, Belfast BT7 1NN, UK
| | - Charles Brenner
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| |
Collapse
|
105
|
Petrelli R, Orsomando G, Sorci L, Maggi F, Ranjbarian F, Biapa Nya PC, Petrelli D, Vitali LA, Lupidi G, Quassinti L, Bramucci M, Hofer A, Cappellacci L. Biological Activities of the Essential Oil from Erigeron floribundus. Molecules 2016; 21:molecules21081065. [PMID: 27529211 PMCID: PMC6274054 DOI: 10.3390/molecules21081065] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 08/10/2016] [Accepted: 08/11/2016] [Indexed: 12/17/2022] Open
Abstract
Erigeron floribundus (Asteraceae) is an herbaceous plant widely used in Cameroonian traditional medicine to treat various diseases of microbial and non-microbial origin. In the present study, we evaluated the in vitro biological activities displayed by the essential oil obtained from the aerial parts of E. floribundus, namely the antioxidant, antimicrobial and antiproliferative activities. Moreover, we investigated the inhibitory effects of E. floribundus essential oil on nicotinate mononucleotide adenylyltransferase (NadD), a promising new target for developing novel antibiotics, and Trypanosoma brucei, the protozoan parasite responsible for Human African trypanosomiasis. The essential oil composition was dominated by spathulenol (12.2%), caryophyllene oxide (12.4%) and limonene (8.8%). The E. floribundus oil showed a good activity against Staphylococcus aureus (inhibition zone diameter, IZD of 14 mm, minimum inhibitory concentration, MIC of 512 µg/mL). Interestingly, it inhibited the NadD enzyme from S. aureus (IC50 of 98 µg/mL), with no effects on mammalian orthologue enzymes. In addition, T. brucei proliferation was inhibited with IC50 values of 33.5 µg/mL with the essential oil and 5.6 µg/mL with the active component limonene. The essential oil exhibited strong cytotoxicity on HCT 116 colon carcinoma cells with an IC50 value of 14.89 µg/mL, and remarkable ferric reducing antioxidant power (tocopherol-equivalent antioxidant capacity, TEAC = 411.9 μmol·TE/g).
Collapse
Affiliation(s)
| | - Giuseppe Orsomando
- Department of Clinical Sciences, Section of Biochemistry, Polytechnic University of Marche, Ancona 60131, Italy.
| | - Leonardo Sorci
- Department of Clinical Sciences, Section of Biochemistry, Polytechnic University of Marche, Ancona 60131, Italy.
| | - Filippo Maggi
- School of Pharmacy, University of Camerino, Camerino 62032, Italy.
| | - Farahnaz Ranjbarian
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå 90187, Sweden.
| | - Prosper C Biapa Nya
- Laboratory of Medicinal Plant Biochemistry, Food Science and Nutrition, Department of Biochemistry, Faculty of Sciences, University of Dschang, PO Box 67, Dschang, Cameroon.
| | - Dezemona Petrelli
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino 62032, Italy.
| | - Luca A Vitali
- School of Pharmacy, University of Camerino, Camerino 62032, Italy.
| | - Giulio Lupidi
- School of Pharmacy, University of Camerino, Camerino 62032, Italy.
| | - Luana Quassinti
- School of Pharmacy, University of Camerino, Camerino 62032, Italy.
| | - Massimo Bramucci
- School of Pharmacy, University of Camerino, Camerino 62032, Italy.
| | - Anders Hofer
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå 90187, Sweden.
