102
|
Abstract
Migraine is among the most common and most disabling disorders worldwide, yet its underlying pathophysiology is among the most poorly understood. New information continues to emerge on mechanisms within the central and peripheral nervous systems that may contribute to migraine attacks. Additionally, new therapeutics have recently become available and along with much needed relief for many patients, these drugs provide insight into the disorder based on their mechanism of action. This review will cover new findings within the last several years that add to the understanding of migraine pathophysiology, including those related to the vasculature, calcitonin gene-related peptide (CGRP), and mechanisms within the cortex and meninges that may contribute to attacks. Discussion will also cover recent findings on novel therapeutic targets, several of which continue to show promise in new preclinical studies, including acid-sensing ion channels (ASICs) and the delta-opioid receptor (DOR).
Collapse
Affiliation(s)
- Greg Dussor
- School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, The University of Texas at Dallas, Richardson, TX 75080
| |
Collapse
|
103
|
Patil M, Belugin S, Mecklenburg J, Wangzhou A, Paige C, Barba-Escobedo PA, Boyd JT, Goffin V, Grattan D, Boehm U, Dussor G, Price TJ, Akopian AN. Prolactin Regulates Pain Responses via a Female-Selective Nociceptor-Specific Mechanism. iScience 2019; 20:449-465. [PMID: 31627131 PMCID: PMC6818331 DOI: 10.1016/j.isci.2019.09.039] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/26/2019] [Accepted: 09/26/2019] [Indexed: 02/07/2023] Open
Abstract
Many clinical and preclinical studies report an increased prevalence and severity of chronic pain among females. Here, we identify a sex-hormone-controlled target and mechanism that regulates dimorphic pain responses. Prolactin (PRL), which is involved in many physiologic functions, induces female-specific hyperalgesia. A PRL receptor (Prlr) antagonist in the hind paw or spinal cord substantially reduced hyperalgesia in inflammatory models. This effect was mimicked by sensory neuronal ablation of Prlr. Although Prlr mRNA is expressed equally in female and male peptidergic nociceptors and central terminals, Prlr protein was found only in females and PRL-induced excitability was detected only in female DRG neurons. PRL-induced excitability was reproduced in male Prlr+ neurons after prolonged treatment with estradiol but was prevented with addition of a translation inhibitor. We propose a novel mechanism for female-selective regulation of pain responses, which is mediated by Prlr signaling in sensory neurons via sex-dependent control of Prlr mRNA translation. Local or spinal PRL injection induces hyperalgesia in a female-selective manner Sensory neuron Prlr regulates tissue injury-induced pain only in females PRL regulates excitability in Prlr+ neurons depending on sex and estrogen Regulation of Prlr translation defines female-selective neuronal excitability
Collapse
Affiliation(s)
- Mayur Patil
- Department of Endodontics, The School of Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA; Department of Molecular Pharmacology and Physiology, University South Florida (USF), Tampa, FL 33612, USA
| | - Sergei Belugin
- Department of Endodontics, The School of Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
| | - Jennifer Mecklenburg
- Department of Endodontics, The School of Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
| | - Andi Wangzhou
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Road, Richardson, TX 75080, USA
| | - Candler Paige
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Road, Richardson, TX 75080, USA
| | - Priscilla A Barba-Escobedo
- Department of Endodontics, The School of Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
| | - Jacob T Boyd
- Department of Endodontics, The School of Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA; Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | | | - David Grattan
- Centre for Neuroendocrinology and Department of Anatomy, University of Otago School of Biomedical Sciences, Dunedin, New Zealand
| | - Ulrich Boehm
- Department of Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany
| | - Gregory Dussor
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Road, Richardson, TX 75080, USA
| | - Theodore J Price
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Road, Richardson, TX 75080, USA.
| | - Armen N Akopian
- Department of Endodontics, The School of Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA; Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| |
Collapse
|
104
|
Maleki N, Androulakis XM. Is There Any MRI Pattern That Discriminates Female From Male Migraine Patients? Front Neurol 2019; 10:961. [PMID: 31551917 PMCID: PMC6747047 DOI: 10.3389/fneur.2019.00961] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 08/21/2019] [Indexed: 12/27/2022] Open
Abstract
There has been accumulating evidence on sex disparity in incidence, prevalence, symptomology, and burden of migraine. Several neuroimaging studies on migraine patients attempted to unravel the mechanisms of the disease, yet very few of them examined the sex-related differences. Here, we will first discuss some of the reported neuroimaging patterns that discriminate females from males in migraine. We will then re-examine the salient neuroimaging findings in migraine and discuss them in relation to sex-related influences. Finally, we will discuss some of the intriguing recent data suggesting the presence of sex-specific traits in migraineurs. These findings may have potential implications for future neuroimaging studies to identify underlying correlating patterns in the brain to (1) explain the neural basis for higher prevalence of migraine in women, and (2) better understand migraine-specific changes during different stages of life in both men and women.
Collapse
Affiliation(s)
- Nasim Maleki
- Psychiatric Neuroimaging Division, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Xiao Michelle Androulakis
- Columbia VA Health Care System, Columbia, SC, United States.,Department of Neurology, School of Public Health, University of South Carolina, Columbia, SC, United States
| |
Collapse
|
105
|
Harriott AM, Strother LC, Vila-Pueyo M, Holland PR. Animal models of migraine and experimental techniques used to examine trigeminal sensory processing. J Headache Pain 2019; 20:91. [PMID: 31464579 PMCID: PMC6734323 DOI: 10.1186/s10194-019-1043-7] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 08/19/2019] [Indexed: 12/12/2022] Open
Abstract
Background Migraine is a common debilitating condition whose main attributes are severe recurrent headaches with accompanying sensitivity to light and sound, nausea and vomiting. Migraine-related pain is a major cause of its accompanying disability and can encumber almost every aspect of daily life. Main body Advancements in our understanding of the neurobiology of migraine headache have come in large from basic science research utilizing small animal models of migraine-related pain. In this current review, we aim to describe several commonly utilized preclinical models of migraine. We will discuss the diverse array of methodologies for triggering and measuring migraine-related pain phenotypes and highlight briefly specific advantages and limitations therein. Finally, we will address potential future challenges/opportunities to refine existing and develop novel preclinical models of migraine that move beyond migraine-related pain and expand into alternate migraine-related phenotypes. Conclusion Several well validated animal models of pain relevant for headache exist, the researcher should consider the advantages and limitations of each model before selecting the most appropriate to answer the specific research question. Further, we should continually strive to refine existing and generate new animal and non-animal models that have the ability to advance our understanding of head pain as well as non-pain symptoms of primary headache disorders.
Collapse
Affiliation(s)
- Andrea M Harriott
- Neurovascular Research Lab, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA.,Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Lauren C Strother
- Headache Group, Department of Basic and Clinical Neuroscience, Institute of Psychology, Psychiatry and Neuroscience, King's College London, James Black Centre, 125 Coldharbour Lane, London, SE5 9NU, UK
| | - Marta Vila-Pueyo
- Headache Group, Department of Basic and Clinical Neuroscience, Institute of Psychology, Psychiatry and Neuroscience, King's College London, James Black Centre, 125 Coldharbour Lane, London, SE5 9NU, UK
| | - Philip R Holland
- Headache Group, Department of Basic and Clinical Neuroscience, Institute of Psychology, Psychiatry and Neuroscience, King's College London, James Black Centre, 125 Coldharbour Lane, London, SE5 9NU, UK.
| |
Collapse
|