101
|
Nyström A, Bruckner-Tuderman L. Matrix molecules and skin biology. Semin Cell Dev Biol 2018; 89:136-146. [PMID: 30076963 DOI: 10.1016/j.semcdb.2018.07.025] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/26/2018] [Accepted: 07/31/2018] [Indexed: 01/02/2023]
Abstract
An extracellular matrix (ECM) is a prerequisite for multicellular life. It is adapted to tissues and constantly undergoes changes to preserve microenvironmental homeostasis. The ECM acts as a structural scaffold that establishes tissue architecture and provides tensile strength. It has cell-instructive functions by serving as a reservoir and presenter of soluble agents, being directly signaling, integrating transmission of mechanical and biological cues, or serving as a co-factor potentiating signaling. The skin contains a highly developed, mechanically tough, but yet flexible ECM. The tissue-specific features of this ECM are largely attributed by minor ECM components. A large number of genetic and acquired ECM diseases with skin manifestations, provide an illustrative testament to the importance of correct assembly of the ECM for dermal homeostasis. Here, we will present the composition and features of the skin ECM during homeostasis and regeneration. We will discuss genetic and acquired ECM diseases affecting skin, and provide a short outlook to therapeutic strategies for them.
Collapse
Affiliation(s)
- Alexander Nyström
- Department of Dermatology, Medical Faculty, Medical Center - University of Freiburg, Freiburg, Germany.
| | - Leena Bruckner-Tuderman
- Department of Dermatology, Medical Faculty, Medical Center - University of Freiburg, Freiburg, Germany
| |
Collapse
|
102
|
Balance and circumstance: The renin angiotensin system in wound healing and fibrosis. Cell Signal 2018; 51:34-46. [PMID: 30071289 DOI: 10.1016/j.cellsig.2018.07.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 07/27/2018] [Accepted: 07/29/2018] [Indexed: 12/17/2022]
Abstract
The tissue renin angiotensin system (tRAS) is a locally-acting master-modulator of tissue homeostasis and regeneration. Through these abilities, it is emerging as an attractive target for therapies aiming to restore tissue homeostasis in conditions associated with disturbed wound healing. The tRAS can be divided into two axes - one being pro-inflammatory and pro-fibrotic and one being anti-inflammatory and anti-fibrotic. However, the division of the axes is fuzzy and imperfect as the axes are codependent and the outcome of tRAS activation is determined by the context. Although the tRAS is a local system it shares its key enzymes, ligands and receptors with the systemic RAS and is consequently also targeted by repurposing of drugs developed against the systemic RAS to manage hypertension. With a focus on the skin we will here discuss the tRAS, its involvement in physiological and pathological wound healing, and the therapeutic aptitude of its targeting to treat chronic wounds and fibrosis.
Collapse
|
103
|
Nyström A, Bruckner-Tuderman L. Gene Therapy for Epidermolysis Bullosa: Sticky Business. Mol Ther 2018; 24:2035-2036. [PMID: 27966558 DOI: 10.1038/mt.2016.199] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
104
|
Abstract
Epidermolysis bullosa (EB) is a clinically and genetically heterogeneous skin fragility disorder characterized by trauma-induced skin dissociation and the development of painful wounds. So far, mutations in 20 genes have been described as being associated with more than 30 clinical EB subtypes. The era of whole-exome sequencing has revolutionized EB diagnostics with gene panels being developed in several EB centers and allowing quicker diagnosis and prognostication. With the advances of gene editing, more focus has been placed on gene editing-based therapies for targeted treatment. However, their implementation in daily care will still take time. Thus, a significant focus is currently being placed on achieving a better understanding of the pathogenetic mechanisms of each subtype and using this knowledge for the design of symptom-relief therapies, i.e. treatment options aimed at ameliorating and not curing the disease.
Collapse
Affiliation(s)
- Dimitra Kiritsi
- Department of Dermatology, Medical Center-University of Freiburg, Faculty of Medicine, 79104 Freiburg, Germany
| | - Alexander Nyström
- Department of Dermatology, Medical Center-University of Freiburg, Faculty of Medicine, 79104 Freiburg, Germany
| |
Collapse
|
105
|
Liao Y, Ivanova L, Sivalenka R, Plumer T, Zhu H, Zhang X, Christiano AM, McGrath JA, Gurney JP, Cairo MS. Efficacy of Human Placental-Derived Stem Cells in Collagen VII Knockout (Recessive Dystrophic Epidermolysis Bullosa) Animal Model. Stem Cells Transl Med 2018; 7:530-542. [PMID: 29745997 PMCID: PMC6052609 DOI: 10.1002/sctm.17-0182] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 01/15/2018] [Indexed: 12/13/2022] Open
Abstract
Recessive dystrophic epidermolysis bullosa (RDEB) is a devastating inherited skin blistering disease caused by mutations in the COL7A1 gene that encodes type VII collagen (C7), a major structural component of anchoring fibrils at the dermal-epidermal junction (DEJ). We recently demonstrated that human cord blood-derived unrestricted somatic stem cells promote wound healing and ameliorate the blistering phenotype in a RDEB (col7a1-/- ) mouse model. Here, we demonstrate significant therapeutic effect of a further novel stem cell product in RDEB, that is, human placental-derived stem cells (HPDSCs), currently being used as human leukocyte antigen-independent donor cells with allogeneic umbilical cord blood stem cell transplantation in patients with malignant and nonmalignant diseases. HPDSCs are isolated from full-term placentas following saline perfusion, red blood cell depletion, and volume reduction. HPDSCs contain significantly higher level of both hematopoietic and nonhematopoietic stem and progenitor cells than cord blood and are low in T cell content. A single intrahepatic administration of HPDSCs significantly elongated the median life span of the col7a1-/- mice from 2 to 7 days and an additional intrahepatic administration significantly extended the median life span to 18 days. We further demonstrated that after intrahepatic administration, HPDSCs engrafted short-term in the organs affected by RDEB, that is, skin and gastrointestinal tract of col7a1-/- mice, increased adhesion at the DEJ and deposited C7 even at 4 months after administration of HPDSCs, without inducing anti-C7 antibodies. This study warrants future clinical investigation to determine the safety and efficacy of HPDSCs in patients with severe RDEB. Stem Cells Translational Medicine 2018;7:530-542.
Collapse
Affiliation(s)
- Yanling Liao
- Department of Pediatrics, New York Medical College, Valhalla, New York, USA
| | - Larisa Ivanova
- Department of Pediatrics, New York Medical College, Valhalla, New York, USA
| | | | - Trevor Plumer
- Department of Pediatrics, New York Medical College, Valhalla, New York, USA
| | - Hongwen Zhu
- Department of Surgery, Tianjin Hospital, Tianjin Academy of Integrative Medicine, Tianjin, People's Republic of China
| | - Xiaokui Zhang
- Celgene Cellular Therapeutics, Warren, New Jersey, USA
| | - Angela M Christiano
- Department of Dermatology, Columbia University Medical Center, New York, New York, USA
| | - John A McGrath
- St John's Institute of Dermatology, King's College, London, United Kingdom
| | - Jodi P Gurney
- Celgene Cellular Therapeutics, Warren, New Jersey, USA
| | - Mitchell S Cairo
- Department of Pediatrics, New York Medical College, Valhalla, New York, USA.,Department of Medicine, New York Medical College, Valhalla, New York, USA.,Department of Pathology, New York Medical College, Valhalla, New York, USA.,Department of Immunology & Microbiology, New York Medical College, Valhalla, New York, USA.,Department of Cell Biology & Anatomy, New York Medical College, Valhalla, New York, USA
| |
Collapse
|
106
|
Michalak A, Cichoż-Lach H, Prozorow-Król B, Buk L, Dzida M. A rare case of skin blistering and esophageal stenosis in the course of epidermolysis bullosa - case report and literature review. BMC Gastroenterol 2018; 18:47. [PMID: 29653516 PMCID: PMC5899341 DOI: 10.1186/s12876-018-0771-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 03/20/2018] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Epidermolysis bullosa (EB) constitutes a heterogenous group of rare multisystem genetically transmitted disorders comprising several blistering muco-cutaneous diseases with a monogenic basis and either autosomal dominant or autosomal recessive mode of inheritance. EB manifestation is not only limited to the skin. Systemic signs might involve the nose, ear, eye, genitourinary tract and upper gastrointestinal tract. The presence of particular symptoms is directly determined by a type of altered skin protein. Gastrointestinal manifestation of EB is most commonly reflected by esophageal stenosis due to recurrent esophageal blistering, followed by consequent scarring. CASE PRESENTATION Here we present a case of a man with dystrophic EB and dysphagia, skin blistering, joints contractures and missing nails. To our knowledge, the presented man is the oldest one diagnosed with EB living in Poland. CONCLUSIONS Management of an esophageal stricture in such circumstances is based on endoscopic dilatation. However, in most severe cases, placement of a gastrostomy tube is required. Despite great advances in medicine, a targeted therapy in the course of EB has not been established yet.