| | | |
Collapse
|
106
|
Trammell SAJ, Yu L, Redpath P, Migaud ME, Brenner C. Nicotinamide Riboside Is a Major NAD+ Precursor Vitamin in Cow Milk. J Nutr 2016; 146:957-63. [PMID: 27052539 PMCID: PMC6879052 DOI: 10.3945/jn.116.230078] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 03/01/2016] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Nicotinamide riboside (NR) is a recently discovered NAD(+) precursor vitamin with a unique biosynthetic pathway. Although the presence of NR in cow milk has been known for more than a decade, the concentration of NR with respect to the other NAD(+) precursors was unknown. OBJECTIVE We aimed to determine NAD(+) precursor vitamin concentration in raw samples of milk from individual cows and from commercially available cow milk. METHODS LC tandem mass spectrometry and isotope dilution technologies were used to quantify NAD(+) precursor vitamin concentration and to measure NR stability in raw and commercial milk. Nuclear magnetic resonance (NMR) spectroscopy was used to test for NR binding to substances in milk. RESULTS Cow milk typically contained ∼12 μmol NAD(+) precursor vitamins/L, of which 60% was present as nicotinamide and 40% was present as NR. Nicotinic acid and other NAD(+) metabolites were below the limits of detection. Milk from samples testing positive for Staphylococcus aureus contained lower concentrations of NR (Spearman ρ = -0.58, P = 0.014), and NR was degraded by S. aureus Conventional milk contained more NR than milk sold as organic. Nonetheless, NR was stable in organic milk and exhibited an NMR spectrum consistent with association with a protein fraction in skim milk. CONCLUSIONS NR is a major NAD(+) precursor vitamin in cow milk. Control of S. aureus may be important to preserve the NAD(+) precursor vitamin concentration of milk.
Collapse
Affiliation(s)
- Samuel AJ Trammell
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA,Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA
| | - Liping Yu
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA,Nuclear Magnetic Resonance Facility, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Philip Redpath
- Queen's University Belfast, School of Pharmacy, Belfast, Northern Ireland, United Kingdom
| | - Marie E Migaud
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA,Queen's University Belfast, School of Pharmacy, Belfast, Northern Ireland, United Kingdom
| | - Charles Brenner
- Department of Biochemistry, Carver College of Medicine, Interdisciplinary Graduate Program in Genetics, and
| |
Collapse
|
107
|
Aragonès G, Suárez M, Ardid-Ruiz A, Vinaixa M, Rodríguez MA, Correig X, Arola L, Bladé C. Dietary proanthocyanidins boost hepatic NAD(+) metabolism and SIRT1 expression and activity in a dose-dependent manner in healthy rats. Sci Rep 2016; 6:24977. [PMID: 27102823 PMCID: PMC4840337 DOI: 10.1038/srep24977] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 04/08/2016] [Indexed: 12/17/2022] Open
Abstract
Proanthocyanidins (PACs) have been reported to modulate multiple targets by simultaneously controlling many pivotal metabolic pathways in the liver. However, the precise mechanism of PAC action on the regulation of the genes that control hepatic metabolism remains to be clarified. Accordingly, we used a metabolomic approach combining both nuclear magnetic resonance and mass spectrometry analysis to evaluate the changes induced by different doses of grape-seed PACs in the liver of healthy rats. Here, we report that PACs significantly increased the hepatic nicotinamide adenine dinucleotide (NAD(+)) content in a dose-dependent manner by specifically modulating the hepatic concentrations of the major NAD(+) precursors as well as the mRNA levels of the genes that encode the enzymes involved in the cellular metabolism of NAD(+). Notably, Sirtuin 1 (Sirt1) gene expression was also significantly up-regulated in a dose-response pattern. The increase in both the NAD(+) availability and Sirt1 mRNA levels, in turn, resulted in the hepatic activation of SIRT1, which was significantly associated with improved protection against hepatic triglyceride accumulation. Our data clearly indicates that PAC consumption could be a valid tool to enhance hepatic SIRT1 activity through the modulation of NAD(+) levels.
