101
|
Lim PSL, Meshorer E. Dppa2 and Dppa4 safeguard bivalent chromatin in order to establish a pluripotent epigenome. Nat Struct Mol Biol 2020; 27:685-686. [DOI: 10.1038/s41594-020-0453-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
102
|
Patra SK. Roles of OCT4 in pathways of embryonic development and cancer progression. Mech Ageing Dev 2020; 189:111286. [PMID: 32531293 DOI: 10.1016/j.mad.2020.111286] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/08/2020] [Accepted: 06/06/2020] [Indexed: 12/11/2022]
Abstract
Somatic cells may be reprogrammed to pluripotent state by ectopic expression of certain transcription factors; namely, OCT4, SOX2, KLF4 and c-MYC. However, the molecular and cellular mechanisms are not adequately understood, especially for human embryonic development. Studies during the last five years implicated importance of OCT4 in human zygotic genome activation (ZGA), patterns of OCT4 protein folding and role of specialized sequences in binding to DNA for modulation of gene expression during development. Epigenetic modulation of OCT4 gene and post translational modifications of OCT4 protein activity in the context of multiple cancers are important issues. A consensus is emerging that chromatin organization and epigenetic landscape play crucial roles for the interactions of transcription factors, including OCT4 with the promoters and/or regulatory sequences of genes associated with human embryonic development (ZGA through lineage specification) and that when the epigenome niche is deregulated OCT4 helps in cancer progression, and how OCT4 silencing in somatic cells of adult organisms may impact ageing.
Collapse
Affiliation(s)
- Samir Kumar Patra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India.
| |
Collapse
|
103
|
Mossel DM, Moganti K, Riabov V, Weiss C, Kopf S, Cordero J, Dobreva G, Rots MG, Klüter H, Harmsen MC, Kzhyshkowska J. Epigenetic Regulation of S100A9 and S100A12 Expression in Monocyte-Macrophage System in Hyperglycemic Conditions. Front Immunol 2020; 11:1071. [PMID: 32582175 PMCID: PMC7280556 DOI: 10.3389/fimmu.2020.01071] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 05/04/2020] [Indexed: 12/13/2022] Open
Abstract
The number of diabetic patients in Europe and world-wide is growing. Diabetes confers a 2-fold higher risk for vascular disease. Lack of insulin production (Type 1 diabetes, T1D) or lack of insulin responsiveness (Type 2 diabetes, T2D) causes systemic metabolic changes such as hyperglycemia (HG) which contribute to the pathology of diabetes. Monocytes and macrophages are key innate immune cells that control inflammatory reactions associated with diabetic vascular complications. Inflammatory programming of macrophages is regulated and maintained by epigenetic mechanisms, in particular histone modifications. The aim of our study was to identify the epigenetic mechanisms involved in the hyperglycemia-mediated macrophage activation. Using Affymetrix microarray profiling and RT-qPCR we identified that hyperglycemia increased the expression of S100A9 and S100A12 in primary human macrophages. Expression of S100A12 was sustained after glucose levels were normalized. Glucose augmented the response of macrophages to Toll-like receptor (TLR)-ligands Palmatic acid (PA) and Lipopolysaccharide (LPS) i.e., pro-inflammatory stimulation. The abundance of activating histone Histone 3 Lysine 4 methylation marks (H3K4me1, H3K4me3) and general acetylation on histone 3 (AceH3) with the promoters of these genes was analyzed by chromatin immunoprecipitation. Hyperglycemia increased acetylation of histones bound to the promoters of S100A9 and S100A12 in M1 macrophages. In contrast, hyperglycemia caused a reduction in total H3 which correlated with the increased expression of both S100 genes. The inhibition of histone methyltransferases SET domain-containing protein (SET)7/9 and SET and MYND domain-containing protein (SMYD)3 showed that these specifically regulated S100A12 expression. We conclude that hyperglycemia upregulates expression of S100A9, S100A12 via epigenetic regulation and induces an activating histone code on the respective gene promoters in M1 macrophages. Mechanistically, this regulation relies on action of histone methyltransferases SMYD3 and SET7/9. The results define an important role for epigenetic regulation in macrophage mediated inflammation in diabetic conditions.
Collapse
Affiliation(s)
- Dieuwertje M Mossel
- Medical Faculty Mannheim, Institute of Transfusion Medicine and Immunology, Heidelberg University, Mannheim, Germany
| | - Kondaiah Moganti
- Medical Faculty Mannheim, Institute of Transfusion Medicine and Immunology, Heidelberg University, Mannheim, Germany.,Department of Dermatology, University of Münster, Münster, Germany
| | - Vladimir Riabov
- Medical Faculty Mannheim, Institute of Transfusion Medicine and Immunology, Heidelberg University, Mannheim, Germany
| | - Christel Weiss
- Department of Medical Statistics, Biomathematics and Information Processing, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Stefan Kopf
- Department of Medicine I: Endocrinology and Clinical Chemistry, University Hospital Heidelberg, Heidelberg, Germany
| | - Julio Cordero
- Anatomy and Developmental Biology, CBTM, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Gergana Dobreva
- Anatomy and Developmental Biology, CBTM, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Marianne G Rots
- Department Pathology and Medical Biology, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Harald Klüter
- Medical Faculty Mannheim, Institute of Transfusion Medicine and Immunology, Heidelberg University, Mannheim, Germany.,German Red Cross Blood Service Baden-Württemberg - Hessen, Mannheim, Germany
| | - Martin C Harmsen
- Department Pathology and Medical Biology, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Julia Kzhyshkowska
- Medical Faculty Mannheim, Institute of Transfusion Medicine and Immunology, Heidelberg University, Mannheim, Germany.,German Red Cross Blood Service Baden-Württemberg - Hessen, Mannheim, Germany
| |
Collapse
|
104
|
Akdogan-Ozdilek B, Duval KL, Goll MG. Chromatin dynamics at the maternal to zygotic transition: recent advances from the zebrafish model. F1000Res 2020; 9. [PMID: 32528656 PMCID: PMC7262572 DOI: 10.12688/f1000research.21809.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/17/2020] [Indexed: 01/02/2023] Open
Abstract
Early animal development is characterized by intense reorganization of the embryonic genome, including large-scale changes in chromatin structure and in the DNA and histone modifications that help shape this structure. Particularly profound shifts in the chromatin landscape are associated with the maternal-to-zygotic transition, when the zygotic genome is first transcribed and maternally loaded transcripts are degraded. The accessibility of the early zebrafish embryo facilitates the interrogation of chromatin during this critical window of development, making it an important model for early chromatin regulation. Here, we review our current understanding of chromatin dynamics during early zebrafish development, highlighting new advances as well as similarities and differences between early chromatin regulation in zebrafish and other species.
Collapse
Affiliation(s)
| | | | - Mary G Goll
- Department of Genetics, University of Georgia, Athens, GA, USA
| |
Collapse
|
105
|
Fröhlich J, Grundhoff A. Epigenetic control in Kaposi sarcoma-associated herpesvirus infection and associated disease. Semin Immunopathol 2020; 42:143-157. [PMID: 32219477 PMCID: PMC7174275 DOI: 10.1007/s00281-020-00787-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 01/20/2020] [Indexed: 12/15/2022]
Abstract
Kaposi sarcoma-associated herpesvirus (KSHV) is the etiologic agent of several malignancies of endothelial and B-cell origin. The fact that latently infected tumor cells in these malignancies do not express classical viral oncogenes suggests that pathogenesis of KSHV-associated disease results from multistep processes that, in addition to constitutive viral gene expression, may require accumulation of cellular alterations. Heritable changes of the epigenome have emerged as an important co-factor that contributes to the pathogenesis of many non-viral cancers. Since KSHV encodes a number of factors that directly or indirectly manipulate host cell chromatin, it is an intriguing possibility that epigenetic reprogramming also contributes to the pathogenesis of KSHV-associated tumors. The fact that heritable histone modifications have also been shown to regulate viral gene expression programs in KSHV-infected tumor cells underlines the importance of epigenetic control during latency and tumorigenesis. We here review what is presently known about the role of epigenetic regulation of viral and host chromatin in KSHV infection and discuss how viral manipulation of these processes may contribute to the development of KSHV-associated disease.
Collapse
Affiliation(s)
- Jacqueline Fröhlich
- Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Adam Grundhoff
- Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany.
| |
Collapse
|
106
|
Uribe-Etxebarria V, García-Gallastegui P, Pérez-Garrastachu M, Casado-Andrés M, Irastorza I, Unda F, Ibarretxe G, Subirán N. Wnt-3a Induces Epigenetic Remodeling in Human Dental Pulp Stem Cells. Cells 2020; 9:cells9030652. [PMID: 32156036 PMCID: PMC7140622 DOI: 10.3390/cells9030652] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/28/2020] [Accepted: 03/04/2020] [Indexed: 12/13/2022] Open
Abstract
Dental pulp stem cells (DPSCs) from adult teeth show the expression of a very complete repertoire of stem pluripotency core factors and a high plasticity for cell reprogramming. Canonical Wnt and Notch signaling pathways regulate stemness and the expression of pluripotency core factors in DPSCs, and even very short-term (48 h) activations of the Wnt pathway induce a profound remodeling of DPSCs at the physiologic and metabolic levels. In this work, DPSC cultures were exposed to treatments modulating Notch and Wnt signaling, and also induced to differentiate to osteo/adipocytes. DNA methylation, histone acetylation, histone methylation, and core factor expression levels where assessed by mass spectroscopy, Western blot, and qPCR. A short-term activation of Wnt signaling by WNT-3A induced a genomic DNA demethylation, and increased histone acetylation and histone methylation in DPSCs. The efficiency of cell reprogramming methods relies on the ability to surpass the epigenetic barrier, which determines cell lineage specificity. This study brings important information about the regulation of the epigenetic barrier by Wnt signaling in DPSCs, which could contribute to the development of safer and less aggressive reprogramming methodologies with a view to cell therapy.
Collapse
Affiliation(s)
- Verónica Uribe-Etxebarria
- Cell Biology and Histology Department, University of the Basque Country (UPV/EHU), Barrio Sarriena, S/N, 48940 Leioa, Spain; (V.U.-E.); (P.G.-G.); (M.P.-G.); (M.C.-A.); (I.I.); (F.U.)
- Pathology Department, New York University, 550 1st Avenue, New York, NY 10016, USA
| | - Patricia García-Gallastegui
- Cell Biology and Histology Department, University of the Basque Country (UPV/EHU), Barrio Sarriena, S/N, 48940 Leioa, Spain; (V.U.-E.); (P.G.-G.); (M.P.-G.); (M.C.-A.); (I.I.); (F.U.)
| | - Miguel Pérez-Garrastachu
- Cell Biology and Histology Department, University of the Basque Country (UPV/EHU), Barrio Sarriena, S/N, 48940 Leioa, Spain; (V.U.-E.); (P.G.-G.); (M.P.-G.); (M.C.-A.); (I.I.); (F.U.)
| | - María Casado-Andrés
- Cell Biology and Histology Department, University of the Basque Country (UPV/EHU), Barrio Sarriena, S/N, 48940 Leioa, Spain; (V.U.-E.); (P.G.-G.); (M.P.-G.); (M.C.-A.); (I.I.); (F.U.)
- Unité Mixte de Recherche UMR1029. INSERM-Université de Bordeaux, 33000 Bordeaux, France
| | - Igor Irastorza
- Cell Biology and Histology Department, University of the Basque Country (UPV/EHU), Barrio Sarriena, S/N, 48940 Leioa, Spain; (V.U.-E.); (P.G.-G.); (M.P.-G.); (M.C.-A.); (I.I.); (F.U.)
| | - Fernando Unda
- Cell Biology and Histology Department, University of the Basque Country (UPV/EHU), Barrio Sarriena, S/N, 48940 Leioa, Spain; (V.U.-E.); (P.G.-G.); (M.P.-G.); (M.C.-A.); (I.I.); (F.U.)
| | - Gaskon Ibarretxe
- Cell Biology and Histology Department, University of the Basque Country (UPV/EHU), Barrio Sarriena, S/N, 48940 Leioa, Spain; (V.U.-E.); (P.G.-G.); (M.P.-G.); (M.C.-A.); (I.I.); (F.U.)