Collapse
Affiliation(s)
- Agata Michalak
- Department of Gastroenterology with Endoscopy Unit, Medical University of Lublin, Jaczewski Str, Lublin, 820-954, Poland
| | - Halina Cichoż-Lach
- Department of Gastroenterology with Endoscopy Unit, Medical University of Lublin, Jaczewski Str, Lublin, 820-954, Poland.
| | - Beata Prozorow-Król
- Department of Gastroenterology with Endoscopy Unit, Medical University of Lublin, Jaczewski Str, Lublin, 820-954, Poland
| | - Leszek Buk
- Department of Radiology and Nuclear Medicine, Medical University of Lublin, Jaczewski Str, Lublin, 820-954, Poland
| | - Monika Dzida
- Department of Radiology and Nuclear Medicine, Medical University of Lublin, Jaczewski Str, Lublin, 820-954, Poland
| |
Collapse
|
107
|
Injury- and inflammation-driven skin fibrosis: The paradigm of epidermolysis bullosa. Matrix Biol 2018; 68-69:547-560. [PMID: 29391280 DOI: 10.1016/j.matbio.2018.01.016] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/22/2018] [Accepted: 01/22/2018] [Indexed: 02/06/2023]
Abstract
Genetic or acquired destabilization of the dermal extracellular matrix evokes injury- and inflammation-driven progressive soft tissue fibrosis. Dystrophic epidermolysis bullosa (DEB), a heritable human skin fragility disorder, is a paradigmatic disease to investigate these processes. Studies of DEB have generated abundant new information on cellular and molecular mechanisms at play in skin fibrosis which are not only limited to intractable diseases, but also applicable to some of the most common acquired conditions. Here, we discuss recent advances in understanding the biological and mechanical mechanisms driving the dermal fibrosis in DEB. Much of this progress is owed to the implementation of cell and tissue omics studies, which we pay special attention to. Based on the novel findings and increased understanding of the disease mechanisms in DEB, translational aspects and future therapeutic perspectives are emerging.
Collapse
|
108
|
Uitto J, Bruckner-Tuderman L, McGrath JA, Riedl R, Robinson C. EB2017-Progress in Epidermolysis Bullosa Research toward Treatment and Cure. J Invest Dermatol 2018; 138:1010-1016. [PMID: 29391251 DOI: 10.1016/j.jid.2017.12.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 12/01/2017] [Accepted: 12/01/2017] [Indexed: 12/31/2022]
Abstract
Epidermolysis bullosa, a group of heritable blistering disorders, shows extensive phenotypic variability due to mutations in as many as 20 distinct genes. There is no cure for this devastating group of disorders; however, a number of preclinical developments show promise, and some approaches have already reached the stage of early clinical trials. Dystrophic Epidermolysis Bullosa Research Association (DEBRA) International, a global coalition of national patient organizations advocating on behalf of the patients and families with epidermolysis bullosa, supports research and organizes periodic scientific and clinical meetings on this disease. The most recent meeting, EB2017, was held in Salzburg in September 2017. This report summarizes some of the recent research and clinical developments that have identified promising avenues toward treatment and perhaps eventual cure, with improved quality of life for patients with epidermolysis bullosa.
Collapse
Affiliation(s)
- Jouni Uitto
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
| | | | - John A McGrath
- St. John's Institute of Dermatology, King's College London, Guy's Hospital, London, UK
| | | | | |
Collapse
|
109
|
Thriene K, Grüning BA, Bornert O, Erxleben A, Leppert J, Athanasiou I, Weber E, Kiritsi D, Nyström A, Reinheckel T, Backofen R, Has C, Bruckner-Tuderman L, Dengjel J. Combinatorial Omics Analysis Reveals Perturbed Lysosomal Homeostasis in Collagen VII-deficient Keratinocytes. Mol Cell Proteomics 2018; 17:565-579. [PMID: 29326176 DOI: 10.1074/mcp.ra117.000437] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Indexed: 12/14/2022] Open
Abstract
The extracellular matrix protein collagen VII is part of the microenvironment of stratified epithelia and critical in organismal homeostasis. Mutations in the encoding gene COL7A1 lead to the skin disorder dystrophic epidermolysis bullosa (DEB), are linked to skin fragility and progressive inflammation-driven fibrosis that facilitates aggressive skin cancer. So far, these changes have been linked to mesenchymal alterations, the epithelial consequences of collagen VII loss remaining under-addressed. As epithelial dysfunction is a principal initiator of fibrosis, we performed a comprehensive transcriptome and proteome profiling of primary human keratinocytes from DEB and control subjects to generate global and detailed images of dysregulated epidermal molecular pathways linked to loss of collagen VII. These revealed downregulation of interaction partners of collagen VII on mRNA and protein level, but also increased abundance of S100 pro-inflammatory proteins in primary DEB keratinocytes. Increased TGF-β signaling because of loss of collagen VII was associated with enhanced activity of lysosomal proteases in both keratinocytes and skin of collagen VII-deficient individuals. Thus, loss of a single structural protein, collagen VII, has extra- and intracellular consequences, resulting in inflammatory processes that enable tissue destabilization and promote keratinocyte-driven, progressive fibrosis.
Collapse
Affiliation(s)
- Kerstin Thriene
- From the ‡Department of Dermatology, Medical Center - University of Freiburg, Germany.,§Centre for Biological Systems Analysis (ZBSA), University of Freiburg, Germany
| | - Björn Andreas Grüning
- §Centre for Biological Systems Analysis (ZBSA), University of Freiburg, Germany.,¶Department of Computer Science, University of Freiburg, Germany
| | - Olivier Bornert
- From the ‡Department of Dermatology, Medical Center - University of Freiburg, Germany
| | - Anika Erxleben
- §Centre for Biological Systems Analysis (ZBSA), University of Freiburg, Germany.,¶Department of Computer Science, University of Freiburg, Germany
| | - Juna Leppert
- From the ‡Department of Dermatology, Medical Center - University of Freiburg, Germany
| | - Ioannis Athanasiou
- From the ‡Department of Dermatology, Medical Center - University of Freiburg, Germany
| | - Ekkehard Weber
- ‖Institute of Physiological Chemistry, Medical Faculty, Martin Luther University Halle-Wittenberg, Germany
| | - Dimitra Kiritsi
- From the ‡Department of Dermatology, Medical Center - University of Freiburg, Germany
| | - Alexander Nyström
- From the ‡Department of Dermatology, Medical Center - University of Freiburg, Germany
| | - Thomas Reinheckel
- **Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Germany.,‡‡Centre for Biological Signalling Studies (BIOSS), University of Freiburg, Germany
| | - Rolf Backofen
- §Centre for Biological Systems Analysis (ZBSA), University of Freiburg, Germany.,¶Department of Computer Science, University of Freiburg, Germany.,‡‡Centre for Biological Signalling Studies (BIOSS), University of Freiburg, Germany
| | - Cristina Has
- From the ‡Department of Dermatology, Medical Center - University of Freiburg, Germany
| | - Leena Bruckner-Tuderman
- From the ‡Department of Dermatology, Medical Center - University of Freiburg, Germany; .,§Centre for Biological Systems Analysis (ZBSA), University of Freiburg, Germany.,‡‡Centre for Biological Signalling Studies (BIOSS), University of Freiburg, Germany
| | - Jörn Dengjel
- From the ‡Department of Dermatology, Medical Center - University of Freiburg, Germany; .,§Centre for Biological Systems Analysis (ZBSA), University of Freiburg, Germany.,‡‡Centre for Biological Signalling Studies (BIOSS), University of Freiburg, Germany.,§§Department of Biology, University of Fribourg, Switzerland
| |
Collapse
|
110
|
Impaired lymphoid extracellular matrix impedes antibacterial immunity in epidermolysis bullosa. Proc Natl Acad Sci U S A 2018; 115:E705-E714. [PMID: 29305555 DOI: 10.1073/pnas.1709111115] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Genetic loss of collagen VII causes recessive dystrophic epidermolysis bullosa (RDEB), a skin fragility disorder that, unexpectedly, manifests also with elevated colonization of commensal bacteria and frequent wound infections. Here, we describe an unprecedented systemic function of collagen VII as a member of a unique innate immune-supporting multiprotein complex in spleen and lymph nodes. In this complex, collagen VII specifically binds and sequesters the innate immune activator cochlin in the lumen of lymphoid conduits. In genetic mouse models, loss of collagen VII increased bacterial colonization by diminishing levels of circulating cochlin LCCL domain. Intraperitoneal injection of collagen VII, which restored cochlin in the spleen, but not in the skin, reactivated peripheral innate immune cells via cochlin and reduced bacterial skin colonization. Systemic administration of the cochlin LCCL domain was alone sufficient to diminish bacterial supercolonization of RDEB mouse skin. Human validation demonstrated that RDEB patients displayed lower levels of systemic cochlin LCCL domain with subsequently impaired macrophage response in infected wounds. This study identifies an intrinsic innate immune dysfunction in RDEB and uncovers a unique role of the lymphoid extracellular matrix in systemic defense against bacteria.
Collapse
|
111
|
Inside out: regenerative medicine for recessive dystrophic epidermolysis bullosa. Pediatr Res 2018; 83:318-324. [PMID: 29593249 DOI: 10.1038/pr.2017.244] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 09/14/2017] [Indexed: 02/07/2023]
Abstract
Epidermolysis bullosa is classified as a genodermatosis, an inherited genetic skin disorder that results in severe, chronic skin blistering with painful and life-threatening complications. Although there is currently no cure for epidermolysis bullosa, concurrent advances in gene and stem cell therapies are converging toward combinatorial therapies that hold the promise of clinically meaningful and lifelong improvement. Recent studies using hematopoietic stem cells and mesenchymal stromal/stem cells to treat epidermolysis bullosa have demonstrated the potential for sustained, effective management of the most severe cases. Furthermore, advances in the use of gene therapy and gene-editing techniques, coupled with the development of induced pluripotent stem cells from patients with epidermolysis bullosa, allow for autologous therapies derived from a renewable population of cells that are patient-specific. Here we describe emerging treatments for epidermolysis bullosa and other genodermatoses, along with a discussion of their benefits and limitations as effective therapies.