Collapse
Affiliation(s)
- Gerard Aragonès
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, Spain
| | - Manuel Suárez
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, Spain
| | - Andrea Ardid-Ruiz
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, Spain
| | - Maria Vinaixa
- Metabolomics Platform of the Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), University Rovira i Virgili, IISPV, Reus, Spain
| | - Miguel A Rodríguez
- Center for Omic Sciences (COS), Universitat Rovira i Virgili, Reus, Spain
| | - Xavier Correig
- Metabolomics Platform of the Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), University Rovira i Virgili, IISPV, Reus, Spain
| | - Lluís Arola
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, Spain.,Center for Omic Sciences (COS), Universitat Rovira i Virgili, Reus, Spain
| | - Cinta Bladé
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, Spain
| |
Collapse
|
108
|
Mesquita I, Varela P, Belinha A, Gaifem J, Laforge M, Vergnes B, Estaquier J, Silvestre R. Exploring NAD+ metabolism in host-pathogen interactions. Cell Mol Life Sci 2016; 73:1225-36. [PMID: 26718485 PMCID: PMC11108276 DOI: 10.1007/s00018-015-2119-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 11/27/2015] [Accepted: 12/14/2015] [Indexed: 01/01/2023]
Abstract
Nicotinamide adenine dinucleotide (NAD(+)) is a vital molecule found in all living cells. NAD(+) intracellular levels are dictated by its synthesis, using the de novo and/or salvage pathway, and through its catabolic use as co-enzyme or co-substrate. The regulation of NAD(+) metabolism has proven to be an adequate drug target for several diseases, including cancer, neurodegenerative or inflammatory diseases. Increasing interest has been given to NAD(+) metabolism during innate and adaptive immune responses suggesting that its modulation could also be relevant during host-pathogen interactions. While the maintenance of NAD(+) homeostatic levels assures an adequate environment for host cell survival and proliferation, fluctuations in NAD(+) or biosynthetic precursors bioavailability have been described during host-pathogen interactions, which will interfere with pathogen persistence or clearance. Here, we review the double-edged sword of NAD(+) metabolism during host-pathogen interactions emphasizing its potential for treatment of infectious diseases.
Collapse
Affiliation(s)
- Inês Mesquita
- Microbiology and Infection Research Domain, Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Patrícia Varela
- Microbiology and Infection Research Domain, Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ana Belinha
- Microbiology and Infection Research Domain, Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Joana Gaifem
- Microbiology and Infection Research Domain, Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | | | - Baptiste Vergnes
- MIVEGEC (IRD 224-CNRS 5290-Université Montpellier), Institut de Recherche pour le Développement (IRD), Montpellier, France
| | - Jérôme Estaquier
- CNRS FR 3636, Université Paris Descartes, 75006, Paris, France.
- Centre de Recherche du CHU de Québec, Université Laval, Quebec, G1V 4G2, Canada.
| | - Ricardo Silvestre
- Microbiology and Infection Research Domain, Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
109
|
Mericskay M. Nicotinamide adenine dinucleotide homeostasis and signalling in heart disease: Pathophysiological implications and therapeutic potential. Arch Cardiovasc Dis 2015; 109:207-15. [PMID: 26707577 DOI: 10.1016/j.acvd.2015.10.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 10/07/2015] [Accepted: 10/09/2015] [Indexed: 12/31/2022]
Abstract
Heart failure is a highly morbid syndrome generating enormous socio-economic costs. The failing heart is characterized by a state of deficient bioenergetics that is not currently addressed by classical clinical approaches. Nicotinamide adenine dinucleotide (NAD(+)/NADH) is a major coenzyme for oxidoreduction reactions in energy metabolism; it has recently emerged as a signalling molecule with a broad range of activities, ranging from calcium (Ca(2+)) signalling (CD38 ectoenzyme) to the epigenetic regulation of gene expression involved in the oxidative stress response, catabolic metabolism and mitochondrial biogenesis (sirtuins, poly[adenosine diphosphate-ribose] polymerases [PARPs]). Here, we review current knowledge regarding alterations to myocardial NAD homeostasis that have been observed in various models of heart failure, and their effect on mitochondrial functions, Ca(2+), sirtuin and PARP signalling. We highlight the therapeutic approaches that are currently in use or in development, which inhibit or stimulate NAD(+)-consuming enzymes, and emerging approaches aimed at stimulating NAD biosynthesis in the failing heart.