- Correspondence: ; Tel.: +34-94-601-3218
| | - Nerea Subirán
- Physiology Department, University of the Basque Country (UPV/EHU), Barrio Sarriena, S/N, 48940 Leioa, Spain;
| |
Collapse
|
107
|
Wang B, Gu HJ, Huang HQ, Wang HY, Xia ZH, Hu YH. Characterization, expression, and antimicrobial activity of histones from Japanese flounder Paralichthys olivaceus. FISH & SHELLFISH IMMUNOLOGY 2020; 96:235-244. [PMID: 31786345 DOI: 10.1016/j.fsi.2019.11.065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 11/23/2019] [Accepted: 11/27/2019] [Indexed: 05/22/2023]
Abstract
Histone proteins are not only structurally important for chromosomal DNA packaging but also involved in the regulation of gene expression and the immune response of host against pathogens. Japanese flounder (Paralichthys olivaceus) as one of the most important marine flatfish, suffered from widespread outbreaks of diseases, and its immunological functioning remained to be elucidated. In the present study, we reported the expression patterns of four histones (H1, H2A, H3, and H3.3) and functional characterization of the histone H3.3 from flounder. Quantitative real time RT-PCR (RT-qPCR) analysis showed that expression of the four histones occurred in multiple tissues, but their levels of expression were relatively high in immune organs, and inducible in response to pathogens infection. Infection with extracellular and intracellular bacterial pathogens and viral pathogen regulated the expression of histones in a manner that depended on tissue type, pathogen, and infection stage. Specifically, H1 expression was highly induced by intracellular viral pathogens; H2AX and H3 expressions were highly induced by intracellular bacterial pathogen; dissimilarly, H3.3 expression was slightly induced by extracellular bacterial pathogen, but was inhibited by intracellular bacterial and viral pathogens. To further investigate H3.3 function, recombinant H3.3 (rH3.3) was obtained, and in vitro experiments showed rH3.3 possessed the capability of binding to both Gram-negative and Gram-positive bacteria and inhibiting the growth of some target bacteria. Consistently, In vivo results showed that overexpression of H3.3 promoted the host defense against invading pathogenic microorganism and regulated the expressions of several cytokines. These results suggested that flounder histones exhibit different expression patterns in response to the infection of different microbial pathogens, and H3.3 serves as an immune-related protein and plays an important role in antimicrobial immunity of Japanese flounder. Taken together, this study is the first report about the expression profile of different histones upon different kind of pathogens and anti-infectious immunity of H3.3 in teleost, which offered new insights into the immunological function of histones in teleost.
Collapse
Affiliation(s)
- Bo Wang
- Institute of Tropical Bioscience and Biotechnology, Hainan Academy of Tropical Agricultural Resource, CATAS, Haikou, 571101, China; School of Life and Pharmaceutical Sciences, Hainan University, Haikou, 570228, China.
| | - Han-Jie Gu
- Institute of Tropical Bioscience and Biotechnology, Hainan Academy of Tropical Agricultural Resource, CATAS, Haikou, 571101, China; Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Haikou, 571101, China.
| | - Hui-Qin Huang
- Institute of Tropical Bioscience and Biotechnology, Hainan Academy of Tropical Agricultural Resource, CATAS, Haikou, 571101, China; Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Haikou, 571101, China.
| | - Hong-Yu Wang
- Institute of Tropical Bioscience and Biotechnology, Hainan Academy of Tropical Agricultural Resource, CATAS, Haikou, 571101, China; Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Haikou, 571101, China.
| | - Zhi-Hui Xia
- College of Tropical Crops, Hainan University, Haikou, 570228, China.
| | - Yong-Hua Hu
- Institute of Tropical Bioscience and Biotechnology, Hainan Academy of Tropical Agricultural Resource, CATAS, Haikou, 571101, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), China; Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Haikou, 571101, China.
| |
Collapse
|
108
|
Abstract
Recent advances in immunotherapy have revolutionized the treatment of certain cancers. Some patients show a durable response to these immunotherapies, while others show little benefit or develop resistance. Identification of biomarkers to predict responsiveness will be helpful for informing treatment strategies; and would furthermore lead to the identification of molecular pathways dysregulated in nonresponding patients that could be targeted for therapeutic development. Pathways of epigenetic modification, such as histone posttranslational modifications (PTMs), have been shown to be dysregulated in certain cancer and immune cells. Histones are abundant cellular proteins readily assayed with high-throughput technologies, making them attractive targets as biomarkers. We explore promising advancements for using histone PTMs as immunotherapy responsiveness biomarkers in both cancer and immune cells, and provide a methodological workflow for assaying histone PTMs in relevant samples.
Collapse
Affiliation(s)
- Erin M Taylor
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Brian Koss
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Lauren E Davis
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Alan J Tackett
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
109
|
Abstract
In eukaryotes, DNA is highly compacted within the nucleus into a structure known as chromatin. Modulation of chromatin structure allows for precise regulation of gene expression, and thereby controls cell fate decisions. Specific chromatin organization is established and preserved by numerous factors to generate desired cellular outcomes. In embryonic stem (ES) cells, chromatin is precisely regulated to preserve their two defining characteristics: self-renewal and pluripotent state. This action is accomplished by a litany of nucleosome remodelers, histone variants, epigenetic marks, and other chromatin regulatory factors. These highly dynamic regulatory factors come together to precisely define a chromatin state that is conducive to ES cell maintenance and development, where dysregulation threatens the survival and fitness of the developing organism.
Collapse
Affiliation(s)
- David C Klein
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, United States
| | - Sarah J Hainer
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|
110
|
Li Z, Lv F, Dai C, Wang Q, Jiang C, Fang M, Xu Y. Activation of Galectin-3 (LGALS3) Transcription by Injurious Stimuli in the Liver Is Commonly Mediated by BRG1. Front Cell Dev Biol 2019; 7:310. [PMID: 31850346 PMCID: PMC6901944 DOI: 10.3389/fcell.2019.00310] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 11/13/2019] [Indexed: 01/13/2023] Open
Abstract
Galectin-3 (encoded by LGALS3) is a glycan-binding protein that regulates a diverse range of pathophysiological processes contributing to the pathogenesis of human diseases. Previous studies have found that galectin-3 levels are up-regulated in the liver by a host of different injurious stimuli. The underlying epigenetic mechanism, however, is unclear. Here we report that conditional knockout of Brahma related gene (BRG1), a chromatin remodeling protein, in hepatocytes attenuated induction of galectin-3 expression in several different animal models of liver injury. Similarly, BRG1 depletion or pharmaceutical inhibition in cultured hepatocytes suppressed the induction of galectin-3 expression by treatment with LPS plus free fatty acid (palmitate). Further analysis revealed that BRG1 interacted with AP-1 to bind to the proximal galectin-3 promoter and activate transcription. Mechanistically, DNA demethylation surrounding the galectin-3 promoter appeared to be a rate-limiting step in BRG1-mediated activation of galectin-3 transcription. BRG1 recruited the DNA 5-methylcytosine dioxygenase TET1 to the galectin-3 to promote active DNA demethylation thereby activating galectin-3 transcription. Finally, TET1 silencing abrogated induction of galectin-3 expression by LPS plus palmitate in cultured hepatocytes. In conclusion, our data unveil a novel epigenetic pathway that contributes to injury-associated activation of galectin-3 transcription in hepatocytes.
Collapse
Affiliation(s)
- Zilong Li
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Fangqiao Lv
- Department of Cell Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Congxin Dai
- Department of Neurosurgery, Peking Union Medical College Hospital, Beijing, China
| | - Qiong Wang
- Department of Surgical Oncology, the Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing, China
| | - Chao Jiang
- Department of Surgical Oncology, the Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing, China
| | - Mingming Fang
- Department of Clinical Medicine, Laboratory Center for Basic Medical Sciences, Jiangsu Health Vocational College, Nanjing, China.,Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| | - Yong Xu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China.,Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| |
Collapse
|
111
|
Ben-Yair R, Butty VL, Busby M, Qiu Y, Levine SS, Goren A, Boyer LA, Burns CG, Burns CE. H3K27me3-mediated silencing of structural genes is required for zebrafish heart regeneration. Development 2019; 146:dev178632. [PMID: 31427288 PMCID: PMC6803378 DOI: 10.1242/dev.178632] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 08/07/2019] [Indexed: 12/13/2022]
Abstract
Deciphering the genetic and epigenetic regulation of cardiomyocyte proliferation in organisms that are capable of robust cardiac renewal, such as zebrafish, represents an attractive inroad towards regenerating the human heart. Using integrated high-throughput transcriptional and chromatin analyses, we have identified a strong association between H3K27me3 deposition and reduced sarcomere and cytoskeletal gene expression in proliferative cardiomyocytes following cardiac injury in zebrafish. To move beyond an association, we generated an inducible transgenic strain expressing a mutant version of histone 3, H3.3K27M, that inhibits H3K27me3 catalysis in cardiomyocytes during the regenerative window. Hearts comprising H3.3K27M-expressing cardiomyocytes fail to regenerate, with wound edge cells showing heightened expression of structural genes and prominent sarcomeres. Although cell cycle re-entry was unperturbed, cytokinesis and wound invasion were significantly compromised. Collectively, our study identifies H3K27me3-mediated silencing of structural genes as requisite for zebrafish heart regeneration and suggests that repression of similar structural components in the border zone of an infarcted human heart might improve its regenerative capacity.
Collapse
Affiliation(s)
- Raz Ben-Yair
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Vincent L Butty
- Departments of Biology and Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Michele Busby
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Yutong Qiu
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Stuart S Levine
- Departments of Biology and Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Alon Goren
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Laurie A Boyer
- Departments of Biology and Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - C Geoffrey Burns
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Harvard Medical School, Boston, MA 02115, USA
- Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Caroline E Burns
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Harvard Medical School, Boston, MA 02115, USA
- Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| |
Collapse
|
112
|
A mass spectrometry-based assay using metabolic labeling to rapidly monitor chromatin accessibility of modified histone proteins. Sci Rep 2019; 9:13613. [PMID: 31541121 PMCID: PMC6754405 DOI: 10.1038/s41598-019-49894-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 08/24/2019] [Indexed: 12/22/2022] Open
Abstract
Histone post-translational modifications (PTMs) contribute to chromatin accessibility due to their chemical properties and their ability to recruit enzymes responsible for DNA readout and chromatin remodeling. To date, more than 400 different histone PTMs and thousands of combinations of PTMs have been identified, the vast majority with still unknown biological function. Identification and quantification of histone PTMs has become routine in mass spectrometry (MS) but, since raising antibodies for each PTM in a study can be prohibitive, lots of potential is lost from MS datasets when uncharacterized PTMs are found to be significantly regulated. We developed an assay that uses metabolic labeling and MS to associate chromatin accessibility with histone PTMs and their combinations. The labeling is achieved by spiking in the cell media a 5x concentration of stable isotope labeled arginine and allow cells to grow for at least one cell cycle. We quantified the labeling incorporation of about 200 histone peptides with a proteomics workflow, and we confirmed that peptides carrying PTMs with extensively characterized roles in active transcription or gene silencing were in highly or poorly labeled forms, respectively. Data were further validated using next-generation sequencing to assess the transcription rate of chromatin regions modified with five selected PTMs. Furthermore, we quantified the labeling rate of peptides carrying co-existing PTMs, proving that this method is suitable for combinatorial PTMs. We focus on the abundant bivalent mark H3K27me3K36me2, showing that H3K27me3 dominantly represses histone swapping rate even in the presence of the more permissive PTM H3K36me2. Together, we envision this method will help to generate hypotheses regarding histone PTM functions and, potentially, elucidate the role of combinatorial histone codes.
Collapse
|
113
|
Abstract
Supplemental Digital Content is available in the text. If unifying principles could be revealed for how the same genome encodes different eukaryotic cells and for how genetic variability and environmental input are integrated to impact cardiovascular health, grand challenges in basic cell biology and translational medicine may succumb to experimental dissection. A rich body of work in model systems has implicated chromatin-modifying enzymes, DNA methylation, noncoding RNAs, and other transcriptome-shaping factors in adult health and in the development, progression, and mitigation of cardiovascular disease. Meanwhile, deployment of epigenomic tools, powered by next-generation sequencing technologies in cardiovascular models and human populations, has enabled description of epigenomic landscapes underpinning cellular function in the cardiovascular system. This essay aims to unpack the conceptual framework in which epigenomes are studied and to stimulate discussion on how principles of chromatin function may inform investigations of cardiovascular disease and the development of new therapies.