Collapse
|
112
|
Therapies for genetic extracellular matrix diseases of the skin. Matrix Biol 2017; 71-72:330-347. [PMID: 29274938 DOI: 10.1016/j.matbio.2017.12.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 12/15/2017] [Accepted: 12/19/2017] [Indexed: 12/26/2022]
Abstract
A specialized, highly developed dermal extracellular matrix (ECM) provides the skin with its unique mechano-resilient properties and is vital for organ function. Accordingly, genetically acquired deficiency of dermal ECM proteins or proteins essential for the post-translational modification and homeostasis of the dermal ECM, results in diseases affecting the skin. Some of these diseases are lethal or lead to severe complications for the affected individuals. At present limited efficient and evidence-based treatment options exist for genetic ECM diseases of the skin. There is thus a high unmet medical need, creating an urgent demand to develop improved care for these diseases. Here, by drawing examples from the wealth of research on epidermolysis bullosa, we present the current status of biological and small molecule therapies for genetic ECM diseases with skin manifestations. We discuss challenges, and using existing data to propose strategies and future directions allowing development of more efficacious therapies and advancement of them into clinical practice.
Collapse
|
113
|
Lacroix M, Tessier A, Dumestre-Pérard C, Vadon-Le Goff S, Gout E, Bruckner-Tuderman L, Kiritsi D, Nyström A, Ricard-Blum S, Moali C, Hulmes DJS, Thielens NM. Interaction of Complement Defence Collagens C1q and Mannose-Binding Lectin with BMP-1/Tolloid-like Proteinases. Sci Rep 2017; 7:16958. [PMID: 29209066 PMCID: PMC5717261 DOI: 10.1038/s41598-017-17318-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/19/2017] [Indexed: 12/26/2022] Open
Abstract
The defence collagens C1q and mannose-binding lectin (MBL) are immune recognition proteins that associate with the serine proteinases C1r/C1s and MBL-associated serine proteases (MASPs) to trigger activation of complement, a major innate immune system. Bone morphogenetic protein-1 (BMP-1)/tolloid-like proteinases (BTPs) are metalloproteinases with major roles in extracellular matrix assembly and growth factor signalling. Despite their different functions, C1r/C1s/MASPs and BTPs share structural similarities, including a specific CUB-EGF-CUB domain arrangement found only in these enzymes that mediates interactions with collagen-like proteins, suggesting a possible functional relationship. Here we investigated the potential interactions between the defence collagens C1q and MBL and the BTPs BMP-1 and mammalian tolloid-like-1 (mTLL-1). C1q and MBL bound to immobilized BMP-1 and mTLL-1 with nanomolar affinities. These interactions involved the collagen-like regions of the defence collagens and were inhibited by pre-incubation of C1q or MBL with their cognate complement proteinases. Soluble BMP-1 and mTLL-1 did not inhibit complement activation and the defence collagens were neither substrates nor inhibitors of BMP-1. Finally, C1q co-localized with BMP-1 in skin biopsies following melanoma excision and from patients with recessive dystrophic epidermolysis bullosa. The observed interactions provide support for a functional link between complement and BTPs during inflammation and tissue repair.
Collapse
Affiliation(s)
- Monique Lacroix
- Univ. Grenoble Alpes, CNRS, CEA, IBS, F-38000, Grenoble, France
| | - Agnès Tessier
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, Tissue Biology and Therapeutic Engineering Unit, LBTI, UMR 5305, F-69367, Lyon, France
| | - Chantal Dumestre-Pérard
- Laboratoire d'Immunologie, Pôle de Biologie, CHU Grenoble Alpes, 38700, La Tronche, France.,BNI group, TIMC-IMAG UMR5525 Université Grenoble Alpes, 38706, La Tronche, France
| | - Sandrine Vadon-Le Goff
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, Tissue Biology and Therapeutic Engineering Unit, LBTI, UMR 5305, F-69367, Lyon, France
| | - Evelyne Gout
- Univ. Grenoble Alpes, CNRS, CEA, IBS, F-38000, Grenoble, France
| | - Leena Bruckner-Tuderman
- Department of Dermatology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dimitra Kiritsi
- Department of Dermatology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Alexander Nyström
- Department of Dermatology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sylvie Ricard-Blum
- Univ. Lyon, University Claude Bernard Lyon 1, INSA Lyon, CPE, Institute of Molecular and Supramolecular Chemistry and Biochemistry (ICBMS), UMR 5246, F-69622, Villeurbanne, France
| | - Catherine Moali
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, Tissue Biology and Therapeutic Engineering Unit, LBTI, UMR 5305, F-69367, Lyon, France
| | - David J S Hulmes
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, Tissue Biology and Therapeutic Engineering Unit, LBTI, UMR 5305, F-69367, Lyon, France.
| | | |
Collapse
|
114
|
Föll MC, Fahrner M, Gretzmeier C, Thoma K, Biniossek ML, Kiritsi D, Meiss F, Schilling O, Nyström A, Kern JS. Identification of tissue damage, extracellular matrix remodeling and bacterial challenge as common mechanisms associated with high-risk cutaneous squamous cell carcinomas. Matrix Biol 2017; 66:1-21. [PMID: 29158163 DOI: 10.1016/j.matbio.2017.11.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 11/06/2017] [Accepted: 11/06/2017] [Indexed: 01/03/2023]
Abstract
In this study we used a genetic extracellular matrix (ECM) disease to identify mechanisms associated with aggressive behavior of cutaneous squamous cell carcinoma (cSCC). cSCC is one of the most common malignancies and usually has a good prognosis. However, some cSCCs recur or metastasize and cause significant morbidity and mortality. Known factors that are associated with aggressiveness of cSCCs include tumor grading, size, localization and microinvasive behavior. To investigate molecular mechanisms that influence biologic behavior we used global proteomic and histologic analyses of formalin-fixed paraffin-embedded tissue of primary human cSCCs. We compared three groups: non-recurring, non-metastasizing low-risk sporadic cSCCs; metastasizing sporadic cSCCs; and cSCCs from patients with recessive dystrophic epidermolysis bullosa (RDEB). RDEB is a genetic skin blistering and ECM disease caused by collagen VII deficiency. Patients commonly suffer from high-risk early onset cSCCs that frequently metastasize. The results indicate that different processes are associated with formation of RDEB cSCCs compared to sporadic cSCCs. Sporadic cSCCs show signs of UV damage, whereas RDEB cSCCs have higher mutational rates and display tissue damage, inflammation and subsequent remodeling of the dermal ECM as tumor initiating factors. Interestingly the two high-risk groups - high-risk metastasizing sporadic cSCCs and RDEB cSCCs - are both associated with tissue damage and ECM remodeling in gene-ontology enrichment and Search Tool for the Retrieval of Interacting Genes/Proteins analyses. In situ histologic analyses validate these results. The high-risk cSCCs also show signatures of enhanced bacterial challenge. Histologic analyses confirm correlation of bacterial colonization with worse prognosis. Collectively, this unbiased study - performed directly on human patient material - reveals that common microenvironmental alterations linked to ECM remodeling and increased bacterial challenges are denominators of high-risk cSCCs. The proteins identified here could serve as potential diagnostic markers and therapeutic targets in high-risk cSCCs.
Collapse
Affiliation(s)
- Melanie C Föll
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Germany; Faculty of Biology, University of Freiburg, Germany
| | - Matthias Fahrner
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Germany; Faculty of Biology, University of Freiburg, Germany; Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Germany
| | - Christine Gretzmeier
- Department of Dermatology, Faculty of Medicine, Medical Center - University of Freiburg, University of Freiburg, Germany
| | - Käthe Thoma
- Department of Dermatology, Faculty of Medicine, Medical Center - University of Freiburg, University of Freiburg, Germany
| | - Martin L Biniossek
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Germany
| | - Dimitra Kiritsi
- Department of Dermatology, Faculty of Medicine, Medical Center - University of Freiburg, University of Freiburg, Germany
| | - Frank Meiss
- Department of Dermatology, Faculty of Medicine, Medical Center - University of Freiburg, University of Freiburg, Germany
| | - Oliver Schilling
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Germany; German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany; BIOSS Centre for Biological Signaling Studies, University of Freiburg, Germany.
| | - Alexander Nyström
- Department of Dermatology, Faculty of Medicine, Medical Center - University of Freiburg, University of Freiburg, Germany.
| | - Johannes S Kern
- Department of Dermatology, Faculty of Medicine, Medical Center - University of Freiburg, University of Freiburg, Germany; Department of Dermatology, Royal Melbourne Hospital, Parkville and Box Hill Hospital - Monash University, Eastern Health Clinical School, Box Hill, Victoria, Australia
| |
Collapse
|
115
|
The role of TGFβ in wound healing pathologies. Mech Ageing Dev 2017; 172:51-58. [PMID: 29132871 DOI: 10.1016/j.mad.2017.11.004] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 09/12/2017] [Accepted: 11/01/2017] [Indexed: 12/25/2022]
Abstract
Wound healing is one of the most complex processes in multicellular organisms, involving numerous intra- and intercellular signalling pathways in various cell types. It involves extensive communication between the cellular constituents of diverse skin compartments and its extracellular matrix. Miscommunication during healing may have two distinct damaging consequences: the development of a chronic wound or the formation of a hypertrophic scar/keloid. Chronic wounds are defined as barrier defects that have not proceeded through orderly and timely reparation to regain structural and functional integrity. Several growth factors are involved in wound healing, of which transforming growth factor beta (TGFβ) is of particular importance for all phases of this procedure. It exerts pleiotropic effects on wound healing by regulating cell proliferation, differentiation, extracellular matrix production, and modulating the immune response. In this review we are presenting the role of TGFβ in physiological and pathological wound healing. We show that the context-dependent nature of the TGFβ signaling pathways on wound healing is the biggest challenge in order to gain a therapeutically applicable comprehensive knowledge of their specific involvement in chronic wounds.