Collapse
Affiliation(s)
- Mathias Mericskay
- CNRS UMR8256-Inserm U1164, Biology of Adaptation and Ageing, Institute of Biology Paris-Seine, University Pierre-and-Marie-Curie Paris 6, 7, quai Saint-Bernard, 75005 Paris, France.
| |
Collapse
|
110
|
Garten A, Schuster S, Penke M, Gorski T, de Giorgis T, Kiess W. Physiological and pathophysiological roles of NAMPT and NAD metabolism. Nat Rev Endocrinol 2015. [PMID: 26215259 DOI: 10.1038/nrendo.2015.117] [Citation(s) in RCA: 441] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) is a regulator of the intracellular nicotinamide adenine dinucleotide (NAD) pool. NAD is an essential coenzyme involved in cellular redox reactions and is a substrate for NAD-dependent enzymes. In various metabolic disorders and during ageing, levels of NAD are decreased. Through its NAD-biosynthetic activity, NAMPT influences the activity of NAD-dependent enzymes, thereby regulating cellular metabolism. In addition to its enzymatic function, extracellular NAMPT (eNAMPT) has cytokine-like activity. Abnormal levels of eNAMPT are associated with various metabolic disorders. NAMPT is able to modulate processes involved in the pathogenesis of obesity and related disorders such as nonalcoholic fatty liver disease (NAFLD) and type 2 diabetes mellitus (T2DM) by influencing the oxidative stress response, apoptosis, lipid and glucose metabolism, inflammation and insulin resistance. NAMPT also has a crucial role in cancer cell metabolism, is often overexpressed in tumour tissues and is an experimental target for antitumour therapies. In this Review, we discuss current understanding of the functions of NAMPT and highlight progress made in identifying the physiological role of NAMPT and its relevance in various human diseases and conditions, such as obesity, NAFLD, T2DM, cancer and ageing.
Collapse
Affiliation(s)
- Antje Garten
- Center for Pediatric Research Leipzig, Hospital for Children and Adolescents, University of Leipzig, Liebigstrasse 21, 04103 Leipzig, Germany
| | - Susanne Schuster
- Center for Pediatric Research Leipzig, Hospital for Children and Adolescents, University of Leipzig, Liebigstrasse 21, 04103 Leipzig, Germany
| | - Melanie Penke
- Center for Pediatric Research Leipzig, Hospital for Children and Adolescents, University of Leipzig, Liebigstrasse 21, 04103 Leipzig, Germany
| | - Theresa Gorski
- Center for Pediatric Research Leipzig, Hospital for Children and Adolescents, University of Leipzig, Liebigstrasse 21, 04103 Leipzig, Germany
| | - Tommaso de Giorgis
- Center for Pediatric Research Leipzig, Hospital for Children and Adolescents, University of Leipzig, Liebigstrasse 21, 04103 Leipzig, Germany
| | - Wieland Kiess
- Center for Pediatric Research Leipzig, Hospital for Children and Adolescents, University of Leipzig, Liebigstrasse 21, 04103 Leipzig, Germany
| |
Collapse
|
111
|
Roulston A, Shore GC. New strategies to maximize therapeutic opportunities for NAMPT inhibitors in oncology. Mol Cell Oncol 2015; 3:e1052180. [PMID: 27308565 PMCID: PMC4845202 DOI: 10.1080/23723556.2015.1052180] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 05/13/2015] [Indexed: 12/16/2022]
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) is crucial for nicotinamide adenine dinucleotide (NAD(+)) biosynthesis in mammalian cells. NAMPT inhibitors represent multifunctional anticancer agents that act on NAD(+) metabolism to shut down glycolysis, nucleotide biosynthesis, and ATP generation and act indirectly as PARP and sirtuin inhibitors. The selectivity of NAMPT inhibitors preys on the increased metabolic requirements to replenish NAD(+) in cancer cells. Although initial clinical studies with NAMPT inhibitors did not achieve single-agent therapeutic levels before dose-limiting toxicities were reached, a new understanding of alternative rescue pathways and a biomarker that can be used to select patients provides new opportunities to widen the therapeutic window and achieve efficacious doses in the clinic. Recent work has also illustrated the potential for drug combination strategies to further enhance the therapeutic opportunities. This review summarizes recent discoveries in NAD(+)/NAMPT inhibitor biology in the context of exploiting this new knowledge to optimize the clinical outcomes for this promising new class of agents.