Collapse
Affiliation(s)
- Manuel Rosa-Garrido
- From the Departments of Anesthesiology, Medicine, and Physiology, David Geffen School of Medicine, University of California, Los Angeles
| | - Douglas J Chapski
- From the Departments of Anesthesiology, Medicine, and Physiology, David Geffen School of Medicine, University of California, Los Angeles
| | - Thomas M Vondriska
- From the Departments of Anesthesiology, Medicine, and Physiology, David Geffen School of Medicine, University of California, Los Angeles.
| |
Collapse
|
114
|
Jaroy EG, Acosta-Jimenez L, Hotta R, Goldstein AM, Emblem R, Klungland A, Ougland R. "Too much guts and not enough brains": (epi)genetic mechanisms and future therapies of Hirschsprung disease - a review. Clin Epigenetics 2019; 11:135. [PMID: 31519213 PMCID: PMC6743154 DOI: 10.1186/s13148-019-0718-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 07/29/2019] [Indexed: 12/21/2022] Open
Abstract
Hirschsprung disease is a neurocristopathy, characterized by aganglionosis in the distal bowel. It is caused by failure of the enteric nervous system progenitors to migrate, proliferate, and differentiate in the gut. Development of an enteric nervous system is a tightly regulated process. Both the neural crest cells and the surrounding environment are regulated by different genes, signaling pathways, and morphogens. For this process to be successful, the timing of gene expression is crucial. Hence, alterations in expression of genes specific for the enteric nervous system may contribute to the pathogenesis of Hirschsprung’s disease. Several epigenetic mechanisms contribute to regulate gene expression, such as modifications of DNA and RNA, histone modifications, and microRNAs. Here, we review the current knowledge of epigenetic and epitranscriptomic regulation in the development of the enteric nervous system and its potential significance for the pathogenesis of Hirschsprung’s disease. We also discuss possible future therapies and how targeting epigenetic and epitranscriptomic mechanisms may open new avenues for novel treatment.
Collapse
Affiliation(s)
- Emilie G Jaroy
- Clinic for Diagnostics and Intervention and Institute of Medical Microbiology, Oslo University Hospital, Rikshospitalet, 0027, Oslo, Norway.,Department of Pediatric Surgery, Oslo University Hospital, Rikshospitalet, 0424, Oslo, Norway.,Faculty of Medicine, Institute of Basic Medical Sciences, University of Oslo, 0317, Oslo, Norway
| | - Lourdes Acosta-Jimenez
- Clinic for Diagnostics and Intervention and Institute of Medical Microbiology, Oslo University Hospital, Rikshospitalet, 0027, Oslo, Norway.,Department of Pediatric Surgery, Oslo University Hospital, Rikshospitalet, 0424, Oslo, Norway.,Faculty of Medicine, Institute of Basic Medical Sciences, University of Oslo, 0317, Oslo, Norway
| | - Ryo Hotta
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Allan M Goldstein
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ragnhild Emblem
- Department of Pediatric Surgery, Oslo University Hospital, Rikshospitalet, 0424, Oslo, Norway.,Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, 0317, Oslo, Norway
| | - Arne Klungland
- Clinic for Diagnostics and Intervention and Institute of Medical Microbiology, Oslo University Hospital, Rikshospitalet, 0027, Oslo, Norway.,Faculty of Medicine, Institute of Basic Medical Sciences, University of Oslo, 0317, Oslo, Norway
| | - Rune Ougland
- Clinic for Diagnostics and Intervention and Institute of Medical Microbiology, Oslo University Hospital, Rikshospitalet, 0027, Oslo, Norway. .,Department of Surgery, Baerum Hospital, Vestre Viken Hospital Trust, 3004, Drammen, Norway.
| |
Collapse
|
115
|
Altuna M, Urdánoz-Casado A, Sánchez-Ruiz de Gordoa J, Zelaya MV, Labarga A, Lepesant JMJ, Roldán M, Blanco-Luquin I, Perdones Á, Larumbe R, Jericó I, Echavarri C, Méndez-López I, Di Stefano L, Mendioroz M. DNA methylation signature of human hippocampus in Alzheimer's disease is linked to neurogenesis. Clin Epigenetics 2019; 11:91. [PMID: 31217032 PMCID: PMC6585076 DOI: 10.1186/s13148-019-0672-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 04/25/2019] [Indexed: 12/22/2022] Open
Abstract
Background Drawing the epigenome landscape of Alzheimer’s disease (AD) still remains a challenge. To characterize the epigenetic molecular basis of the human hippocampus in AD, we profiled genome-wide DNA methylation levels in hippocampal samples from a cohort of pure AD patients and controls by using the Illumina 450K methylation arrays. Results Up to 118 AD-related differentially methylated positions (DMPs) were identified in the AD hippocampus, and extended mapping of specific regions was obtained by bisulfite cloning sequencing. AD-related DMPs were significantly correlated with phosphorylated tau burden. Functional analysis highlighted that AD-related DMPs were enriched in poised promoters that were not generally maintained in committed neural progenitor cells, as shown by ChiP-qPCR experiments. Interestingly, AD-related DMPs preferentially involved neurodevelopmental and neurogenesis-related genes. Finally, InterPro ontology analysis revealed enrichment in homeobox-containing transcription factors in the set of AD-related DMPs. Conclusions These results suggest that altered DNA methylation in the AD hippocampus occurs at specific regulatory regions crucial for neural differentiation supporting the notion that adult hippocampal neurogenesis may play a role in AD through epigenetic mechanisms. Graphical abstract ![]()
Electronic supplementary material The online version of this article (10.1186/s13148-019-0672-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Miren Altuna
- Neuroepigenetics Laboratory, Navarrabiomed, Public University of Navarre (UPNA), IdiSNA (Navarra Institute for Health Research), c/ Irunlarrea, 3, 31008, Pamplona, Spain.,Department of Neurology, Complejo Hospitalario de Navarra, IdiSNA (Navarra Institute for Health Research), Pamplona, Spain
| | - Amaya Urdánoz-Casado
- Neuroepigenetics Laboratory, Navarrabiomed, Public University of Navarre (UPNA), IdiSNA (Navarra Institute for Health Research), c/ Irunlarrea, 3, 31008, Pamplona, Spain
| | - Javier Sánchez-Ruiz de Gordoa
- Neuroepigenetics Laboratory, Navarrabiomed, Public University of Navarre (UPNA), IdiSNA (Navarra Institute for Health Research), c/ Irunlarrea, 3, 31008, Pamplona, Spain.,Department of Neurology, Complejo Hospitalario de Navarra, IdiSNA (Navarra Institute for Health Research), Pamplona, Spain
| | - María V Zelaya
- Department of Pathology, Complejo Hospitalario de Navarra- IdiSNA (Navarra Institute for Health Research), Pamplona, Spain
| | - Alberto Labarga
- Bioinformatics Unit, Navarrabiomed, Public University of Navarre (UPNA), IdiSNA (Navarra Institute for Health Research), Pamplona, Spain
| | - Julie M J Lepesant
- Laboratoire de biologie cellulaire et moléculaire du contrôle de la prolifération (LBCMCP), Université Paul Sabatier, CNRS, Toulouse, France
| | - Miren Roldán
- Neuroepigenetics Laboratory, Navarrabiomed, Public University of Navarre (UPNA), IdiSNA (Navarra Institute for Health Research), c/ Irunlarrea, 3, 31008, Pamplona, Spain
| | - Idoia Blanco-Luquin
- Neuroepigenetics Laboratory, Navarrabiomed, Public University of Navarre (UPNA), IdiSNA (Navarra Institute for Health Research), c/ Irunlarrea, 3, 31008, Pamplona, Spain
| | - Álvaro Perdones
- Bioinformatics Unit, Navarrabiomed, Public University of Navarre (UPNA), IdiSNA (Navarra Institute for Health Research), Pamplona, Spain
| | - Rosa Larumbe
- Neuroepigenetics Laboratory, Navarrabiomed, Public University of Navarre (UPNA), IdiSNA (Navarra Institute for Health Research), c/ Irunlarrea, 3, 31008, Pamplona, Spain.,Department of Neurology, Complejo Hospitalario de Navarra, IdiSNA (Navarra Institute for Health Research), Pamplona, Spain
| | - Ivonne Jericó
- Department of Neurology, Complejo Hospitalario de Navarra, IdiSNA (Navarra Institute for Health Research), Pamplona, Spain
| | - Carmen Echavarri
- Neuroepigenetics Laboratory, Navarrabiomed, Public University of Navarre (UPNA), IdiSNA (Navarra Institute for Health Research), c/ Irunlarrea, 3, 31008, Pamplona, Spain.,Department of Neurology, Complejo Hospitalario de Navarra, IdiSNA (Navarra Institute for Health Research), Pamplona, Spain
| | - Iván Méndez-López
- Neuroepigenetics Laboratory, Navarrabiomed, Public University of Navarre (UPNA), IdiSNA (Navarra Institute for Health Research), c/ Irunlarrea, 3, 31008, Pamplona, Spain.,Department of Internal Medicine, Hospital García-Orcoyen, Estella, Spain
| | - Luisa Di Stefano
- Laboratoire de biologie cellulaire et moléculaire du contrôle de la prolifération (LBCMCP), Université Paul Sabatier, CNRS, Toulouse, France
| | - Maite Mendioroz
- Neuroepigenetics Laboratory, Navarrabiomed, Public University of Navarre (UPNA), IdiSNA (Navarra Institute for Health Research), c/ Irunlarrea, 3, 31008, Pamplona, Spain. .,Department of Neurology, Complejo Hospitalario de Navarra, IdiSNA (Navarra Institute for Health Research), Pamplona, Spain.
| |
Collapse
|
116
|
A novel member of Prame family, Gm12794c, counteracts retinoic acid differentiation through the methyltransferase activity of PRC2. Cell Death Differ 2019; 27:345-362. [PMID: 31186534 DOI: 10.1038/s41418-019-0359-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 02/11/2019] [Accepted: 04/03/2019] [Indexed: 02/06/2023] Open
Abstract
Embryonic stem cells (ESCs) fluctuate among different levels of pluripotency defined as metastates. Sporadically, metastable cellular populations convert to a highly pluripotent metastate that resembles the preimplantation two-cell embryos stage (defined as 2C stage) in terms of transcriptome, DNA methylation, and chromatin structure. Recently, we found that the retinoic acid (RA) signaling leads to a robust increase of cells specifically expressing 2C genes, such as members of the Prame family. Here, we show that Gm12794c, one of the most highly upregulated Prame members, and previously identified as a key player for the maintenance of pluripotency, has a functional role in conferring ESCs resistance to RA signaling. In particular, RA-dependent expression of Gm12794c induces a ground state-like metastate, as evaluated by activation of 2C-specific genes, global DNA hypomethylation and rearrangement of chromatin similar to that observed in naive totipotent preimplantation epiblast cells and 2C-like cells. Mechanistically, we demonstrated that Gm12794c inhibits Cdkn1A gene expression through the polycomb repressive complex 2 (PRC2) histone methyltransferase activity. Collectively, our data highlight a molecular mechanism employed by ESCs to counteract retinoic acid differentiation stimuli and contribute to shed light on the molecular mechanisms at grounds of ESCs naive pluripotency-state maintenance.
Collapse
|
117
|
Human osteogenic differentiation in Space: proteomic and epigenetic clues to better understand osteoporosis. Sci Rep 2019; 9:8343. [PMID: 31171801 PMCID: PMC6554341 DOI: 10.1038/s41598-019-44593-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 05/15/2019] [Indexed: 12/12/2022] Open
Abstract
In the frame of the VITA mission of the Italian Space Agency (ASI), we addressed the problem of Space osteoporosis by using human blood-derived stem cells (BDSCs) as a suitable osteogenic differentiation model. In particular, we investigated proteomic and epigenetic changes in BDSCs during osteoblastic differentiation induced by rapamycin under microgravity conditions. A decrease in the expression of 4 embryonic markers (Sox2, Oct3/4, Nanog and E-cadherin) was found to occur to a larger extent on board the ISS than on Earth, along with an earlier activation of the differentiation process towards the osteogenic lineage. The changes in the expression of 4 transcription factors (Otx2, Snail, GATA4 and Sox17) engaged in osteogenesis supported these findings. We then ascertained whether osteogenic differentiation of BDSCs could depend on epigenetic regulation, and interrogated changes of histone H3 that is crucial in this type of gene control. Indeed, we found that H3K4me3, H3K27me2/3, H3K79me2/3 and H3K9me2/3 residues are engaged in cellular reprogramming that drives gene expression. Overall, we suggest that rapamycin induces transcriptional activation of BDSCs towards osteogenic differentiation, through increased GATA4 and Sox17 that modulate downstream transcription factors (like Runx2), critical for bone formation. Additional studies are warranted to ascertain the possible exploitation of these data to identify new biomarkers and therapeutic targets to treat osteoporosis, not only in Space but also on Earth.