Collapse
|
116
|
Webber BR, O’Connor KT, McElmurry RT, Durgin EN, Eide C, Lees CJ, Riddle MJ, Mathews W, Frank NY, Kluth MA, Ganss C, Moriarity BS, Frank MH, Osborn MJ, Tolar J. Rapid generation of Col7a1 -/- mouse model of recessive dystrophic epidermolysis bullosa and partial rescue via immunosuppressive dermal mesenchymal stem cells. J Transl Med 2017; 97:1218-1224. [PMID: 28892093 PMCID: PMC5623156 DOI: 10.1038/labinvest.2017.85] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/06/2017] [Accepted: 07/10/2017] [Indexed: 12/20/2022] Open
Abstract
Recessive dystrophic epidermolysis bullosa (RDEB) is a debilitating and ultimately lethal blistering disease caused by mutations to the Col7a1 gene. Development of novel cell therapies for the treatment of RDEB would be fostered by having immunodeficient mouse models able to accept human cell grafts; however, immunodeficient models of many genodermatoses such as RDEB are lacking. To overcome this limitation, we combined the clustered regularly interspaced short palindromic repeats and associated nuclease (CRISPR/Cas9) system with microinjection into NOD/SCID IL2rγcnull (NSG) embryos to rapidly develop an immunodeficient Col7a1-/- mouse model of RDEB. Through dose optimization, we achieve F0 biallelic knockout efficiencies exceeding 80%, allowing us to quickly generate large numbers of RDEB NSG mice for experimental use. Using this strategy, we clearly demonstrate important strain-specific differences in RDEB pathology that could underlie discordant results observed between independent studies and establish the utility of this system in proof-of-concept human cellular transplantation experiments. Importantly, we uncover the ability of a recently identified skin resident immunomodulatory dermal mesenchymal stem cell marked by ABCB5 to reduce RDEB pathology and markedly extend the lifespan of RDEB NSG mice via reduced skin infiltration of inflammatory myeloid derivatives.
Collapse
Affiliation(s)
- Beau R. Webber
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Kyle T. O’Connor
- Masonic Cancer Center at the University of Minnesota, Mouse Genetics Laboratory Shared Resource, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ron T. McElmurry
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Elise N. Durgin
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Cindy Eide
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Christopher J. Lees
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Megan J. Riddle
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Wendy Mathews
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Natasha Y. Frank
- Department of Medicine, Boston VA Healthcare System, West Roxbury, Massachusetts, USA,Division of Genetics, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Mark A. Kluth
- Rheacell GmbH & Co. KG, Heidelberg, Germany,Ticeba GmbH, Heidelberg, Germany
| | - Christoph Ganss
- Rheacell GmbH & Co. KG, Heidelberg, Germany,Ticeba GmbH, Heidelberg, Germany
| | - Branden S. Moriarity
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota Medical School, Minneapolis, Minnesota, USA,Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Markus H. Frank
- Transplant Research Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA,Harvard Skin Disease Research Center, Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA,School of Medical Sciences, Edith Cowan University, Joondalup, Western Australia, Australia,Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| | - Mark J. Osborn
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota Medical School, Minneapolis, Minnesota, USA,Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA,Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, USA,Asan-Minnesota Institute for Innovating Transplantation, Seoul, Republic of Korea
| | - Jakub Tolar
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota Medical School, Minneapolis, Minnesota, USA,Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA,Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, USA,Asan-Minnesota Institute for Innovating Transplantation, Seoul, Republic of Korea,Correspondence to: Jakub Tolar, Pediatric BMT, 420 Delaware St SE, MMC 366, Minneapolis, MN 55455; 612-626-6723;
| |
Collapse
|
117
|
Murad HA, Gazzaz ZJ, Ali SS, Ibraheem MS. Candesartan, rather than losartan, improves motor dysfunction in thioacetamide-induced chronic liver failure in rats. ACTA ACUST UNITED AC 2017; 50:e6665. [PMID: 28953991 PMCID: PMC5609604 DOI: 10.1590/1414-431x20176665] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 07/24/2017] [Indexed: 12/16/2022]
Abstract
Minimal hepatic encephalopathy is more common than the acute syndrome. Losartan, the first angiotensin-II receptor blocker (ARB), and candesartan, another widely-used ARB, have protected against developing fibrogenesis, but there is no clear data about their curative antifibrotic effects. The current study was designed to examine their effects in an already-established model of hepatic fibrosis and also their effects on the associated motor dysfunction. Low-grade chronic liver failure (CLF) was induced in 3-month old Sprague-Dawley male rats using thioacetamide (TAA, 50 mg·kg-1·day-1) intraperitoneally for 2 weeks. The TAA-CLF rats were randomly divided into five groups (n=8) treated orally for 14 days (mg·kg-1·day-1) as follows: TAA (distilled water), losartan (5 and 10 mg/kg), and candesartan (0.1 and 0.3 mg/kg). Rats were tested for rotarod and open-field tests. Serum and hepatic biochemical markers, and hepatic histopathological changes were evaluated by H&E and Masson's staining. The TAA-CLF rats showed significant increases of hepatic malondialdehyde, hepatic expression of tumor necrosis factor-α (TNF-α), and serum ammonia, alanine aminotransferase, γ-glutamyl transferase, TNF-α, and malondialdehyde levels as well as significant decreases of hepatic and serum glutathione levels. All treatments significantly reversed these changes. The histopathological changes were moderate in losartan-5 and candesartan-0.1 groups and mild in losartan-10 and candesartan-0.3 groups. Only candesartan significantly improved TAA-induced motor dysfunction. In conclusion, therapeutic antifibrotic effects of losartan and candesartan in thioacetamide-induced hepatic fibrosis in rats are possibly through angiotensin-II receptor blocking, antioxidant, and anti-inflammatory activities. Improved motor dysfunction by candesartan could be attributed to better brain penetration and slower "off-rate" from angiotensin-II receptors. Clinical trials are recommended.
Collapse
Affiliation(s)
- H A Murad
- Department of Pharmacology, Faculty of Medicine, Rabigh, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Z J Gazzaz
- Department of Medicine, Faculty of Medicine, Rabigh, King Abdulaziz University, Jeddah, Saudi Arabia
| | - S S Ali
- Department of Anatomy, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - M S Ibraheem
- Department of Microbiology, Faculty of Medicine, Rabigh, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
118
|
Moffat JG, Vincent F, Lee JA, Eder J, Prunotto M. Opportunities and challenges in phenotypic drug discovery: an industry perspective. Nat Rev Drug Discov 2017; 16:531-543. [PMID: 28685762 DOI: 10.1038/nrd.2017.111] [Citation(s) in RCA: 514] [Impact Index Per Article: 73.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Phenotypic drug discovery (PDD) approaches do not rely on knowledge of the identity of a specific drug target or a hypothesis about its role in disease, in contrast to the target-based strategies that have been widely used in the pharmaceutical industry in the past three decades. However, in recent years, there has been a resurgence in interest in PDD approaches based on their potential to address the incompletely understood complexity of diseases and their promise of delivering first-in-class drugs, as well as major advances in the tools for cell-based phenotypic screening. Nevertheless, PDD approaches also have considerable challenges, such as hit validation and target deconvolution. This article focuses on the lessons learned by researchers engaged in PDD in the pharmaceutical industry and considers the impact of 'omics' knowledge in defining a cellular disease phenotype in the era of precision medicine, introducing the concept of a chain of translatability. We particularly aim to identify features and areas in which PDD can best deliver value to drug discovery portfolios and can contribute to the identification and the development of novel medicines, and to illustrate the challenges and uncertainties that are associated with PDD in order to help set realistic expectations with regard to its benefits and costs.