Collapse
Affiliation(s)
- Anne Roulston
- Laboratory for Therapeutic Development, Rosalind and Morris Goodman Cancer Research Centre, and Dept. Biochemistry, McGill University , Montreal, QC, Canada
| | - Gordon C Shore
- Laboratory for Therapeutic Development, Rosalind and Morris Goodman Cancer Research Centre, and Dept. Biochemistry, McGill University , Montreal, QC, Canada
| |
Collapse
|
112
|
Marletta AS, Massarotti A, Orsomando G, Magni G, Rizzi M, Garavaglia S. Crystal structure of human nicotinic acid phosphoribosyltransferase. FEBS Open Bio 2015; 5:419-28. [PMID: 26042198 PMCID: PMC4442680 DOI: 10.1016/j.fob.2015.05.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 04/30/2015] [Accepted: 05/01/2015] [Indexed: 01/04/2023] Open
Abstract
Human NaPRTase is a functional dimer. The structural bases for FK866 lack of inhibition of human NaPRTas were identified. Na, Nam and QA phosphoribosyltransferases share a conserved fold. Na, Nam and QA phosphoribosyltransferases show distinctive traits in the active site. Human and Enterococcus faecalis NaPRTase are highly structurally conserved.
Nicotinic acid phosphoribosyltransferase (EC 2.4.2.11) (NaPRTase) is the rate-limiting enzyme in the three-step Preiss–Handler pathway for the biosynthesis of NAD. The enzyme catalyzes the conversion of nicotinic acid (Na) and 5-phosphoribosyl-1-pyrophosphate (PRPP) to nicotinic acid mononucleotide (NaMN) and pyrophosphate (PPi). Several studies have underlined the importance of NaPRTase for NAD homeostasis in mammals, but no crystallographic data are available for this enzyme from higher eukaryotes. Here, we report the crystal structure of human NaPRTase that was solved by molecular replacement at a resolution of 2.9 Å in its ligand-free form. Our structural data allow the assignment of human NaPRTase to the type II phosphoribosyltransferase subfamily and reveal that the enzyme consists of two domains and functions as a dimer with the active site located at the interface of the monomers. The substrate-binding mode was analyzed by molecular docking simulation and provides hints into the catalytic mechanism. Moreover, structural comparison of human NaPRTase with the other two human type II phosphoribosyltransferases involved in NAD biosynthesis, quinolinate phosphoribosyltransferase and nicotinamide phosphoribosyltransferase, reveals that while the three enzymes share a conserved overall structure, a few distinctive structural traits can be identified. In particular, we show that NaPRTase lacks a tunnel that, in nicotinamide phosphoribosiltransferase, represents the binding site of its potent and selective inhibitor FK866, currently used in clinical trials as an antitumoral agent.
Collapse
Key Words
- FK866
- NAD biosynthesis
- NAD, nicotinamide adenine dinucleotide
- NMN, nicotinamide mononucleotide
- NMNAT, nicotinamide mononucleotide adenylyltransferase
- Na, nicotinic acid
- NaAD, nicotinic acid dinucleotide
- NaMN, nicotinic acid mononucleotide
- NaPRTase, nicotinic acid phosphoribosyltransferase
- NamR, nicotinamide riboside
- Nicotinic Acid
- PRPP, 5-phosphoribosyl-1-pyrophosphate
- Phosphoribosyltransferase
- Preiss–Handler pathway
- QA, quinolinic acid
- Recycling NAD pathway
Collapse
Affiliation(s)
- Ada Serena Marletta
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Alberto Massarotti
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Giuseppe Orsomando
- Department of Clinical Sciences, Section of Biochemistry, Polytechnic University of Marche, Via Ranieri 67, 60131 Ancona, Italy
| | - Giulio Magni
- Department of Clinical Sciences, Section of Biochemistry, Polytechnic University of Marche, Via Ranieri 67, 60131 Ancona, Italy
| | - Menico Rizzi
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Silvia Garavaglia
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| |
Collapse
|