Collapse
|
118
|
Sun X, Li Z, Niu Y, Zhao L, Huang Y, Li Q, Zhang S, Chen T, Fu T, Yang T, An X, Jiang Y, Zhang J. Jarid1b promotes epidermal differentiation by mediating the repression of Ship1 and activation of the AKT/Ovol1 pathway. Cell Prolif 2019; 52:e12638. [PMID: 31152465 PMCID: PMC6797505 DOI: 10.1111/cpr.12638] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/25/2019] [Accepted: 04/26/2019] [Indexed: 12/13/2022] Open
Abstract
Objectives Terminally differentiated stratified squamous epithelial cells play an important role in barrier protection of the skin. The integrity of epidermal cells is maintained by tight regulation of proliferation and differentiation. The aim of this study was to investigate the role of epigenetic regulator H3K4me3 and its demethylase Jarid1b in the control of epithelial cell differentiation. Materials and methods RT‐qPCR, Western blotting and IHC were used to detect mRNA and protein levels. We analysed cell proliferation by CCK8 assay and cell migration by wound healing assay. ChIP was used to measure H3K4me3 enrichment. A chamber graft model was established for epidermal development. Results Our studies showed that H3K4me3 was decreased during epidermal differentiation. The H3K4me3 demethylase Jarid1b positively controlled epidermal cell differentiation in vitro and in vivo. Mechanistically, we found that Jarid1b substantially increased the expression of mesenchymal‐epithelial transition (MET)‐related genes, among which Ovol1 positively regulated differentiation gene expression. In addition, Ovol1 expression was repressed by PI3K‐AKT pathway inhibitors and overexpression (O/E) of the PI3K‐AKT pathway suppressor Ship1. Knockdown (KD) of Ship1 activated downstream PI3K‐AKT pathway and enhanced Ovol1 expression in HaCaT. Importantly, we found that Jarid1b negatively regulated Ship1 expression, but not that of Pten, by directly binding to its promoter to modulate H3K4me3 enrichment. Conclusion Our results identify an essential role of Jarid1b in the regulation of the Ship1/AKT/Ovol1 pathway to promote epithelial cell differentiation.
Collapse
Affiliation(s)
- Xuewei Sun
- Department of Otolaryngology-Head and Neck Surgery, Key Laboratory, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Zhiyuan Li
- Department of Otolaryngology-Head and Neck Surgery, Key Laboratory, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Yanfang Niu
- Department of Otolaryngology-Head and Neck Surgery, Key Laboratory, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Department of Biochemistry & Molecular Biology, Shanxi Medical University, Taiyuan, China
| | - Lijuan Zhao
- Department of Otolaryngology-Head and Neck Surgery, Key Laboratory, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Yichuan Huang
- Department of Otolaryngology-Head and Neck Surgery, Key Laboratory, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Qiang Li
- Department of Andrology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Shengnan Zhang
- Department of Otolaryngology-Head and Neck Surgery, Key Laboratory, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Ting Chen
- Department of Otolaryngology-Head and Neck Surgery, Key Laboratory, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Tao Fu
- Department of Otolaryngology-Head and Neck Surgery, Key Laboratory, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Tao Yang
- Department of Biochemistry & Molecular Biology, Shanxi Medical University, Taiyuan, China
| | - Xiaofei An
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yan Jiang
- Department of Otolaryngology-Head and Neck Surgery, Key Laboratory, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Jisheng Zhang
- Department of Otolaryngology-Head and Neck Surgery, Key Laboratory, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Shandong Key Laboratory of Digital Medicine and Computer Assisted Surgery, Qingdao, China.,Shandong College Collaborative Innovation Center of Digital Medicine in Clinical Treatment and Nutrition Health, Qingdao, China
| |
Collapse
|
119
|
Tracey LJ, Justice MJ. Off to a Bad Start: Cancer Initiation by Pluripotency Regulator PRDM14. Trends Genet 2019; 35:489-500. [PMID: 31130394 DOI: 10.1016/j.tig.2019.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 04/23/2019] [Indexed: 12/16/2022]
Abstract
Despite advances in chemotherapies that improve cancer survival, most patients who relapse succumb to the disease due to the presence of cancer stem cells (CSCs), which are highly chemoresistant. The pluripotency factor PR domain 14 (PRDM14) has a key role in initiating many types of cancer. Normally, PRDM14 uses epigenetic mechanisms to establish and maintain the pluripotency of embryonic cells, and its role in cancer is similar. This important link between cancer and induced pluripotency is a key revelation for how CSCs may form: pluripotency genes, such as PRDM14, can expand stem-like cells as they promote ongoing DNA damage. PRDM14 and its protein-binding partners, the ETO/CBFA2T family, are ideal candidates for eliminating CSCs from relevant cancers, preventing relapse and improving long-term survival.
Collapse
Affiliation(s)
- Lauren J Tracey
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ONT, M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ONT, M5S 1A8, Canada
| | - Monica J Justice
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ONT, M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ONT, M5S 1A8, Canada.
| |
Collapse
|
120
|
Sneppen K, Ringrose L. Theoretical analysis of Polycomb-Trithorax systems predicts that poised chromatin is bistable and not bivalent. Nat Commun 2019; 10:2133. [PMID: 31086177 PMCID: PMC6513952 DOI: 10.1038/s41467-019-10130-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 04/12/2019] [Indexed: 12/15/2022] Open
Abstract
Polycomb (PcG) and Trithorax (TrxG) group proteins give stable epigenetic memory of silent and active gene expression states, but also allow poised states in pluripotent cells. Here we systematically address the relationship between poised, active and silent chromatin, by integrating 73 publications on PcG/TrxG biochemistry into a mathematical model comprising 144 nucleosome modification states and 8 enzymatic reactions. Our model predicts that poised chromatin is bistable and not bivalent. Bivalent chromatin, containing opposing active and silent modifications, is present as an unstable background population in all system states, and different subtypes co-occur with active and silent chromatin. In contrast, bistability, in which the system switches frequently between stable active and silent states, occurs under a wide range of conditions at the transition between monostable active and silent system states. By proposing that bistability and not bivalency is associated with poised chromatin, this work has implications for understanding the molecular nature of pluripotency. Polycomb and Trithorax group proteins regulate silent and active gene expression states, but also allow poised states in pluripotent cells. Here the authors present a mathematical model that integrates data on Polycomb/ Trithorax biochemistry into a single coherent framework which predicts that poised chromatin is not bivalent as previously proposed, but is bistable, meaning that the system switches frequently between stable active and silent states.
Collapse
Affiliation(s)
- Kim Sneppen
- Center for Models of Life, Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100, Copenhagen, Denmark.
| | - Leonie Ringrose
- Integrated Research Institute for Life Sciences, Humboldt-Universität zu Berlin, Philippstrasse 13, Haus 22, 10115, Berlin, Germany.
| |
Collapse
|
121
|
Primed histone demethylation regulates shoot regenerative competency. Nat Commun 2019; 10:1786. [PMID: 30992430 PMCID: PMC6467990 DOI: 10.1038/s41467-019-09386-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 03/07/2019] [Indexed: 01/09/2023] Open
Abstract
Acquisition of pluripotency by somatic cells is a striking process that enables multicellular organisms to regenerate organs. This process includes silencing of genes to erase original tissue memory and priming of additional cell type specification genes, which are then poised for activation by external signal inputs. Here, through analysis of genome-wide histone modifications and gene expression profiles, we show that a gene priming mechanism involving LYSINE-SPECIFIC DEMETHYLASE 1-LIKE 3 (LDL3) specifically eliminates H3K4me2 during formation of the intermediate pluripotent cell mass known as callus derived from Arabidopsis root cells. While LDL3-mediated H3K4me2 removal does not immediately affect gene expression, it does facilitate the later activation of genes that act to form shoot progenitors when external cues lead to shoot induction. These results give insights into the role of H3K4 methylation in plants, and into the primed state that provides plant cells with high regenerative competency. Plant regeneration can occur via formation of a mass of pluripotent cells known as callus. Here, Ishihara et al. show that acquisition of regenerative capacity of callus-forming cells requires a lysine-specific demethylase that removes H3K4me2 to prime gene expression in response to regenerative cues.
Collapse
|
122
|
Henry MP, Hawkins JR, Boyle J, Bridger JM. The Genomic Health of Human Pluripotent Stem Cells: Genomic Instability and the Consequences on Nuclear Organization. Front Genet 2019; 9:623. [PMID: 30719030 PMCID: PMC6348275 DOI: 10.3389/fgene.2018.00623] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 11/23/2018] [Indexed: 12/11/2022] Open
Abstract
Human pluripotent stem cells (hPSCs) are increasingly used for cell-based regenerative therapies worldwide, with embryonic and induced pluripotent stem cells as potential treatments for debilitating and chronic conditions, such as age-related macular degeneration, Parkinson's disease, spinal cord injuries, and type 1 diabetes. However, with the level of genomic anomalies stem cells generate in culture, their safety may be in question. Specifically, hPSCs frequently acquire chromosomal abnormalities, often with gains or losses of whole chromosomes. This review discusses how important it is to efficiently and sensitively detect hPSC aneuploidies, to understand how these aneuploidies arise, consider the consequences for the cell, and indeed the individual to whom aneuploid cells may be administered.
Collapse
Affiliation(s)
- Marianne P Henry
- Advanced Therapies Division, National Institute for Biological Standards and Control, Potters Bar, United Kingdom.,Laboratory of Nuclear and Genomic Health, Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, London, United Kingdom
| | - J Ross Hawkins
- Advanced Therapies Division, National Institute for Biological Standards and Control, Potters Bar, United Kingdom
| | - Jennifer Boyle
- Advanced Therapies Division, National Institute for Biological Standards and Control, Potters Bar, United Kingdom
| | - Joanna M Bridger
- Laboratory of Nuclear and Genomic Health, Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, London, United Kingdom
| |
Collapse
|
123
|
Chory EJ, Calarco JP, Hathaway NA, Bell O, Neel DS, Crabtree GR. Nucleosome Turnover Regulates Histone Methylation Patterns over the Genome. Mol Cell 2019; 73:61-72.e3. [PMID: 30472189 PMCID: PMC6510544 DOI: 10.1016/j.molcel.2018.10.028] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 09/04/2018] [Accepted: 10/16/2018] [Indexed: 12/18/2022]
Abstract
Recent studies have indicated that nucleosome turnover is rapid, occurring several times per cell cycle. To access the effect of nucleosome turnover on the epigenetic landscape, we investigated H3K79 methylation, which is produced by a single methyltransferase (Dot1l) with no known demethylase. Using chemical-induced proximity (CIP), we find that the valency of H3K79 methylation (mono-, di-, and tri-) is determined by nucleosome turnover rates. Furthermore, propagation of this mark is predicted by nucleosome turnover simulations over the genome and accounts for the asymmetric distribution of H3K79me toward the transcriptional unit. More broadly, a meta-analysis of other conserved histone modifications demonstrates that nucleosome turnover models predict both valency and chromosomal propagation of methylation marks. Based on data from worms, flies, and mice, we propose that the turnover of modified nucleosomes is a general means of propagation of epigenetic marks and a determinant of methylation valence.