Collapse
Affiliation(s)
- John G Moffat
- Biochemical &Cellular Pharmacology, Genentech, South San Francisco, California 94080, USA
| | - Fabien Vincent
- Discovery Sciences, Primary Pharmacology Group, Pfizer, Groton, Connecticut 06340, USA
| | - Jonathan A Lee
- Department of Quantitative Biology, Eli Lilly and Company, Indianapolis, Indiana 46285, USA
| | - Jörg Eder
- Novartis Institutes for Biomedical Research, 4002 Basel, Switzerland
| | - Marco Prunotto
- Phenotype and Target ID, Chemical Biology, pRED, Roche, 4070 Basel, Switzerland. Present address: Office of Innovation, Immunology, Infectious Diseases &Ophthalmology (I2O), Roche Late Stage Development, 124 Grenzacherstrasse, 4070 Basel, Switzerland
| |
Collapse
|
119
|
Abaci HE, Guo Z, Doucet Y, Jacków J, Christiano A. Next generation human skin constructs as advanced tools for drug development. Exp Biol Med (Maywood) 2017; 242:1657-1668. [PMID: 28592171 DOI: 10.1177/1535370217712690] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Many diseases, as well as side effects of drugs, manifest themselves through skin symptoms. Skin is a complex tissue that hosts various specialized cell types and performs many roles including physical barrier, immune and sensory functions. Therefore, modeling skin in vitro presents technical challenges for tissue engineering. Since the first attempts at engineering human epidermis in 1970s, there has been a growing interest in generating full-thickness skin constructs mimicking physiological functions by incorporating various skin components, such as vasculature and melanocytes for pigmentation. Development of biomimetic in vitro human skin models with these physiological functions provides a new tool for drug discovery, disease modeling, regenerative medicine and basic research for skin biology. This goal, however, has long been delayed by the limited availability of different cell types, the challenges in establishing co-culture conditions, and the ability to recapitulate the 3D anatomy of the skin. Recent breakthroughs in induced pluripotent stem cell (iPSC) technology and microfabrication techniques such as 3D-printing have allowed for building more reliable and complex in vitro skin models for pharmaceutical screening. In this review, we focus on the current developments and prevailing challenges in generating skin constructs with vasculature, skin appendages such as hair follicles, pigmentation, immune response, innervation, and hypodermis. Furthermore, we discuss the promising advances that iPSC technology offers in order to generate in vitro models of genetic skin diseases, such as epidermolysis bullosa and psoriasis. We also discuss how future integration of the next generation human skin constructs onto microfluidic platforms along with other tissues could revolutionize the early stages of drug development by creating reliable evaluation of patient-specific effects of pharmaceutical agents. Impact statement Skin is a complex tissue that hosts various specialized cell types and performs many roles including barrier, immune, and sensory functions. For human-relevant drug testing, there has been a growing interest in building more physiological skin constructs by incorporating different skin components, such as vasculature, appendages, pigment, innervation, and adipose tissue. This paper provides an overview of the strategies to build complex human skin constructs that can faithfully recapitulate human skin and thus can be used in drug development targeting skin diseases. In particular, we discuss recent developments and remaining challenges in incorporating various skin components, availability of iPSC-derived skin cell types and in vitro skin disease models. In addition, we provide insights on the future integration of these complex skin models with other organs on microfluidic platforms as well as potential readout technologies for high-throughput drug screening.
Collapse
Affiliation(s)
- H E Abaci
- 1 Department of Dermatology, Columbia University Medical Center, New York, NY 10032, USA
| | - Zongyou Guo
- 1 Department of Dermatology, Columbia University Medical Center, New York, NY 10032, USA
| | - Yanne Doucet
- 1 Department of Dermatology, Columbia University Medical Center, New York, NY 10032, USA
| | - Joanna Jacków
- 1 Department of Dermatology, Columbia University Medical Center, New York, NY 10032, USA
| | - Angela Christiano
- 1 Department of Dermatology, Columbia University Medical Center, New York, NY 10032, USA.,2 Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| |
Collapse
|
120
|
Gross O, Kashtan CE, Rheault MN, Flinter F, Savige J, Miner JH, Torra R, Ars E, Deltas C, Savva I, Perin L, Renieri A, Ariani F, Mari F, Baigent C, Judge P, Knebelman B, Heidet L, Lagas S, Blatt D, Ding J, Zhang Y, Gale DP, Prunotto M, Xue Y, Schachter AD, Morton LC, Blem J, Huang M, Liu S, Vallee S, Renault D, Schifter J, Skelding J, Gear S, Friede T, Turner AN, Lennon R. Advances and unmet needs in genetic, basic and clinical science in Alport syndrome: report from the 2015 International Workshop on Alport Syndrome. Nephrol Dial Transplant 2017; 32:916-924. [PMID: 27190345 PMCID: PMC5837236 DOI: 10.1093/ndt/gfw095] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 03/21/2016] [Accepted: 03/29/2016] [Indexed: 12/27/2022] Open
Abstract
Alport syndrome (AS) is a genetic disease characterized by haematuric glomerulopathy variably associated with hearing loss and anterior lenticonus. It is caused by mutations in the COL4A3, COL4A4 or COL4A5 genes encoding the α3α4α5(IV) collagen heterotrimer. AS is rare, but it accounts for >1% of patients receiving renal replacement therapy. Angiotensin-converting enzyme inhibition slows, but does not stop, the progression to renal failure; therefore, there is an urgent requirement to expand and intensify research towards discovering new therapeutic targets and new therapies. The 2015 International Workshop on Alport Syndrome targeted unmet needs in basic science, genetics and diagnosis, clinical research and current clinical care. In three intensive days, more than 100 international experts including physicians, geneticists, researchers from academia and industry, and patient representatives from all over the world participated in panel discussions and breakout groups. This report summarizes the most important priority areas including (i) understanding the crucial role of podocyte protection and regeneration, (ii) targeting mutations by new molecular techniques for new animal models and potential gene therapy, (iii) creating optimal interaction between nephrologists and geneticists for early diagnosis, (iv) establishing standards for mutation screening and databases, (v) improving widespread accessibility to current standards of clinical care, (vi) improving collaboration with the pharmaceutical/biotech industry to investigate new therapies, (vii) research in hearing loss as a huge unmet need in Alport patients and (viii) the need to evaluate the risk and benefit of novel (including 'repurposing') therapies on an international basis.
Collapse
Affiliation(s)
- Oliver Gross
- Clinic of Nephrology and Rheumatology, University Medicine Goettingen, Goettingen, Germany
| | - Clifford E. Kashtan
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Michelle N. Rheault
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Frances Flinter
- Department of Clinical Genetics, Guy's and St Thomas’ NHS Foundation Trust, London, UK
| | - Judith Savige
- Melbourne Health, The University of Melbourne, Parkville, VIC, Australia
| | - Jeffrey H. Miner
- Division of Nephrology, Washington University School of Medicine, St Louis, MO, USA
| | - Roser Torra
- Inherited Kidney Diseases, Nephrology Department, Fundació Puigvert, IIB Sant Pau, Universitat Autònoma de Barcelona and REDINREN, Barcelona, Spain
| | - Elisabet Ars
- Inherited Kidney Diseases, Nephrology Department, Fundació Puigvert, IIB Sant Pau, Universitat Autònoma de Barcelona and REDINREN, Barcelona, Spain
| | - Constantinos Deltas
- Molecular Medicine Research Center, Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Isavella Savva
- Molecular Medicine Research Center, Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Laura Perin
- University of Southern California, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Alessandra Renieri
- Medical Genetics Unit, University of Siena, Siena, Italy
- Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Francesca Ariani
- Medical Genetics Unit, University of Siena, Siena, Italy
- Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Francesca Mari
- Medical Genetics Unit, University of Siena, Siena, Italy
- Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Colin Baigent
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Parminder Judge
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Bertrand Knebelman
- Division de Néphrologie, Hôpital Necker, Assistance Publique-Hôpitaux de Paris, Paris, France
- Université Paris Descartes, Paris, France
| | - Laurence Heidet
- Centre de Référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte (MARHEA) Service de Néphrologie Pédiatrique, Clinique Maurice Lamy, Hôpital Necker-Enfants Malades, Paris, France
| | | | - Dave Blatt
- Alport Foundation of Australia, Valentine, NSW, Australia
| | - Jie Ding
- Pediatric Department, Peking University First Hospital, Beijing, China
| | - Yanqin Zhang
- Pediatric Department, Peking University First Hospital, Beijing, China
| | - Daniel P. Gale
- University College London-Centre for Nephrology, London, UK
| | - Marco Prunotto
- Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Roche Pharma Research & Early Development, Basel, Switzerland
| | - Yong Xue
- Rare Disease Group-Therapeutic Area, Global Clinical Development, Sanofi Genzyme, Naarden, The Netherlands
| | - Asher D. Schachter
- New Indications Discovery Unit, Translational Medicine, Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Lori C.G. Morton
- Cardiovascular Research, Fibrosis Research, Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Jacqui Blem
- Clinical Development, Regulus Therapeutics, San Diego, CA, USA
| | - Michael Huang
- Clinical Development, Regulus Therapeutics, San Diego, CA, USA
| | - Shiguang Liu
- Department of Rare Diseases, Sanofi-Genzyme R&D Center, Framingham, MA, USA
| | | | - Daniel Renault
- Association for Information and Research on Genetic Renal Diseases (AIRG)—France, Paris, France
- Federation of European Associations of patients affected by Genetic Renal Diseases, FEDERG, Brussels, Belgium
| | | | | | | | - Tim Friede
- Department of Medical Statistics, University Medical Center Goettingen, Goettingen, Germany
| | - A. Neil Turner
- Renal Medicine, Royal Infirmary, University of Edinburgh, Edinburgh, UK
| | - Rachel Lennon
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
121
|
Cianfarani F, Zambruno G, Castiglia D, Odorisio T. Pathomechanisms of Altered Wound Healing in Recessive Dystrophic Epidermolysis Bullosa. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:1445-1453. [PMID: 28460207 DOI: 10.1016/j.ajpath.2017.03.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 03/10/2017] [Indexed: 11/26/2022]
Abstract
Individuals with recessive dystrophic epidermolysis bullosa (RDEB), a rare genetic skin disease, carry mutations in the COL7A1 gene that codes for type VII collagen, an extracellular matrix component of the basement membrane zone forming the anchoring fibrils. As a consequence, RDEB individuals manifest unremitting skin blistering that evolves into chronic wounds, inflammation, and fibrosis. These features play a central role in the development of more severe disease complications, such as mitten deformities of hands and feet and aggressive epithelial cancers. Despite being recognized as a central clinical issue for RDEB, wound healing impairment has been only marginally investigated. Recently, studies with disease mouse models started to shed light on the molecular mechanisms underlying the altered healing response of RDEB. In turn, alterations found in RDEB skin cell behavior fostered the understanding of mechanisms that may be responsible for defective skin repair. This review summarizes findings related to healing impairment in RDEB, and highlights therapeutic strategies for ameliorating healing.