Collapse
Affiliation(s)
- Emma J Chory
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA; Departments of Pathology and Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Joseph P Calarco
- Departments of Pathology and Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nathaniel A Hathaway
- Division of Chemical Biology and Medicinal Chemistry, Center for Integrative Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, Chapel Hill, NC 27599, USA
| | - Oliver Bell
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), 1030 Vienna, Austria; Department of Biochemistry and Molecular Medicine and the Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089-9601, USA
| | - Dana S Neel
- Departments of Pathology and Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Gerald R Crabtree
- Departments of Pathology and Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
124
|
Schlesinger S, Meshorer E. Open Chromatin, Epigenetic Plasticity, and Nuclear Organization in Pluripotency. Dev Cell 2019; 48:135-150. [DOI: 10.1016/j.devcel.2019.01.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 10/30/2018] [Accepted: 12/31/2018] [Indexed: 12/27/2022]
|
125
|
Crasto S, Di Pasquale E. Induced Pluripotent Stem Cells to Study Mechanisms of Laminopathies: Focus on Epigenetics. Front Cell Dev Biol 2018; 6:172. [PMID: 30619852 PMCID: PMC6306496 DOI: 10.3389/fcell.2018.00172] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 12/06/2018] [Indexed: 12/22/2022] Open
Abstract
Laminopathies are a group of rare degenerative disorders that manifest with a wide spectrum of clinical phenotypes, including both systemic multi-organ disorders, such as the Hutchinson-Gilford Progeria Syndrome (HGPS), and tissue-restricted diseases, such as Emery-Dreifuss muscular dystrophy, dilated cardiomyopathy and lipodystrophies, often overlapping. Despite their clinical heterogeneity, which remains an open question, laminopathies are commonly caused by mutations in the LMNA gene, encoding the nuclear proteins Lamin A and C. These two proteins are main components of the nuclear lamina and are involved in several biological processes. Besides the well-known structural function in the nucleus, their role in regulating chromatin organization and transcription has emerged in the last decade, supporting the hypothesis that the disruption of this layer of regulation may be mechanism underlying the disease. Indeed, recent studies that show various epigenetic defects in cells carrying LMNA mutations, such as loss of heterochromatin, changes in gene expression and chromatin remodeling, strongly support this view. However, those findings are restricted to few cell types in humans, mainly because of the limited accessibility of primary cells and the difficulties to culture them ex-vivo. On the other hand, animal models might fail to recapitulate phenotypic hallmarks of the disease as of humans. To fill this gap, models based on induced pluripotent stem cell (iPSCs) technology have been recently generated that allowed investigations on diverse cells types, such as mesenchymal stem cells (MSCs), vascular and smooth muscle cells and cardiomyocytes, and provided a platform for investigating mechanisms underlying the pathogenesis of laminopathies in a cell-type specific human context. Nevertheless, studies on iPSC-based models of laminopathy have expanded only in the last few years and, with the advancement of reprogramming and differentiation protocols, their number is expecting to further increase over time. This review will give an overview of models developed thus far, with a focus on the novel insights on epigenetic mechanisms underlying the disease in different human cellular contexts. Perspectives and future directions of the field will be also given, highlighting the potential of those models for preclinical studies for identifying molecular targets and their translational impact on patients' cure.
Collapse
Affiliation(s)
- Silvia Crasto
- Institute of Genetic and Biomedical Research, National Research Council of Italy, UOS of Milan, Milan, Italy.,Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Elisa Di Pasquale
- Institute of Genetic and Biomedical Research, National Research Council of Italy, UOS of Milan, Milan, Italy.,Humanitas Research Hospital, Rozzano, Milan, Italy
| |
Collapse
|
126
|
Fabbrizi MR, Warshowsky KE, Zobel CL, Hallahan DE, Sharma GG. Molecular and epigenetic regulatory mechanisms of normal stem cell radiosensitivity. Cell Death Discov 2018; 4:117. [PMID: 30588339 PMCID: PMC6299079 DOI: 10.1038/s41420-018-0132-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/01/2018] [Accepted: 11/20/2018] [Indexed: 12/14/2022] Open
Abstract
Ionizing radiation (IR) therapy is a major cancer treatment modality and an indispensable auxiliary treatment for primary and metastatic cancers, but invariably results in debilitating organ dysfunctions. IR-induced depletion of neural stem/progenitor cells in the subgranular zone of the dentate gyrus in the hippocampus where neurogenesis occurs is considered largely responsible for deficiencies such as learning, memory, and spatial information processing in patients subjected to cranial irradiation. Similarly, IR therapy-induced intestinal injuries such as diarrhea and malabsorption are common side effects in patients with gastrointestinal tumors and are believed to be caused by intestinal stem cell drop out. Hematopoietic stem cell transplantation is currently used to reinstate blood production in leukemia patients and pre-clinical treatments show promising results in other organs such as the skin and kidney, but ethical issues and logistic problems make this route difficult to follow. An alternative way to restore the injured tissue is to preserve the stem cell pool located in that specific tissue/organ niche, but stem cell response to ionizing radiation is inadequately understood at the molecular mechanistic level. Although embryonic and fetal hypersensity to IR has been very well known for many decades, research on embryonic stem cell models in culture concerning molecular mechanisms have been largely inconclusive and often in contradiction of the in vivo observations. This review will summarize the latest discoveries on stem cell radiosensitivity, highlighting the possible molecular and epigenetic mechanism(s) involved in DNA damage response and programmed cell death after ionizing radiation therapy specific to normal stem cells. Finally, we will analyze the possible contribution of stem cell-specific chromatin's epigenetic constitution in promoting normal stem cell radiosensitivity.
Collapse
Affiliation(s)
- Maria Rita Fabbrizi
- Cancer Biology Division, Department of Radiation Oncology, Washington University School of Medicine, 4511 Forest Park, Saint Louis, MO 63108 USA
| | - Kacie E. Warshowsky
- Cancer Biology Division, Department of Radiation Oncology, Washington University School of Medicine, 4511 Forest Park, Saint Louis, MO 63108 USA
| | - Cheri L. Zobel
- Cancer Biology Division, Department of Radiation Oncology, Washington University School of Medicine, 4511 Forest Park, Saint Louis, MO 63108 USA
| | - Dennis E. Hallahan
- Cancer Biology Division, Department of Radiation Oncology, Washington University School of Medicine, 4511 Forest Park, Saint Louis, MO 63108 USA
- Siteman Cancer Center, Washington University School of Medicine, Saint Louis, MO 63108 USA
| | - Girdhar G. Sharma
- Cancer Biology Division, Department of Radiation Oncology, Washington University School of Medicine, 4511 Forest Park, Saint Louis, MO 63108 USA
- Siteman Cancer Center, Washington University School of Medicine, Saint Louis, MO 63108 USA
| |
Collapse
|
127
|
Tomizawa SI, Kobayashi Y, Shirakawa T, Watanabe K, Mizoguchi K, Hoshi I, Nakajima K, Nakabayashi J, Singh S, Dahl A, Alexopoulou D, Seki M, Suzuki Y, Royo H, Peters AHFM, Anastassiadis K, Stewart AF, Ohbo K. Kmt2b conveys monovalent and bivalent H3K4me3 in mouse spermatogonial stem cells at germline and embryonic promoters. Development 2018; 145:145/23/dev169102. [PMID: 30504434 DOI: 10.1242/dev.169102] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 11/01/2018] [Indexed: 12/20/2022]
Abstract
The mammalian male germline is sustained by a pool of spermatogonial stem cells (SSCs) that can transmit both genetic and epigenetic information to offspring. However, the mechanisms underlying epigenetic transmission remain unclear. The histone methyltransferase Kmt2b is highly expressed in SSCs and is required for the SSC-to-progenitor transition. At the stem-cell stage, Kmt2b catalyzes H3K4me3 at bivalent H3K27me3-marked promoters as well as at promoters of a new class of genes lacking H3K27me3, which we call monovalent. Monovalent genes are mainly activated in late spermatogenesis, whereas most bivalent genes are mainly not expressed until embryonic development. These data suggest that SSCs are epigenetically primed by Kmt2b in two distinguishable ways for the upregulation of gene expression both during the spermatogenic program and through the male germline into the embryo. Because Kmt2b is also the major H3K4 methyltransferase for bivalent promoters in embryonic stem cells, we also propose that Kmt2b has the capacity to prime stem cells epigenetically.
Collapse
Affiliation(s)
- Shin-Ichi Tomizawa
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Yuki Kobayashi
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Takayuki Shirakawa
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Kumiko Watanabe
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Keita Mizoguchi
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Ikue Hoshi
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Kuniko Nakajima
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Jun Nakabayashi
- Bioinformatics Laboratory, Advanced Medical Research Center, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Sukhdeep Singh
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-51, 01307 Dresden, Germany
| | - Andreas Dahl
- Genome Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-51, 01307 Dresden, Germany
| | - Dimitra Alexopoulou
- Genome Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-51, 01307 Dresden, Germany
| | - Masahide Seki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan
| | - Hélène Royo
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland.,Swiss Institute of Bioinformatics, 4056 Basel, Switzerland
| | - Antoine H F M Peters
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland.,Faculty of Sciences, University of Basel, 4058 Basel, Switzerland
| | - Konstantinos Anastassiadis
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-51, 01307 Dresden, Germany
| | - A Francis Stewart
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-51, 01307 Dresden, Germany
| | - Kazuyuki Ohbo
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| |
Collapse
|
128
|
Wu C, Jiao Y, Shen M, Pan C, Cheng G, Jia D, Zhu J, Zhang L, Zheng M, Jia J. Clustering-local-unique-enriched-signals (CLUES) promotes identification of novel regulators of ES cell self-renewal and pluripotency. PLoS One 2018; 13:e0206844. [PMID: 30399165 PMCID: PMC6219791 DOI: 10.1371/journal.pone.0206844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 10/19/2018] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Key regulators of developmental processes can be prioritized through integrated analysis of ChIP-Seq data of master transcriptional factors (TFs) such as Nanog and Oct4, active histone modifications (HMs) such as H3K4me3 and H3K27ac, and repressive HMs such as H3K27me3. Recent studies show that broad enrichment signals such as super-enhancers and broad H3K4me3 enrichment signals play more dominant roles than short enrichment signals of the master TFs and H3K4me3 in epigenetic regulatory mechanism. Besides the broad enrichment signals, up to ten thousands of short enrichment signals of these TFs and HMs exist in genome. Prioritization of these broad enrichment signals from ChIP-Seq data is a prerequisite for such integrated analysis. RESULTS Here, we present a method named Clustering-Local-Unique-Enriched-Signals (CLUES), which uses an adaptive-size-windows strategy to identify enriched regions (ERs) and cluster them into broad enrichment signals. Tested on 62 ENCODE ChIP-Seq datasets of Ctcf and Nrsf, CLUES performs equally well as MACS2 regarding prioritization of ERs with the TF's motif. Tested on 165 ENCODE ChIP-Seq datasets of H3K4me3, H3K27me3, and H3K36me3, CLUES performs better than existing algorithms on prioritizing broad enrichment signals implicating cell functions influenced by epigenetic regulatory mechanism in cells. Most importantly, CLUES helps to confirm several novel regulators of mouse ES cell self-renewal and pluripotency through integrated analysis of prioritized broad enrichment signals of H3K4me3, H3K27me3, Nanog and Oct4 with the support of a CRISPR/Cas9 negative selection genetic screen. CONCLUSIONS CLUES holds promise for prioritizing broad enrichment signals from ChIP-Seq data. The download site for CLUES is https://github.com/Wuchao1984/CLUESv1.
Collapse
Affiliation(s)
- Chao Wu
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, PRC
- * E-mail: (MZ); (CW); (JJ)
| | - Yang Jiao
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, PRC
| | - Manli Shen
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, PRC
| | - Chen Pan
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, PRC
| | - Guo Cheng
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, PRC
| | - Danmei Jia
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, PRC
| | - Jing Zhu
- Beijing Ming-tian Genetics Ltd., Beijing, PRC
| | - Long Zhang
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, PRC
| | - Min Zheng
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, Zhejiang, PRC
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, PRC
- * E-mail: (MZ); (CW); (JJ)
| | - Junling Jia
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, PRC
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, Zhejiang, PRC
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, PRC
- * E-mail: (MZ); (CW); (JJ)
| |
Collapse
|
129
|
Miranda-Gonçalves V, Lameirinhas A, Henrique R, Jerónimo C. Metabolism and Epigenetic Interplay in Cancer: Regulation and Putative Therapeutic Targets. Front Genet 2018; 9:427. [PMID: 30356832 PMCID: PMC6190739 DOI: 10.3389/fgene.2018.00427] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 09/10/2018] [Indexed: 12/31/2022] Open
Abstract
Alterations in the epigenome and metabolism affect molecular rewiring of cancer cells facilitating cancer development and progression. Modulation of histone and DNA modification enzymes occurs owing to metabolic reprogramming driven by oncogenes and expression of metabolism-associated genes is, in turn, epigenetically regulated, promoting the well-known metabolic reprogramming of cancer cells and, consequently, altering the metabolome. Thus, several malignant traits are supported by the interplay between metabolomics and epigenetics, promoting neoplastic transformation. In this review we emphasize the importance of tumour metabolites in the activity of most chromatin-modifying enzymes and implication in neoplastic transformation. Furthermore, candidate targets deriving from metabolism of cancer cells and altered epigenetic factors is emphasized, focusing on compounds that counteract the epigenomic-metabolic interplay in cancer.
Collapse
Affiliation(s)
- Vera Miranda-Gonçalves
- Cancer Biology and Epigenetics Group, Research Center (CI-IPOP), Portuguese Oncology Institute of Porto, Porto, Portugal
| | - Ana Lameirinhas
- Cancer Biology and Epigenetics Group, Research Center (CI-IPOP), Portuguese Oncology Institute of Porto, Porto, Portugal.,Master in Oncology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Rui Henrique
- Cancer Biology and Epigenetics Group, Research Center (CI-IPOP), Portuguese Oncology Institute of Porto, Porto, Portugal.,Department of Pathology, Portuguese Oncology Institute of Porto, Porto, Portugal.,Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, Research Center (CI-IPOP), Portuguese Oncology Institute of Porto, Porto, Portugal.,Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| |
Collapse
|
130
|
El-Dahr SS, Saifudeen Z. Epigenetic regulation of renal development. Semin Cell Dev Biol 2018; 91:111-118. [PMID: 30172047 DOI: 10.1016/j.semcdb.2018.08.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 07/19/2018] [Accepted: 08/28/2018] [Indexed: 01/24/2023]
Abstract
Developmental changes in cell fate are tightly regulated by cell-type specific transcription factors. Chromatin reorganization during organismal development ensures dynamic access of developmental regulators to their cognate DNA sequences. Thus, understanding the epigenomic states of promoters and enhancers is of key importance. Recent years have witnessed significant advances in our knowledge of the transcriptional mechanisms of kidney development. Emerging evidence suggests that histone deacetylation by class I HDACs and H3 methylation on lysines 4, 27 and 79 play important roles in regulation of early and late gene expression in the developing kidney. Equally exciting is the realization that nephrogenesis genes in mesenchymal nephron progenitors harbor bivalent chromatin domains which resolve upon differentiation implicating chromatin bivalency in developmental control of gene expression. Here, we review current knowledge of the epigenomic states of nephric cells and current techniques used to study the dynamic chromatin states. These technological advances will provide an unprecedented view of the enhancer landscape during cell fate commitment and help in defining the complex transcriptional networks governing kidney development and disease.
Collapse
Affiliation(s)
- Samir S El-Dahr
- Tulane University School of Medicine, 1430 Tulane Avenue, Department of Pediatrics, Section of Pediatric Nephrology, New Orleans, LA, 70112, USA.
| | - Zubaida Saifudeen
- Tulane University School of Medicine, 1430 Tulane Avenue, Department of Pediatrics, Section of Pediatric Nephrology, New Orleans, LA, 70112, USA.
| |
Collapse
|
131
|
Dattani A, Kao D, Mihaylova Y, Abnave P, Hughes S, Lai A, Sahu S, Aboobaker AA. Epigenetic analyses of planarian stem cells demonstrate conservation of bivalent histone modifications in animal stem cells. Genome Res 2018; 28:1543-1554. [PMID: 30143598 PMCID: PMC6169894 DOI: 10.1101/gr.239848.118] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/16/2018] [Indexed: 12/14/2022]
Abstract
Planarian flatworms have an indefinite capacity to regenerate missing or damaged body parts owing to a population of pluripotent adult stems cells called neoblasts (NBs). Currently, little is known about the importance of the epigenetic status of NBs and how histone modifications regulate homeostasis and cellular differentiation. We have developed an improved and optimized ChIP-seq protocol for NBs in Schmidtea mediterranea and have generated genome-wide profiles for the active marks H3K4me3 and H3K36me3, and suppressive marks H3K4me1 and H3K27me3. The genome-wide profiles of these marks were found to correlate well with NB gene expression profiles. We found that genes with little transcriptional activity in the NB compartment but which switch on in post-mitotic progeny during differentiation are bivalent, being marked by both H3K4me3 and H3K27me3 at promoter regions. In further support of this hypothesis, bivalent genes also have a high level of paused RNA Polymerase II at the promoter-proximal region. Overall, this study confirms that epigenetic control is important for the maintenance of a NB transcriptional program and makes a case for bivalent promoters as a conserved feature of animal stem cells and not a vertebrate-specific innovation. By establishing a robust ChIP-seq protocol and analysis methodology, we further promote planarians as a promising model system to investigate histone modification–mediated regulation of stem cell function and differentiation.
Collapse
Affiliation(s)
- Anish Dattani
- Department of Zoology, University of Oxford, Oxford OX1 3PS, United Kingdom
| | - Damian Kao
- Department of Zoology, University of Oxford, Oxford OX1 3PS, United Kingdom
| | - Yuliana Mihaylova
- Department of Zoology, University of Oxford, Oxford OX1 3PS, United Kingdom
| | - Prasad Abnave
- Department of Zoology, University of Oxford, Oxford OX1 3PS, United Kingdom
| | - Samantha Hughes
- Department of Zoology, University of Oxford, Oxford OX1 3PS, United Kingdom
| | - Alvina Lai
- Department of Zoology, University of Oxford, Oxford OX1 3PS, United Kingdom
| | - Sounak Sahu
- Department of Zoology, University of Oxford, Oxford OX1 3PS, United Kingdom
| | - A Aziz Aboobaker
- Department of Zoology, University of Oxford, Oxford OX1 3PS, United Kingdom
| |
Collapse
|
132
|
Targeting cancer addiction for SALL4 by shifting its transcriptome with a pharmacologic peptide. Proc Natl Acad Sci U S A 2018; 115:E7119-E7128. [PMID: 29976840 DOI: 10.1073/pnas.1801253115] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Sal-like 4 (SALL4) is a nuclear factor central to the maintenance of stem cell pluripotency and is a key component in hepatocellular carcinoma, a malignancy with no effective treatment. In cancer cells, SALL4 associates with nucleosome remodeling deacetylase (NuRD) to silence tumor-suppressor genes, such as PTEN. Here, we determined the crystal structure of an amino-terminal peptide of SALL4(1-12) complexed to RBBp4, the chaperone subunit of NuRD, at 2.7 Å, and subsequent design of a potent therapeutic SALL4 peptide (FFW) capable of antagonizing the SALL4-NURD interaction using systematic truncation and amino acid substitution studies. FFW peptide disruption of the SALL4-NuRD complex resulted in unidirectional up-regulation of transcripts, turning SALL4 from a dual transcription repressor-activator mode to singular transcription activator mode. We demonstrate that FFW has a target affinity of 23 nM, and displays significant antitumor effects, inhibiting tumor growth by 85% in xenograft mouse models. Using transcriptome and survival analysis, we discovered that the peptide inhibits the transcription-repressor function of SALL4 and causes massive up-regulation of transcripts that are beneficial to patient survival. This study supports the SALL4-NuRD complex as a drug target and FFW as a viable drug candidate, showcasing an effective strategy to accurately target oncogenes previously considered undruggable.
Collapse
|
133
|
Pradhan R, Ranade D, Sengupta K. Emerin modulates spatial organization of chromosome territories in cells on softer matrices. Nucleic Acids Res 2018; 46:5561-5586. [PMID: 29684168 PMCID: PMC6009696 DOI: 10.1093/nar/gky288] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 04/04/2018] [Accepted: 04/06/2018] [Indexed: 02/06/2023] Open
Abstract
Cells perceive and relay external mechanical forces into the nucleus through the nuclear envelope. Here we examined the effect of lowering substrate stiffness as a paradigm to address the impact of altered mechanical forces on nuclear structure-function relationships. RNA sequencing of cells on softer matrices revealed significant transcriptional imbalances, predominantly in chromatin associated processes and transcriptional deregulation of human Chromosome 1. Furthermore, 3-Dimensional fluorescence in situ hybridization (3D-FISH) analyses showed a significant mislocalization of Chromosome 1 and 19 Territories (CT) into the nuclear interior, consistent with their transcriptional deregulation. However, CT18 with relatively lower transcriptional dysregulation, also mislocalized into the nuclear interior. Furthermore, nuclear Lamins that regulate chromosome positioning, were mislocalized into the nuclear interior in response to lowered matrix stiffness. Notably, Lamin B2 overexpression retained CT18 near the nuclear periphery in cells on softer matrices. While, cells on softer matrices also activated emerin phosphorylation at a novel Tyr99 residue, the inhibition of which in a phospho-deficient mutant (emerinY99F), selectively retained chromosome 18 and 19 but not chromosome 1 territories at their conserved nuclear locations. Taken together, emerin functions as a key mechanosensor, that modulates the spatial organization of chromosome territories in the interphase nucleus.
Collapse
Affiliation(s)
- Roopali Pradhan
- Biology, Main Building, First Floor, Room#B-216, Indian Institute of Science Education and Research (IISER), Pune, Dr Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India
| | - Devika Ranade
- Biology, Main Building, First Floor, Room#B-216, Indian Institute of Science Education and Research (IISER), Pune, Dr Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India
| | - Kundan Sengupta
- Biology, Main Building, First Floor, Room#B-216, Indian Institute of Science Education and Research (IISER), Pune, Dr Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India
| |
Collapse
|
134
|
Giancotti V, Bergamin N, Cataldi P, Rizzi C. Epigenetic Contribution of High-Mobility Group A Proteins to Stem Cell Properties. Int J Cell Biol 2018; 2018:3698078. [PMID: 29853899 PMCID: PMC5941823 DOI: 10.1155/2018/3698078] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 03/01/2018] [Accepted: 03/18/2018] [Indexed: 02/07/2023] Open
Abstract
High-mobility group A (HMGA) proteins have been examined to understand their participation as structural epigenetic chromatin factors that confer stem-like properties to embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), and cancer stem cells (CSCs). The function of HMGA was evaluated in conjunction with that of other epigenetic factors such as histones and microRNAs (miRs), taking into consideration the posttranscriptional modifications (PTMs) of histones (acetylation and methylation) and DNA methylation. HMGA proteins were coordinated or associated with histone and DNA modification and the expression of the factors related to pluripotency. CSCs showed remarkable differences compared with ESCs and iPSCs.
Collapse
Affiliation(s)
- Vincenzo Giancotti
- Department of Life Science, University of Trieste, Trieste, Italy
- Trieste Proteine Ricerche, Palmanova, Udine, Italy
| | - Natascha Bergamin
- Division of Pathology, Azienda Ospedaliero-Universitaria, Udine, Italy
| | - Palmina Cataldi
- Division of Pathology, Azienda Ospedaliero-Universitaria, Udine, Italy
| | - Claudio Rizzi
- Division of Pathology, Azienda Ospedaliero-Universitaria, Udine, Italy
| |
Collapse
|
135
|
Epigenetic modifications in the embryonic and induced pluripotent stem cells. Gene Expr Patterns 2018; 29:1-9. [PMID: 29625185 DOI: 10.1016/j.gep.2018.04.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 03/03/2018] [Accepted: 04/03/2018] [Indexed: 02/07/2023]
Abstract
Epigenetic modifications are involved in global reprogramming of the cell transcriptome. Therefore, synchronized major shifts in the expression of many genes could be achieved through epigenetic changes. The regulation of gene expression could be implemented by different epigenetic events including histone modifications, DNA methylation and chromatin remodelling. Interestingly, it has been documented that reprogramming of somatic cells to induced pluripotent stem (iPS) cells is also a typical example of epigenetic modifications. Additionally, epigenetic would determine the fates of almost all cells upon differentiation of stem cells into somatic cells. Currently, generation of iPS cells through epigenetic modifications is a routine laboratory practice. Despite all our knowledge, inconsistency in the results of reprogramming and differentiation of stem cells, highlight the need for more thorough investigation into the role of epigenetic modification in generation and maintenance of stem cells. Besides, subtle differences have been observed among different iPS cells and between iPS and ES cells. Although, a handful of detailed review regarding the status of epigenetics in stem cells has been published previously, in the current review, an abstracted and rather simplified view has been presented for those who want to gain a more general overview on this subject. However, almost all key references and ground breaking studies were included, which could be further explored to gain more in depth knowledge regarding this topic. The most dominant epigenetic changes have been presented followed by the impacts of such changes on the global gene expression. Epigenetic status in iPS and ES cells were compared. In addition to including the issues related to X-chromosome reactivation in the stem cells, we have also included loss of imprinting for some genes as a major drawback in generation of iPS cells. Finally, the overall impacts of epigenetic modifications on different aspects of stem cells has been discussed, including their use in cell therapy.