Collapse
Affiliation(s)
- Francesca Cianfarani
- Laboratory of Molecular and Cell Biology, Istituto Dermopatico dell'Immacolata-IRCCS, Rome, Italy
| | - Giovanna Zambruno
- Genetic and Rare Diseases Research Area, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy
| | - Daniele Castiglia
- Laboratory of Molecular and Cell Biology, Istituto Dermopatico dell'Immacolata-IRCCS, Rome, Italy
| | - Teresa Odorisio
- Laboratory of Molecular and Cell Biology, Istituto Dermopatico dell'Immacolata-IRCCS, Rome, Italy.
| |
Collapse
|
122
|
The Molecular Revolution in Cutaneous Biology: Emerging Landscape in Genomic Dermatology: New Mechanistic Ideas, Gene Editing, and Therapeutic Breakthroughs. J Invest Dermatol 2017; 137:e123-e129. [PMID: 28411843 DOI: 10.1016/j.jid.2016.08.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 07/25/2016] [Accepted: 08/04/2016] [Indexed: 01/20/2023]
Abstract
Stunning technological advances in genomics have led to spectacular breakthroughs in the understanding of the underlying defects, biological pathways and therapeutic targets of skin diseases leading to new therapeutic interventions. Next-generation sequencing has revolutionized the identification of disease-causing genes and has a profound impact in deciphering gene and protein signatures in rare and frequent skin diseases. Gene addition strategies have shown efficacy in junctional EB and in recessive dystrophic EB (RDEB). TALENs and Cripsr/Cas9 have emerged as highly efficient new tools to edit genomic sequences to creat new models and to correct or disrupt mutated genes to treat human diseases. Therapeutic approaches have not been limited to DNA modification and strategies at the mRNA, protein and cellular levels have also emerged, some of which have already proven clinical efficacy in RDEB. Improved understanding of the pathogenesis of skin disorders has led to the development of specific drugs or repurposing of existing medicines as in basal cell nevus syndrome, alopecia areata, melanoma and EB simplex. These discoveries pave the way for improved targeted personalized medicine for rare and frequent diseases. It is likely that a growing number of orphan skin diseases will benefit from combinatory new therapies in a near future.
Collapse
|
123
|
Rashidghamat E, McGrath JA. Novel and emerging therapies in the treatment of recessive dystrophic epidermolysis bullosa. Intractable Rare Dis Res 2017; 6:6-20. [PMID: 28357176 PMCID: PMC5359356 DOI: 10.5582/irdr.2017.01005] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Epidermolysis bullosa (EB) is a clinically and genetically heterogeneous group of inherited blistering diseases that affects ∼ 500,000 people worldwide. Clinically, individuals with EB have fragile skin and are susceptible to blistering following minimal trauma, with mucous membrane and other organ involvement in some subtypes. Within the spectrum of EB, ∼ 5% of affected individuals have the clinically more severe recessive dystrophic (RDEB) variant with a prevalence of 8 per one million of the population. RDEB is caused by loss-of-function mutations in the type VII collagen gene, COL7A1, which leads to reduced or absent type VII collagen (C7) and a paucity of structurally effective anchoring fibrils at the dermal-epidermal junction (DEJ). Currently, there is no cure for RDEB, although considerable progress has been made in testing novel treatments including gene therapy (lentiviral and gamma retroviral vectors for COL7A1 supplementation in keratinocytes and fibroblasts), as well as cell therapy (use of allogeneic fibroblasts, mesenchymal stromal cells (MSCs), and bone marrow transplantation (BMT)). Here, we review current treatment modalities available as well as novel and emerging therapies in the treatment of RDEB. Clinical trials of new translational therapies in RDEB offer hope for improved clinical management of patients as well as generating broader lessons for regenerative medicine that could be applicable to other inherited or acquired abnormalities of wound healing or scarring.
Collapse
Affiliation(s)
- Ellie Rashidghamat
- St. John's Institute of Dermatology, King's College London, London, United Kingdom
| | - John A. McGrath
- St. John's Institute of Dermatology, King's College London, London, United Kingdom
- Address correspondence to: Dr. John A. McGrath, Dermatology Research Laboratories, Floor 9 Tower Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT, United Kingdom. E-mail:
| |
Collapse
|
124
|
Guerra L, Odorisio T, Zambruno G, Castiglia D. Stromal microenvironment in type VII collagen-deficient skin: The ground for squamous cell carcinoma development. Matrix Biol 2017; 63:1-10. [PMID: 28126522 DOI: 10.1016/j.matbio.2017.01.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 01/17/2017] [Accepted: 01/18/2017] [Indexed: 12/18/2022]
Abstract
Recessive dystrophic epidermolysis bullosa (RDEB) is a skin fragility disease caused by mutations that affect the function and/or the amount of type VII collagen (C7), the major component of anchoring fibrils. Hallmarks of RDEB are unremitting blistering and chronic wounds leading to tissue fibrosis and scarring. Nearly all patients with severe RDEB develop highly metastatic squamous cell carcinomas (SCC) which are the main cause of death. Accumulating evidence from a murine RDEB model and human RDEB cells demonstrates that lack of C7 also directly alters the wound healing process. Non-healing RDEB wounds are characterized by increased inflammation, high transforming growth factor-β1 (TGF-β1) levels and activity, and are heavily populated by myofibroblasts responsible for enhanced fibrogenesis and matrix stiffness. These changes make the RDEB stroma a microenvironment prone to cancer initiation, where cells with features of cancer-associated fibroblasts are found. Here, we discuss recent knowledge on microenvironment alterations in RDEB, highlighting possible therapeutic targets to prevent and/or delay fibrosis and SCC development.
Collapse
Affiliation(s)
- Liliana Guerra
- Laboratory of Molecular and Cell Biology, Istituto Dermopatico dell'Immacolata (IDI)-IRCCS, Via dei Monti di Creta 104, 00167 Rome, Italy
| | - Teresa Odorisio
- Laboratory of Molecular and Cell Biology, Istituto Dermopatico dell'Immacolata (IDI)-IRCCS, Via dei Monti di Creta 104, 00167 Rome, Italy
| | - Giovanna Zambruno
- Genetic and Rare Diseases Research Area and Dermatology Unit, Bambino Gesù Children's Hospital-IRCCS, Piazza Sant'Onofrio 4, 00165 Rome, Italy
| | - Daniele Castiglia
- Laboratory of Molecular and Cell Biology, Istituto Dermopatico dell'Immacolata (IDI)-IRCCS, Via dei Monti di Creta 104, 00167 Rome, Italy.
| |
Collapse
|
125
|
Bornert O, Peking P, Bremer J, Koller U, van den Akker PC, Aartsma-Rus A, Pasmooij AMG, Murauer EM, Nyström A. RNA-based therapies for genodermatoses. Exp Dermatol 2017; 26:3-10. [PMID: 27376675 PMCID: PMC5593095 DOI: 10.1111/exd.13141] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2016] [Indexed: 12/14/2022]
Abstract
Genetic disorders affecting the skin, genodermatoses, constitute a large and heterogeneous group of diseases, for which treatment is generally limited to management of symptoms. RNA-based therapies are emerging as a powerful tool to treat genodermatoses. In this review, we discuss in detail RNA splicing modulation by antisense oligonucleotides and RNA trans-splicing, transcript replacement and genome editing by in vitro-transcribed mRNAs, and gene knockdown by small interfering RNA and antisense oligonucleotides. We present the current state of these therapeutic approaches and critically discuss their opportunities, limitations and the challenges that remain to be solved. The aim of this review was to set the stage for the development of new and better therapies to improve the lives of patients and families affected by a genodermatosis.