Collapse
|
136
|
EZH2 inhibition promotes epithelial-to-mesenchymal transition in ovarian cancer cells. Oncotarget 2018; 7:84453-84467. [PMID: 27563817 PMCID: PMC5356672 DOI: 10.18632/oncotarget.11497] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 08/09/2016] [Indexed: 02/07/2023] Open
Abstract
Cancer cells acquire essential characteristics for metastatic dissemination through the process of epithelial-to-mesenchymal transition (EMT), which is regulated by gene expression and chromatin remodeling changes. The enhancer of zeste homolog 2 (EZH2), the catalytic subunit of the polycomb repressive complex 2 (PRC2), catalyzes trimethylation of lysine 27 of histone H3 (H3K27me3) to repress gene transcription. Here we report the functional roles of EZH2-catalyzed H3K27me3 during EMT in ovarian cancer (OC) cells. TGF-β-induced EMT in SKOV3 OC cells was associated with decreased levels of EZH2 and H3K27me3 (P<0.05). These effects were delayed (~72 h relative to EMT initiation) and coincided with increased (>15-fold) expression of EMT-associated transcription factors ZEB2 and SNAI2. EZH2 knockdown (using siRNA) or enzymatic inhibition (by GSK126) induced EMT-like changes in OC cells. The EMT regulator ZEB2 was upregulated in cells treated with either approach. Furthermore, TGF-β enhanced expression of ZEB2 in EZH2 siRNA- or GSK126-treated cells (P<0.01), suggesting that H3K27me3 plays a role in TGF-β-stimulated ZEB2 induction. Chromatin immunoprecipitation assays confirmed that TGF-β treatment decreased binding of EZH2 and H3K27me3 to the ZEB2 promoter (P<0.05). In all, these results demonstrate that EZH2, by repressing ZEB2, is required for the maintenance of an epithelial phenotype in OC cells.
Collapse
|
137
|
Liskova P, Dudakova L, Evans CJ, Rojas Lopez KE, Pontikos N, Athanasiou D, Jama H, Sach J, Skalicka P, Stranecky V, Kmoch S, Thaung C, Filipec M, Cheetham ME, Davidson AE, Tuft SJ, Hardcastle AJ. Ectopic GRHL2 Expression Due to Non-coding Mutations Promotes Cell State Transition and Causes Posterior Polymorphous Corneal Dystrophy 4. Am J Hum Genet 2018; 102:447-459. [PMID: 29499165 PMCID: PMC5985340 DOI: 10.1016/j.ajhg.2018.02.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 02/02/2018] [Indexed: 12/11/2022] Open
Abstract
In a large family of Czech origin, we mapped a locus for an autosomal-dominant corneal endothelial dystrophy, posterior polymorphous corneal dystrophy 4 (PPCD4), to 8q22.3-q24.12. Whole-genome sequencing identified a unique variant (c.20+544G>T) in this locus, within an intronic regulatory region of GRHL2. Targeted sequencing identified the same variant in three additional previously unsolved PPCD-affected families, including a de novo occurrence that suggests this is a recurrent mutation. Two further unique variants were identified in intron 1 of GRHL2 (c.20+257delT and c.20+133delA) in unrelated PPCD-affected families. GRHL2 is a transcription factor that suppresses epithelial-to-mesenchymal transition (EMT) and is a direct transcriptional repressor of ZEB1. ZEB1 mutations leading to haploinsufficiency cause PPCD3. We previously identified promoter mutations in OVOL2, a gene not normally expressed in the corneal endothelium, as the cause of PPCD1. OVOL2 drives mesenchymal-to-epithelial transition (MET) by directly inhibiting EMT-inducing transcription factors, such as ZEB1. Here, we demonstrate that the GRHL2 regulatory variants identified in PPCD4-affected individuals induce increased transcriptional activity in vitro. Furthermore, although GRHL2 is not expressed in corneal endothelial cells in control tissue, we detected GRHL2 in the corneal "endothelium" in PPCD4 tissue. These cells were also positive for epithelial markers E-Cadherin and Cytokeratin 7, indicating they have transitioned to an epithelial-like cell type. We suggest that mutations inducing MET within the corneal endothelium are a convergent pathogenic mechanism leading to dysfunction of the endothelial barrier and disease.
Collapse
Affiliation(s)
- Petra Liskova
- Research Unit for Rare Diseases, Department of Paediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 2, Prague 128 08, Czech Republic; Department of Ophthalmology, First Faculty of Medicine, Charles University and General University Hospital in Prague, U Nemocnice 2, Prague 128 08, Czech Republic; UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK.
| | - Lubica Dudakova
- Research Unit for Rare Diseases, Department of Paediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 2, Prague 128 08, Czech Republic
| | - Cerys J Evans
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Karla E Rojas Lopez
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Nikolas Pontikos
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Dimitra Athanasiou
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Hodan Jama
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Josef Sach
- Institute of Pathology, Third Faculty of Medicine, Charles University, Faculty Hospital Kralovske Vinohrady, Srobarova 50, Prague 100 34, Czech Republic
| | - Pavlina Skalicka
- Research Unit for Rare Diseases, Department of Paediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 2, Prague 128 08, Czech Republic; Department of Ophthalmology, First Faculty of Medicine, Charles University and General University Hospital in Prague, U Nemocnice 2, Prague 128 08, Czech Republic
| | - Viktor Stranecky
- Research Unit for Rare Diseases, Department of Paediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 2, Prague 128 08, Czech Republic
| | - Stanislav Kmoch
- Research Unit for Rare Diseases, Department of Paediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 2, Prague 128 08, Czech Republic
| | - Caroline Thaung
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK; Moorfields Eye Hospital, London EC1V 2PD, UK
| | - Martin Filipec
- Department of Ophthalmology, First Faculty of Medicine, Charles University and General University Hospital in Prague, U Nemocnice 2, Prague 128 08, Czech Republic
| | - Michael E Cheetham
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Alice E Davidson
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | | | - Alison J Hardcastle
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK; Moorfields Eye Hospital, London EC1V 2PD, UK.
| |
Collapse
|
138
|
Post-Translational Modifications of H2A Histone Variants and Their Role in Cancer. Cancers (Basel) 2018; 10:cancers10030059. [PMID: 29495465 PMCID: PMC5876634 DOI: 10.3390/cancers10030059] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 02/19/2018] [Accepted: 02/25/2018] [Indexed: 12/12/2022] Open
Abstract
Histone variants are chromatin components that replace replication-coupled histones in a fraction of nucleosomes and confer particular characteristics to chromatin. H2A variants represent the most numerous and diverse group among histone protein families. In the nucleosomal structure, H2A-H2B dimers can be removed and exchanged more easily than the stable H3-H4 core. The unstructured N-terminal histone tails of all histones, but also the C-terminal tails of H2A histones protrude out of the compact structure of the nucleosome core. These accessible tails are the preferential target sites for a large number of post-translational modifications (PTMs). While some PTMs are shared between replication-coupled H2A and H2A variants, many modifications are limited to a specific histone variant. The present review focuses on the H2A variants H2A.Z, H2A.X, and macroH2A, and summarizes their functions in chromatin and how these are linked to cancer development and progression. H2A.Z primarily acts as an oncogene and macroH2A and H2A.X as tumour suppressors. We further focus on the regulation by PTMs, which helps to understand a degree of context dependency.
Collapse
|
139
|
From Flies to Mice: The Emerging Role of Non-Canonical PRC1 Members in Mammalian Development. EPIGENOMES 2018. [DOI: 10.3390/epigenomes2010004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
140
|
Flavahan WA, Gaskell E, Bernstein BE. Epigenetic plasticity and the hallmarks of cancer. Science 2018; 357:357/6348/eaal2380. [PMID: 28729483 DOI: 10.1126/science.aal2380] [Citation(s) in RCA: 818] [Impact Index Per Article: 136.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chromatin and associated epigenetic mechanisms stabilize gene expression and cellular states while also facilitating appropriate responses to developmental or environmental cues. Genetic, environmental, or metabolic insults can induce overly restrictive or overly permissive epigenetic landscapes that contribute to pathogenesis of cancer and other diseases. Restrictive chromatin states may prevent appropriate induction of tumor suppressor programs or block differentiation. By contrast, permissive or "plastic" states may allow stochastic oncogene activation or nonphysiologic cell fate transitions. Whereas many stochastic events will be inconsequential "passengers," some will confer a fitness advantage to a cell and be selected as "drivers." We review the broad roles played by epigenetic aberrations in tumor initiation and evolution and their potential to give rise to all classic hallmarks of cancer.
Collapse
Affiliation(s)
- William A Flavahan
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA, and Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Elizabeth Gaskell
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA, and Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Bradley E Bernstein
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA, and Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.
| |
Collapse
|
141
|
Zsindely N, Bodai L. Histone methylation in Huntington's disease: are bivalent promoters the critical targets? Neural Regen Res 2018; 13:1191-1192. [PMID: 30028325 PMCID: PMC6065218 DOI: 10.4103/1673-5374.235029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Nóra Zsindely
- Department of Biochemistry and Molecular Biology, University of Szeged, Szeged, Hungary
| | - László Bodai
- Department of Biochemistry and Molecular Biology, University of Szeged, Szeged, Hungary
| |
Collapse
|
142
|
Kim JA, Yeom YI. Metabolic Signaling to Epigenetic Alterations in Cancer. Biomol Ther (Seoul) 2018; 26:69-80. [PMID: 29212308 PMCID: PMC5746039 DOI: 10.4062/biomolther.2017.185] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/19/2017] [Accepted: 11/01/2017] [Indexed: 12/14/2022] Open
Abstract
Cancer cells reprogram cellular metabolism to support the malignant features of tumors, such as rapid growth and proliferation. The cancer promoting effects of metabolic reprogramming are found in many aspects: generating additional energy, providing more anabolic molecules for biosynthesis, and rebalancing cellular redox states in cancer cells. Metabolic pathways are considered the pipelines to supply metabolic cofactors of epigenetic modifiers. In this regard, cancer metabolism, whereby cellular metabolite levels are greatly altered compared to normal levels, is closely associated with cancer epigenetics, which is implicated in many stages of tumorigenesis. In this review, we provide an overview of cancer metabolism and its involvement in epigenetic modifications and suggest that the metabolic adaptation leading to epigenetic changes in cancer cells is an important non-genetic factor for tumor progression, which cooperates with genetic causes. Understanding the interaction of metabolic reprogramming with epigenetics in cancers may help to develop novel or highly improved therapeutic strategies that target cancer metabolism.
Collapse
Affiliation(s)
- Jung-Ae Kim
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea.,Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Young Il Yeom
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea.,Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology, Daejeon 34113, Republic of Korea
| |
Collapse
|
143
|
Schlesinger S, Kaffe B, Melcer S, Aguilera JD, Sivaraman DM, Kaplan T, Meshorer E. A hyperdynamic H3.3 nucleosome marks promoter regions in pluripotent embryonic stem cells. Nucleic Acids Res 2017; 45:12181-12194. [PMID: 29036702 PMCID: PMC5716099 DOI: 10.1093/nar/gkx817] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 09/14/2017] [Indexed: 12/16/2022] Open
Abstract
Histone variants and their chaperones are key regulators of eukaryotic transcription, and are critical for normal development. The histone variant H3.3 has been shown to play important roles in pluripotency and differentiation, and although its genome-wide patterns have been investigated, little is known about the role of its dynamic turnover in transcriptional regulation. To elucidate the role of H3.3 dynamics in embryonic stem cell (ESC) biology, we generated mouse ESC lines carrying a single copy of a doxycycline (Dox)-inducible HA-tagged version of H3.3 and monitored the rate of H3.3 incorporation by ChIP-seq at varying time points following Dox induction, before and after RA-induced differentiation. Comparing H3.3 turnover profiles in ESCs and RA-treated cells, we identified a hyperdynamic H3.3-containing nucleosome at the −1 position in promoters of genes expressed in ESCs. This dynamic nucleosome is restricted and shifted downstream into the +1 position following differentiation. We suggest that histone turnover dynamics provides an additional mechanism involved in expression regulation, and that a hyperdynamic −1 nucleosome marks promoters in ESCs. Our data provide evidence for regional regulation of H3.3 turnover in ESC promoters, and calls for testing, in high resolution, the dynamic behavior of additional histone variants and other structural chromatin proteins.
Collapse
Affiliation(s)
- Sharon Schlesinger
- The Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 9190401, Israel.,Department of animal science, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Binyamin Kaffe
- The Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 9190401, Israel
| | - Shai Melcer
- The Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 9190401, Israel
| | - Jose D Aguilera
- Department of animal science, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Divya M Sivaraman
- The Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 9190401, Israel
| | - Tommy Kaplan
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 9190401, Israel
| | - Eran Meshorer
- The Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 9190401, Israel.,The Edmond and Lily Safra Center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 9190401, Israel
| |
Collapse
|
144
|
Lee D, Park JH, Kim S, Lee SG, Myung K. SHPRH as a new player in ribosomal RNA transcription and its potential role in homeostasis of ribosomal DNA repeats. Transcription 2017; 9:190-195. [PMID: 29139335 DOI: 10.1080/21541264.2017.1381795] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
There are hundreds of copies of rDNA repeats in mammalian chromosomes and the ratio of active, poised, or inactive rDNA is regulated in epigenetic manners. Recent studies demonstrated that a post-DNA replication repair enzyme, SHPRH affects rRNA transcription by recognizing epigenetic markers on rDNA promoters and unveiled potential links between DNA repair and ribosome biogenesis. This study suggests that SHPRH could be a link between mTOR-mediated epigenetic regulations and rRNA transcription, while concomitantly affecting genomic integrity.
Collapse
Affiliation(s)
- Deokjae Lee
- a Medytox Inc. 114 , Yeongtong-gu , Suwon-si , Gyeonggi-do , Korea
| | - Jun Hong Park
- b Center for Genomic Integrity , Institute for Basic Science , Ulsan , Korea
| | - Shinseog Kim
- b Center for Genomic Integrity , Institute for Basic Science , Ulsan , Korea
| | - Seon-Gyeong Lee
- b Center for Genomic Integrity , Institute for Basic Science , Ulsan , Korea.,c Department of Biological Sciences , School of Life Sciences , Ulsan National Institute of Science and Technology , Ulsan , Korea
| | - Kyungjae Myung
- b Center for Genomic Integrity , Institute for Basic Science , Ulsan , Korea.,c Department of Biological Sciences , School of Life Sciences , Ulsan National Institute of Science and Technology , Ulsan , Korea
| |
Collapse
|
145
|
Abstract
Multiple mechanisms of epigenetic control that include DNA methylation, histone modification, noncoding RNAs, and mitotic gene bookmarking play pivotal roles in stringent gene regulation during lineage commitment and maintenance. Experimental evidence indicates that bivalent chromatin domains, i.e., genome regions that are marked by both H3K4me3 (activating) and H3K27me3 (repressive) histone modifications, are a key property of pluripotent stem cells. Bivalency of developmental genes during the G1 phase of the pluripotent stem cell cycle contributes to cell fate decisions. Recently, some cancer types have been shown to exhibit partial recapitulation of bivalent chromatin modifications that are lost along with pluripotency, suggesting a mechanism by which cancer cells reacquire properties that are characteristic of undifferentiated, multipotent cells. This bivalent epigenetic control of oncofetal gene expression in cancer cells may offer novel insights into the onset and progression of cancer and may provide specific and selective options for diagnosis as well as for therapeutic intervention.
Collapse
|
146
|
Konopko MA, Densmore AL, Krueger BK. Sexually Dimorphic Epigenetic Regulation of Brain-Derived Neurotrophic Factor in Fetal Brain in the Valproic Acid Model of Autism Spectrum Disorder. Dev Neurosci 2017; 39:507-518. [PMID: 29073621 PMCID: PMC6020162 DOI: 10.1159/000481134] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 08/30/2017] [Indexed: 01/22/2023] Open
Abstract
Prenatal exposure to the antiepileptic, mood-stabilizing drug, valproic acid (VPA), increases the incidence of autism spectrum disorders (ASDs); in utero administration of VPA to pregnant rodents induces ASD-like behaviors such as repetitive, stereotyped activity, and decreased socialization. In both cases, males are more affected than females. We previously reported that VPA, administered to pregnant mice at gestational day 12.5, rapidly induces a transient, 6-fold increase in BDNF (brain-derived neurotrophic factor) protein and mRNA in the fetal brain. Here, we investigate sex differences in the induction of Bdnf expression by VPA as well as the underlying epigenetic mechanisms. We found no sex differences in the VPA stimulation of total brain Bdnf mRNA as indicated by probing for the BDNF protein coding sequence (exon 9); however, stimulation of individual transcripts containing two of the nine 5'-untranslated exons (5'UTEs) in Bdnf (exons 1 and 4) by VPA was greater in female fetal brains. These Bdnf transcripts have been associated with different cell types or subcellular compartments within neurons. Since VPA is a histone deacetylase inhibitor, covalent histone modifications at Bdnf 5'UTEs in the fetal brain were analyzed by chromatin immunoprecipitation. VPA increased the acetylation of multiple H3 and H4 lysine residues in the vicinity of exons 1, 2, 4, and 6; minimal differences between the sexes were observed. H3 lysine 4 trimethylation (H3K4me3) at those exons was also stimulated by VPA. Moreover, the VPA-induced increase in H3K4me3 at exons 1, 4, and 6 was significantly greater in females than in males, i.e., sexually dimorphic stimulation of H3K4me3 by VPA correlated with Bdnf transcripts containing exons 1 and 4, but not 6. Neither H3K27me3 nor cytosine methylation at any of the 117 CpGs in the vicinity of the transcription start sites of exons 1, 4, and 6 was affected by VPA. Thus, of the 6 epigenetic marks analyzed, only H3K4me3 can account for the sexually dimorphic expression of Bdnf transcripts induced by VPA in the fetal brain. Preferential expression of exon 1- and exon 4-Bdnf transcripts in females may contribute to sex differences in ASDs by protecting females from the adverse effects of genetic variants or environmental factors such as VPA on the developing brain.
Collapse
Affiliation(s)
- Melissa A Konopko
- Program in Neuroscience, University of Maryland Baltimore, 655 West Baltimore Street, Baltimore MD 21201
| | | | - Bruce K. Krueger
- Program in Neuroscience, University of Maryland Baltimore, 655 West Baltimore Street, Baltimore MD 21201
| |
Collapse
|
147
|
Wang C, Yang Q, Wang W, Li Y, Guo Y, Zhang D, Ma X, Song W, Zhao J, Xu M. A transposon-directed epigenetic change in ZmCCT underlies quantitative resistance to Gibberella stalk rot in maize. THE NEW PHYTOLOGIST 2017; 215:1503-1515. [PMID: 28722229 DOI: 10.1111/nph.14688] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 05/29/2017] [Indexed: 05/20/2023]
Abstract
A major resistance quantitative trait locus, qRfg1, significantly enhances maize resistance to Gibberella stalk rot, a devastating disease caused by Fusarium graminearum. However, the underlying molecular mechanism remains unknown. We adopted a map-based cloning approach to identify the resistance gene at qRfg1 and examined the dynamic epigenetic changes during qRfg1-mediated maize resistance to the disease. A CCT domain-containing gene, ZmCCT, is the causal gene at the qRfg1 locus and a polymorphic CACTA-like transposable element (TE1) c. 2.4 kb upstream of ZmCCT is the genetic determinant of allelic variation. The non-TE1 ZmCCT allele is in a poised state, with predictive bivalent chromatin enriched for both repressive (H3K27me3/H3K9me3) and active (H3K4me3) histone marks. Upon pathogen challenge, this non-TE1 ZmCCT allele was promptly induced by a rapid yet transient reduction in H3K27me3/H3K9me3 and a progressive decrease in H3K4me3, leading to disease resistance. However, TE1 insertion in ZmCCT caused selective depletion of H3K4me3 and enrichment of methylated GC to suppress the pathogen-induced ZmCCT expression, resulting in disease susceptibility. Moreover, ZmCCT-mediated resistance to Gibberella stalk rot is not affected by photoperiod sensitivity. This chromatin-based regulatory mechanism enables ZmCCT to be more precise and timely in defense against F. graminearum infection.
Collapse
Affiliation(s)
- Chao Wang
- National Maize Improvement Centre of China, China Agricultural University, Beijing, 100193, China
| | - Qin Yang
- National Maize Improvement Centre of China, China Agricultural University, Beijing, 100193, China
| | - Weixiang Wang
- Beijing Key Laboratory of New Technique in Agricultural Application, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
| | - Yipu Li
- National Maize Improvement Centre of China, China Agricultural University, Beijing, 100193, China
| | - Yanling Guo
- National Maize Improvement Centre of China, China Agricultural University, Beijing, 100193, China
| | - Dongfeng Zhang
- National Maize Improvement Centre of China, China Agricultural University, Beijing, 100193, China
| | - Xuena Ma
- National Maize Improvement Centre of China, China Agricultural University, Beijing, 100193, China
| | - Wei Song
- Maize Research Center, Beijing Academy of Agriculture & Forestry Sciences, Beijing, 100097, China
| | - Jiuran Zhao
- Maize Research Center, Beijing Academy of Agriculture & Forestry Sciences, Beijing, 100097, China
| | - Mingliang Xu
- National Maize Improvement Centre of China, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
148
|
Kim JH, Lee JH, Lee IS, Lee SB, Cho KS. Histone Lysine Methylation and Neurodevelopmental Disorders. Int J Mol Sci 2017; 18:ijms18071404. [PMID: 28665350 PMCID: PMC5535897 DOI: 10.3390/ijms18071404] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 06/25/2017] [Accepted: 06/27/2017] [Indexed: 02/08/2023] Open
Abstract
Methylation of several lysine residues of histones is a crucial mechanism for relatively long-term regulation of genomic activity. Recent molecular biological studies have demonstrated that the function of histone methylation is more diverse and complex than previously thought. Moreover, studies using newly available genomics techniques, such as exome sequencing, have identified an increasing number of histone lysine methylation-related genes as intellectual disability-associated genes, which highlights the importance of accurate control of histone methylation during neurogenesis. However, given the functional diversity and complexity of histone methylation within the cell, the study of the molecular basis of histone methylation-related neurodevelopmental disorders is currently still in its infancy. Here, we review the latest studies that revealed the pathological implications of alterations in histone methylation status in the context of various neurodevelopmental disorders and propose possible therapeutic application of epigenetic compounds regulating histone methylation status for the treatment of these diseases.
Collapse
Affiliation(s)
- Jeong-Hoon Kim
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea.
- Department of Functional Genomics, University of Science and Technology, Daejeon 34113, Korea.
| | - Jang Ho Lee
- Department of Biological Sciences, Konkuk University, Seoul 05029, Korea.
| | - Im-Soon Lee
- Department of Biological Sciences, Konkuk University, Seoul 05029, Korea.
| | - Sung Bae Lee
- Department of Brain & Cognitive Sciences, DGIST, Daegu 42988, Korea.
| | - Kyoung Sang Cho
- Department of Biological Sciences, Konkuk University, Seoul 05029, Korea.
| |
Collapse
|
149
|
Abstract
Decades of studies have shown that epigenetic alterations play a significant role on cancer development both in vitro and in vivo. However, considering that many cancers harbor mutations at epigenetic modifier genes and that transcription factor-mediated gene regulations are tightly coupled with epigenetic modifications, the majority of epigenetic alterations in cancers could be the consequence of the dysfunction or dysregulation of epigenetic modifiers caused by genetic abnormalities. Therefore, it remains unclear whether bona fide epigenetic abnormalities have causal roles on cancer development. Reprogramming technologies enable us to actively alter epigenetic regulations while preserving genomic information. Taking advantage, recent studies have provided in vivo evidence for the significant impact of epigenetic abnormalities on the initiation, maintenance and progression of cancer cells.
Collapse
Affiliation(s)
- Kenji Ito
- Center for iPS Cell Research & Application, Kyoto University, Kyoto 606-8507, Japan
| | - Yasuhiro Yamada
- Center for iPS Cell Research & Application, Kyoto University, Kyoto 606-8507, Japan
| |
Collapse
|
150
|
McLoughlin KC, Kaufman AS, Schrump DS. Targeting the epigenome in malignant pleural mesothelioma. Transl Lung Cancer Res 2017; 6:350-365. [PMID: 28713680 DOI: 10.21037/tlcr.2017.06.06] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Malignant pleural mesotheliomas (MPM) are notoriously refractory to conventional treatment modalities. Recent insights regarding epigenetic alterations in MPM provide the preclinical rationale for the evaluation of novel combinatorial regimens targeting the epigenome in these neoplasms.
Collapse
Affiliation(s)
- Kaitlin C McLoughlin
- Thoracic Epigenetics Section, Thoracic and GI Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Andrew S Kaufman
- Thoracic Epigenetics Section, Thoracic and GI Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - David S Schrump
- Thoracic Epigenetics Section, Thoracic and GI Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|