Collapse
Affiliation(s)
- Olivier Bornert
- Department of Dermatology, Medical Center – University of
Freiburg, Freiburg, Germany
| | - Patricia Peking
- EB House Austria, Research Program for Molecular Therapy of
Genodermatoses, Department of Dermatology, University Hospital of the Paracelsus
Medical University, Salzburg, Austria
| | - Jeroen Bremer
- Department of Dermatology, University Medical Center Groningen,
University of Groningen, Groningen, The Netherlands
| | - Ulrich Koller
- EB House Austria, Research Program for Molecular Therapy of
Genodermatoses, Department of Dermatology, University Hospital of the Paracelsus
Medical University, Salzburg, Austria
| | - Peter C. van den Akker
- Department of Dermatology, University Medical Center Groningen,
University of Groningen, Groningen, The Netherlands
- Department of Genetics, University Medical Center Groningen,
University of Groningen, Groningen, The Netherlands
| | - Annemieke Aartsma-Rus
- Department of Human Genetics, Leiden University Medical Center,
Leiden, The Netherlands
| | - Anna M. G. Pasmooij
- Department of Dermatology, University Medical Center Groningen,
University of Groningen, Groningen, The Netherlands
| | - Eva M. Murauer
- EB House Austria, Research Program for Molecular Therapy of
Genodermatoses, Department of Dermatology, University Hospital of the Paracelsus
Medical University, Salzburg, Austria
| | - Alexander Nyström
- Department of Dermatology, Medical Center – University of
Freiburg, Freiburg, Germany
| |
Collapse
|
126
|
Skin fibrosis: Models and mechanisms. Curr Res Transl Med 2016; 64:185-193. [PMID: 27939457 DOI: 10.1016/j.retram.2016.06.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 06/15/2016] [Accepted: 06/17/2016] [Indexed: 02/06/2023]
Abstract
Matrix synthesis, deposition and remodeling are complex biological processes that are critical in development, maintenance of tissue homeostasis and repair of injured tissues. Disturbances in the regulation of these processes can result in severe pathological conditions which are associated with tissue fibrosis as e.g. in Scleroderma, cutaneous Graft-versus-Host-Disease, excessive scarring after trauma or carcinogenesis. Therefore, finding efficient treatments to limit skin fibrosis is of major clinical importance. However the pathogenesis underlying the development of tissue fibrosis is still not entirely resolved. In recent years progress has been made unraveling the complex cellular and molecular mechanisms that determine fibrosis. Here we provide an overview of established and more recently developed mouse models that can be used to investigate the mechanisms of skin fibrosis and to test potential therapeutic approaches.
Collapse
|
127
|
Nyström A, Bornert O, Kühl T. Cell therapy for basement membrane-linked diseases. Matrix Biol 2016; 57-58:124-139. [PMID: 27609402 DOI: 10.1016/j.matbio.2016.07.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/02/2016] [Accepted: 07/07/2016] [Indexed: 12/14/2022]
Abstract
For most disorders caused by mutations in genes encoding basement membrane (BM) proteins, there are at present only limited treatment options available. Genetic BM-linked disorders can be viewed as especially suited for treatment with cell-based therapy approaches because the proteins that need to be restored are located in the extracellular space. In consequence, complete and permanent engraftment of cells does not necessarily have to occur to achieve substantial causal therapeutic effects. For these disorders cells can be used as transient vehicles for protein replacement. In addition, it is becoming evident that BM-linked genetic disorders are modified by secondary diseases mechanisms. Cell-based therapies have also the ability to target such disease modifying mechanisms. Thus, cell therapies can simultaneously provide causal treatment and symptomatic relief, and accordingly hold great potential for treatment of BM-linked disorders. However, this potential has for most applications and diseases so far not been realized. Here, we will present the state of cell therapies for BM-linked diseases. We will discuss use of both pluripotent and differentiated cells, the limitation of the approaches, their challenges, and the way forward to potential wider implementation of cell therapies in the clinics.
Collapse
Affiliation(s)
- Alexander Nyström
- Department of Dermatology, Medical Center - University of Freiburg, Freiburg, Germany.
| | - Olivier Bornert
- Department of Dermatology, Medical Center - University of Freiburg, Freiburg, Germany
| | - Tobias Kühl
- Department of Dermatology, Medical Center - University of Freiburg, Freiburg, Germany
| |
Collapse
|
128
|
Uitto J, Has C, Vahidnezhad H, Youssefian L, Bruckner-Tuderman L. Molecular pathology of the basement membrane zone in heritable blistering diseases:: The paradigm of epidermolysis bullosa. Matrix Biol 2016; 57-58:76-85. [PMID: 27496350 DOI: 10.1016/j.matbio.2016.07.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 07/19/2016] [Accepted: 07/28/2016] [Indexed: 01/03/2023]
Abstract
Epidermolysis bullosa (EB), a phenotypically heterogeneous group of skin fragility disorders, is characterized by blistering and erosions with considerable morbidity and mortality. Mutations in as many as 18 distinct genes expressed at the cutaneous basement membrane zone have been shown to be associated with the blistering phenotype, attesting to the role of the corresponding proteins in providing stable association of the epidermis to the dermis through adhesion at the dermo-epidermal basement membrane zone. Thus, different forms of EB have been highly instructive in providing information on the physiological functions of these proteins as integral components of the supramolecular adhesion complexes. In addition, precise information of the underlying genes and distinct mutations in families with EB has been helpful in subclassification of the disease with prognostic implications, as well as for prenatal testing and preimplantation genetic diagnosis. Furthermore, knowledge of the types of mutations is a prerequisite for application of allele-specific treatment approaches that have been recently developed, including read-through of premature termination codon mutations and chaperone-facilitated intracellular transport of conformationally altered proteins to proper physiologic subcellular location. Collectively, EB serves as a paradigm of heritable skin diseases in which significant progress has been made in identifying the underlying genetic bases and associated aberrant pathways leading from mutations to the phenotype, thus allowing application of precision medicine for this, currently intractable group of diseases.
Collapse
Affiliation(s)
- Jouni Uitto
- Department of Dermatology and Cutaneous Biology, The Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA.
| | - Cristina Has
- Department of Dermatology, University of Freiburg, Freiburg, Germany
| | - Hassan Vahidnezhad
- Department of Dermatology and Cutaneous Biology, The Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA; Biotechnology Research Center, Department of Molecular Medicine, Pasteur Institute of Iran, Tehran, Iran
| | - Leila Youssefian
- Department of Dermatology and Cutaneous Biology, The Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | | |
Collapse
|
129
|
Gronau T, Krüger K, Prein C, Aszodi A, Gronau I, Iozzo RV, Mooren FC, Clausen-Schaumann H, Bertrand J, Pap T, Bruckner P, Dreier R. Forced exercise-induced osteoarthritis is attenuated in mice lacking the small leucine-rich proteoglycan decorin. Ann Rheum Dis 2016; 76:442-449. [PMID: 27377816 DOI: 10.1136/annrheumdis-2016-209319] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 06/05/2016] [Accepted: 06/14/2016] [Indexed: 11/04/2022]
Abstract
OBJECTIVE Interterritorial regions of articular cartilage matrix are rich in decorin, a small leucine-rich proteoglycan and important structural protein, also involved in many signalling events. Decorin sequesters transforming growth factor β (TGFβ), thereby regulating its activity. Here, we analysed whether increased bioavailability of TGFβ in decorin-deficient (Dcn-/-) cartilage leads to changes in biomechanical properties and resistance to osteoarthritis (OA). METHODS Unchallenged knee cartilage was analysed by atomic force microscopy (AFM) and immunohistochemistry. Active transforming growth factor β-1 (TGFβ1) content within cultured chondrocyte supernatants was measured by ELISA. Quantitative real-time (RT)-PCR was used to analyse mRNA expression of glycosaminoglycan (GAG)-modifying enzymes in C28/I2 cells following TGFβ1 treatment. In addition, OA was induced in Dcn-/- and wild-type (WT) mice via forced exercise on a treadmill. RESULTS AFM analysis revealed a strikingly higher compressive stiffness in Dcn-/- than in WT cartilage. This was accompanied by increased negative charge and enhanced sulfation of GAG chains, but not by alterations in the levels of collagens or proteoglycan core proteins. In addition, decorin-deficient chondrocytes were shown to release more active TGFβ1. Increased TGFβ signalling led to enhanced Chst11 sulfotransferase expression inducing an increased negative charge density of cartilage matrix. These negative charges might attract more water resulting in augmented compressive stiffness of the tissue. Therefore, decorin-deficient mice developed significantly less OA after forced exercise than WT mice. CONCLUSIONS Our study demonstrates that the disruption of decorin-restricted TGFβ signalling leads to higher stiffness of articular cartilage matrix, rendering joints more resistant to OA. Therefore, the loss of an important structural component can improve cartilage homeostasis.
Collapse
Affiliation(s)
- Tobias Gronau
- Institute of Experimental Musculoskeletal Medicine, University Hospital Münster, Münster, Germany.,Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany
| | - Karsten Krüger
- Institute of Sports Medicine, Justus-Liebig University Giessen, Giessen, Germany
| | - Carina Prein
- Center for Applied Tissue Engineering and Regenerative Medicine (CANTER), Munich University of Applied Sciences and Center for Nanoscience (CeNS), Munich, Germany
| | - Attila Aszodi
- Laboratory of Experimental Surgery and Regenerative Medicine, Department of General, Trauma and Reconstruction Surgery, Ludwig-Maximilians-University, Munich, Germany
| | - Isabel Gronau
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany
| | - Renato V Iozzo
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, USA
| | - Frank C Mooren
- Institute of Sports Medicine, Justus-Liebig University Giessen, Giessen, Germany
| | - Hauke Clausen-Schaumann
- Center for Applied Tissue Engineering and Regenerative Medicine (CANTER), Munich University of Applied Sciences and Center for Nanoscience (CeNS), Munich, Germany
| | - Jessica Bertrand
- Institute of Experimental Musculoskeletal Medicine, University Hospital Münster, Münster, Germany.,Department of Orthopaedic Surgery, Otto-von-Guericke University, Magdeburg, Germany
| | - Thomas Pap
- Institute of Experimental Musculoskeletal Medicine, University Hospital Münster, Münster, Germany
| | - Peter Bruckner
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany
| | - Rita Dreier
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany
| |
Collapse
|
130
|
Vanden Oever M, Muldoon D, Mathews W, McElmurry R, Tolar J. miR-29 Regulates Type VII Collagen in Recessive Dystrophic Epidermolysis Bullosa. J Invest Dermatol 2016; 136:2013-2021. [PMID: 27328306 DOI: 10.1016/j.jid.2016.05.115] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 05/11/2016] [Accepted: 05/31/2016] [Indexed: 01/10/2023]
Abstract
Recessive dystrophic epidermolysis bullosa (RDEB) is a complex inherited skin disorder caused by loss-of-function mutations in the COL7A1 gene. For an effective treatment of this disorder to be realized, both a thorough understanding of the regulation of COL7A1 and an understanding of the underlying nature of the complications of RDEB are needed. Currently, both posttranscriptional regulation of COL7A1 and the underlying causes of fibrosis in RDEB patients are poorly understood. Here, we describe a mechanism of regulation, to our knowledge previously unknown, by which micro RNA-29 (miR-29) regulates COL7A1 in a complex network: both directly through targeting its 3' untranslated region at two distinct seed regions and indirectly through targeting an essential transcription factor required for basal COL7A1 expression, SP1. In turn, miR-29 itself is regulated by SP1 activity and transforming growth factor-β signaling. RDEB mice express high levels of transforming growth factor-β and significantly lower miR-29 compared with wild-type cohorts. The sustained decrease in miR-29 in RDEB skin leads to an increase of miR-29 target genes expressed in the skin, including profibrotic extracellular matrix collagens. Collectively, we identify miR-29 as an important factor in both regulating COL7A1 and inhibiting transforming growth factor-β-mediated fibrosis.
Collapse
Affiliation(s)
- Michael Vanden Oever
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, Minnesota, USA
| | - Daniel Muldoon
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, Minnesota, USA
| | - Wendy Mathews
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ron McElmurry
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jakub Tolar
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, Minnesota, USA; Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, USA.
| |
Collapse
|
131
|
Progress toward Treatment and Cure of Epidermolysis Bullosa: Summary of the DEBRA International Research Symposium EB2015. J Invest Dermatol 2016; 136:352-358. [PMID: 26802230 PMCID: PMC4724642 DOI: 10.1016/j.jid.2015.10.050] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Epidermolysis bullosa (EB), a group of complex heritable blistering diseases, is the topic of triennial research meetings organized by DEBRA International, the umbrella of patient advocacy organizations. The DEBRA 2015 Research Conference, held in May 2015, brought together investigators and clinicians from around the world working at the forefront of EB research. Discussing the state-of-the-art approaches from a wide range of disciplines, there was a palpable excitement at this conference brought about by the optimism about applying new sequencing techniques, genome editing, protein replacement, autologous and allogeneic stem cell therapy, innovations in cancer biology, revertant mosaicism and iPSC techniques, all of which are aimed at developing new therapies for EB. Many in the field who have participated in EB research for many years were especially enthusiastic and felt that, possibly for the first time, the field seems uniquely poised to bring these new tools to effectively tackle EB using multiple complementary approaches towards improved quality of life and eventually a cure for patients suffering from EB, a currently intractable disease.
Collapse
|
132
|
Kühl T, Mezger M, Hausser I, Guey LT, Handgretinger R, Bruckner-Tuderman L, Nyström A. Collagen VII Half-Life at the Dermal-Epidermal Junction Zone: Implications for Mechanisms and Therapy of Genodermatoses. J Invest Dermatol 2016; 136:1116-1123. [PMID: 26899947 DOI: 10.1016/j.jid.2016.02.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 01/29/2016] [Accepted: 02/03/2016] [Indexed: 12/18/2022]
Abstract
The tissue half-life of proteins largely determines treatment frequency of non-gene-editing-based therapies targeting the cause of genodermatoses. Surprisingly, such knowledge is missing for a vast number of proteins involved in pathologies. The dermal-epidermal junction zone is believed to be a rather static structure, but to our knowledge no detailed analysis of the stability of proteins within this zone has been performed. Here, we addressed the in vivo half-life of collagen type VII using genetic ablation of its expression and therapeutic introduction of exogenous collagen VII in a preclinical model. A similar in vivo stability of collagen VII was observed in the skin, tongue, and esophagus, with a half-life of about 1 month. Collagen VII expressed by intradermally injected mesenchymal stromal cells also exhibited a similar half-life. Our study provides key information needed for the development of protein replacement or cell-based therapies for dystrophic epidermolysis bullosa caused by genetic deficiency of collagen VII. Moreover, by showing what we define as an intermediate half-life of collagen VII, our study challenges the view of the dermal-epidermal junction zone as a static structure with very slow turnover.
Collapse
Affiliation(s)
- Tobias Kühl
- Department of Dermatology, Medical Center-University of Freiburg, 79104 Freiburg, Germany
| | - Markus Mezger
- University Children's Hospital, Department of General Paediatrics, Oncology/Haematology, Eberhard Karls University, 72076 Tuebingen, Germany
| | - Ingrid Hausser
- EM lab, Institute of Pathology, University Clinic Heidelberg, 69120 Heidelberg, Germany
| | | | - Rupert Handgretinger
- University Children's Hospital, Department of General Paediatrics, Oncology/Haematology, Eberhard Karls University, 72076 Tuebingen, Germany
| | | | - Alexander Nyström
- Department of Dermatology, Medical Center-University of Freiburg, 79104 Freiburg, Germany.
| |
Collapse
|
133
|
Krupiczojc M, O'Toole E. Management of cutaneous squamous cell carcinoma in patients with epidermolysis bullosa. Br J Dermatol 2016; 174:15. [DOI: 10.1111/bjd.14339] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- M.A. Krupiczojc
- Centre for Cell Biology and Cutaneous Research Blizard Institute Barts and the London School of Medicine and Dentistry Queen Mary University of London London E1 2AT U.K
| | - E.A. O'Toole
- Centre for Cell Biology and Cutaneous Research Blizard Institute Barts and the London School of Medicine and Dentistry Queen Mary University of London London E1 2AT U.K
| |
Collapse
|
134
|
Mittapalli VR, Madl J, Löffek S, Kiritsi D, Kern JS, Römer W, Nyström A, Bruckner-Tuderman L. Injury-Driven Stiffening of the Dermis Expedites Skin Carcinoma Progression. Cancer Res 2015; 76:940-51. [PMID: 26676755 DOI: 10.1158/0008-5472.can-15-1348] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 11/14/2015] [Indexed: 11/16/2022]
Abstract
Recessive dystrophic epidermolysis bullosa (RDEB) is a genetic skin fragility disorder characterized by injury-driven blister formation, progressive soft-tissue fibrosis, and a highly elevated risk of early-onset aggressive cutaneous squamous cell carcinoma (cSCC). However, the mechanisms underlying the unusually rapid progression of RDEB to cSCC are unknown. In this study, we investigated the contribution of injury-induced skin alterations to cSCC development by using a genetic model of RDEB and organotypic skin cultures. Analysis of RDEB patient samples suggested that premalignant changes to the dermal microenvironment drive tumor progression, which led us to subject a collagen VII hypomorphic mouse model of RDEB to chemical carcinogenesis. Carcinogen-treated RDEB mice developed invasive tumors phenocopying human RDEB-cSCC, whereas wild-type mice formed papillomas, indicating that the aggressiveness of RDEB-cSCC is mutation-independent. The inherent structural instability of the RDEB dermis, combined with repeated injury, increased the bioavailability of TGFβ, which promoted extracellular matrix production, cross-linking, thickening of dermal fibrils, and tissue stiffening. The biophysically altered dermis increased myofibroblast activity and integrin β1/pFAK/pAKT mechanosignaling in tumor cells, further demonstrating that cSCC progression is governed by pre-existing injury-driven changes in the RDEB tissue microenvironment. Treatment of three-dimensional organotypic RDEB skin cultures with inhibitors of TGFβ signaling, lysyl oxidase, or integrin β1-mediated mechanosignaling reduced or bypassed tissue stiffness and limited tumor cell invasion. Collectively, these findings provide a new mechanism by which RDEB tissue becomes malignant and offer new druggable therapeutic targets to prevent cSCC onset.
Collapse
Affiliation(s)
| | - Josef Madl
- Institute of Biology II, Albert Ludwigs University of Freiburg, Freiburg, Germany. BIOSS Centre for Biological Signalling Studies, Albert Ludwigs University of Freiburg, Freiburg, Germany
| | - Stefanie Löffek
- Department of Dermatology, University Medical Center Freiburg, Freiburg, Germany
| | - Dimitra Kiritsi
- Department of Dermatology, University Medical Center Freiburg, Freiburg, Germany
| | - Johannes S Kern
- Department of Dermatology, University Medical Center Freiburg, Freiburg, Germany
| | - Winfried Römer
- Institute of Biology II, Albert Ludwigs University of Freiburg, Freiburg, Germany. BIOSS Centre for Biological Signalling Studies, Albert Ludwigs University of Freiburg, Freiburg, Germany
| | - Alexander Nyström
- Department of Dermatology, University Medical Center Freiburg, Freiburg, Germany
| | - Leena Bruckner-Tuderman
- Department of Dermatology, University Medical Center Freiburg, Freiburg, Germany. BIOSS Centre for Biological Signalling Studies, Albert Ludwigs University of Freiburg, Freiburg, Germany.
| |
Collapse
|